633 research outputs found

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    The impact of pre- and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis.

    Get PDF
    Recently, deep learning frameworks have rapidly become the main methodology for analyzing medical images. Due to their powerful learning ability and advantages in dealing with complex patterns, deep learning algorithms are ideal for image analysis challenges, particularly in the field of digital pathology. The variety of image analysis tasks in the context of deep learning includes classification (e.g., healthy vs. cancerous tissue), detection (e.g., lymphocytes and mitosis counting), and segmentation (e.g., nuclei and glands segmentation). The majority of recent machine learning methods in digital pathology have a pre- and/or post-processing stage which is integrated with a deep neural network. These stages, based on traditional image processing methods, are employed to make the subsequent classification, detection, or segmentation problem easier to solve. Several studies have shown how the integration of pre- and post-processing methods within a deep learning pipeline can further increase the model's performance when compared to the network by itself. The aim of this review is to provide an overview on the types of methods that are used within deep learning frameworks either to optimally prepare the input (pre-processing) or to improve the results of the network output (post-processing), focusing on digital pathology image analysis. Many of the techniques presented here, especially the post-processing methods, are not limited to digital pathology but can be extended to almost any image analysis field

    Deep Learning based Novel Anomaly Detection Methods for Diabetic Retinopathy Screening

    Get PDF
    Programa Oficial de Doutoramento en Computación. 5009V01[Abstract] Computer-Aided Screening (CAS) systems are getting popularity in disease diagnosis. Modern CAS systems exploit data driven machine learning algorithms including supervised and unsupervised methods. In medical imaging, annotating pathological samples are much harder and time consuming work than healthy samples. Therefore, there is always an abundance of healthy samples and scarcity of annotated and labelled pathological samples. Unsupervised anomaly detection algorithms can be implemented for the development of CAS system using the largely available healthy samples, especially when disease/nodisease decision is important for screening. This thesis proposes unsupervised machine learning methodologies for anomaly detection in retinal fundus images. A novel patchbased image reconstructor architecture for DR detection is presented, that addresses the shortcomings of standard autoencoders-based reconstructors. Furthermore, a full-size image based anomaly map generation methodology is presented, where the potential DR lesions can be visualized at the pixel-level. Afterwards, a novel methodology is proposed to extend the patch-based architecture to a fully-convolutional architecture for one-shot full-size image reconstruction. Finally, a novel methodology for supervised DR classification is proposed that utilizes the anomaly maps

    Medical Image Analysis using Deep Relational Learning

    Full text link
    In the past ten years, with the help of deep learning, especially the rapid development of deep neural networks, medical image analysis has made remarkable progress. However, how to effectively use the relational information between various tissues or organs in medical images is still a very challenging problem, and it has not been fully studied. In this thesis, we propose two novel solutions to this problem based on deep relational learning. First, we propose a context-aware fully convolutional network that effectively models implicit relation information between features to perform medical image segmentation. The network achieves the state-of-the-art segmentation results on the Multi Modal Brain Tumor Segmentation 2017 (BraTS2017) and Multi Modal Brain Tumor Segmentation 2018 (BraTS2018) data sets. Subsequently, we propose a new hierarchical homography estimation network to achieve accurate medical image mosaicing by learning the explicit spatial relationship between adjacent frames. We use the UCL Fetoscopy Placenta dataset to conduct experiments and our hierarchical homography estimation network outperforms the other state-of-the-art mosaicing methods while generating robust and meaningful mosaicing result on unseen frames.Comment: arXiv admin note: substantial text overlap with arXiv:2007.0778

    Unveiling the frontiers of deep learning: innovations shaping diverse domains

    Full text link
    Deep learning (DL) enables the development of computer models that are capable of learning, visualizing, optimizing, refining, and predicting data. In recent years, DL has been applied in a range of fields, including audio-visual data processing, agriculture, transportation prediction, natural language, biomedicine, disaster management, bioinformatics, drug design, genomics, face recognition, and ecology. To explore the current state of deep learning, it is necessary to investigate the latest developments and applications of deep learning in these disciplines. However, the literature is lacking in exploring the applications of deep learning in all potential sectors. This paper thus extensively investigates the potential applications of deep learning across all major fields of study as well as the associated benefits and challenges. As evidenced in the literature, DL exhibits accuracy in prediction and analysis, makes it a powerful computational tool, and has the ability to articulate itself and optimize, making it effective in processing data with no prior training. Given its independence from training data, deep learning necessitates massive amounts of data for effective analysis and processing, much like data volume. To handle the challenge of compiling huge amounts of medical, scientific, healthcare, and environmental data for use in deep learning, gated architectures like LSTMs and GRUs can be utilized. For multimodal learning, shared neurons in the neural network for all activities and specialized neurons for particular tasks are necessary.Comment: 64 pages, 3 figures, 3 table

    Optical and hyperspectral image analysis for image-guided surgery

    Get PDF

    Optical and hyperspectral image analysis for image-guided surgery

    Get PDF
    corecore