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Optical and hyperspectral image analysis for image-guided surgery

In various applications based on surgery, navigation systems allow image-guided
interventions to facilitate minimally invasive surgery (MIS), which aims to reduce
tissue trauma, blood loss and patient recovery time. Comparing hands-free tech-
niques that rely solely on the expertise of the surgeon with MIS, the latter offers
a safer surgery and a reduction of damaging vascular structures. Two aspects
should be considered for providing interventional imaging and surgical navi-
gation: (1) accurate patient tracking to compensate for patient movements (e.g.
during spinal fixation surgery), and (2) enhanced vision to give assistance and
actual information about the internal anatomy, (e.g. tumor-margin identification
for cancerous tissue resection).

This thesis investigates two techniques to provide better tracking and/or vi-
sual assistance for surgery. First, both optical and hyperspectral imaging (HSI) are
exploited for patient localization in spinal surgery. Second, hyperspectral tissue
characterization is explored for improving guidance during tissue resection in
surgical oncology. The problems of surgical guidance with imaging techniques
are twofold. For patient positioning, accuracy relies on continuous tracking of the
patient, without losing guidance throughout the whole procedure. If positioning
is performed with markers or dynamic reference frames (DRFs), both markers
and frames can be dislodged or obscured during the surgical procedure, result-
ing in loss of navigational feedback and accuracy. In addition and for cases with
internal navigation for oncology surgery, surgical navigation is crucial for tissue
characterization. During tumor resection, the success of a surgical tumor removal
relies on the detection of malignant tumor boundaries. This thesis concentrates
on improving the surgical guidance for two clinical use cases: (1) accurate spinal
surgery using optical and HS imaging, (2) tumor identification with HSI for ad-
vancing oncology surgery.

The first part of the thesis concentrates on optical/HSI imaging for patient
localization in spinal surgery. In a first case described in Chapter 3, spine fea-
tures are detected by using optical cameras from open spinal surgery cases, in an
augmented-reality navigation system. Camera images are used to identify and
match spinal landmarks extracted from different camera views, overcoming the
usage of reference markers for patient tracking. This is crucial in surgery opera-
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tions where the error tolerance is low, due to thinner vertebra and higher relative
movements among them, which can affect the navigation accuracy. Aiming at a
minimally invasive spinal surgery, we investigate anatomical landmarks at the
skin surface of the patients. The markerless approach is primarily designed for
spine features and further applied to detect and localize skin features from the
captured video frames of optical camera views. The spine features detected by
the proposed markerless detection framework reaches an overall 3D localization
error lower than 0.5 mm on 23 patients, while the skin features are localized with
an error less than 0.3 mm in 8 clinical cases. This clinical validation has also in-
vestigated the impact of external factors, such as illumination conditions, and the
minimum amount of features detected during the entire surgical procedure.

Second in Chapter 4, HSI is exploited to enhance the detection of skin features
with spectral imaging techniques. For providing a proof-of-concept study, mul-
tispectral imaging (MSI) involving 8 spectral wavelengths, is applied to detect
skin features when patient breathing is mimicked, since this is one of the main
patient movements that occurs during a surgical procedure. This simulation study
has proven that spectral imaging can be used to accurately track skin features
in the skin of 30 human volunteers (a subpixel accuracy has been achieved in
localizing the multispectral features). The validation of spectral imaging for pa-
tient localization has been extended and an HSI camera has been employed to
scan over 40 wavelengths (from VIS to NIR), in a human study involving 17 sub-
jects. A deep learning approach which employs convolutional neural networks
(CNNs) is applied and benchmarked with conventional handcrafted local fea-
ture detection methods. Skin features are localized with an error of only 0.25 mm
with respect to the ground truth, based on optical markers. The found accuracy
is clinically acceptable (<0.6 mm), and well in line with state-of-the-art systems.
Further experiments have proven that HSI outperforms RGB images (generated
by the hyperspectral data) in revealing and accurately detecting skin features.
In particular, an error larger than 1 mm is found in four patient cases (out of 17)
and in another four cases the algorithm fails in matching skin features between
different frames. Overall, for the remaining 9 patients the combination of HSI with
a detection algorithm outperforms the RGB-based detection.

The second part of the thesis is dedicated to exploit HSI for tissue characteri-
zation during image-guided surgery. HSI is a reflectance-based imaging modality
that captures the diffuse reflectance spectra across a wide spectral range. HSI is
a non-ionizing imaging technique, going beyond the visible spectrum and can
identify the tumor tissue to expedite the clinical workflow for tumor resection.
To this end, Chapter 5 presents an initial evaluation on automated tumor assess-
ment with HSI for two ex-vivo studies. In the first study, conventional machine
learning is applied to extract and learn spectral healthy and cancerous features in
tongue cancer specimens. An AUC of 92% is reached, proving the feasibility of
HSI for detecting malignant tissue in tongue cancer surgery. Next, a more complex
learning architecture is used for detecting colon cancer with HSI, since the colon
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anatomy is more complex than the tongue and different tissue types may interact
with the automated detection. A hybrid 3D-2D spatial-spectral neural network
is employed in combination with band-extraction techniques and then evaluated
for classifying healthy and malignant tissues. An AUC of 82% is achieved, outper-
forming the state-of-the-art approaches (e.g. 3D and 2D CNNs). The two ex-vivo
studies have proven that HSI in combination with a proper preprocessing and
classification framework is able to detect cancerous tissue, and can potentially aid
the surgeon during surgical oncology procedures.

In Chapter 6, the outcome of the previous studies is used to enlarge potential
innovation in the field of neurosurgery, by exploiting HSI for brain-tumor detec-
tion on in-vivo hyperspectral acquisitions of 12 patients. The designed framework
for cancer detection with HSI is applied in combination with a band-selection
technique, to properly process and classify different types of tissue in a human-
brain hyperspectral dataset. The hybrid 3D-2D neural network demonstrates to
achieve a higher accuracy in detecting, tumor, healthy tissue and blood vessels
(mean accuracy of 80% with AUC of 81% for tumor, 0.76% for healthy and 82%
for blood vessels), compared with state-of-the-art approaches. Furthermore, in
order to use HSI during minimally invasive surgery, the hyperspectral camera has
been embedded in an endoscope and evaluated on an animal brain classification
study. In this case study, HSI has reached a sensitivity of 95%, a specificity of 93%
and AUC of 95%, when discriminating gray and white matter in animal brains.
These performances are found to be comparable with the performances reached
by diffuse reflectance imaging (DRS) in classifying the same types of tissues (AUC
of 96%). By achieving the same performances as DRS which is a point-based mea-
surement, HSI proves that it can be potentially embedded in an endoscope to
perform minimally invasive surgery, with the advantage of providing an image
view, which is crucial for image-guided surgery applications.

The contributions of this thesis offer novel solutions for replacing marker-
based approaches by markerless tracking, based on optical and hyperspectral
imaging modalities. The potential of HSI for tumor classification has been demon-
strated, providing an intraoperative feedback to the surgeon for objective assess-
ment of cancer. Results show that HSI can form an important technique for surgical
guidance during complex interventions to improve the surgical outcome. Finally,
with the advance of robotics in surgery, camera-based and HSI-based technolo-
gies can be potentially exploited for surgical guidance with multimodal imaging
techniques, as a radiation-free application for robot-assisted surgery.
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Optische en hyperspectrale beeldanalyse voor beeldgeleide chirurgie

In verschillende medische toepassingen van chirurgie, maken navigatiesystemen
met beeldgeleide interventies het mogelijk om minimaal-invasieve chirurgie (MIS)
te vereenvoudigen, met het doel om weefseltrauma, bloedverlies en hersteltijd
van de patiënt te verminderen. Bij het vergelijken van handenvrije technieken
die uitsluitend vertrouwen op de expertise van de chirurg met MIS, biedt de
laatstgenoemde een veiligere operatie en een vermindering van beschadiging aan
vasculaire structuren. Twee aspecten moeten worden overwogen voor het leveren
van beeldgeleide interventie en chirurgische navigatie: (1) nauwkeurige tracking
van de patiënt om te compenseren voor zijn bewegingen (bijv. tijdens fixatiechi-
rurgie van de wervelkolom), en (2) verbeterde zichtbaarheid van de anatomie om
ondersteuning te bieden en daadwerkelijke informatie te geven over de interne
anatomie (bijv. identificatie van tumormarges voor resectie van kankerweefsel).

Het onderzoek van dit proefschrift behandelt twee technieken om betere trac-
king en/of visuele ondersteuning te bieden voor chirurgie. Ten eerste worden
zowel optische als hyperspectrale beeldvorming (HSI) gebruikt voor verbeterde
positiebepaling van de patiënt bij wervelkolomoperaties. Ten tweede wordt hy-
perspectrale weefselanalyse onderzocht om de begeleiding tijdens weefselverwij-
dering bij oncologische chirurgie te verbeteren. De problemen van chirurgische be-
geleiding met beeldvormingstechnieken zijn tweeledig. Voor patiëntpositionering
is de nauwkeurigheid afhankelijk van het continu volgen van de patiënt zon-
der verlies van de positiebepaling gedurende de hele procedure. Als positiebe-
paling wordt uitgevoerd met specifieke markeringen (markers) of dynamische
referentiekaders (DRF’s), kunnen zowel de markers als de frames losraken of wor-
den verduisterd tijdens de chirurgische ingreep, wat resulteert in verlies van
navigatie-terugkoppeling en nauwkeurigheid. Bovendien is bij gevallen met in-
terne navigatie voor oncologische chirurgie, chirurgische navigatie cruciaal voor
weefselkarakterisatie. Bij tumoruitsnijding is het succes van een chirurgische tu-
morverwijdering afhankelijk van de detectie van kwaadaardige tumorranden. Dit
proefschrift richt zich op het verbeteren van de chirurgische begeleiding voor twee
klinische toepassingen: (1) nauwkeurige wervelkolomchirurgie met optische en
hyperspectrale beeldvorming, (2) tumoridentificatie met HSI voor het bevorderen
van oncologiechirurgie.
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Het eerste deel van het proefschrift concentreert zich op optische/HS beeldvor-
ming voor patiëntpositionering bij wervelkolomchirurgie. In een eerste geval dat
wordt beschreven in hoofdstuk 3, worden wervelkolomkenmerken gedetecteerd
met behulp van optische camera’s voor open wervelkolomchirurgie, met behulp
van een augmented reality navigatiesysteem. Camerabeelden worden gebruikt om
wervelkolommarkeringen te identificeren en te koppelen (matchen) met beelden
die zijn geëxtraheerd uit verschillende cameraweergaven, waarbij referentiemar-
keringen voor patiëntpositionering geheel overbodig worden. Dit is cruciaal bij
chirurgische ingrepen waarbij de fouttolerantie laag is vanwege dunnere wervels
en hogere relatieve bewegingen tussen wervels, wat de navigatienauwkeurigheid
kan beı̈nvloeden. Met het doel om minimaal-invasieve wervelkolomchirurgie te
bereiken, zijn anatomische markeringen aan het huidoppervlak van de patiënten
onderzocht. De markeringsvrije aanpak is primair bedoeld voor wervelkolom-
kenmerken en verder toegepast om specifieke huidkenmerken te detecteren en
te lokaliseren in de opgenomen videobeelden van optische camera’s. De wer-
velkolomkenmerken die zijn gedetecteerd door de voorgestelde markeringsvrije
detectiemethode, bereiken een gemiddelde 3D positioneringsfout die kleiner is
dan 0,5 mm bij 23 patiënten, terwijl de huidkenmerken worden gelokaliseerd
met een fout van minder dan 0,3 mm bij 8 klinische gevallen. Bij deze klinische
validatie is ook onderzocht wat de invloed is van externe factoren, zoals belich-
tingsomstandigheden en de minimum hoeveelheid gedetecteerde kenmerken
tijdens de gehele chirurgische ingreep.

Het daaropvolgende hoofdstuk 4 van de thesis richt zich op HSI voor het
verbeteren van de detectie van huidkenmerken met behulp van spectrale beeld-
vormingstechnieken. Voor het leveren van een conceptstudie wordt multispectrale
beeldvorming (MSI) met 8 spectrale golflengten gebruikt om huidkenmerken te
detecteren, terwijl de ademhaling, een van de belangrijkste bewegingen van de
patiënt tijdens een operatie worden nagebootst. Uit deze simulatiestudie blijkt dat
spectrale beeldvorming kan worden gebruikt om nauwkeurig huidkenmerken te
volgen op de huid van 30 menselijke vrijwilligers. Hierbij is een nauwkeurigheid
op subpixel-niveau bereikt bij het lokaliseren van de multispectrale kenmerken.
De validatie van spectrale beeldvorming voor positiebepaling van de patiënt is
uitgebreid en er is een HSI-camera ingezet om meer dan 40 golflengtes te scannen
(van VIS tot NIR), in een menselijke studie met 17 proefpersonen.

Een deep learning-aanpak met convolutionele neurale netwerken (CNN’s) wordt
toegepast en vergeleken met conventionele detectiemethoden voor handmatig
ontworpen lokale kenmerken. Huidkenmerken worden gelokaliseerd met een fout
van slechts 0,25 mm ten opzichte van optische markeringen. De gevonden nauw-
keurigheid is klinisch acceptabel (fout<0,6 mm) en goed in overeenstemming
met de nauwkeurigheid van algemeen bekende systemen. Verdere experimenten
hebben aangetoond dat HSI beter presteert dan RGB-beelden (die kunstmatig zijn
gegenereerd vanuit de hyperspectrale gegevens) bij het onthullen en nauwkeurig
detecteren van huidkenmerken. In het bijzonder wordt een fout groter dan 1 mm
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gevonden in vier patiëntgevallen (van de 17) en in nog eens 4 gevallen faalt het
algoritme bij het matchen van huidkenmerken tussen verschillende frames. Over
het algemeen presteert de combinatie van HSI met een detectie-algoritme beter
dan de RGB-gebaseerde detectie voor de resterende 9 patiënten.

Het tweede deel van de dissertatie is gewijd aan het gebruik van HSI voor
weefselkarakterisatie tijdens beeldgeleide chirurgie. HSI is een reflectiegebaseerde
beeldvormingsmodaliteit die de diffuse reflectiespectra over een breed spectraal
bereik vastlegt. HSI is een niet-ioniserende beeldvormingstechniek, die verder
gaat dan het zichtbare spectrum en tumorweefsel kan identificeren om daarmee
de klinische werkprocedure voor tumorchirurgie te versnellen.

Daartoe presenteert hoofdstuk 5 een eerste evaluatie van geautomatiseerde
tumorclassificatie met HSI voor twee ex-vivo studies. In de eerste studie wordt
conventionele machine learning toegepast om gezonde en kwaadaardige weef-
selspectra te extraheren en te leren van een verzameling weefselmonsters met
tongkanker. Een AUC van 92% wordt bereikt, wat de haalbaarheid van HSI voor
het detecteren van kwaadaardig weefsel bij tongkankerchirurgie aantoont. Vervol-
gens wordt een meer complexe netwerkarchitectuur gebruikt voor het detecteren
van darmkanker met HSI, aangezien de anatomie van de dikke darm complexer
is dan die van de tong en verschillende weefseltypen kunnen interfereren met de
geautomatiseerde detectie. Er wordt een hybride 3D-2D ruimtelijk-spectraal neu-
raal netwerk toegepast in combinatie met bandextractietechnieken en vervolgens
geëvalueerd voor het classificeren van gezond en kwaadaardig weefsel. Hiermee
wordt een AUC van 82% behaald, wat beter is dan de algemeen gangbare op-
lossingen (bijv. 3D- en 2D-CNN’s). De twee ex-vivo studies hebben aangetoond
dat HSI in combinatie met een goed voorbewerkings- en classificatieraamwerk in
staat is om kwaadaardig weefsel te detecteren en de chirurg kan ondersteunen
tijdens chirurgische oncologieprocedures.

In hoofdstuk 6 wordt de uitkomst van de vorige studies gebruikt om het
innovatiepotentieel op het gebied van neurochirurgie te vergroten, door HSI te
exploiteren voor detectie van hersentumoren op in-vivo hyperspectrale beeldop-
names van 12 patiënten. Het ontworpen raamwerk voor kankerdetectie met HSI
wordt toegepast in combinatie met een speciale bandselectietechniek, om verschil-
lende soorten weefsel in een hyperspectrale dataset van menselijke hersenen op de
juiste manier te verwerken en te classificeren. Het hybride 3D-2D neurale netwerk
blijkt een hogere nauwkeurigheid te bereiken bij het detecteren van tumorweef-
sel, gezond weefsel en bloedvaten (gemiddelde nauwkeurigheid van 80% met
AUC van 81% voor tumor, 0,76% voor gezond weefsel en 82% voor bloedvaten),
in vergelijking met gangbare methoden. Daarnaast is de hyperspectrale camera
verwerkt in een endoscoop om HSI te gebruiken tijdens minimaal-invasieve chi-
rurgie en geëvalueerd in een dierstudie naar hersenclassificatie. In deze studie
heeft HSI een gevoeligheid van 95%, een specificiteit van 93% en AUC van 95%
bereikt bij het discrimineren van grijze en witte stof in hersenen van dieren. Deze
prestaties zijn vergelijkbaar met de prestaties die worden bereikt door de reeds
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bekende methode van diffuse reflectie beeldvorming (DRS) bij het classificeren
van dezelfde soorten weefsels (AUC van 96%). Door dezelfde prestaties te behalen
als DRS, dat een contactpunt-gebaseerde meting is, bewijst HSI dat het potentieel
kan worden verwerkt in een endoscoop om minimaal-invasieve chirurgie uit te
voeren, met als voordeel dat een beeldweergave wordt geleverd die cruciaal is
voor toepassingen van beeldgeleide chirurgie.

De bijdragen van dit proefschrift bieden nieuwe oplossingen voor het vervan-
gen van markeringsgebaseerde technieken door markeringsvrije patiëntlokalisatie,
gebaseerd op optische en hyperspectrale beeldvormingsmodaliteiten. Het poten-
tieel van HSI voor tumorclassificatie is aangetoond, wat een intra-operatieve te-
rugkoppeling geeft aan de chirurg voor objectieve beoordeling van kanker. De
resultaten tonen aan dat HSI een belangrijke techniek kan zijn en worden voor
chirurgische ondersteuning tijdens complexe interventies om de algemene uit-
komst te verbeteren. Tenslotte kunnen met de vooruitgang van robotica in de
chirurgie, video- en HSI-gebaseerde technologieën potentieel worden gebruikt
voor chirurgische begeleiding met multimodale beeldvormingstechnieken, om te
komen tot een stralingsvrije toepassing voor robot-ondersteunde chirurgie.
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“Midway upon the journey of our life
I found myself within a forest dark,

for the straightforward pathway had been lost.”

Dante Alighieri, The Divine Comedy, Inferno, Canto I

C
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er 1 Introduction

1.1 Background
Intraoperative imaging has been thriving in recent years, overcoming conven-
tional techniques for various surgical interventions. This rapid growth has been
facilitated with the advances on medical technology. For many interventions, 90%
of the surgeries are performed by using a minimally invasive approach, which is
expected further to rise in the next years [1]. The main advantage of using intra-
operative imaging is to guide the intervention by enhancing the surgeon vision,
while avoiding any surgical incision or tissue opening. As a result, tissue trauma is
highly reduced, leading to a number of benefits for the patient such as lower inci-
dence of post-surgery complications, reduced pain, faster recovery, shorter length
of hospital stay, decreased psychological impact and overall improved quality of
life [1].

With the development of advancing computer vision techniques, computer-
assisted systems are influencing healthcare treatment and interventional solutions
by supporting clinical decisions and up to even decision-making. Such systems
enable the use of the latest technologies in the operating room (OR), which is
enhanced by the aforementioned trend towards becoming a smart OR. The main
task of a computer-assisted navigation system is to perform image-guided proce-
dures, by means of deploying supplementary visualization with real-time imaging
sources. In this way, conventional open interventions are replaced by minimally
invasive procedures.

The primary source of major contributions for interventional guidance is imag-
ing. From the broad exploitation of X-rays in 1985, the potential of medical imaging
led to the invention of computed tomography (CT), ultrasound (US) and magnetic
resonance imaging (MRI), which all have enabled new possibilities for visualizing
body anatomy. These sources of imaging should allow the surgeon to visualize all
the required information in detail and understand the surgical task in the frame-
work of the presented information supplied by the applied imaging technology.
Thanks to these techniques, surgeons can preoperatively plan the treatment, as-
sess the disease, treat the patient, while being guided by real-time imaging. Thus,
imaging is present in the phase of interventional guidance and navigation, be-
tween the preoperative plan and the outcome evaluation.
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The key role for achieving image-based guidance during surgeries is led by ad-
vanced image processing algorithms integrated for supporting the use of the med-
ical imaging systems. Such algorithms aim to improve the technology and help
the surgeon to be guided by providing content information. For example, the com-
bined use of different imaging modalities (CT and MR) in the computer-assisted
system enables multi-modal image fusion and allows to achieve better guidance.
This represents a precise and safe way to register different imaging modalities
and integrate them in the clinical workflow for performing image-guided surgery.
Nowadays, these conventional imaging technologies are empowered by the dig-
itization of care which envisions artificial intelligence (AI) solutions as leading
players in the healthcare domain. This leads to a gradual transformation of clinical
surgery because of the application of AI-based learning strategies for endoscopic
navigation, tissue feature tracking, augmented reality, etc [2].

Although intraoperative imaging aims to solve the main clinical and technical
challenges during a guided surgery, its application in the operating room is still
hampered by a plurality of factors, such as inaccuracies in surgical guidance, the
need of invasive references or frames, lack of haptic perception and prolonged
operation times. In this thesis, several challenges and image-guided intervention
aspects are considered. First, during minimally invasive surgery, the surgical ma-
nipulation is allowed through thin, elongated, and often articulated instruments
handled directly by the surgeon, resulting in a complicated manipulative task.
Second, the free line-of-sight intrinsically required by the navigation systems, is
often infeasible in some anatomical areas. Third, tracking of the patient is crucial
for ensuring accurate guidance and it is usually dependent on invasive reference
data, relying on frames or concepts attached to the patient and interfering with
the clinical processes in the operating room. The next section deepens the clinical
practice of image-guided surgeries by describing the practical implementation of
existing image-guided intervention scenarios.

1.2 Image-guided surgeries
The main objective of image guidance is to visualize the occluded patient informa-
tion and display the surgical content in alignment with the real patient position.
Navigation systems combine MRI and CT imaging to offer dynamic guidance and
interactive feedback to the surgeons by tracking the patient position on a display
screen of which the image content is overlaid onto the preoperative scans. The
radiology images and/or the 3D planning (obtained from them) are the input
data for the navigation systems, which perform instrument-position detection
and allow instrument manipulation [3], [4]. Aiming at high-precision guidance,
computer-aided intraoperative guidance lies its foundation in providing visual-
ization and localization in surgery with a clinically acceptable accuracy. Among
procedures, there is quite a variation in the obtained accuracies in terms of clinical
manipulation of tools by the surgeons and the achievable accuracy of detailed
information that facilitates image-guided surgeries.
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1.2. Image-guided surgeries

CT and MR image fusion enable to visualize both bone and soft tissues, help-
ing radiologists to provide precise diagnoses and surgeons to perform accurate
interventional procedures. In surgical oncology, CT-MR fusion facilitates the de-
lineation of the anatomic relationships between the target lesion to be removed
and the surrounding anatomical areas. The advance in image processing software
has driven the introduction of combined CT and molecular imaging units, such as
PET or SPECT, which are now becoming the state of the art for assessing cancer
staging [5]. The current high-resolution imaging trend provides details of organs
at a spatial accuracy of 0.1 mm (e.g. high-resolution CT), which starts to gradually
surpass the manually accuracy of experienced surgeons.

Currently, many surgical operations are still performed by using free-hand
techniques. However, clinicians can more benefit from advanced imaging modal-
ities to assess diseases and plan treatments. Spinal surgeries are an example of
invasive interventions, where high precision is needed to correct spine deformities
and vertebrae disk herniations. Therefore, neurosurgeons perform diskectomy
removing lamina and disk material. The first lumbar laminectomy was performed
in 1892 in the United States and remained the standard approach for decades [6].
Although these approaches are accepted procedures, they require tissue dissection,
lead to blood loss and form a high risk of post-operative morbidities [6].

With regards to visual information, volumetric medical images (as CT, MRI,
or 3D-ultrasound) can be visualized by using virtual reality (VR). VR allows
a physician to obtain information on the anatomy and to optimally plan the
surgical procedure [7]. However, it is a facilitating tool for minimally invasive
surgery, which is already feasible with current technology. Augmented Reality
(AR) technology extends the human physical, sensing, and cognitive capabilities,
by rendering the 3D volumes from the patient anatomy obtained by CT or MRI,
and afterwards integrating them into a video-camera view. Vision is enhanced
with a separate (3D) screen or lens which shows the anatomy in 3D. AR has the
ability to visualize occluded information and/or to display the surgical planning
information, consistently aligned with the real patient. In this way, the surgeon
is able to perceive information of the patient’s anatomy without direct surgical
exposure. Therefore, the surgeon only needs to create a small surgical incision for
inserting the surgical instruments, instead of making a large opening for visual
observation through human eyes and/or deeper accessing the target anatomy for
surgery. Figure 1.1 shows an example of AR navigation system for minimally-
invasive spine procedures.

In the scope of this research, the near future of surgery will see almost all
the interventions performed through incisions of a few millimetres (as is already
possible in manual or robotic laparoscopic interventions), using thin manual or
automated instruments, and even the surgeons’ own fingers, under AR guidance.
However, nowadays the main scope of AR systems is to visualize anatomical
structures, to improve the missing depth information with CT or MRI, rather than
guiding the surgeon. Surgical guidance is crucial to cutting lines or drilling tra-
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Figure 1.1 — Image-guided system for minimally invasive spinal surgery (Philips Electronics
B.V., Best, The Netherlands.)

jectories in a minimally invasive fashion. In addition to intraoperative 3D image
sources, the main requirements for surgical guidance are: 1) real-time imaging
operation, high robustness, sufficient accuracy for object finding and markerless
tracking to compensate for any movement in the patient’s anatomy; 2) advanced
imaging technology that assists the surgeon in a proficient and intuitive way.
Currently, surgeons rely on radiation-based imaging modalities (preoperative or
intraoperative CT) to visualize existing anatomy and enable guidance. Never-
theless, novel imaging modalities, e.g. multispectral imaging, are increasingly
popular in the surgical field, since they allow to obtain enriched data information,
which may scan and visualize deeper in the human tissue by only using light.
In the next section, such approach of deeper exploration without radiation and
based on spectral imaging is introduced.

1.3 Motivation for intraoperative spectral imaging
Currently, novel imaging techniques are opening new scenarios and opportunities
in computer vision applied in the healthcare domain. In contrast with radiation-
based imaging techniques, optical imaging uses not only visible light, but also
non-visible ultraviolet and infrared light to obtain information underneath the
scanned area. This deeper inspection is enabled by the result of light interaction
with biological tissue, which does not involve any radiation exposure to the pa-
tient. Beside this, optical imaging represents a great alternative to radiation-based
imaging, because it captures the biochemical and structural changes of tissues.
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1.4. Hyperspectral imaging: the advance in optical imaging

The main optical imaging techniques are represented by fluorescence, mul-
tispectral (MS), hyperspectral (HS), and spectroscopic imaging, and they are all
connected by the fact that using light (photonic beam) enables to reveal biolog-
ical properties of cells. Fluorescence imaging has proven to provide extremely
accurate and rapid classification of pulmonary adenocarcinoma or bladder cancer.
This technique uses light to detect an agent that was previously injected near
the target site, a fluorescent derivative that accumulates in damaged tissue [1].
Another modality that uses light to create a tissue map is optical coherence to-
mography (OCT). This modality is widely used in endoscopic imaging and it can
offer high-resolution imaging. Endomicroscopy is also used in combination with
fluorescent agents to perform optical biopsies of endoluminal surfaces with high
spatial resolution [1]. Several alternative techniques have been proposed for sur-
gical guidance, such as surgery photoacoustic tomography, optical spectroscopic
methods and diffuse reflectance spectroscopy (DRS). Despite the potential of these
techniques, the dominant issue is the requirement of injecting external agents into
the patient, which is less invasive than ionizing radiation but still problematic and
feared by the patient. Furthermore, photoacoustic imaging approaches rely on
low-frequency wavelength transmission, which allows deep acoustic penetration
during surgery. However, this technique produces poor image quality and laser
exposure may be considered as an alternative [8].

Another promising option for intraoperative guidance is hyperspectral imag-
ing (HSI). HSI can be applied for disease diagnosis and surgical guidance by
providing diffuse reflectance measurements over a wide field of view, without
tissue contact and without injecting external contrast agents [9]. These intrin-
sic advantages motivate the growing popularity of this technique for evaluation
purposes in the medical domain.

1.4 Hyperspectral imaging: the advance in optical imaging
HSI is an optical imaging technique with the power of extracting additional in-
formation from the imaged tissue compared with a Red, Green and Blue (RGB)
components-based camera. It is a spectral-based imaging modality that acquires
data in almost contiguous narrow spectral bands. HSI systems can collect hun-
dreds of bands in specific parts of the electromagnetic spectrum, reconstructing a
3D data cube, the so-called HS cube, which is constructed from a set of 2D images
with multispectral features [10]. The HS cube combines conventional imaging and
spectroscopy to capture the spatial and the spectral information, providing hun-
dreds of spectral bands for each pixel in the 2D plane [11]. Each pixel contains an
almost continuous spectrum to create a spectral signature representing radiance,
reflectance and absorption, thereby forming a fingerprint that reflects the chemical
and biological composition of that particular pixel [11] (see Figure 1.2).

The main advantage of this technology is that it only uses white light to acquire
the wavelengths of interest, so that an HS camera can scan through those wave-
lengths to detect the spectral and spatial information in a non-invasive way and
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Figure 1.2 — Red Green Blue and hyperspectral image acquisitions. At the right, an example of
an RGB image where three wavelengths from the red, green and blue spectrum parts are acquired.
For each pixel, the discrete values for the red, green and blue wavelengths can be reconstructed.
At the left, a hyperspectral image acquisition where the 2D images represent the bands taken at
different wavelengths from the UV to the NIR. For each pixel, an almost continuous signature can
be reconstructed in the spectral dimension. The image is taken from Lu et al.[9].

without physical contact [9]. Although originally employed in the remote sensing
field, HSI has recently found use in the detection and diagnosis of diseases, in
particular cancer, since cancer involves changes in the biochemical mechanism
of the cells [12]. The changes in the cellular morphology and metabolism can be
detected as changes in the absorption and reflectance of light within tissue and
thus consequently be detected with the HSI camera. This opens a new application
for the intraoperative usage of HSI. The latter offers the potential of a non-invasive
and non-ionizing image-guided tool during the surgical operation, by enhanced
visualization of anatomical structures (e.g. blood vessels, nerves), different tissue
types (e.g. tumor and benign cells).

Literature has been focused on applying HSI for in-vivo and ex-vivo studies,
involving both animal and humans. However, due to the complexity of the pro-
cedures and the integration of an HS camera in the operating room, HSI studies
regarding in-vivo tissues, are still limited. For this reason, the amount of clinical
data is growing at a slow pace. However, as HSI images typically contain more
than three color channels, this data is hard to interpret for human observers and
to extend the intelligence of signal processing techniques, a higher amount of
data is required. Fortunately, the combination of image processing techniques and
artificial intelligence can address the human interpretation problem and make
analysis and diagnosis feasible for clinical usage. In this way, this new technique
can contribute to address the challenges for intraoperative support and pave the
way for more advances in clinical guidance.

1.5 Optical and spectral imaging for surgical guidance
In this section, optical imaging techniques for surgical guidance are presented.
Visible and non-visible light-based imaging are introduced to solve clinical chal-
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1.5. Optical and spectral imaging for surgical guidance

lenges in the operating room. Two primary research areas are addressed in this
thesis: patient positioning for correct guidance and tissue characterization for pre-
cise and safe surgery. Both areas are selected with the aim to improve the surgical
outcome and provide better care to the patient.

In image-guided surgery, patient positioning is crucial to guide the surgeon,
which relies only on an imaging system that visualizes the internal patient anatomy.
Patient tracking is performed by using references or devices to facilitate continu-
ous tracking and compensate the patient motion. However, reference markers can
be occluded by blood and surgical liquids, leading to a loss in the navigational
feedback. By using non-invasive approaches, e.g. video cameras, the patient body
can be captured and anatomical markers can be used to assess the position and
correct the motion. The research of this thesis for improving patient positioning
for surgical applications is divided in two directions.

First, it starts with investigating optical and non-invasive techniques to track
patient anatomy. Video cameras from existing optical tracking systems are ex-
ploited to directly design and detect anatomical features during complex inter-
ventions, such as spinal surgery. It appears that such cameras can be re-used to
find skin and spine patterns with a good accuracy, so that these features can be
used for positioning in navigated spinal surgery.

Second, spectral imaging techniques like multispectral and hyperspectral imag-
ing (HSI), are proposed to robustly improve the accuracy in performing patient
positioning. In this way, the robustness can reach a level that enables marker-
less tracking solutions where HSI is employed for fine-tuning the visual patient
position without markers. HSI has been applied already to monitor blood oxy-
genation, determining the change in blood flow as well as visualizing vascular
structures, which otherwise might be sacrificed during surgery [9]. In this way, an
HSI-based tracking system is enlarging the capabilities of a normal video camera
and not dependent on any external references, since it can detect invisible anatom-
ical structures in cutaneous and subcutaneous tissues (e.g. moles or veins). This
approach offers an alternative form for accurate patient tracking and defining
on-body positioning.

The second half of this thesis aims to to support the surgeon within the human
body and improve accurate tissue removal. In surgical oncology, intraoperative
imaging is not included in the surgical workflow, while tissue removal requires
precise margins. However, it is a difficult task to accurately remove the tumor
tissue without damaging the surrounding healthy tissue. In this research, HSI
is explored to accurately discriminate the tumor tissue from healthy tissue. Cur-
rently, histopathological examination is used to determine the disease type and
whether tumor cells are present in the surgical specimens. In this protocol, a sec-
ond operation is needed to prevent the recurrence of cancer. Histopathology is
time-consuming (around 10 days) and its outcome is dependent on the subjec-
tive evaluation of an experienced pathologist. In these surgeries, HSI provides an
image-based technique than can offer a better characterization and improved mar-
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gins of the tumor specimens, as well as determining the nature and classification
of surrounding tissue areas.

In the aforementioned areas and setting, the second primary research area is
the investigation on using hyperspectral imaging for tissue characterization in
surgical oncology. The suitability of HSI is explored for two cases: ex-vivo head
& neck cancer and colon cancer detection. In both cases, several methods are
proposed to analyze the most powerful hyperspectral image processing and learn-
ing techniques. In the case of head & neck cancer detection, the objective is to
support a high accuracy because errors in this type of surgery can cause sub-
stantial damage to the patient. More specifically, the study involves the detection
of tongue cancer which is characterized by muscle tissue where HSI can clearly
detect the potential presence of cancer tissue. In the second case on colon cancer,
the characterization is more challenging, since colon involves different types of
tissue that are difficult to distinguish and separate with accurate margins. This
requires that the applied learning strategies should be sufficiently powerful to
handle the related complicated data structure and anatomical properties for colon
cancer. Finally, resulting from the complex structures analysis for ex-vivo colon
cancer, a neurosurgical application is addressed with similar complex structures
which is brain tumor detection. In this case, in-vivo tissue characterization with
HSI is required, since offline histopathology is not performed due to the danger
of over-resecting brain tissue and causing neurological damage. Also in this last
case, a deep learning solution can contribute to a better brain-tumor detection
with more accurate margins in the intraoperative setting of neurosurgery.

1.6 Research scope, requirements and challenges
The discussion on using optical and hyperspectral imaging from the previous
section leads directly to the definition of the research scope of this thesis. The
research scope of this thesis is to provide improved visual assistance during image-
guided surgeries with the aim to achieve a higher accuracy that benefits both the
surgeon and the patient.

Within this scope, the first research direction is to enhance accurate patient
positioning and minimize loss of navigation during image-guided surgeries, by
exploiting optical-based and non-invasive techniques. Optical imaging (which
includes either gray-scale or RGB cameras) is investigated as an easily applicable
solution and later extended with spectral imaging techniques, such as HSI. This
imaging technique can capture the VIS and NIR ranges, enabling a deep pene-
tration in the tissue surface. As a result, anatomical structures and key points for
positioning (reference points) can be visualized and used for continuous on-body
patient tracking, which solves the shortcomings of invasive tracking. Both tech-
niques are studied to evaluate the potential of using visible and non-visible light
in the operating room.
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1.6. Research scope, requirements and challenges

The second research direction within the scope is to provide assistance to the
surgeon by visualizing internal patient anatomy where tissue resection requires
high precision and avoid over-resection, since this would incur serious patient
damage (e.g. tumor removal surgeries). In such a case, hyperspectral tissue charac-
terization is employed for improving guidance during tissue resection in surgical
oncology. The conductive research concentrates on integrating HSI during medi-
cal procedures for helping physicians in discriminating between cancerous and
healthy tissue. Different tissue types are analyzed to provide a variety of applica-
tions, in terms of studied organs and experimental designs.

In order to develop optical and hyperspectral imaging systems suitable for
exploring different clinical use cases, technical and clinical challenges should be
addressed. In the following, the most important requirements and challenges
are summarized, within the framework of the two areas described within the
scope. First, the ability of light-based imaging to detect the patient position and
guide surgery. Second, the evaluation of HSI for tumor detection and the ability
to recognize the adjacent tissue for preserving healthy tissue. The requirements
for detecting position-oriented features and disease-oriented features with optical
and/or spectral imaging have both common and different aspects for analysis.

1.6.1 Requirements on optical and hyperspectral data acquisition
1. Both ex-vivo and in-vivo clinical data. The first requirement for studying optical
and hyperspectral imaging in the medical domain is the data acquisition which
should involve both ex-vivo and in-vivo clinical data. The ex-vivo data can be used
for problem analysis, while the in-vivo is needed to validate the technology in a
real clinical setting.
2. Camera position and illumination. The second requirement involves creating
suitable conditions for using optical and spectral cameras. When detecting the
patient position by tracking on-body features, several factors are important such as
a proper illumination condition that does not interfere with the surgical field and
a correct camera positioning. Poor illumination results in a lower signal-to-noise
ratio (SNR), which consequently adds ambiguity to the data. When employing
optical cameras, the region of interest should cover the field of view of the cameras,
which can be a gray-scale or color cameras.
3. Involved depth data. The third requirement is related to the capability to analyze
tissue in depth rather than the surface only. When going beyond the visible spec-
trum when using a hyperspectral camera, the captured wavelengths should be
able to scan the deeper tissue layers down to 1-2 mm. In this way, features in the
deeper surfaces can be revealed and used for enriching the feature detection and
classification beyond the visible spectrum.

1.6.2 Requirements on clinical reliability in anatomical feature detection
The core aspect of both research scope directions is to enhance feature detection
for disease assessment and patient localization. Therefore, it is crucial to provide a
robust framework that can enhance features unseen by the human and perform an
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automated detection which is reliable for surgeons. This breaks down in several
requirements.
1. Integration in existing workflow. First, it is required that the solution can be easily
integrated into the existing protocol. To do so, the existing issues of loss of accu-
racy caused by the existing navigation system, which result from limited vision
or obscured sight, should be eliminated. Furthermore, the applicability of an the
newly proposed technique is dependent on the level of compliance with the clin-
ical workflow. A further requirement for the integration into the clinical setting
is that the system should be easy to use without the need for bulky equipment
or complicated set-up. Ease of use, mobility and eliminating the risks of tissue
misclassification and anatomical markers displacement are the main factors to
achieve an advantage compared to conventional navigation systems.
2. Presence of skin markers or cancerous features. Second, anatomical features such as
skin-oriented markers or cancerous features should be sufficiently present within
the framework of the clinical protocol applied during image-guided interventions.
3. Sufficient accuracy. Third, the proposed technique should facilitate sufficient
accuracy for surgery and the related image-guided interventions. A precise evalu-
ation and a clinically acceptable error is needed to guide surgery and ensure that
surgeons can rely on a properly designed computer-based system. Hence, the error
tolerance of such systems should be supported by a clear and accurate system de-
sign which can be potentially integrated during surgical procedures. This means
that by replacing free-hand techniques, novel imaging techniques integrated to
form an image-guided system, should be able to achieve an accuracy comparable
to a manual operation or better than that. For example, a markerless system based
on spectral features should be assessed by using the same measurable error, while
cancer detection with HSI should be assessed with the state-of-the-art approaches
represented by histopathology which is usually performed after surgery.

1.6.3 Requirements on system complexity and computation speed
1. Sufficient speed for clinical use. First, the computation speed of the proposed
solution should meet the clinical requirements, which is also important for further
integration into the operation without adding delays in the surgical interventions.
As a consequence, the system complexity should be limited, ensuring a feasible
computation load to perform patient detection and tissue characterization.
2. Suitable performance trade-off. Second, when employing HSI for enhancing the
surgeon view, it is important to have a good acquisition system merged with ro-
bust software. Hyperspectral cameras should measure the hyperspectral features
at video rates and have a small form factor. However, the performance of real-time
systems is traded-off against high spatial resolution, so that a design choice has to
be made depending on the clinical use case and the important design parameters
(e.g. speed, accuracy, etc.).
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1.6.4 Challenges on data availability and capturing
Novel optical imaging techniques have the potential to enable automation with-
out using any ionizing radiation that is harmful for the patient. In particular,
novel optical imaging can be used in combination with deep learning models
to learn hierarchical features in the data and lead to a useful representation for
classification, detection, band selection, etc. However, the development of these
novel techniques in the healthcare domain is hampered by the lack of training and
validation datasets, which poses several challenges.
1. Scarce data availability. The first challenge when using non-invasive and novel
optical and spectral systems is that these systems are scarcely or not available,
compared to other medical imaging systems such as endoscopic, ultrasound, CT,
and MRI systems. This inherently makes the data availability limited, both for
in-vivo and ex-vivo data.
2. Data collection and privacy protection. Second, in order to collect the data, data
protection should be assured to satisfy ethical standards. Data collection is con-
strained to GDPR (EU Regulation 679/2016), which must be achieved by research
for data security, data transfer and autonomy and trust of data usage of the sub-
jects. This aspect applies to patients and healthy volunteers and it represents an
important issue to conside during medical research involving human subjects.
3. Patient data and availability. Third, the intraoperative data acquisition depends
on the number of clinical cases available for the studied problem. In some cases,
to achieve a reasonable amount of patients, the data acquisition period may take
more than one year. Therefore, the duration of the data acquisition in the intraop-
erative domain limits the sharing of knowledge in the newly proposed fields. As
a consequence, the advances in optical imaging and HSI for medical purposes are
constrained due the slow growth of data availability.

1.6.5 Challenges on hyperspectral data complexity
The optical properties of tissue can be captured by HSI systems from 400 to
1,000 nm at a molecular level by the so-called chromophores, the main biological
interactors with the visible and near-infrared wavelength ranges. The relationship
of light absorption is inverse to light reflectance measured by HSI systems, which
can carry information about molecular tissue properties enabling cancer analy-
sis. A fundamental challenge of using hyperspectral data is is that the relation
between the biochemical and morphological processes in the tissue itself and the
reflected signal are still unknown. Thus, a suitable data analysis should be applied
to capture relevant and explainable information. However, this challenge is not
explicitly addressed in this thesis.
1. Searching in multi-dimensional data. The main challenge of this thesis involves
multi-dimensional aspects. Hyperspectral data can be considered as 2D, 1D and
3D data. In each dimension, different types of information are captured and can
be exploited for feature detection and tissue characterization. However, the multi-
dimensional and complex nature of HS data remains a challenge for realizing the
benefits from the rich captured information.
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1.7 Problem statement and research questions
This section presents the problem statement of this thesis based on the clinical
and technical discussions in the previous sections about developing optical and
HS-based surgical guidance systems. The preceding discussions and requirements
result in the following problem statement.

Problem statement
The objective of this thesis is to investigate computer assistance for advancing surgical
guidance with novel and non-invasive imaging techniques such as optical and hyper-
spectral imaging. The thesis explores two research directions. The first direction aims
at replacing marker-based approaches by markerless techniques using optical and hyper-
spectral imaging during navigated spinal surgery. The second direction is dedicated to
tumor-identification solutions designed for detecting cancerous tissue with hyperspec-
tral imaging, enabling the surgeon to analyze beyond the human visual system during
image-guided interventions.

Research questions
From the above problem statement, specific research questions (RQs) can be de-
rived, which are formulated below.

RQ1: Tracking on-body patient features with optical cameras during spinal
surgery
In spinal surgery, reference markers enable patient tracking and guide the sur-
geon with intraoperative imaging. However, such imaging suffers from a number
of limitations, like occlusions leading to an interrupted guidance. Alternative
camera systems can be explored in combination with pre-operative image data
(like MR and CT scans) which are used as references. The preferred strategy is to
identify non-invasive features as alternative to the markers which are detected
intraoperatively by an optical tracking system. This incurs the following research
questions.

• RQ1a: How can optical cameras be used for detecting on-body features in spinal
surgery with millimeter accuracy, such that a novel markerless tracking is realized?

• RQ1b: What are the main processing steps for the image analysis framework to
detect and localize the anatomical features and what performance is obtained?

RQ2: Beyond the visible spectrum for spectral feature detection with HSI
Human anatomies such as skin surface, which are exposed during spinal surgery
may contain features that are unseen from a gray-scale or an RGB camera. Cur-
rently, camera systems represent the core of an intraoperative tracking system.
Thus, novel optical modalities such as spectral imaging can be explored to design
a robust and non-invasive detection system. This possibility leads to the following
questions.
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• RQ2a: Is it possible to employ an HS camera and further improve the current feature
detection for patient localization?

• RQ2b: In what steps can the image analysis framework facilitate the use of HSI to
create markerless localization and enhance the detection of on-body spectral features?

• RQ2c: What is the accuracy of the detection algorithm based on RQ2b, and does the
approach provide a good performance in terms of detected features and localization?

RQ3: Going beyond the visible spectrum and the tissue surface for detecting
cancerous tissue for surgical oncology
Surgical guidance improves patient prognosis and reduces the risk of a second
operation. However, many surgeries are still performed by using either the visual
and haptic perception of the surgeon, or by aided invasive approaches, such as flu-
oroscopy. HSI is a non-contact, non-ionizing imaging modality, which can capture
the cancerous features of a certain tissue by combining imaging and spectroscopy.
However, in order to be used in the operating room, further research is needed to
demonstrate that HSI can be reliable in clinical practice. In particular, the prelimi-
nary results need to be extended by investigating the applicability across different
organ systems. This leads to the research questions formulated below.

• RQ3a: Can HSI detect tumor and in particular discriminate between healthy and
malignant tissues on ex-vivo tissue specimens of at least two organs?

• RQ3b: What processing and validation is needed to select the most suitable infor-
mation (spatial and/or spectral) in hyperspectral image data to detect cancer?

RQ4: Detection system validation for brain tumors using HSI in neurosurgery
oncology.
In neurosurgery, surgical guidance is crucial, not only for patient localization
(e.g. spinal surgery), but also for the detection of brain tumors. Brain tumors
deeply infiltrate in the healthy tissue, posing a challenge to the neurosurgeon
when a proper resection is needed to avoid disfunctioning of healthy brain. In this
scenario, HSI can expedite the clinical workflow by intraoperatively informing
the surgeon with identified malignant tissue. Although HSI yields the benefit of
acquiring an enormous amount of data, the signal needs proper image processing
and classification to be interpreted by the human eye and be suitable for a real-time
application. This leads to the following research questions.

• RQ4a: How do we apply the algorithms deployed for ex-vivo studies (RQ3a) on an
in-vivo study such as intraoperative brain-tumor detection?

• RQ4b: Is it possible to compare HSI with diffuse reflectance spectroscopy for a neu-
rosurgical technology, embedded in an endoscope for minimally invasive surgery?
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1.8 Summary of contributions of this thesis
This section provides an overview of the scientific contributions presented in this
thesis. These contributions are linked to four categories, as given below.

Contributions to non-invasive patient tracking during spinal surgery
This thesis investigates a novel framework to detect anatomical features on spinal
surgery patients with a non-invasive approach.

First, gray-scale images from open-surgery patients are acquired with optical
cameras and studied. Open surgery is needed when the error tolerance is low,
e.g. in the cervical area where vertebrae are thinner and are showing relative
movements that can potentially mislead the navigation accuracy in closed and
blind surgeries. The conducted experiments have demonstrated that spine features
can be detected in a multi-view camera setting, and can be used afterwards for
motion compensation during surgical navigation.

Second, to facilitate minimally-invasive spinal surgery, the proposed approach
is applied to detect patient skin. Validation on a clinical dataset has shown suc-
cessful results (75% of skin feature detected with a localization error lower than
0.3 mm) and has investigated the impact of external factors, such as illumina-
tion conditions, occlusion, and the minimum amount of features detected during
the entire surgical procedure. In both studies, different feature detection algo-
rithms such as SURF, MSER, FAST and ORB are benchmarked and the overall
performances are compared in terms of accuracy, amount and quality of detected
features. The SURF algorithm appears to be one of the best solutions, though the
final choice depends on the clinical application.

Contributions to HSI-based patient tracking
At the time of performing this research, HSI-based patient tracking was the first
in its kind. By exploiting HSI for skin feature detection on spinal surgery patients,
a novel method is developed for markerless patient tracking.

First, multispectral images of the human skin are studied with the objective
to investigate the potential of finding sufficiently strong skin features and scan-
ning the deeper cutaneous layers. The skin features of 30 human subjects are
extracted and matched before and after a simulated movement, applied on 8 spec-
tral wavelengths (from 430 nm to 970 nm). In this case, the simulated movement
is successfully mimicking the patient breathing which is the main cause of move-
ment during surgery. Hence, the simulation study revealed that multispectral
imaging can be used for tracking patient-skin features with sufficient accuracy
during breathing.

Second, the previous study has been extended and a snapshot HSI camera
is exploited for scanning human skin over 40 wavelengths (from VIS to NIR).
The challenge of extracting the most informative bands is addressed by selecting
the most relevant spectral information of the skin, while reducing the high com-
putation and storage costs. Furthermore, deep learning approaches are applied
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and learned features are benchmarked with handcrafted features, by assessing
the localization error using reference markers as ground truth. The experiments
have shown that HSI, combined with band-selection techniques and a pre-trained
deep learning approach, is able to detect good skin features with a localization
error < 0.3 mm. The proposed approach using deep learning in combination with
HSI for skin feature extraction outperforms conventional handcrafted features.

Contributions to cancer detection for image-guided surgery with HSI
HSI has demonstrated a great potential for penetrating deeper into tissue and
detecting non-visible structural changes in superficial tissue layers. However, the
changes in the biochemical mechanisms of the cells should be also considered
as a powerful tool for cancer detection. This thesis has focused on image-guided
surgery and has exploited HSI for detecting cancer in two ex-vivo clinical stud-
ies. Automated tumor assessment with HSI is evaluated to aid surgeons with an
objective evaluation during head & neck cancer removal. Conventional machine
learning is employed to extract spectral features and discriminate between can-
cerous and healthy tissue in tongue cancer patients. This study has proven to be
sufficiently accurate for the surgery case at hand (AUC of 92% on average).

Next, more advanced algorithms are researched on colon cancer. Compared to
the tongue, colon tissue is a difficult type of tissue in the sense that fat and liquids
can degrade the classification accuracy. To this end, a hybrid spatial-spectral ap-
proach is adopted to classify the tissue on ex-vivo specimens which outperforms
existing 3D and 2D CNNs reported in literature (AUC of 82%).

The head & neck and colon studies establish a first evaluation on HSI for ex-
vivo tissue classification. This research proves that HSI combined with a proper
preprocessing in terms of smart preprocessing and classification framework such
as a hybrid 2D-3D CNN, is able to detect malignant tissue with a high AUC,
thereby facilitating and enhancing the surgeon’s vision.

Contributions to HSI-based surgical guidance for brain-tumor resection
To enlarge possible innovation in the field of neurosurgery, this thesis leverages
HSI for brain-tumor detection on an in-vivo study. By taking advantage of in-
vivo ground truth and the previously performed ex-vivo studies, a framework is
designed to detect brain tumor and discriminate neighboring tissues.

The first contribution of this study is proposing an automated selection of im-
age bands and a classification framework to specifically capture the joint spectral-
spatial HSI signals, which are discriminating and distinguishing tumor and healthy
tissue. This framework consists of combining 3D and 2D CNNs to capture all the
relevant information contained in the spectral cubes. In a large-scale evaluation
of different machine learning and deep learning methods, this study shows that
jointly combined spectral and spatial features are most attractive for brain-tumor
detection, demonstrating a higher classification score than conventional CNN-
based solutions.
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Figure 1.3 — Schematic layout of this thesis.

The second contribution envisions HSI in a minimally invasive neurosurgery.
This study presents the first benchmarking results that are obtained by classifying
brain tissue with (1) diffuse reflectance spectroscopy (DRS) and with (2) HSI
coupled with an endoscope. These results demonstrate that coupling HSI to the
endoscope achieves a comparable performance with existing DRS, but with the
advantage of providing an image view without patient contact rather than a point-
based measurement for DRS with a required intervention.

1.9 Thesis outline and scientific background
This section presents an outline of the chapters in this thesis and briefly summa-
rizes the contents of each chapter, including the underlying scientific publications
for each chapter. Figure 1.3 shows a schematic layout of this thesis. Chapter 2
illustrates the technical background and the state-of-the-art, introducing the main
elements of medical spectral imaging for surgical guidance: (1) optical and spectral
imaging for non-invasive patient tracking, (2) hyperspectral (HS) image analysis
and classification methods and (3) potential clinical applications. Chapter 3 and 4
investigate the development of a tracking system based on optical and HSI, which
is able to detect anatomical features during a complex image-guided surgery. The
algorithms for detecting cancer by using spectral imaging to reveal cancerous
features are then explored and validated on head & neck and colon cancer in
Chapter 5. In Chapter 6, a method for brain-tumor detection in neurosurgery is
proposed by employing HSI in combination with a band-selection algorithm. The
following summarizes the contents of each chapter and its scientific background.
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Chapter 2 provides an overview on optical and spectral imaging for surgical
guidance with a focus on neurosurgery. It introduces the background for detect-
ing and localizing the patient during surgical navigation, by employing invasive
and non-invasive approaches. Next, the HSI technology is introduced, including
algorithms for HS image preprocessing, classification and potential validation
methods with applications on clinical use cases. This chapter is concluded by giv-
ing a summary on the image analysis for employing HSI in the surgical guidance.

Chapter 3 proposes a framework for markerless patient tracking during spinal
surgery to replace invasive and non-invasive markers. First, the multi-view geom-
etry employed for 3D localization is introduced, by describing the camera model,
camera calibration and 3D triangulation for tracking purposes. Second, the pro-
posed framework for on-body feature detection with optical cameras is described
in detail, concluding with the selection of the best techniques for anatomical fea-
ture detection on patient spine and skin. Afterwards, this chapter discusses a
clinical validation of the presented approaches for feature extraction and localiza-
tion, resulting in an in-depth error analysis.

The contributions of this chapter were published in the BioMedical Engineer-
ing OnLine Journal in 2021, the Sensors Journal in 2020, and at the Int. Conf. IEEE
Engineering in Medicine and Biology Society (EMBC) in 2019 and the Netherlands
Conf. on Computer Vision (NCCV) in 2019.

Chapter 4 presents and validates a spectral imaging method for detecting
features on skin invisible for the human visual system, which can enrich the
non-invasive guidance investigated in Chapter 3. This chapter, first proposes
several preprocessing techniques to highlight the regions that contain quantitative
information for skin feature detection. Second, methods for band selection and
extraction are illustrated by providing automated approaches for revealing the
most relevant bands and reducing redundant information. Next, deep learning-
based features are exploited and benchmarked with handcrafted features which
were introduced in Chapter 3. Finally, a human subject study is conducted to
evaluate the proposed technique on a real-world case scenario, by simulating
patient breathing in the operation room and benchmarking the novel markerless
tracking method with marker-based tracking.

The contributions in this chapter were published in the Applied Science Journal
in 2020, and the IEEE Int. Conf. on Image Proc. (ICIP) in 2018, and the Netherlands
Conference on Computer Vision in 2018.
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Chapter 5 further investigates the exploitation of HSI technology for cancer
detection during image-guided surgery. For this evaluation, two different datasets
are studied with corresponding histopathology as gold standard. Machine learn-
ing and deep learning techniques are compared to assess: (1) the performances on
detecting cancer, (2) the impact of band-extraction techniques on the final predic-
tion, and (3) the required computation time for a possible real-time application in
the surgical procedure.

The contributions of this chapter were presented and published at the Int. Conf.
IEEE Engineering in Medicine and Biology Society (EMBC) in 2020 and at the Int.
Conf. SPIE Medical Imaging Conference in 2019. Two clinical publications based
on the techniques of this chapter were published in the Cancers journal in 2022
and at the 22nd Europ. Soc. of Gynaecologial Oncology (ESGO) in 2021 where the
thesis author was co-author.

Chapter 6 considers the findings of Chapter 5, for a novel spectral-spatial
detection of brain tumor with HSI, covering one of the most challenging cases
in neurosurgical oncology: the glioblastoma. The glioblastoma is an infiltrative
tumor, meaning that the resection without damage of healthy tissue and brain
function preservation is highly complicated. For this reason, the lesson learned
from previous chapters are applied to investigate the potential of an efficient
framework for detecting the invisible cancerous features in the brain. First, the
image acquisition is introduced with related techniques for heuristic methods
applied to extract meaningful bands for classification purposes. Second, a novel
method is proposed to characterize benign tissue and malignant brain tumor
on neurosurgical oncology patients. Aiming at minimally invasive surgery, the
chapter continues with an investigation on endoscopic HSI for brain-tissue char-
acterization. A comparison with DRS measurements is also provided, showing
the benefit of an HSI in contrast with the punctual measurements of DRS.

The work presented in this chapter was published in the Sensors Journal in
2020, and at the Int. Conferences SPIE Medical Imaging 2020 and 2021.

Chapter 7 summarizes the most important results of this thesis and addresses
the initially posed research questions with specific answers. Afterwards, the major
contributions of the thesis are highlighted. Finally, a brief outlook is provided
regarding HSI and AI for advanced assisted surgery during image-guided surgery
applications.
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surgical guidance

2.1 Introduction
The previous chapter has described the scope of this thesis by enhancing the
clinical need for a non-ionizing medical imaging technique in the intraoperative
scenario. We have highlighted the potential of spectral imaging for improving the
the surgical outcome, by providing guidance to the surgeon during interventions.
In this chapter, a brief background in the field of hyperspectral and optical imaging
in the area of neurosurgical guidance is presented. The chapter and this section
will outline two main roads for clinical improvement related to interventions. First,
optical surgical guidance tools are presented, which are used during surgeries to
assist neurosurgeons in the spinal surgery procedures. Second, spectral imaging
is introduced for tissue characterization during image-guided surgical oncology.

A. Optical imaging for surgeon guidance in spine surgery. Surgical navigation sys-
tems are increasingly used for complex spine procedures to perform minimally
invasive surgery, thus avoiding neurovascular injuries and minimize the risk for
reoperations. During minimally invasive spine surgery, the surgeon needs to rely
on computer-assisted navigation systems that can track reference points in the pa-
tient anatomy and display these points on a monitor during the entire procedure,
so that undesirable patient motion can be eliminated. Accurate patient tracking is
one of the prerequisites for optimal motion compensation and navigation. Most
current optical tracking systems use dynamic reference frames (DRFs) attached to
the spine, for patient movement tracking. However, the spine itself is subject to
intrinsic movements which can negatively impact the accuracy of the navigation
system. Furthermore, reference markers or reference frames can be displaced or
obscured during the surgical procedures.

The navigation technology studied in this thesis is an augmented-reality surgi-
cal navigation (ARSN) system, relying on adhesive optical skin markers for motion
tracking and compensation [13], [14]. Four high-resolution optical cameras are
integrated in the flat detector of a C-arm with cone-beam computed tomography
(CBCT) capability. The markers are recognized by the cameras and their relative
positions in space are used to create a virtual reference grid, which is co-registered
to the patient during CBCT acquisition. In literature, optical markers attached
to the patient’s skin have been used for respiratory motion tracking [15] and for
medical imaging applications [16]. The use of optical markers for motion tracking
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is combined with digital image correlation and tracking techniques [17]–[20]. To
bypass the use of current reference marker solutions, a reliable feature detection
technology is required for improving clinical workflow during spine surgery. That
feature detection should look to specific parts of the human body and be capa-
ble of tracking those features over time, while maintaining a clinically-acceptable
accuracy without using any type of added markers. Recently, Xue et al. [21] demon-
strated that ink dots on the skin could be video tracked with high precision and
that the postprocessing retrieved more detailed information compared to marker-
based methods. Similarly, direct tracking of spine features and tracking of skin
features using optical and spectral cameras can represent a solution to replace
marker-based approaches. In this context, to explore the potential of skin-feature
detection, hyperspectral imaging (HSI) offers an innovative technique capturing a
wide range of the electromagnetic spectrum and making it suitable for the tissue
characterization and skin-feature detection even beyond the visible spectrum.

B. Spectral imaging for surgeon guidance in surgical oncology. Intraoperative imag-
ing enables surgeons to guide a surgery, and also to objectively visualize the
malignant tissue in surgical oncology. Thus, another relevant clinical application,
which is also within the scope of this thesis, is to exploit HSI for augmenting
surgical tumor inspection, currently limited to subjective visual inspection. In this
way, the surgeon is guided by HSI to properly resect tumor tissue, preserving
healthy tissue and overcoming the drawbacks related to histopathology, which is
time-consuming and dependent on the subjective evaluation of the pathologist.
We investigate HSI for automated cancer detection during image-guided surgery,
because it can provide quantitative information about light interaction with bio-
logical tissues and exploit the potential for malignant tissue discrimination.

As a conclusion for the followed strategy during surgical guidance, we first
explore techniques for removing noise from the data caused by the patient motion
with spectrally-derived on-body features, then we introduce spectral imaging to
improve the treatment itself by detecting cancer. This chapter first introduces the
main parts of optical and spectral imaging systems and then broadly describes the
methods used for image analysis and classification. Lastly, a discussion is added
on how the technology is validated in clinical settings for cancer detection and
markerless tracking.

This chapter is structured as follows. Section 2.2 introduces minimally-invasive
surgery. Section 2.3 describes optical imaging for surgical guidance. Section 2.4
presents HSI in the medical domain and continues describing hyperspectral ac-
quisition systems on Section 2.5. Section 2.6 gives an overview about the hyper-
spectral image analysis and classification, to advance deep learning techniques
in Section 2.8. The clinical needs, within the scope of this thesis, are presented in
Section 2.9. The methods used for validating the described systems are illustrated
in Section 2.10, while Section 2.11 presents a brief summary and the conclusions.
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2.2 Minimally invasive surgery
In spine-fixation surgery, the insertion of pedicle screws is both crucial for suc-
cess of the intervention and critical for the patient. Conventional open surgery is
performed through a midline incision, where the posterior aspect of the spine is
exposed. However, there is a trend towards increased use of minimally invasive
surgical techniques, due to reductions in blood loss, length of hospital stay and
surgical site infections [22].

Minimally invasive surgery (MIS) is performed through small skin incisions,
where the vertebrae are reached by use of tubular retractors [23]. Due to the
reduced visibility of the spine during MIS procedures, intraoperative imaging
such as fluoroscopy, is frequently used. However, to reduce radiation exposure
and increase accuracy, a number of computer-assisted navigation solutions have
been devised [24]–[27]. Clinical studies have shown that the use of intraoperative
three-dimensional (3D) imaging which is coupled to a navigation system, leads to
higher accuracies than competing technologies [28]. All navigation technologies
require co-registration of the patient and the pre- or intraoperative images to
allow tracking of both patient and surgical instruments, related to those images.
Conventional navigation solutions typically include infra-red camera systems
tracking a dynamic reference frame attached to a single vertebra [29].

An alternative to this approach is an augmented-reality surgical navigation
(ARSN) (Philips Healthcare, Best, The Netherlands) system (Figure 2.1) which re-
lies on adhesive optical skin markers for motion tracking and compensation [13],
[14], [15]. The ARSN system has its own proprietary software for planning, seg-
mentation and image processing. The system is composed of two parts: a C-arm
for cone-beam computed tomography (CBCT) image acquisition and an optical
tracking system (OTS), which makes use of four small, high-resolution cameras
in the flat-panel X-ray detector of the C-arm. The use of four cameras increases
robustness, since only two cameras are needed for marker detection and tracking.
The OTS runs at 15 fps and tracks optical markers, each consisting of a 7-mm
diameter white disk on a black background. The optical markers are automatically
identified in the same coordinate system as the CBCT images. To allow this, a
simple calibration procedure is performed when the system is set up by using
several markers, which for this initial procedure are both optical and radiopaque
and therefore are seen by the OTS and recognized on the CBCT images. This
calibration creates a rigid integration of the two parts of the ARSN system and
does not need to be repeated. The markers are recognized by the cameras and
their relative positions in space is used to create a virtual reference grid, which is
co-registered to the patient during CBCT acquisition. A schematic diagram of the
optical tracking system used in surgical navigation is depicted in Figure 2.2. The
markers used by the ARSN are depicted in Figure 2.3. The sterile optical markers
are placed around the surgical site by the physician, in a non-linear and non-
symmetrical way. The markers are spread widely and the user should ensure that
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Figure 2.1 — Optical tracking system embedded in the C-arm and exploiting four optical cameras
which are integrated in the flat panel display of the X-ray detector (Philips Electronics B.V., Best,
The Netherlands). The cameras are visible as black dots on the boarder of the detector above the
patient table.

Figure 2.2 — Schematic representation of optical tracking system. The optical markers are tracked
via the optical tracking systems and MR or CT images are registered in the 3D world coordinates of
the OTS.

they should be not covered by drapes and retractors. Six or nine optical markers
are needed for ensuring reliable tracking in the ARSN system. In case the markers
are not arranged in a proper pattern, tracking cannot start and a repositioning is
needed.

Current commercially available spinal navigation systems utilize an indirect
method to track the spine, and work on similar principles, which are illustrated
in Figure 2.4 [26], [29], [30]. The indirect method uses optical hardware to iden-
tify a dynamic reference frame (DRF) attached to the patient’s spine [31], [32].
DRFs typically consist of reflecting spheres on a metal star with a known po-
sitional geometry, which is recognized and used by the navigation system for
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2.2. Minimally invasive surgery

Figure 2.3 — Optical markers used by the Augmented Reality Surgical Navigation (ARSN)
system (Philips Electronics B.V., Best, The Netherlands). All markers facilitate tracking by a unique
central point with white circle, but because they are identical the pattern created by the multitude of
markers facilitates accurate tracking.

Figure 2.4 — Standard setup with indirect patient tracking. (a) optical tracking system and (b)
reference frames. ([26]).

patient tracking [33]. To initiate tracking, the navigation software is provided with
information on the patient position in relation to the markers through a user feed-
back procedure or intraoperative imaging [26], [32], [34]. Hence, the navigation
is accurate only as long as the spatial relationship between the markers and the
patient remains undisturbed. Imaging data is integrated through intraoperative
3D scanning or co-registration to preoperative 3D scans [31], [35]. Since a DRF
is attached to a single vertebra, it may produce navigational errors if there is
movement within the spinal column during surgery [31], [36].

In contrast to reference frame-based solutions with a single attachment point,
the optical skin markers are more uniformly distributed and can potentially pro-
vide accurate navigation over a larger part of the spine (it should be kept in mind
that any type of marker attachment, but also the four-camera arrangement, can
be dislodged or obscured, resulting in loss of navigational feedback). Markerless
tracking solutions have been used experimentally on phantoms in other surgical
fields. However, validation in complex spine surgery in clinical cases is lack-
ing [37], [38]. A device using optical surface matching, although not primarily
designed for medical use, is the Hololens (Microsoft Corp., Seattle, USA). Experi-
mental use of non-medical models have demonstrated an accuracy ranging from
9-45 mm depending on the distance to the object [39]. In a spine phantom study,

23



C
hapter2

2 . O P T I C A L & S P E C T R A L I M A G I N G F O R S U R G I C A L G U I D A N C E

an accuracy of roughly 5 mm was achieved [40]. However, these accuracies are
not sufficiently high for clinical applications.

2.3 Use of optical imaging for surgical guidance
Nowadays, image-guided surgery is implemented in several clinical fields, such
as neurosurgery, surgical oncology, orthopedics and cardiovascular interventions,
with the goal to improve the patient prognosis, speed and safety of the surgical
procedures [41]. Image-guided navigation allows the surgeon to visualize the po-
sition of instruments and patient anatomy with respect to the patient’s position by
means of a tracking system based on patient images. To this end, optical imaging
overcomes the limited vision of a surgeon in conventional surgery by providing
informative guidance after proper system integration to form an image-guided
navigation system.

The key part of an optical imaging system is patient tracking to assess a correct
anatomical positioning. Therefore, the accuracy of the tracking system determines
the accuracy of the image-guided surgical navigation [42]. An optical tracking
system uses light-emitting markers to be detected by an image processing algo-
rithm which is implemented to facilitate tracking of the markers in 3D space. In
contrast with mechanical and magnetic tracking systems, optical trackers need op-
tical markers captured by surrounding cameras. The cameras project the markers
into each camera plane. Prior knowledge of the camera position in the 3D space
and optical lens parameters are required to assess the 3D position of individual
markers. This implies preliminary calibration to estimate the camera parame-
ters. Through the line-of-sight, the camera will then estimate the position of the
markers by projecting their 3D position onto the camera plane by intersecting the
central rays coming from each camera plane center that are also connected to the
markers. The intersection of the projected rays corresponds to the 3D marker lo-
calization. However, in non-ideal conditions the cameras are subject to calibration
errors which result in a projection error. The error made by estimating the real 3D
marker positions is known as tracking error, and is used to assess the accuracy of
the image-guided technique.

Currently, the most common commercial optical tracking systems used in sur-
gical navigation include micron tracker (Claron Technology Inc., Canada), polaris
optical tracking systems (Northern Digital Inc., Canada), StealthStation system
(Medtronic Inc., United States), and FusionTrack (Atracsys Inc., Puidoux, Switzer-
land). Optical tracking systems show higher tracking accuracy than mechanical
and magnetic trackers [43]. However, they require an unobstructed field of view
from the reference markers to the optical cameras. Unfortunately, this is not always
possible due to bleeding and surgical liquids in the operating scenario which can
occlude the markers. If one of the two cameras is occluded, the system is not able
to determine the 3D position of any marker. As an alternative, markerless track-
ing systems are less affected by camera occlusion and could rely on anatomical
features which are more redundant.
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In order to rely on on-body markers, novel optical imaging techniques should
be exploited to provide in-depth information without the use of ionizing ap-
proaches. To do so, a computer vision framework should be designed to include:
(1) a detection step by designing the on-body features, (2) a descriptor-extraction
phase used for matching purposes. Using the descriptors, the matching algorithm
should perform a matching between feature vectors, and provide index correspon-
dences over multiple frames. Then, a feature matching metric should be chosen
to compute the pairwise distance between corresponding feature vectors.

To the best of our knowledge, there are no such markerless tracking systems,
commercially available for surgical guidance.

2.4 Use of spectral imaging for surgical guidance
In the previous section, we have described the design of optical tracking systems
for surgical guidance, detailing the tracking part which is represented by locating
fiducial markers attached to the patient in 3D space. The need of markers presents
a limitation to surgical navigation, making the system vulnerable to occlusion due
to displacements during the procedure (caused by blood or patient movement)
and navigation errors. In order to reduce navigation errors and ensure a correct
tracking, intraoperative CT or MRI are needed to compensate for motion. How-
ever, this leads to extra-time (≈ 30 min.) and radiation [44]. In this context, novel
optical imaging modalities represent a valid alternative to ionizing radiation for
improving the surgical guidance.

Biophotonics have demonstrated a promising application in many surgical
fields, including neurosurgery, tumor detection, gastroenterology, etc. Biomedical
fluorescence imaging operates at wavelengths in the visible spectrum (400–700 nm),
extending into the near infrared (NIR) spectrum (700–900 nm). Although the ma-
jority of fluorescent probes emit light in the visible range, the NIR window arises
from less absorbance in tissues, allowing for deeper imaging and detection [45].
In recent years, fluorescence imaging systems, using NIR fluorophores have been
developed for clinical use, such as SPY (Stryker Novadaq Technologies, Canada),
Photodynamic Eye Neo (PDE-Neo, Hamamatsu Photonics, Japan), Fluobeam 800
(Fluoptics, France), Quest Spectrum (Quest Medical Imaging, The Netherlands),
VisionSense Iridium (Medtronic/Visionsense, New York), LEICA FL800 (Leica
Microsystems, Germany), and OPMI Pentero IR800 (Carl Zeiss, Germany) [44].
Fluorescent imaging techniques are widely used for disease detection during
surgeries. They are mainly based on finding a certain protein which emits light
at specific peak wavelengths when illuminated with near-infrared (NIR) light.
Intraoperative fluorescence imaging offers the benefits of absence of ionizing ra-
diation, ease of use, safety, in identifying cancerous tissue and delineating tumor
margins and anatomical structures. Moreover, it can be used to visualize regular
anotomical structures such as nerves, blood vessels, ureters, and bile ducts reduc-
ing the risk of damage [45]. However, the definition of tumor margins remains
difficult in case of infiltrative growth [46]. Furthermore, along with the challenge
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of developing more advanced fluorescent probes, signal-to-noise optimization,
and display considerations remain obstacles for a real-time, intraoperative, high-
contrast fluorescence-guided surgery [47]. In neurosurgery, intraoperative MRI
has been suggested as a method to compensate for brain shift, but suffers the draw-
backs of poor spatial resolution, high cost and time-consuming workflow [48]. In
addition, it is not feasible to perform multiple intraoperative MRI cycles during a
single surgery [48], [49]. In surgical oncology, histopathological examinations are
used to verify tumor-free margins and total resection. However, this is not always
applicable due to the turn-around time of tissue analysis (counted in hours) and
for anatomical area where neurological impairment is highly risky. Therefore, to
overcome the existing barriers in image-guided surgery related to the use of fluo-
rescent imaging, intraoperative MRI and histopathology, spectral-based imaging
is explored in the sequel of this section.

2.4.1 Hyperspectral imaging
Hyperspectral imaging (HSI) is a spectrum-based imaging modality that acquires
data in almost contiguous narrow spectral bands (see Figure 2.5). HSI systems
can collect hundreds of frequency bands in specific parts of the electromagnetic
spectrum, reconstructing a 3D cube which forms a set of 2D images, the so-called
hyperspectral (HS) cube [10]. The HS cube combines conventional imaging and
spectroscopy to capture simultaneously the spatial and the spectral information,
providing hundreds of spectral bands for each pixel in the 2D plane [11]. Each pixel
contains an almost continuous spectrum to create a spectral signature representing
radiance, reflectance and absorption, which acts as a fingerprint (the so-called
spectral signature) reflecting the chemical composition of that particular pixel [11].

The main advantage of this technology is that it only uses white light to ac-
quire the wavelengths of interest, where an HS camera can scan through those
wavelengths so that the spectral and spatial information can be detected in a
non-invasive way (without physical contact) [9]. While originally employed in
the remote sensing field, HSI has recently found use in the detection and diag-
nosis of diseases, in particular cancer, since cancer induces changes in the bio-
chemical mechanism of the cells [12]. The changes in the cellular morphology
and metabolism can be detected as changes in the absorption and reflectance of
light within tissue and thus it can be consequently detected with the HSI cam-
era. HSI in combination with state-of-the-art machine learning and deep learning
algorithms [9], [12], [50] has been used to detect prostate [51], breast [52], [53],
colon [50], [54], oral, tongue [55]–[59], cervix [60], and skin cancer [61], [62]. HSI
has been also used to assess tissue perfusion, the identification of blood vessels,
the differentiation of arteries from veins, as well as blood-flow measurement in
the skin and ischemia detection [63]–[66]. Therefore, it can be used to obtain in-
formation about the superficial anatomical structure, enabling to analyze tissue
below the skin surface and capture features that are not detectable with visible
wavelengths [67], [68].
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Figure 2.5 — Electromagnetic spectrum for visible light (VIS) up to the infrared range, near
infrared (NIR), short wavelength infrared (SWIR) and mid infrared (MIR). The bottom numbers
indicate the wavelengths expressed in nm.

The spectral ranges covered by a medical HSI system can include ultraviolet
(UV), visible (VIS), near-infrared (NIR) and the middle of the infrared spectrum
band (MID-IR). However, the mostly used frequency range spans from VIS to NIR.
It should be noted that VIS light penetrates only 1–2 mm below the skin, whereas
NIR light penetrates deeper. Thus, a NIR region is preferred for surgical guidance
allowing the visualization of critical anatomical structures that are not visible with
an RGB camera. Compared with a normal RGB camera, the spectral information is
enriched by acquiring images over a larger spectral range with a narrower spectral
band. This allows HSI to capture features which are not detectable with the visible
wavelengths and consequently to capture information below the skin surface.

2.4.2 Optical processes in tissues
The optical process in HSI is involved with the propagation of photonic particles
within tissue. When light propagates within tissue, it is subject to scattering and
absorption, while it propagates in the tissue itself [9]. Scattering occurs because
of differences in tissue structures, while absorption is mainly due to the presence
of light absorbers, the so-called chromophores. Chromophores, such as proteins
(for ultraviolet light), water (at the infrared), blood and melanin (for the visible
light) are responsible for the light penetration in tissue. Absorption and scattering
within the tissue result in a diffuse reflectance spectrum, which is emitted from the
tissue surface and captured by the HS camera sensor. Changes in scattering and
absorption within the tissue can be reflected in the reflectance signal captured by
the HS camera. Hyperplasia is due to presence of cancer, induced by an uncontrol-
lable and enhanced cell proliferation and results in change of tissue morphology,
affecting tissue scattering. In addition, a cancerous disease provokes an increase in
the tissue metabolism, requiring a higher concentration of hemoglobin in the cell,
thereby affecting tissue absorption. Thus, diffuse reflectance signals can provide
information about the tissue type, by capturing information about the scattering
and absorption within the tissue [9].

2.4.3 Multispectral and hyperspectral imaging
The main difference between multispectral and hyperspectral imaging (MSI and
HSI) is the number of wavelength bands being captured and how narrow the
bands are in wavelength range. MSI generally refers up to 10 discrete broad
bands, while HSI consists of hundreds of narrower bands (distance between each
bands ≈ 10-20 nm). Depending on the clinical application, HSI can be used when
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Figure 2.6 — (a) HS spectral cube and (b) the diffuse reflectance spectra for two different tissue
types, healthy (green interval) and tumor (red interval). The mean of both spectra is delineated as a
central line.

a higher spectral resolution is required compared to MSI, which benefits from
narrow-band dimensions, lower complexity and higher spatial resolution. Spectral
resolution of an HSI system refers to the ability of distinguishing two adjacent
spectral features emitted by a point in the image. Spectral resolution measures the
narrowest spectral feature that can be resolved by an HSI system. High spectral
resolution allows a more accurate spectral profile of an emitting light. However,
a high spectral resolution leads to a higher-dimensional dataset, which is more
complex and computationally heavy for processing. The question rises whether
a higher spectral resolution is needed to extract the desired information. When
employing a low spectral resolution (MSI), the computation and storage cost
decrease considerably. This thesis presents later novel solutions for applying MSI
and HSI to improve surgical guidance.

2.5 Hyperspectral imaging systems
The fundamental way to describe HSI acquisition systems is based on how spectral
and spatial information is acquired. The conventional acquisition mode can be
divided into the scanning methods, spatial scanning and spectral scanning. The
scanning methods determine the system technology that generates the HS image
cube and are depicted in Figure 2.7. They are mainly based on spatial scanning,
point-scan and line-scan systems (Figure 2.7(a), and (b), respectively), and spectral
scanning, spectral and snapshot systems (Figure 2.7(c), and (d), respectively). Point-
scan cameras capture the spectral information of one pixel, and scan in the spatial
dimensions (x and y), while line-scan systems scan over one line of pixels and
obtain the other spatial dimension moving the camera in that direction. In this
case, the HS data acquisition is faster and a high spectral resolution is warranted.
Due to the high spectral resolution and the acquisition times, line-scan cameras
are most common compared to point-scan systems.

In term of capturing time, spectral scanning systems achieve better perfor-
mance by obtaining the spatial information at one moment of time (x and y),
while scanning towards the wavelengths. Despite the high spatial resolution, the
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Figure 2.7 — Capturing principles of HSI camera systems. (a) point-scan camera; (b) line-scan
camera; (c) HS camera based on spectral scanning; (d) snapshot camera.

spectral resolution is lower than with point-scan and line-scan cameras. The most
promising technology is represented by snapshot cameras, which are able to pro-
vide HS video, with the lowest capturing time. Without performing a spectral or
spatial scanning, these snapshot cameras can acquire in one shot spatial and spec-
tral information. However, they present the main drawback of lower spectral and
spatial resolution compared to other HS systems. The suitability of an HS camera
type in term of acquisition mode, depends on the specific application. Line-scan
systems achieve high spectral resolution and are therefore suitable for disease
detection where differences in spectral signature reveal and discriminate tissue
types. However, they cannot achieve a real-time implementation, limiting their
usage in a clinical setting. Snapshot systems can be used for providing a real-time
feedback to the user, at the expense of a lower spatial and spectral resolution, and
can also visualize anatomical structures that are not visible with the naked eye.

2.6 Image analysis with HSI data
Originally developed in the remote sensing field, image analysis algorithms are
at present extensively studied for performing HS image classification. Nowadays,
HSI is gaining significant attention in other fields, such as food-quality control,
security, biochemical science and medical imaging [9]. The potential of HSI in dif-
ferent applications results in new algorithms for improving feature extraction and
classification techniques. In order to extract useful information from HS images,
several aspects should be taken into account. First, the spectral and spatial infor-
mation contained in the HS data can suffer from redundancy through the image
bands. Second, the HS data is high-dimensional data requiring advanced image
analysis algorithms to extract the relevant information. Furthermore, despite their
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popularity in remote sensing, HS image analysis methods lag far behind in the
medical domain [9]. The data collected from HS systems in the medical field, con-
tain information related to biochemical and molecular tissue properties. However,
the spectral fingerprints can be mixed and affected by noise. Image processing
algorithms are needed to correlate the molecular fingerprints with tissue features.

The main steps for HS image analysis involve image preprocessing, feature
selection and extraction and classification. These steps are discussed in detail in the
following subsections. It should be noted that deep learning has been employed
to process and classify HS data, improving the results obtained with machine
learning-based algorithms. Section 2.8 will elaborate further on this.

2.6.1 Hyperspectral image preprocessing and calibration
During the image acquisition, non-uniform illumination, dust on the lens surface,
variations in the detector sensitivity can generate image artifacts and noise [9].
Data preprocessing is needed to correct for noise and artifacts, perform a spectral
calibration, and discard the redundant information. First, the acquired raw data
are calibrated, in order to reduce the influence of dark current and illumination
intensity differences. Data calibration is performed by acquiring the intensity
value for the white reference with a white reference plate and dark reference
values, by keeping the camera shutter closed. Furthermore, for each image band,
a median filters or 2D Gaussian smoothing filters can be applied to further reduce
the noise.

2.6.2 Hyperspectral dimensionality reduction
Although HS data can potentially contain a high amount of useful information,
dimensionality reduction techniques are needed to reduce the amount of dimen-
sions and eliminate redundant information, while preserving the original spectral
properties. Ideally, the reduced representation should have a dimensionality that
relates to and is considerably smaller than the natural dimensionality of the data.
The required dimensionality of data covers a sufficient amount of dimensions
and number of parameters needed to observe discriminative properties of the
data [69]. The purpose of dimensionality reduction is to approach this natural
description capability and contents with the minimum amount of dimensions.

The most common method used for reducing the dimensions of HS data is
principal component analysis (PCA). PCA embeds the data in a low-dimensional
space defined by the leading Eigenvectors of the original data covariance matrix,
where most of the variance from the original data is preserved and dimensions
with low variance are discarded. The algorithm finds a linear transformation that
maximizes the covariance matrix of the data. The principal components are linear
combinations of the original HS bands, orthogonal in their multi-dimensional
orientation (Eigenvectors of the covariance matrix) and ordered according to their
variance magnitude.

Alternatively, minimum noise fraction (MNF), independent component anal-
ysis (ICA) and and linear discriminant analysis (LDA) are also used for linear
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dimensionality reduction. Up to this point, linear techniques for dimensionality
have been described. Linear techniques are based on the assumption that the
data are concentrated in a linear subspace of the high-dimensional space [69]. In
contrast with this, non-linear techniques for dimensionality reduction do not rely
on the linearity assumption, thereby enabling the representation of more com-
plex data embedded in the high-dimensional space [69]. T-distributed stochastic
neighbor embedding (t-SNE) is an example of a non-linear representation of spec-
tral features in a lower 2D space, which follows a probability-based approach.
However, when applied to HS data, similar spectral properties from different im-
age data can be differently represented in the low-dimensional space due to the
random nature of t-SNE.

Linear and non-linear dimensionality reduction techniques reduce the data
dimension by mapping the original feature space in a low-dimensional sub-space
through a transformation. More recent studies apply band-selection methods
without modifying the original data structure. Band-selection algorithms are opti-
mization algorithms able to reduce the dimensionality of the HS data by selecting
the most discriminative bands. Chapter 4 and 6 evaluate different band-selection
algorithms, which are benchmarked with conventional band-extraction methods
(such as PCA), with the main purpose to identify a subset of wavelengths to
sample in HS image data.

2.7 Machine learning for hyperspectral image classification
Hyperspectral image classification is mainly divided by supervised and unsuper-
vised classification and is based on pixel-based or subpixel-wise methods. Based
on the hyperspectral imaging assumption that each pixel in the 2D plane can yield
a spectral signature related to a particular tissue, pixel-based classification can
detect the presence of a certain disease or reveal an unseen anatomical structure.
Supervised classification methods give the prediction by assigning the class of
each spectral signature for a representative set of data (the training data). The
mapping of pixels onto their respective signature class is called ground truth if it
is performed by an annotating expert. This allows to design a model for correctly
predicting the outcome of new unseen data with an unknown prediction. This
process is called supervised training for classification tasks. Supervised classifica-
tion algorithms have been extensively studied to classify hyperspectral images,
and established examples of those are random forest, artificial neural networks
and kernel-based methods [9].

Unsupervised classification enables to cluster the image based on the spectral
similarities, without requiring a ground truth. For this reason, it cannot provide
information about the tissue type represented by each pixel, but can be used to
segment and delineate different spectral regions. However, these tasks are beyond
the scope of this thesis and will not be elaborated further in this chapter. In the
next section, the support vector machine (SVM) is described as a conventional
supervised classification method, which is extensively employed in this thesis.
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2.7.1 Support Vector Machine (SVM)
SVM provides a good performance in the field of HSI, and in general with a limited
amount of training data, due to the fact that the classification algorithm is based on
a relatively simple distance measurement that is computed as inner product [70].
SVM is a kernel-based classification method, aiming at finding a maximum margin
for separating different classes. Assuming a data vector xi and yi denotes the
binary class labels yj = [+1, 0], SVM separates the data with label yi = +1 and
data with label yi = 0, by finding the hyperplane w′x + b = 0 with maximum
margin. In order to obtain the classification, the margin is defined by optimizing w

and b. To maximize the margin, SVM solves the following optimization problem:

min
w,b,ξ

(
1

2
wT ·w + C

N∑
i=1

ξi

)
, (2.1)

subject to:
{yi(wi

T · ϕ(wi) + b) ⩾ 1− ξi} for i = 1, ..., N , (2.2)

where yi denotes the class label of the i-th data point xi, w is the weighting vector,
b is the bias, C is a penalty factor, ξ the misclassification term and ϕ(·) the so-
called kernel function. The constrained optimization problem can be solved by
identifying the saddle points in the Lagrange function:

L(w, b, ξ;α) = f(w, b, ξ)−
N∑
i=1

αi

[
yi(w

T · ϕ(xi) + b)− 1 + ξi

]
, (2.3)

where αi ∈ R represent the Lagrange multipliers. Once the SVM hyperplane is
determined, a new point xi can be classified using:

yi = sign
(
wT · ϕ(xi) + b

)
. (2.4)

In the previous equation, the function sign (·) indicates the sign function, yielding
the side of the hyperplane where the new data point is located. Note that if the
argument is negative, the output is −1, otherwise +1. In case of a linear kernel
function ϕ(·), Eq. (2.4) corresponds to a vector multiplication. Due to the good
classification performance of linear SVM despite its model simplicity, good accu-
racy with high-dimensional data and small computation time, this technique will
be adopted as classification method in Chapters 5 and 6 and used as benchmark
against deep neural architectures. An example of SVM decision boundaries is
depicted in Figure 2.8, illustrating the support vector, the training data and the
decision margins.
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Figure 2.8 — Illustrative example of decision boundaries for linear SVM with binary classification.

2.8 Deep learning meets hyperspectral imaging
Deep learning models consist of multi-level modules, that can learn complex func-
tions from the input data to a more general and abstract representation through
each level. Deep neural networks (DNNs) and convolutional neural networks
(CNNs) have been employed in the remote sensing field to classify HS image
data, outperforming the state-of-the-art approaches, such as the widely used and
aforementioned SVM classifier [71]. Despite the lack of data, deep learning tech-
niques are now raising attention in the HSI and in particular in the medical HSI
field [12] [72]. Compared to conventional machine learning techniques, DNNs
have the ability to extract linear and non-linear features, generalizing any kind of
data representation [73]. DNNs show high flexibility in learning HS data, thereby
exploiting both spectral and spatial domains. Their flexibility is also expressed by
the architecture design. Each network can be adapted and modified in terms of
number and type of layers and hidden units. These characteristics make DNNs
powerful and popular models for HSI data classification. However, this pow-
erful property comes with a cost, since the design of DNNs is based on multi-
dimensional training data, so that the model is developed with high dimensional-
ity, thereby leading to high complexity. This section starts describing the basis of
a neural network, focusing on supervised learning. Next CNNs are introduced,
illustrating several architectures used for image classification.

2.8.1 Neural networks
The basic idea of a neural network has its foundation in feeding one or more units
with an input, while receiving the output back in the network. The main difference
with a linear regression model, where one input data point (e.g. feature) is used
by the linear regression unit to compute the prediction, is that a neural network is
constructed from more units, stacked together, to form hidden layers. Each hidden
layer consists on several hidden units, where each hidden unit receives one input
sample and produces one output. The output of each layer is defined by:

z[i] = wTx[i] + b[i], (2.5)
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where i = 1, ..., N is the number of training examples in the training set, w and b

are the weights vector and bias, respectively, that model the input data to give the
prediction. In supervised binary classification, the final prediction ŷ is represented
by ŷ = P (y = 1|x) the probability of z to be unity for a given input x. Furthermore,
a non-linear activation function is applied to Eq. (2.5) as follows:

a[i] = σ(z[i]). (2.6)

The activation function σ(·) is usually chosen as the sigmoid function, defined by
a = 1/(1+exp (−z)), or the hyperbolic tangent function a = tanh(z), or a rectified
linear unit (ReLU), specified by a = max(0,min(z), 1). Intuitively, it can be ob-
served that the activation function enforces the output to be in the unity interval.
More specifically, when z increases, the derivative becomes smaller. This is crucial
during the learning process, which is optimized by a cost function that measures
the distance between the ground truth and the estimated ŷ in supervised learning.
The weight parameters w are iteratively updated by computing the gradient of a
loss function that is depending on the weights. This process is called backpropa-
gation and follows the forward propagation, which produces the prediction ŷ as
output. Compared to shallow networks (such as logistic regression) [74], a DNN
is made of more cascaded building blocks, or hidden layers, where for each layer
Eq. (2.5) and Eq. (2.6) are applied. In a DNN, each layer l takes an input from
the previous layer a[l − 1] and computes the output of each layer a[l]. The way to
implement a forward function is then specified as follows:

z[l] = w[l]a[l − 1] + b[l], (2.7)

a[l] = σ(z[l]). (2.8)

Giving an input and computing the above-mentioned equations for each layer,
defines the forward propagation. On the other hand, the main goal of backpropa-
gation is to minimize a loss function J that measures the difference between the
output of the forward pass and the expected value ŷ. This loss function can be
defined as:

J(w) = −
N∑
i=1

(yn) · log(a), (2.9)

where yn, with n = 1, .., N , is the target and a is the output of the activation
function. This expression is known as the cross-entropy loss, where minimization
of this loss function gives the likelihood estimation. A regularization term can
be added to avoid overfitting. When exploiting backpropagation, the derivatives
dw[l] and db[l] indicate the gradient of the loss function J with the respect to
the weights, which is used to optimize the weight vector and the bias for each
iteration, so that:

w := w − αdw, (2.10)

b := b− αdb, (2.11)
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where α is the learning rate. After each iteration, the weights are updated and the
operations are repeated on the entire training data set. Different from learning
process parameters w and b, the number of hidden layers, hidden units, iterations,
the learning rate and the choice of activation function, the network is characterized
by so-called hyperparameters. The hyperparameters control the computation of
the parameters w and b and are used for balancing between underfitting and
overfitting. The basic recipe for optimizing training set performance in case of high
bias (underfitting) is to ”go deeper”, either by using a larger network or by more
extensive training. To reduce the effect of having a high variance (overfitting), a
larger amount of data is explored and regularization techniques (such us weight
decay, dropout) are added.

2.8.2 Convolutional neural networks (CNN)
Convolutional neural networks (CNNs) are the most widely adopted neural net-
works for computer vision tasks. They consist of various combinations of convo-
lutional layers, max pooling layers, and fully-connected layers and exploit local
spatial correlation by enforcing a local connectivity pattern between neurons of
adjacent layers [75]. In case of image data, CNNs are able to analyze the influence
of nearby pixels by computing the basic operation of a convolution covering those
pixels. There are three types of layers in a convolutional neural network: a con-
volutional layer, a pooling layer, and a fully-connected layer. Each of these layers
performs a different task on the input data.

A convolutional layer applies multiple filters over the image to extract dif-
ferent features. The convolution is computed by choosing a filter and moving it
across the image from top left to bottom right. The results from each convolu-
tional operation can extract specific features of an image (edges or corners) and
recognize objects in different spatial and temporal dimensions. The most impor-
tant parameters for the convolutional layers are the number and size of filters.
Each filter introduces translation invariance and parameter-sharing. This means
that multiple filters can provide more than one type of information and they can
be used across the entire data set for analyzing multiple features. Each hidden
activation is computed by multiplying a small local input against the weights w.
The weights w are then shared across the entire input space. Neurons that belong
to the same layer share the same weights. In order to reduce the size of the data
representation, a convolutional layer is usually followed by a max-pooling layer
to speed up the computation and increase feature robustness. This is achieved by
sub-sampling using the max or mean operation. One interesting property of max-
pooling is that it has a set of hyperparameters, but it has no parameters to learn
during the backpropagation. The hyperparameters for pooling are the filter size
and the stride, which should be set once because the pooling function is a fixed
function that the neural network computes in one of the layers. Convolutional
layers alternate with max-pooling layers, thereby mimicking the nature of com-
plex and simple cells in the mammalian visual cortex [76]. Lastly, fully-connected
layers are used just preceding the classification output of a CNN to flatten the
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results and integrate information across all feature maps. Due to the hierarchical
architecture, CNNs can successfully learn visual representations. In this context,
HS data can be represented as hundreds of 2D images in a broad spectral domain.
CNNs allow to learn also the invisible (to the human eye) spectral features for
different classes. However, the spatial and spectral correlation should be jointly
considered to improve the CNN-based classification of HS data.

2.9 Using CNNs for HSI applications
HSI has recently found use in the detection and diagnosis of diseases, in partic-
ular cancer, since cancer involves changes in the biochemical mechanism of the
cells [77]. The changes in the cellular morphology and metabolism can be detected
as changes in the absorption and reflectance of light within tissue. As a conse-
quence, these absorption and reflectance properties can be detected with HSI. In
order to study the potential of HSI for cancer detection, ex-vivo studies are most
common in terms of data acquisition.

Literature is continuously enriching with different clinical applications of
HSI [78], [79]. Gastric, breast and head & neck cancers have been dominantly
analyzed with HSI for an intraoperative tumor assessment to facilitate residual
cancer removal. Although recent works show interest on this clinical application,
validation involving benchmarking studies is missing. Furthermore, the tongue
and colon cancer are not completely explored in ex-vivo human studies with ma-
chine learning and deep learning techniques combined with HSI [80].

In this thesis, we report two ex-vivo studies on colon, head & neck cancer and
one in-vivo study on brain tumor. These studies will involve machine learning
and deep learning techniques and enable to explore the capability of HSI in detect-
ing tumor in different tissue types. It should be noted that the tongue is made of
relatively simple type of tissue, mainly composed by muscle, while colon tissue is
composed of different anatomic layers, such as serosa, muscularis externa, submu-
cosa, and mucosa. The exploration of different tissues will lead to study a robust
preprocessing stage and learning technique, which allows to detect different types
of tumor involving different anatomies.

2.10 Validation methods
The general concepts for HSI image acquisition and analysis have been introduced
in the previous sections. This section concentrates on assessing the accuracy of
proposed systems with respect to their specific tasks. Assessing the accuracy of
an HS medical system is crucial for evaluating the system performance and the
ability to make a confident prediction outcome. In order to give an indication
about a possible integration in the clinical setting a ground truth is used, for which
the outcome value is known.
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A. Patient tracking validation
In the framework of patient tracking, the ground truth is represented by optical
markers, which are tracked by a system using optical cameras and also recognized
by a C-arm for computed tomography. The ARSN system (described in Section 2.2)
uses adhesive skin markers for patient tracking. The accuracy of this tracking
system has been demonstrated in several clinical publications and is not inferior
to other marker-based commercial systems for spinal navigation [13], [14], [25].
Most available navigation systems employ a dynamic reference frame (DRF). This,
often bulky, equipment in the surgical field can interfere with the surgical process
and hamper the surgeon procedure. Thus, it should be optimally re-positioned for
each vertebral level operated upon, resulting in a prolonged operation time [32].

A surgeon may choose not to re-position the dynamic reference frame to avoid
it in the surgical procedure and thereby simplify the workflow when working
at adjacent levels. However, at worst, the screw-misplacement rate may double
with every vertebral level away from the reference frame. The frameless reference-
marker system of the ARSN uses a non-rigid method to form a virtual reference
grid (VRG), meaning that moving one or a few skin markers can be detected
and compensated for by the system. In contrast to conventional tracking systems,
where the camera views of the DRF may be interrupted during the navigation
procedure resulting in loss of tracking, the VRG is designed to have a redundancy
whereby it accepts occlusion of several markers, if a minimum of five are still
in place. Comparable systems using a similar technology are currently used in
clinical practice ([81]).

In summary, the tracking system used in this thesis has a verified accuracy
and represents the gold standard in the performed study. The outcome of an
automated tracking system is a 2D, either 3D location. In 3D vision, interest points
are localized by using 3D triangulation (this is extensively described in Chapter 3).
3D Triangulation allows to determine the 3D position of a point in the 3D space by
knowing the projection onto two (or even more) 2D images. The projections from
the 2D view of the same point intersect in one point in the 3D space. However, due
noise, lens distortion or interest point detection error, the projected lines generated
from 2D image points do not intersect in the 3D space, producing a triangulation
error.

The overall accuracy of the tracking system will be assessed by computing a
3D triangulation error, benchmarked with the optical markers from the ARSN
system.

B. Validation of HS image classification
In the context of image classification, different metrics are available for quanti-
fying the performances of a machine learning system. These metrics represent a
measure how the classification model is performing when it provides a certain
output, given a data input. To evaluate the model performances, the data set is
divided into a training set and a test set. In this way, the model will generalize the
information contained in the training set and will use this information for mak-
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ing the prediction on the test set. This procedure allows to calibrate the system
with the training set, thereby avoiding statistical error and overfitting. Different
methods can be employed to separate the training and test test. The methods
for properly calibrating and evaluating the classification model will be discussed
below. In the following paragraphs, an overview will be presented of the most
common performance metrics used for evaluating the model outputs.

K-fold cross-validation: In this approach, a pre-determined percentage of data
is split in training and test sets. In k-fold cross-validation, the data are randomly
divided into k equally sized sets, where one set is used as testing set and the
remaining k-1 subsets form the training set. In this way, each set is used for
training and only once for testing. The overall performances are calculated by
averaging the k results.

Leave-one-out cross-validation (LOOCV): In the leave-one-out cross-validation,
the number k specified in the k-fold cross-validation, is represented by one train-
ing sample. This method is good for achieving generalization with a small dataset,
since it employs the maximum amount of training samples and makes the predic-
tion on the unknown test set. The main drawback of this approach is that it learns
and tests on all possible ways to spit the data sample into a training and a testing
set, making the method relatively slow.

In the medical domain, data samples are collected from a group of patients. For
each patient, several samples can be acquired, leading to a bias if samples from
the same patient are in both the training and testing set. To avoid this, Leave-One-
Patient-Out Cross-Validation (LOPOCV) is applied in the validation phase, where
data from the same patient are grouped, and each patient is used as a test set,
while the remaining patients are included in the training set. The procedure is
repeated until every patient is chosen once as test set and validated. The overall
performances are calculated by averaging the results obtained by each model.

To evaluate the performances of a classification system, several metrics are
taken into account. Typically, the overall accuracy, per-class sensitivity, and speci-
ficity metrics are calculated. For the latter two metrics, the following parameters
are required: the number of true positives NTP, the number of true negatives NTN,
the number of false positives NFP and the number of false negatives NFN. When
these values are known, accuracy can be computed by:

Acc =
NTP +NTN

NTP +NTN +NFP +NFN
. (2.12)

Sensitivity and specificity are the true positive rate and true negative rate, respec-
tively, and are depending on the same parameters. These metrics are defined in
the same order by Equations (2.13) and (2.14):

Se =
NTP

NTP +NFN
, (2.13)

38



C
ha

pt
er

2

2.10. Validation methods

Sp =
NTN

NTN +NFP
. (2.14)

In the context of cancer detection, NTP indicates the number of correctly classi-
fied pixels as cancer, while NFP indicates the number of wrongly classified pixels
belonging to cancer. Parameter NTN indicates that the detection algorithm has cor-
rectly classified non-cancer pixels, and NFN signifies that cancer pixels are wrongly
classified as healthy tissue. For each image data, a ground-truth map with the la-
beled pixels of each class is used for computing the above-defined performance
metrics. Although the ideal situation is represented by achieving a value of 1 (or
100%) for Eqns. (2.12), (2.13) and (2.14), a good comprise can be made accept-
able when data are unbalanced. The latter condition is quite common in case of
medical data because of data collection is focusing on disease. This leads to very
high specificity compared to sensitivity (or vice versa), in case of a sparse class
distribution.

In addition, for each classification problem a threshold can be chosen to in-
vestigate the accuracy, sensitivity and specificity of the system. By varying the
thresholds, the performances can be evaluated for various threshold settings. This
will enable to extract different operating points and construct the receiver operat-
ing characteristic (ROC) curve. In cancer detection applications, the ROC curve is
a probability curve, derived by varying the threshold, that determines the cut-off
between the sensitivity (fraction of true positives to all with disease) and speci-
ficity (fraction of true negatives to all without disease). Although the number
of true positives and negatives and false positives and negatives will vary over
the curve, the number of samples labeled with different classes remain the same.
Sensitivity and specificity can increase or decrease at the expense of the other. The
ROC curve provides a visual representation of the system performance.

For measuring the amount of separation between class pixels, the area under
the curve (AUC) can be computed. The AUC provides an estimation on how a
model is able to distinguish between different classes. In binary classification, a
higher AUC indicates that the model is capable to predict the likelihood of Class 0
as zero, and Class 1 as unity. By analogy, a lower AUC shows a lower performance
on distinguishing between the two different classes. In case of multi-class clas-
sification, the ROC curve and AUC are provided for each class, in a one-vs-all way.

In this thesis, we will evaluate the potential of detecting cancer with HSI. First,
ex-vivo studies concern binary classification, to evaluate the feasibility to discrimi-
nate cancer and healthy tissue with an HS camera. An in-vivo study will also be
part of the experiments, to study the integration of the technology in clinical prac-
tice. In this case, the image data involve multiple classes. The described metrics
are employed to investigate the performances for both cases.
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2.11 Summary and conclusions
This chapter has presented an introduction on optical and HSI systems and ap-
plied image analysis techniques for patient tracking and tumor characterization.
The main computer vision framework for processing HS data should involve pre-
possessing and improve the feature extraction for both local feature detection and
classification. In the context of patient tracking, local features are detected and
matched to estimate their location, thereby tracking the patient motion. When
employing HSI for cancer detection, the main step involves image classification,
which consists of model training with labeled data and testing it on unknown
samples. This allows to estimate a prediction, which is further validated by per-
formance metrics. Optical and HS image analysis have been briefly discussed.

HS image preprocessing: The raw HS data are preprocessed in order to perform
data normalization, augmentation and feature-space reduction. Preprocessing is
a crucial step for HS analysis, since it suffers from high dimensionality, redun-
dancy within image bands and instrumentation noise. The raw reflectance data
are normalized in order to correct for the dark current noise. Furthermore, the
amount of data associated with the spectral bands leads to high complexity and
computation time. In order to reduce the spectral redundancy while preserving
the spatial dimensions, dimensionality reduction techniques should be applied.

HS image classification: As one of the machine learning approaches, SVM is
mostly used to design predictive models for tissue discrimination from HS acqui-
sitions. Recent developments in the field of machine learning yields the potential
to improve the classification also in the HSI domain. To this end, 2D and 3D
CNNs can be used to design more advanced predictive models, by extracting and
learning spectral and spatial HS features for better visualization of tissues and
improved surgical guidance.

Performance metrics: The last part of this chapter has introduced model perfor-
mance metrics that can be evaluated for both patient tracking and tissue charac-
terization. When performing patient tracking with HSI, several techniques can be
leveraged to localize anatomical features captured by HSI. In particular, 2D or 3D
localization should be assessed with respect to a ground truth (e.g. invasive or
non-optical tracking methods). In HS image classification, the sensitivity, speci-
ficity and AUC should be computed. When dealing with patient data, HS data and
pathology images for each patient are collected and employed for classification.
Leave-one-patient-out cross-validation is applied, to avoid double-patient usage
and prevent overfitting. After classification, each block is labeled to obtain binary
classified images for each patient.

The following chapters extend the techniques described in this chapter in order
to provide a better patient tracking during spinal surgery and introducing HSI
and its clinical application in surgical oncology. Interventional guidance will be
addressed by exploiting HSI for enhancing surgeon vision to visualize tissues that
are unseen by the human eye. The exploitation will start with Chapter 3 which
investigates new methods for markerless tracking, by using optical cameras.
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3.1 Introduction
The previous chapter has provided an overview about optical and hyperspectral
imaging and its application for computer-assisted surgeries. The discussed content
indicates how spectrally-resolved tissue properties can offer guidance information
during spinal surgery, by exploiting spectral imaging for surgical navigation.

This chapter concentrates on conventional imaging solutions based on optical
cameras. Optical cameras are the primary sensing tools to guide surgeons during
complex interventions [82]. Beside this, they are not expensive in contrast with
other medical equipment and they allow contactless viewing of the patient. In
this chapter, their potential for unobtrusive patient tracking will be explored and
finally demonstrated. For this type of viewing, the processing techniques after
sensing should detect anatomical structures, which serve as registration points
for unobtrusive patient tracking. Most hospitals are equipped with an optical-
based tracking system for performing a variety of interventions with the aid of
an image-guided tool. Thus, non-invasive patient tracking by using digital white-
light cameras can have a direct impact on clinical practice and provide benefits
for the procedure with respect to usability and costs. The work of this chapter will
serve as a reference and baseline for further investigations later in this thesis on
spectral imaging techniques.

The purpose of the research in this chapter is to establish the baseline of pa-
tient tracking without the usage of any reference markers, which are now often
used in the current clinical practice. In this context, the research will explore
the boundaries of using traditional optical cameras in extracting on-body fea-
tures for direct tracking. As discussed in Section 2.3, surgical navigation systems
provide a reliable image-guided solution for spinal surgery [13], [36], [83]. An
important step in spinal fixation surgery is the placement of pedicle screws. Safe
placement of these screws requires a high accuracy, since the surgical risks in-
clude damage to vital neurological and vascular structures in close anatomical
relation to the pedicles [84]. The conventional free-hand technique relies on a
combination of anatomical landmarks, pre-operative imaging and use of X-ray
fluoroscopy [85] [86] [81]. Beside the complexity of this combination, the obtained
accuracy with this technique is greatly dependent on the surgeon’s expertise. In a
meta-analysis, Gelalis et al. [87] reported that the percentage of screws with corti-
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cal violations larger than 4 mm was 1.0–6.5%. Over the past decade, the additions
of surgical navigation systems to spinal fixation surgery have been concentrat-
ing at improving such inaccurate numbers for a more accurate and safe surgical
procedure [88] [89] [16] [90] [91] [25] [14]. Current commercially available spinal
navigation systems utilize an indirect method to track the spine. The indirect
method uses optical hardware to identify a dynamic reference frame (DRF) at-
tached to the patient’s spine [31] [32]. DRFs typically consist of reflecting spheres
on a metal star with a known positional geometry, which are recognized and used
by the navigation system for patient tracking [33].

To initiate tracking, the navigation software is provided with information on
the patient position in relation to the markers, through a user feedback procedure
or intraoperative imaging [26], [32], [34]. Hence, the navigation is accurate only as
long as the spatial relationships between the markers and the patient remain undis-
turbed. Since a DRF is attached to a single vertebra, it may produce navigational
errors if there is movement within the spinal column during surgery. As presented
in Section 2.2, to address this motion problem, an augmented reality surgical nav-
igation (ARSN) system, using non-invasive optical markers attached to the skin
and detected by live video cameras, has been reported by Edstrom et al. [13] [14].
In the ARSN system, four high-resolution optical cameras are integrated in the flat
detector of a C-arm with cone-beam computed tomography (CBCT) functionality.
The markers are recognized by the cameras and their relative positions in space
are used to create a virtual reference grid, which is co-registered to the patient
during CBCT acquisition. The use of optical markers for motion tracking is com-
bined with digital image correlation and tracking techniques [17] [18] [19] [20].
In contrast to DRF-based solutions with a single attachment point, the optical
markers of the ARSN are more uniformly distributed and can potentially provide
accurate navigation over a larger part of the spine.

Nonetheless, any type of marker attachment has limitations and challenges.
First, markers can be dislodged or obscured, resulting in loss of navigational feed-
back. Second, DRFs are attached to a single vertebra, causing error in guidance
when the spinal column exhibits relative movements among vertebrae. Third,
aiming at minimally invasive surgery (MIS), studies focusing on non-invasive
markerless solutions are still limited. Markerless tracking solutions have been
used experimentally on phantoms in other surgical fields, however, validation
in complex spine surgery in clinical cases is lacking [37], [38]. Experimental use
in non-medical models have demonstrated an accuracy ranging from 9-45 mm,
depending on the distance to the object [39]. In a spine phantom study, an accu-
racy of roughly 5 mm has been achieved [40]. However, these accuracies are not
sufficient for actual clinical use in spine surgery, where a sub-millimeter tracking
accuracy is required.

This chapter describes the design a novel optical tracking method to com-
pletely omit the usage of markers, while maintaining surgical accuracy for per-
forming patient motion compensation during navigated spinal surgery. There
are two main advantages when refraining from using optical markers for motion
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tracking. First, the workflow of the procedure can be improved by simplifying
the protocol for patient preparation and by increasing the reliability of tracking
during the surgical procedure. Second, the risk of losing sight of the markers is
effectively eliminated when anatomical features can be used as a reference, as
such features are virtually always within the camera view.

Using the ARSN system, we propose a technology that utilizes the integrated
live video cameras to directly track the patient’s features (Figure 3.1). The tech-
nology relies on the system to consistently recognize key features of the patient.
Therefore, a robust image analysis technique should be investigated to detect
and track the patient anatomy. Fundamental choices are needed to select the key
methodology for finding correspondences between at least two camera views, by
employing in-body feature detection algorithms to perform stereo matching and
3D error assessment.

To go from a general level to a more detailed overview, we commence with a
list of specific requirements for the setting of surgical operations.

• Accuracy requirement. For surgical operations and feasibility of the solution
in clinical practice, the overall accuracy of the method should be in the order
of millimeters.

• Conditional requirement. Our processing framework has to handle different
illumination conditions. The illumination can have direct impact on the
number of detected features during the entire procedure. Since surgical
lights are part of the clinical procedure and they neither can be changed nor
removed.

• Speed requirement. Since the intended solution is part of a clinical procedure
with operational surgery, the adopted solution for feature detection should
be executed in real time.

The previous list of requirements are given factors, resulting from the sur-
rounding and the application setting. These requirements can be interpreted as
boundary conditions for the solution that needs to be developed. The following
points indicate technical difficulties that need to be overcome and addressed for
the developed solution and integration into the clinical procedure.

• Localization accuracy. The feature detection and extraction needs to be based
on a sufficient amount of features to allow accurate localization. Also, the
type of features is not known in advance but it is evident that the features
should be salient on-body features and recoverable from optical camera
images.

• Image preprocessing. Since the cameras embedded in the navigation system
are conventional gray-scale cameras, the processing step should include a
preprocessing phase for anatomical feature enhancement (e.g. skin, moles,
veins, or the spine itself in case of open surgeries).
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• Feature analysis type. An in-depth analysis should assess the suitable feature
set that are accurate enough and could serve as marker. Aspects such as
adaptability to image transformation and mismatched features need to be
evaluated, as they can potentially affect tracking.

• Limited computation time. The designed feature detector should combine a
set of features for the camera setup offering sufficient accuracy without
requiring high computation time. Feature detectors and descriptors need to
be carefully investigated because they demand the highest percentage of the
processing time.

• Patient anatomy variations. The intention of the application is to serve mini-
mally invasive surgery. However, open surgery is still performed in clinical
practice, so the system has to handle challenges related to both cases. This
implies also that patient-skin variability is an important issue for feature ex-
traction for all minimally invasive cases. In contrast, in case of open surgery,
spine variability in size, shape and appearance, should be overcome by the
processing system.

The developed solution is based on applying multiple cameras mounted on a
framework at different positions. This enables to exploit multi-view geometry for
camera calibration, which paves the way for an accurate solution. Furthermore,
we expect that the patient skin carries sufficient information to extract salient
features to be used for accurate tracking. There are several elements of this solution
direction based on matrix computations, so that fast processing times should be
possible.

This chapter is outlined as follows. Related work is added to a mixed form
to the next sections. Section 3.2 presents the design of the markerless tracking
framework and the associated methods, which include the multi-view geometry
principles employed for camera calibration, preprocessing, feature detection and
3D localization. In Section 3.3, the evaluation on using spine information and
the corresponding experiments are discussed. Section 3.4 investigates how skin
features can be used for accurate tracking and presents related experiments to that
approach. Section 3.5 presents a case study on future-oriented patient tracking for
augmented reality applications, while Section 3.6 concludes this chapter.

3.2 Framework for markerless patient tracking
3.2.1 Overview of the proposed system
In order to find 3D salient points of the patient, a multi-view camera system
is defined, to perform the anatomical feature detection. The key part is to find
correspondences between at least two calibrated cameras, by employing feature
detection algorithms and using them to perform stereo matching and 3D error
assessment. The research in this section addresses the following subproblems: (1)
camera calibration, (2) preprocessing of optical images, (3) feature detection, and
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Figure 3.1 — Visualization of the C-arm and the ARSN system. (a) C-arm with radiation part at
the bottom and detector at the top. The blue cube represents the patient to be tracked. The blue vectors
define the limits of the range of depth (the small blue vector is the minimum depth and the big blue
vector is the maximum depth). The red vector displays the difference of maximum and minimum
depths which is the depth’s range. (b) ARSN system with C-arm. Four calibrated cameras (blue
boxes) are used to detect the depth. Triangulation and matching are performed by using multi-view
stereo vision.

(4) matching local invariant image regions for two different image views, (5) 3D
feature localization. Figure 3.2 shows an overview of the proposed framework. To
elucidate the best approach for reliability and accuracy, we perform a comparison
study with several feature detection algorithms. The previously mentioned sub-
problems are addressed in the five subsections describing the camera calibration,
preprocessing, the feature detection, matching and the 3D feature localization.

The core part is essentially formed by the feature detection and matching step.
In this phase, the interest points are detected, extracted, encoded in a feature
descriptor, and matches are performed between images using these descriptors.
Thus, feature detection involves the identification of interest points, feature de-
scriptor extraction and matching.

An interest point has the following properties: it is localized in the image space,
invariant to local and global image variations, such us illumination changes, and it
has a high repeatability. With repeatability we mean that the feature is consistently
detected along the entire clinical procedure, which implies that it is found in
succeeding video frames. Using a feature descriptor, the information contained in
the interest points is encoded into the feature vector which acts as the fingerprint
for different discriminative features. Lastly, feature matching intends to establish
a correspondence between pairs of selected images by finding the same features.

3D vision-based feature localization from multiple images results in modeling
a three-dimensional scene given a set of images, captured from calibrated cameras.
When two cameras capture the same scene, a 3D reconstruction can be performed
by recovering the depth information, which is lost when the 3D scene is projected
onto the 2D image views, acquired with each individual camera. In the following
subsection, the basic principles of multi-view geometry, applied for 3D feature
localization, are described and the related work is indicated.

45



C
hapter3

3 . O P T I C A L I M A G I N G S Y S T E M S F O R PAT I E N T T R A C K I N G

Figure 3.2 — Proposed framework for 3D spine feature localization.

Figure 3.3 — Pinhole camera model [92].

3.2.2 Pinhole camera model
The pinhole camera model assumptions form the basis of multi-view geometry.
The model approximates the camera aperture as a point, discarding the presence
of lenses used to focus the light [92]. Consequently, the focus of objects, chromatic
aberration and geometric distortion will not be taken into account. However, our
study corrects for the intrinsic parameters of the camera, such that the pinhole
camera approximation can be safely adopted. Figure 3.3 gives an illustration of
the pinhole camera geometry. The point X in the 3D space with world coordinates
(X,Y, Z)T is projected in the image plane towards the camera center O (origin).
The x−, y−, z−dimensions are the principal axes of the image coordinate system
and they intersect the image plane at point p (principal point), positioned at the
center of the image plane. The intersection between the projection of X to the
world origin O and the image plane results in x with 2D image coordinates x1

and x2. This projection maps the Euclidian 3D space R3 to the Euclidian 2D space
R2, laying the foundation of homography and isomorphism of projective spaces.
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Figure 3.4 — Epipolar construction. (a) 3D triangulation by projecting the camera center O1 and
O2 to the points x1 and x2. (b) The epipolar line is obtained by drawing a line between x′

1 and x′
2.

This results in a correspondence between each point of the left image plane and the corresponding
epipolar line in the right image plane.

3.2.3 3D triangulation and epipolar line
As previously described, a point in the 3D space is associated with a line in the
3D camera model. From a single line, the depth information cannot be extracted
and consequently, the 3D position of the point cannot be reconstructed. With
two image planes, the 3D location of a point X can be obtained as intersection
of two projection rays, enabling a 3D triangulation. As shown in Figure 3.4(a),
the triangulation is achieved by projecting the camera centers O1 and O2 to the
points x1 and x2. Taking into account two points X1 and X2 in the 3D space
with generic coordinates (X1, X2, X3)

T , (see Figure 3.4(b)), the intersection of the
point X1 and X2 with the camera center O2, on the right image plane, results in
x′
1 and x′

2. The line through both x′
1 and x′

2 defines the epipolar line on the right
image plane of the point x of the left image plane. For each point of the left image
plane, the epipolar line within the right image plane can be drawn, referring to
the same 3D point [92]. It is evident that if the 3D point is occluded in one view,
the previous statement is not valid anymore.

3.2.4 Epipolar constraint
Figure 3.5 depicts the epipolar plane containing the points O1, X, O2, which are
reprojected to the lines l and l

′
. The line connecting the camera centre from O1 to

O2 intersects the left and right image plane in two points e and e′ called epipoles.
This epipolar constraint ensures that each point in the line l lays in the epipolar
plane and if visible from the right camera, it can be reprojected on line l

′
. The

epipolar constraint facilitates the search of correspondences between image points
by reducing the search in one line of pixels, instead of searching through the
whole image. This principle allows to reach a faster computation time and reduce
the amount of mismatched features. Figure 3.6 presents a visualization of optical
markers for patient tracking in spinal surgery, which belong to 2 image views
laying on the same epipolar line.
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Figure 3.5 — Illustration of the epipolar constraint. The figure depicts the epipolar constraint
that is ensured by the epipolar plane where each point in the line l can be reprojected on line l

′
. The

epipolar lines are situated within the triangular planes with possible outcome values of X at the top.

Figure 3.6 — Epipolar lines for the optical markers. Each colored line is an epipolar line with
corresponding markers.

3.2.5 Camera calibration
A. Intrinsic camera parameters
The objective of this chapter is to reconstruct the 3D locations of anatomical fea-
tures from image views, acquired by a system of calibrated cameras (see Fig-
ure 3.1). In order to remove ambiguities on the reconstructed scene, it is crucial to
perform camera calibration. The cameras mounted on the C-arm are automatically
calibrated by correcting for the intrinsic parameters. The most important intrinsic
parameters are the focal length and the principal point (px, py), where the princi-
pal axes intersect the image plane (see Figure 3.3). The focal length of an optical
system is a measure of how strongly the system converges or diverges light. In our
case, the center of the optical system is assumed in the camera sensor (according
to the pinhole camera model) behind the optical lens. The distance between the
optical center and the image plane corresponds to the focal length (see Figure 3.3).
Furthermore, it is important to correct for the lens distortion. The most common
correction for the camera lens distortion is the radial distortion, which deviates
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Figure 3.7 — Top view of the calibrated camera positions.

every projection from their rectilinear route. The radial-distortion coefficients k1,
k2, k3 model this type of distortion. Considering the real undistorted point (x, y),
the distorted point (xd, yd) can be computed with the following expression:

xd = x(1 + k1 · r2 + k2 · r4 + k3 · r6),
yd = y(1 + k1 · r2 + k2 · r4 + k3 · r6),

(3.1)

where r denotes the radial distortion. By correcting for the intrinsic parameters
and adapting a pinhole camera model, it is possible to correct the distorted images.
This distortion model correction is also applied in this chapter.

B. Extrinsic camera parameters
The extrinsic parameters define the center of the cameras in world coordinates
and therefore the position of the camera center between the four cameras of the
OTS. These parameters are essential in multi-view geometry, where the camera
projection matrices are used for performing the triangulation and determine the
3D coordinates of a point in the 3D space with respect to the camera views. A
checkerboard pattern placed at a known distance is used to determine the relation
between the 3D camera coordinates and the 3D world coordinates. After having
acquired several image acquisitions, both the position of the camera as well as
its orientation with the respect to the checkerboard, are achieved. In Figure 3.7,
the 3D positions of the cameras embedded in the OTS are illustrated, while in
Table 3.1 the camera model parameters used in this study are listed.

3.2.6 Image preprocessing for improved feature matching
This subsection illustrates the main steps required for image preprocessing. A pre-
processing phase is required for enhancing the anatomical features and improving
the feature matching from different image views.
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Parameters Camera model settings

Resolution 2592×1920 pixels
Position 191.6777234 mm, 0.1186887 mm, -0.9630300 mm
Orientation -0.000423330◦, 0.159382530◦, -0.000887930◦, 0.987216430◦

Sensor offset 83.7496902 mm, -62.1587987 mm
Focal length 1975.0062367 mm, 1973.5396164 mm

Barrel distortion k3 0.4590771
Barrel distortion k5 0.2262892
Barrel distortion k7 0.0320200
Tangential distortion p1 0.0005947
Tangential distortion p2 0.0014512

Rectify offset 154.2385503 mm, -79.8749724 mm
Rectify scale 0.1349938

Table 3.1 — Camera model parameters for camera calibration used in this chapter.

A. Image rectification
The first step for an exhaustive image matching is image rectification, which
resamples pairs of stereo images taken from different viewpoints, in order to
produce matched epipolar projections. The simple computation of the fundamen-
tal matrix F with the normalized eight-point algorithm can be used for image
rectification [93]. The fundamental matrix F is defined as:

(x′)T · F · x = 0. (3.2)

For any pair of matching points x′ and x, there are two images in the same coordi-
nate system. The obtained pixel points are imposed on the corrected input images,
to enable feature detection. After applying a pair of 2D projective transformations
to the two image views, the epipolar lines match between views and there is no
y disparity [93]. These are projections in which the epipolar lines are oriented in
parallel with the x-axis and match between views and as a result, the disparities
between the images are occurring in the x-direction only [92] (see Figure 3.8).
Notably, the horizontal x-axis and the vertical y-axis are identified depending on
the respective 3D positions of the cameras, where the x-direction is the connecting
line between the two cameras.

In summary, the image rectification algorithm consists of: (1) identifying a set
of matched points between two images, (2) computing the fundamental matrix F

that expresses the correspondences between the points in the stereo image pair,
(3) selecting a projective transformation H that maps the epipoles e and e′ to
the point at infinity, (4) finding the projective transformation H ′ that matches the
transformation between e and e′, (5) resampling the first image according to the
projective transformation H and the second image according to the projective
transformation H ′. The matching projective transformation H that minimizes the
disparity along the horizontal axis is defined by:∑

i

d(Hxi, H
′x′

i)
2 = 0, (3.3)
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where d is the distance between projected points xi and x′
i and the Equation (3.3)

represents the sum-of-squared distances. After image rectification, the search for
matching points between different image views is significantly simplified by the
simple epipolar structure and by the overall correspondences between the two
images [92].

B. Intensity equalization
In order to find robust salient points, it is important that the intensity values of
the analyzed images are equally represented for similar anatomical structures.
However, in different areas of the optical image data, significant variations in con-
trast values are occurring. Furthermore, different illumination conditions result in
variations between skin color types and the presence of blood in the spinal area,
which can introduce high fluctuations in the data appearances. When extracting
features based on intensity, it is crucial to perform intensity normalization and to
improve the image quality [94]. Contrast adjustment can be achieved by mapping
the intensity values into image data with a global or locally adaptive histogram.

In our approach, we choose contrast locally adaptive histogram equalization
(CLAHE) [95] to equalize the contrast in different areas of the optical data. CLAHE
overcomes the drawback of global histogram equalization algorithms, working
on small regions rather than the entire image, which can be globally affected by
large intensity variations. For every region, a contrast transformation is applied
to match the histogram of the region with a uniform distribution. Neighboring
regions are then bi-linearly interpolated to eliminate the artificial boundaries [95].
The contrast is limited by clipping the histogram at one value, which depends on
the normalization of the histogram. In the gray-scale images acquired with the
OTS, the signal-to-noise ratio (SNR) depends on illumination conditions which can
affect the intensity histogram. Therefore, clipping the histogram and distributing
the clipping level among all the bins normalizes the contrast, while maintaining
the intensity range.

3.2.7 Anatomical area segmentation
The next step involves the segmentation of the anatomical area to be studied for
local feature detection and tracking. Thresholding is a simple method for creating
regions in an image which allows to select an area of interest, while ignoring the
rest. For this reason, in computer vision it is often chosen as a preprocessing tech-
nique. As a thresholding method, the method by Otsu [96] searches for a threshold
that minimizes the intra-class variances of the segmented image and can achieve
good results when the histogram of the original image has two distinct peaks.
One peak belongs to the background and the other belongs to the foreground of
the image signal. The Otsu method defines a threshold that is found by search-
ing across the whole range of the pixel values of the image until the intra-class
variances reach their minimum [97]. The threshold determined by Otsu’s method
is more profoundly determined by the class that has the largest variance, which
can be the background or the foreground. As such, Otsu’s method may create
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Figure 3.8 — Image rectification. (a) The projective transformation H leads to the matching of the
epipolar lines. (b) Matching of epipolar geometry after image rectification where the epipolar lines
plotted for the optical markers finally obtain a parallel orientation after image rectification.

Figure 3.9 — Image preprocessing to improve feature detection. (a) Original image view, (b) result
after preprocessing, (c) spine segmentation after Otsu’s thresholding indicated by the dotted box.

suboptimal results when the histogram of the image has more than two peaks or
if one of the classes has a large variance. Figure 3.9 shows a visual example of an
enhanced image where the spine is segmented using Otsu’s method.

3.2.8 Detection of anatomical features
Robust feature detection and local image descriptors are prerequisites for finding
correspondences between two or more images. An image feature may be repre-
sented by edges, points or objects, which bring information for solving computer
vision tasks. In patient tracking applications, the local image descriptors allow the
assessing of the 3D location of the spine and eventually, motion correction. The
accuracy of feature-based image matching depends on the efficiency and robust-
ness of feature detectors. Thus, the choice of a good feature detection algorithm is
a crucial step in feature-matching applications [98].

This subsection presents a comprehensive comparison between four feature
detection algorithms, SURF, MSER, FAST and ORB, to assess the feasibility of
detecting salient anatomical features (in the skin and the spine of the patient). The
basic framework for a feature detection algorithm is based on the principles of
scale-space representation, key point localization, orientation assignment, and key
point descriptor extraction.
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A. SURF
The SURF algorithm has the advantage of returning reproducible features under
different viewing conditions. The method employs the approximation of the Hes-
sian matrix determinant for each pixel in the image for the detection of interest
points. The Hessian matrix is based on the second-order derivatives of the image
signal at the position of x in scale σ, which is specified by:

H(x, σ) =

[
Lxx Lxy

Lyx Lyy

]
. (3.4)

In this equation, Lxx, Lxy and Lyy are the second-order derivatives of the Gaus-
sians of the image in the x, y-directions at point x. After the Hessian matrix
calculation, the transformed image is acquired by computing the approximation
of the determinant of the Hessian matrix, which is specified by:

det(Happrox) = LxxLyy − (0.9 · Lxy)
2. (3.5)

The constant 0.9 is part of the approximation. Then, the image is supplied to a
pyramid of filters, each operating at a different scale. Each pixel is compared to its
neighbors and it will be returned as a feature point, only if it is the maximum or
minimum of all these surrounding points. Haar wavelets are used for detecting
the dominant direction. To this end, the Haar wavelet responses are computed
in the horizontal and vertical directions, for all feature points. These responses
are forming a new vector. The direction of the longest vector is selected as the
dominant direction of the feature point. The dominant direction of each of the
interest points is found in order to support rotation-invariant matching. Finally,
the SURF descriptor is returned as a 64-dimensional vector, obtained by summing
the Haar wavelet coefficients over a 4× 4-pixel area around the key point, which
will be used for feature matching. An image is analyzed at several scales, to extract
interest points from both global and local image details.

B. MSER
Alternatively, MSER is a blob detection algorithm that captures salient features
that are invariant to rotation, scaling and affine transformation, in order to thresh-
old the image at various intensity values between 0 and 255. As the threshold
is increasing, a few coherent areas will gradually appear. The maximum stable
extreme region is determined by the threshold that gives the smallest change (and
the maximal stability) in the growing area. The main steps of the algorithm can be
summarized as follows: (1) thresholding the image by scanning over an intensity
range from black to white, (2) extracting the connected regions (extreme regions)
and approximating them by capturing them with a boundary ellipsoid, and (3)
finding the threshold corresponding to the maximally stable extreme region. The
identified regions represent the feature points. It should be noted that extreme
regions have the property of being affine invariant [99]. Thus the algorithm is not
affected by image warping and skewing and it performs well with view-point

53



C
hapter3

3 . O P T I C A L I M A G I N G S Y S T E M S F O R PAT I E N T T R A C K I N G

changes. As a multi-scale detection approach, MSER achieves good performances
for both small and large homogeneous structures. Different illumination con-
ditions affect the visibility for the video cameras. Poor lighting conditions can
decrease the number of matched features and mislead the spine-movement es-
timation. The following investigation is extended to enlarge the benchmarking
overview and improve the number of detected and matched features. Therefore,
FAST and ORB are studied as additional feature detection algorithms, since both
show good feature detection performances.

C. FAST
FAST is a corner detection method that compares the brightness with the intensity
level of pixels included in a threshold. The method compares pixels on a circle of
fixed radius around a point p (candidate interest point). A point is classified as a
corner only if a large set of contiguous pixels (i.e. 16 pixels) on a circle with fixed
radius are all brighter or darker than the candidate point plus a threshold T [100].
If at least three pixel values are not above or below the intensity level of the
candidate point, p is not an interest point. If there are at least three pixels above
the intensity level of p plus a threshold T , the algorithm checks if all 16 contiguous
pixels satisfy the same criterion. The main objective of the FAST algorithm is to
develop an interest point detection method for real-time applications [100]. The
method achieves such detection several times faster than other existing corner
detectors. However, the FAST algorithm has the main drawback of detecting
multiple feature points adjacent to each other [100].

D. ORB
ORB combines the FAST key point detector and the BRIEF descriptor [101] [102]. It
uses FAST as feature detector and BRIEF to extract the descriptor. Since FAST does
not include an orientation operator, ORB computes the moment of the patch sur-
rounding the feature points. BRIEF is then used to extract the descriptor around
the feature point, by performing binary tests between pixels in a smoothed image
patch [101]. Since BRIEF performs poorly with rotation, ORB rotates the descriptor
according to the key point orientation, adding rotation invariance to the descriptor.
The ORB feature is a binary-based feature with several advantages, it is computa-
tionally more efficient and easier to store than the vector-based features [102].

3.2.9 Feature matching
As next step, the matching algorithm finds correspondences between the de-
scriptors which have been extracted for two image views. For this, the salient
feature points, detected by the SURF, MSER, FAST, and ORB algorithms, are used
to compute feature descriptors and these descriptors are matched to find the corre-
sponding feature points between the two views. The normalized cross-correlation
is chosen as the feature-matching metric and two vectors containing indexes of
the matched features are provided as final output. After matching, outliers are
discarded if they do not satisfy the epipolar constraint. In fact, outliers are mis-
matched feature points and appear because of the similarity between the descrip-
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tors. As explained in the preprocessing step, after image rectification, the epipolar
lines for corresponding points are collinear. Hence, the epipolar constraint is used
to remove invalid feature points, at locations where an incorrect correspondence
was found [103].

We specify an image pair captured with different cameras as ci and cj , from
different views: Ici and Icj . For both images, corresponding feature sets F(ci)

and F(cj) are extracted, respectively, and saved in a dedicated object ensemble,
to capture all information of the detected features f(c, n):

F(ci) = {f(ci, 1), f(ci, 2), ..., f(ci, n)}, (3.6)

F(cj) = {f(cj , 1), f(cj , 2), ..., f(cj ,m)}. (3.7)

Here, the amount of feature elements for the view of camera ci is n and for cam-
era cj is m. Feature detection algorithms are used for arbitrary blob-similar detec-
tion which are applied here for finding the required features allowing an arbitrary
shape in the image. For every detected salient point, it is necessary to extract a fea-
ture vector, known as a descriptor that provides information about the feature, in
this case the pixels surrounding the center of the blob. For this purpose, the SURF
algorithm is employed to extract the feature vector [104]. This method is adopted
because it offers high reproducibility, even under different viewing conditions.
The descriptor vectors are then saved in the following set of dedicated descriptor
vectors:

Dci = {d(ci, 1), d(ci, 2), ..., d(ci, n)}, (3.8)

Dcj = {d(cj , 1), d(cj , 2), ..., d(cj ,m)}. (3.9)

Here, every descriptor d(ci, n) consists of a SURF descriptor vector and the y-
coordinate of a specific feature f(ci, n) from a generic camera ci. Using the previ-
ously mentioned dedicated descriptor Dci and Dcj , the feature-matching step per-
forms a matching between the d(ci, n) feature detected in one view with respect to
the d(cj , n) feature from another view and provides an index of correspondences
between the two dedicated descriptors Dci and Dcj , and the feature sets Fcj and
Fcj . These correspondences are achieved by computing the sum-of-squared dis-
tances (SSD) between the SURF descriptor vectors of those features, laying within
the scan lines of interest. At this point, fusing the epipolar constraint is crucial,
since it leads the matching process between features that are shifted along an
epipolar line for a specific range.

As a result of this top-bottom scan-line stereo matching approach, matches
between features that are situated on different epipolar lines are omitted, to reduce
the computational cost and maximize the chance of a good match. This step returns
two vectors with the indexes related to the matched features. Using these indexes,
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Figure 3.10 — Visual triangulation error analysis. (a) Ideal triangulation where O1 and O2 define
the 3D positions of Cameras 1 and 2, respectively. The 3D triangulation of point X is projected into
two camera views in the points x1 and x2. (b) Parameter Vp is the line segment representing the
shortest distance between to two back-projected lines, indicating the computed triangulation error.

it is possible to construct two new dedicated object ensembles Mci and Mcj of
equal size (min(n,m)), with matched features.

3.2.10 3D feature localization

A. Definition of epipolar plane:
Three-dimensional triangulation allows to determine the 3D position of a point X
by using the 2D projection of X in two image views, x1 and x2 (see Figure 3.10).
Given the two image views I1 and I2 and a fundamental matrix F, the epipolar
line in I2 that corresponds to a point in I1 and vice versa, can be computed. To
do this, we define the epipolar plane as the triangular plane that is formed by
the connection lines between the camera centers and the 3D point X. As a conse-
quence, the epipolar plane crosses through the two image views and creates two
intersecting lines, by the intersection of the epipolar plane with the two images,
e.g. Figure 3.10(a), in the left image the triangle O1-x1-e becomes after the projec-
tion of the epipolar plane on the image the epipolar line x1-e.

B. Triangulation error:
Figure 3.10(a) shows an ideal triangulation, where O1 and O2 define the 3D po-
sitions of Cameras 1 and 2, respectively. Briefly, the intersection of lines O1-x1

and O2-x2 gives the 3D position of X. However, the presence of noise (e.g. lens-
distortion noise) can lead to an inaccurate intersection. In this study, for minimiz-
ing the 3D error in the simplest and most effective way, the 3D position of X is
chosen as the midpoint between back-projected image points. The triangulation
error is then calculated as the minimum distance between the lines O1-x1 and
O2-x2, defined by the line segment Vp (see Figure 3.10(b)). The length of the line
segment Vp is the triangulation error, expressed in millimeters (or in microme-
ters). The triangulation error allows to quantify and evaluate the error made when
the projected lines O1-x1 and O2-x2 do not intersect in the same 3D point. This
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occurs when two or more lines are projected from each camera center Oi to the
respective point xi on the camera plane. When these lines are extended towards
the 3D point X, then not all extended lines will pass through X. Furthermore, this
measurable error represents an evaluation metric to obtain an indication of the
triangulation accuracy. The accuracy of the 3D point locations are used to perform
a benchmark against the existing OTS embedded in the ARSN.

C. Collection of the triangulation errors:
After having performed the triangulation, the 3D position of a point is known,
given that the positions of the same points are matched in at least two alternative
views [92], calling the system calibrated. The triangulation function of the ARSN
system returns the 3D Cartesian coordinates of the triangulated point and the
corresponding triangulation error as a fourth “coordinate” through the projections
from the camera centers, resulting in:

Ψ(ci|cj , n) = (x(ci|cj , n), y(ci|cj , n), z(ci|cj , n), e(ci|cj , n) ) , (3.10)

where ci|cj denotes the pair of cameras used for the triangulation, x(ci|cj , n),
y(ci|cj , n), z(ci|cj , n) are the 3D Cartesian coordinates of the triangulated fea-
ture n and e(ci|cj , n) denotes the triangulation error of the triangulated feature n

with cameras ci|cj . These 3D coordinates are stored in a dedicated object vector
Ψ(ci|cj , n) for further analysis. The triangulation is achievable between at least
two camera pairs. In fact, it is possible to obtain the rectification for the four cam-
eras of the OTS giving six camera possible combinations: ( c1|c2, c1|c3, c1|c4, c2|c3,
c2|c4, c3|c4 ). Using these combinations, then we detect, match and triangulate the
features with at least two of these pairs to enable triangulation. The choice of these
pairs is mainly determined by the pairs that offer a favorable line-of-sight that
avoids occlusions with the region of interest (e.g. the spine in spinal surgery).

D. Outlier removal:
The overall mean triangulation error is computed by averaging the triangulation
errors of all the features detected over multiple regions. At this point, most of the
matches are obtained by only relying on the epipolar constraint. Using an outlier-
removal step, a 3D constraint is imposed, by approximating the skin surface to
a simple planar representation (plane model), in which all the detected features
are located. For outlier removal, the M-estimator SAmple and Consensus (MSAC)
algorithm [105] is applied in the proposed framework, to fit a plane to the 3D point
cloud and remove triangulated points that lie below or above a certain maximum
distance from the plane model (expressed in [mm]). The MSAC algorithm is
a variant of RANSAC proposed by Torr et al., which evaluates the quality of
the data that fit the position of the points and the consensus set calculating its
likelihood, instead of ranking the consensus set based on its cardinality [105]. The
reference orientation constraint is inferred from the mechanical parameters of
the C-arm, once the position of the multi-view camera system with respect to the
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Figure 3.11 — 3D outlier removal. The 3D colored point cloud in the middle contains inlier points
(in blue) and outlier points (in red). The circular area at the right is a magnified view. At the top,
the numerated cameras are the four high-resolution cameras used for point cloud generation. The
point cloud in the middle represents real measured data, where the numbers along the axes are only
indicative.

skin surface is obtained. For practical validation, it is important to quantify the
considered region of interest for algorithm comparison and the applicability of the
approach. For this purpose, a simple method for back-area estimation is applied by
considering the triangulated features that are included in the approximated skin-
model plane. A flat mesh plot is created from the coordinates, that are obtained
by intersecting the normal projections of the features onto the model plane. The
overall area is computed as the sum of all the Delaunay triangulation areas that
are included within the boundaries of the region [106]. The size of the overall area
of interest is then expressed in square centimeters.

Figure 3.11 shows two 3D colored point clouds within the small circle in the
middle, representing the inliers (in blue points), and the outliers (in red points),
which are the discarded features. The large circular area at the right presents a
magnified view of the small point cloud in the middle. Both point clouds are real
reconstructions from our measurements, using the four high-resolution optical
cameras illustrated at the top of the figure.

3.3 Method 1: optical spine feature detection
This section is divided in two subsections, one for the setup for spine feature
detection (Section 3.3.1) and one for experimental evaluation of the setup on
spinal surgery patients (Section 3.3.2).
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Method Parameters
Parameters 1 Parameters 2 Parameters 3

SURF Feature threshold = 600 Number of octaves = 4 Number of scales = 6
MSER Step size threshold = 0.3 Region size = [100,...,800] Area variation = 0.3
FAST Min. corner quality = 0.1 Min. intensity = 0.2
ORB Scale factor = 1.2 Decomposition levels = 8

Table 3.2 — Parameter settings for the SURF, MSER, FAST and ORB feature detectors.

3.3.1 Setup for robust spine feature detection
The contribution of the proposed feature detection and matching framework is
realized by detecting spine features on open spinal surgery patients, with the
main objective to omit the usage of markers and directly track the spine of the
patient. The first step of spine feature detection aims to find correspondences
between pairs of multi-view images over different time frames. Feature descrip-
tors are extracted and matched based on their similarity. Image projections from
two camera views are used to determine the 3D location of detected features in
the human spine, by means of 3D triangulation. Based on the found matches, 3D
spine feature locations are filtered and incorrect correspondences are discarded.
Furthermore, correct feature correspondences are visually identified to ensure a
better validation. The image acquisitions are primarily made for the optical track-
ing system (OTS) embedded in the marker-based navigation system (the ARSN).
The navigation system is used in a series of twenty-three patients undergoing
navigated-spine surgery based on the presented framework with enhanced spine
feature detection. Per time unit, images from two camera views are analyzed,
where the spine is fully visible (Figure 3.1).

Table 3.2 lists the applied settings of the parameter values used for each feature
detection algorithm to find spinal features. These parameter values are chosen
to design and detect features on the spine that are sufficiently reliable to ensure
robust and accurate feature matching along the vertebral column.

3.3.2 Experimental evaluation for optical spine feature detection
The proposed framework is assessed on twenty-three open spinal surgery cases
in multi-view stereo images (Figure 3.12). Figure 3.13 visualizes an example of
spinal feature detectors for two image views of a single patient, when the feature
detection and matching algorithm is applied (Section 3.2). SURF, MSER, FAST and
ORB are benchmarked and the obtained 3D accuracy of each method is measured
with the triangulation error for each spinal feature, depicted in Figure 3.14. For
each unit of time, the 3D triangulation error of the salient feature points matched
in different viewpoints from the two cameras, is calculated, as described in Sec-
tion 3.2.10. The average triangulation errors (± standard deviation) when using
SURF, MSER, FAST and ORB are calculated for each patient. The triangulation
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Figure 3.12 — Pair of frames captured at the same moment of time by the two cameras.

No. of -> Inliers Inliers Inliers Inliers IQR
Method maxim. minim. mean median range

SURF matched features 177 2 40 26 42.25
MSER matched features 214 1 15 25 30
FAST matched features 94 2 28 33 29
ORB matched features 732 1 131 181 209.5

Table 3.3 — Statistics of the number of the matched inliers using the four indicated algorithms
at the left. Maximum (Max.), Minimum (Min.), Mean, Median and Interquartile Range (IQR) of
matched features on 23 patients after outlier removal per unit of time (pair of frames).

errors for SURF, MSER, FAST and ORB are 0.38 ± 0.5, 0.38± 0.6, 0.41± 0.07 and
0.43 ± 0.04 mm, respectively. The lowest mean triangulation error is observed
when SURF and MSER were adopted as local feature detection algorithms, which
are slightly outperforming the other evaluated methods. It should be noticed that
the results obtained for Patient 6 are based on only one frame, due to the limited
recording time with sufficient illumination. However, for this frame the total num-
ber of matched inliers is equal to 19, 15, 21, 129, when SURF, MSER, FAST and
ORB are applied, respectively. The statistics for the matched spinal features are
detailed in Table 3.3. The above results can be further optimized by stabilizing the
brightness changes during scene capturing, but this has been not pursued.

We have evaluated the performances of different descriptors and their capa-
bilities to detect and match a reasonable number of visual landmarks in the spine.
In a quantitative comparison, it is observed that ORB detects the highest number
of matched features, as shown in Table 3.3. Nevertheless, when the illumination
conditions decrease, the algorithm achieves a minimum number of inliers equal to
unity, which cannot safeguard a successful estimation of the spine transformation.
Instead, reasonable numbers of average matched features are detected when SURF
and FAST are used (minimum number of inliers equal to 2). A visual comparison
of both methods is shown in Figure 3.15, which indicates that FAST detects less
dense corner features compared to SURF. The median errors and the interquartile
ranges show the same variability among the patients when using the FAST or
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3.3. Method 1: optical spine feature detection

Figure 3.13 — Detection of spine features in two image views (Cameras 1 and 2). The numbered
views above the two columns of images, refer to the two cameras. In the first row, the preprocessed
images are shown. The subsequent rows illustrate results after applying one of the four feature
detection algorithms (SURF, MSER, FAST and ORB), as indicated in the header above each of the
subimages. Green color is used to indicate salient spine features, identified by the applied algorithm,
as indicated in the subimage header.

ORB methods for computing the 3D triangulation errors (Figure 3.16). The vari-
ability and the outliers may be caused by either brightness differences during the
recording, or limited visibility of the spine. For each recording, all frame pairs
where the spine is not visible by the two cameras are discarded. Four patients
have resulted in a low number of analyzed frames (Patient 4, Patient 6, Patient 12,
Patient 13). The total number of analyzed image pairs is 324 for all the patients,
with an average of 17 pairs of frames per patient. For better visualization of the
individual evaluated results, the cumulative distribution functions (CDFs) of the
triangulation errors are calculated (Figure 3.17). The dotted curves of the same
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Figure 3.14 — Mean 3D triangulation errors and standard deviations for different local feature
descriptors (as indicated in the legend at the top right) calculated per patient.

color surrounding a solid curve of that color, delimit the 95% confidence intervals
for each CDF. Plotting the CDFs shows that more than 95% of the analyzed frames
have a triangulation error lower than 0.5 mm when SURF, FAST or ORB methods
are used. However for MSER, the corresponding number is 84%, which is likely
explained by the larger variability in triangulation errors for MSER (Figure 3.17).

Execution times of the four methods.
The CPU execution times for the core tasks of the algorithms (preprocessing,
feature detection and matching) are reported here, when using an Xeon(R) E5-
1650 multi-core CPU operating at 3.60 GHz. The measured average execution
times required for feature detection for the studied algorithms are 0.05 (SURF),
0.22 (MSER), 0.03 (FAST) and 0.16 (ORB) seconds per frame (Table 3.4). While FAST
is slightly faster than SURF, MSER and ORB are the slowest methods (four times
slower on the average compared to SURF and FAST) (Figure 3.18). For a real-time
patient motion compensation, a frame rate equal to 5 fps is considered acceptable.
Considering navigation, the lower limit is 10–15 fps for real-time navigation when
the spine needs to be detected with the same lag of a tracked device.

In the current setup, we have found that a frame rate equal to 20 fps and
33 fps for SURF and FAST are used, respectively, the feasibility for a real-time
implementation is reached. Given the fast execution performance obtained by
SURF and FAST on the tests reported above, we propose the usage of these feature
detection algorithms for future applications in spinal surgery with a similar setup.
The most time-consuming task in the preprocessing step is the region-growing
method needed to realize the final spine segmentation as a binary image. The av-
erage preprocessing time is 0.98 seconds (Table 3.4, Figure 3.19). The experiments
have been conducted using the existing navigation system (ARSN). To employ
the findings in a clinical application and with real-time operation will require
improvements on the navigation hardware to better visualize the spine anatomy.

62



C
ha

pt
er

3

3.3. Method 1: optical spine feature detection

Figure 3.15 — Feature matching of the spine with two image views of Patient 15 for the four
algorithms. (a) FAST-based feature matching. (b) ORB-based feature matching. (c) SURF-based
feature matching. (d) MSER-based feature matching.
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(a) (b)

(c) (d)

Figure 3.16 — Boxplots comparing the total mean triangulation errors in 23 patients for different
feature detections.(a) SURF, (b) MSER, (c) FAST, (d) ORB. Upper and lower limits of the box
represent 75th and 25th percentiles, respectively. The median is represented by a line transecting the
box. Whiskers represent the max and min values. Outliers are plotted using the (red) ’+’ symbol.

In particular, a dedicated setup will further decrease the execution time, thereby
making a real-time spine feature localization possible.

3.4 Method 2: optical skin-feature detection
The current optical systems for patient movement tracking, which are attached
to the spine, do not take into account the movement of the spine itself. Spine
feature detection allows to determine the actual patient position and correct for the
intrinsic movements of the spine, which can impact the accuracy of the navigation.
However, spine features are applicable in open surgery, but not in minimally
invasive surgery (MIS). To bypass the use of reference markers in MIS, we exploit
skin features in navigated spinal surgery. In order to prove the feasibility of this

64



C
ha

pt
er

3

3.4. Method 2: optical skin-feature detection

Figure 3.17 — Cumulative distribution functions (CDFs) of the triangulation errors for the four
methods (see the legend box). The dotted curves surrounding the solid curves of the same color
delimit the 95% confidence interval for the CDF of each method. The triangulation errors of the
analyzed frames is lower than 0.5 mm in more than 97% (SURF) or 95% (FAST and ORB) of the
number of frames per method.

Patient no. Execution times for the method (mean ± std)

SURF [sec] MSER [sec] FAST [sec] ORB [sec] PREPROC. [sec]

1 0.058 (±0.024) 0.164 (±0.056) 0.105 (±0.220) 0.185 (±0.460) 0.879 (±0.314)
2 0.037 (±0.005) 0.113 (±0.032) 0.018 (±0.002) 0.011 (±0.005) 0.908 (±0.276)
3 0.030 (±0.006) 0.110 (±0.032) 0.017 (±0.002) 0.011 (±0.008) 1.044 (±0.185)
4 0.036 (±0.013) 0.087 (±0.021) 0.018 (±0.003) 0.159 (±0.452) 0.930 (±0.223)
5 0.028 (±0.010) 0.069 (±0.014) 0.048 (±0.044) 0.005 (±0.008) 0.966 (±0.007)

6 0.033 (±0.011) 0.094 (±0.041) 0.018 (±0.001) 0.015 (±0.012) 0.981 (±0.020)
7 0.023 (±0.006) 0.052 (±0.012) 0.016 (±0.003) 0.008 (±0.003) 0.990 (±0.025)
8 0.025 (±0.006) 0.320 (±0.280) 0.016 (±0.300) 0.141 (±0.500) 0.910 (±0.282)
9 0.027 (±0.005) 0.082 (±0.120) 0.015 (±0.010) 0.015 (±0.200) 0.974 (±0.030)
10 0.032 (±0.004) 0.032 (±0.400) 0.017 (±0.320) 0.009 (±0.427) 1.001 (±0.039)

11 0.045 (±0.009) 0.045 (±0.510) 0.018 (±0.300) 0.015 (±0.500) 0.985 (±0.017)
12 0.070 (±0.015) 0.070 (±0.510) 0.078 (±0.220) 0.461 (±0.990) 0.957 (±0.021)
13 0.055 (±0.025) 0.055 (±0.380) 0.018 (±0.001) 0.103 (±0.380) 0.990 (±0.016)
14 0.047 (±0.020) 0.047 (±0.070) 0.021 (±0.007) 0.335 (±0.600) 0.993 (±0.032)
15 0.055 (±0.008) 0.177 (±0.007) 0.018 (±0.002) 0.022 (±0.002) 0.984 (±0.001)

16 0.090 (±0.004) 0.093 (±0.005) 0.021 (±0.002) 0.043 (±0.001) 1.004 (±0.050)
17 0.097 (±0.020) 0.379 (±0.360) 0.020 (±0.020) 0.467 (±0.060) 1.026 (±0.096)
18 0.045 (±0.013) 0.120 (±0.060) 0.018 (±0.002) 0.319 (±0.031) 0.996(±0.028)
19 0.041 (±0.011) 0.164 (±0.031) 0.029 (±0.038) 0.050 (±0.108) 0.977 (±0.042)
20 0.073 (±0.026) 0.255 (±0.077) 0.032 (±0.044) 0.032 (±0.014) 0.981 (±0.032)

21 0.051 (±0.020) 0.199 (±0.078) 0.018 (±0.002) 0.026 (±0.014) 0.979 (±0.024)
22 0.038 (±0.011) 0.135 (±0.051) 0.085 (±0.269) 0.016 (±0.008) 1.005 (±0.026)
23 0.035 (±0.008) 0.103 (±0.001) 0.015 (±0.003) 0.012 (±0.006) 0.992 (±0.011)

Table 3.4 — Mean and standard deviation of execution time for different feature detection methods,
and preprocessing on all patients (pair of frames).
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Figure 3.18 — Average execution times for the four different spine feature detection methods (as
indicated in the legend box) for 23 spine-surgery patients.

Figure 3.19 — Average execution time for the required preprocessing stage preceding the spine
feature detection methods of the spine features for 23 spine-surgery patients.
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3.4. Method 2: optical skin-feature detection

novel approach in a real clinical scenario, and to test the framework on gray-
scale images in the operation room, we apply the same conceptual idea of spine
detection, but now applied to patient skin images acquired with the surgical
navigation system during spinal surgery.

The sequel of this section consists of two parts. In Section 3.4.1, the use of
skin features and their detection is evaluated for spinal surgery. In Section 3.4.2,
the algorithms employed in this chapter for detecting skin and spine features are
assessed by tracking the optical markers, which represent the ground truth.

3.4.1 Experimental evaluation
Optical data for assessing the 3D localization were collected from two sources:
(1) a cadaver study and (2) a prospective clinical observational study.

The first dataset consists of one multi-view acquisition, thus 4 images of a ca-
daver. MSER and SURF are applied to several selected regions to perform the first
multi-view experiment for skin localization. The cadaver study was performed
according to all applicable laws and directives. The clinical study was approved
by the local ethics committee and all enrolled patients signed for informed con-
sent. The data that support the findings of this study were generated by Philips
Electronics B.V., Best, The Netherlands and the Karolinska University Hospital,
Stockholm, Sweden. All images of the datasets were acquired at the same ex-
tended HD resolution of 2,592 pixels by 1,920 lines.

The second dataset consists of image data from eight patients included in a
spine navigation study, where images were captured during the surgical proce-
dures. The data are used to perform two different experiments: first a skin-feature
localization and then an optical marker localization with a ground-truth compar-
ison. Table 3.5 reports the total number of analyzed frames during the acquisi-
tions and the corresponding acquisition times. All patients are classified by the
physicians regarding Fitzpatrick Skin Type I, II or III. The first feasibility study is
performed by analyzing the skin of the cadaver. The localization system is used

Patient no. Acquired images Acquisition time Starting time Ending time

1 188 3:21 12:20 15:41
2 424 4:41 10:32 15:13
3 204 2:20 10:55 13:15
4 112 3:18 10:20 13:38
5 132 5:22 9:46 15:08
6 160 4:35 11:20 15:55
7 284 3:40 10:55 14:35
8 12 0:03 13:07 13:10

Table 3.5 — Number of captured images per patient and related acquisition times. The acquisition
times are listed per patient specifying the starting and ending recording time (all times are in the
format: hh:mm).
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Error statistics MSER method

Patient no. 1 2 3 4 5 6 7 8
Analyzed regions 1 1 1 7 11 3 7 3 Total
Area [cm2] 57.8 18.6 27.6 183.9 232.8 75.5 80.0 29.5 705.6
Number of features 366 125 60 1372 1511 264 1083 153 4934

Mean [mm] 0.17 0.16 0.18 0.19 0.27 0.16 0.17 0.21 0.21
Std deviation [mm] 0.11 0.09 0.10 0.12 0.16 0.11 0.12 0.13 0.14
Features/cm2 6.3 6.7 2.2 7.5 6.5 3.5 13.5 5.2 7.0

Rms [mm] 0.20 0.18 0.20 0.23 0.31 0.20 0.21 0.25 0.25
Min [µm] 0.38 3.71 1.25 0.33 0.01 0.25 0.01 5.23 0.01
Quartile 1 [mm] 0.07 0.11 0.10 0.09 0.14 0.07 0.07 0.11 0.09
Median [mm] 0.16 0.16 0.19 0.18 0.27 0.15 0.15 0.19 0.19
Quartile 3 [mm] 0.24 0.22 0.24 0.28 0.39 0.24 0.25 0.31 0.30
Max [mm] 0.45 0.37 0.43 0.54 0.65 0.42 0.59 0.52 0.65

Table 3.6 — Triangulation error analysis for the MSER feature detection method. The statistics
for the 3D triangulation error in skin-feature localization are reported for 8 patients, when using
MSER as feature detection method.

for four flat selected regions with the c1|c3 camera pair. The features detected
for this dataset are triangulated with a mean triangulation error of 0.239 mm for
MSER and 0.218 mm for SURF. Due to its intrinsic functional operation, the MSER
algorithm detects multiple blobs located at the same coordinates. This explains
why MSER seems to detect more features than SURF. The matched feature ratio
of the matched features to the selected inliers is 3.96 ± 0.80 and 2.93 ± 0.45 for
MSER and SURF, respectively. The clinical dataset involved patients undergoing
open surgical procedures via mid-line incisions along the spine. Several plane
regions were carefully selected for some patients (2nd, 4th, 7th), where the skin
was partially covered by blood.

The statistics of the localization performance for all the eight patients in the
study are measured. Descriptive statistics for triangulation error for each detection
method (MSER and SURF) are reported in Tables 3.6 and 3.7. Figure 3.20 illustrates
two visual examples of MSER and SURF feature detection and the corresponding
matches at the same skin region for an image pair. With the total amount of
4,934 (MSER) and 1,727 (SURF) features, a mean triangulation error of 0.207 mm
and 0.204 mm are reached for MSER and SURF, respectively.

An important observation is that 75% of the detected features have a trian-
gulation error within 0.3 mm (Figure 3.21), which is an appropriate accuracy for
spinal surgery applications. The matched feature ratio of the matched features
to the selected inliers in this case is found to be 3.73 ± 2.69 and 2.61 ± 1.70 for
MSER and SURF, respectively. The median errors show a similar variability in the
triangulation error, when SURF (Figure 3.23) and MSER (Figure 3.24) are used.
The variability and the number of outliers may be caused by lighting differences
or limited visibility of the skin area [107]. The triangulation errors using SURF
and MSER for each individual case are depicted in Figure 3.22. Two-sample t-tests
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3.4. Method 2: optical skin-feature detection

Error statistics SURF method

Patient no. 1 2 3 4 5 6 7 8
Analyzed regions 1 1 1 7 11 3 7 3 Total
Area [cm2] 45.2 18.9 29.1 145.5 157.4 48.0 49.8 20.7 514.7
Number of features 130 78 42 577 457 83 299 61 1727

Mean [mm] 0.18 0.15 0.13 0.20 0.27 0.17 0.16 0.20 0.20
Std deviation [mm] 0.11 0.09 0.10 0.13 0.15 0.11 0.12 0.12 0.13
Features/cm2 2.9 4.1 1.4 4.0 2.9 1.7 6.0 2.9 3.4

Rms [mm] 0.22 0.17 0.16 0.24 0.31 0.20 0.20 0.23 0.24
Min [µm] 1.64 1.94 1.24 0.66 1.78 1.15 0.08 2.54 0.08
Quartile 1 [mm] 0.09 0.07 0.04 0.10 0.15 0.07 0.06 0.11 0.09
Median [mm] 0.19 0.15 0.12 0.19 0.27 0.18 0.14 0.17 0.20
Quartile 3 [mm] 0.27 0.22 0.19 0.29 0.38 0.25 0.24 0.27 0.30
Max [mm] 0.43 0.34 0.40 0.54 0.62 0.43 0.58 0.49 0.62

Table 3.7 — Triangulation error analysis for the SURF feature detection method. The statistics
for the 3D triangulation error in skin-feature localization are reported for 8 patients, when using
SURF as feature detection method.

Figure 3.20 — Visual examples of skin-feature detection and matching with SURF and MSER.
Two examples of MSER are shown for detection (at the top) and matching (at the bottom) at the
left (subfigures (a) and (c)) and two SURF examples of detection (at the top) and matching (at the
bottom) at the right (subfigures (b) and (d)). Examples are captured at the same skin region.

are used to assess differences between using MSER and SURF. A p-value of less
than 0.05 is considered statistically significant. No statistically significant differ-
ences between the two methods are found (p > 0.05). A two-sample t-test is also
performed to assess the accuracy of the markerless approach, which is found to
be superior (p < 0.05) compared to the ground truth (marker-based detection).

A significant statistical difference is also found when detecting skin features
among patients (p < 0.001). This can reflect differences in the number of analyzed
frames per patient, illumination conditions, number of detected features and the
skin type. In this case, the f-test rejects the null hypothesis at the default 5% sig-
nificance level and suggests that the true variance is higher than 25%.
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Figure 3.21 — Triangulation error distributions on patient data. The relative and cumulative
distributions of the 3D triangulation errors are depicted for the detected features (the inliers) with
MSER and SURF (colored, as indicated in the legend).

Figure 3.22 — Bar plots visualizing the mean triangulation errors in 8 patients for MSER feature
detection (in blue) and SURF feature detection (in orange). The bar plots summarize the overall
results for the 3D triangulation error when detecting skin features in spinal surgery patients.

Execution times of the two methods.
The measured execution times for the skin-feature detection are on average 0.19
and 1.86 seconds per frame, when SURF and MSER are used, respectively. Per-
patient results are visualized in Figure 3.25(a). Obtaining a mean of 5 fps, it can
be concluded that SURF-based detection is most suitable for a future real-time
implementation. The preprocessing step reaches an execution time of 1.14 seconds
(see Figure 3.25(b). Notably, for real-time navigation, it was empirically found that
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3.4. Method 2: optical skin-feature detection

Figure 3.23 — Boxplots for the mean triangulation error in 8 patients for SURF feature detec-
tion. The red lines represent the median values. Upper and lower limits depict the 75th and 25th
percentiles, respectively. The min and max values are visualized with whiskers, and the outliers are
shown with the red ’+’ symbols.

Figure 3.24 — Boxplots for the mean triangulation error in 8 patients for MSER feature detec-
tion. The red lines represent the median values. Upper and lower limits depict the 75th and 25th
percentiles, respectively. The min and max values are visualized with whiskers, and the outliers are
shown with the red ’+’ symbols.
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(a) (b)

Figure 3.25 — Average execution times for several components. (a) Average execution times
for the two different spine feature detection methods SURF (green) and MSER (red) of the skin
features for 8 spine patients. (b) Average execution times for the required preprocessing stage (in
blue) preceding the skin-feature detection methods of the skin features for 8 spine patients.

faster execution times for preprocessing can be achieved when lighting conditions
are improved compared to standard conditions used in the operating rooms.

3.4.2 Optical marker localization and ground-truth comparison
The accuracy of the proposed framework is evaluated by performing the 3D tri-
angulation of the optical markers, which are considered the ground truth in this
study. For this purpose, the same framework employed for the anatomical fea-
ture detection is applied for optical marker detection. The marker detection and
ground-truth comparisons are performed by applying both MSER and SURF fea-
ture detection algorithms, to detect the optical markers positioned on the patient
back. The final matching process for a pair of images is shown in Figure 3.26.
When the matching of markers are performed, their triangulations are computed,
and their 3D locations are obtained.

The benchmarking is performed with respect to the ground truth of each opti-
cal marker provided by the ARSN system. The Euclidean distances in 3D between
the detected markers and the corresponding ground-truth markers in terms of
coordinates are computed to assess the accuracy of the localization. The mea-
sured mean triangulation error of the tracked markers is 0.290 mm for MSER and
0.303 mm for SURF, as shown in Table 3.8. Table 3.8 portrays that an average
Euclidean distance of 0.627 mm for MSER and of 0.622 mm for SURF are reached,
in relation to the ground truth.

Descriptive statistics of the triangulation error and the Euclidean distance
when the detection methods are applied to the optical markers, are reported in
Table 3.8. Figure 3.27(a) and (b) show the frequency distributions of triangulation
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Figure 3.26 — Detection and matching of the optical markers. The figure visualizes the matching
of the optical markers (used as ground truth in this thesis) performed by using two image views.
The matching of corresponding markers is indicated by the yellow lines. Note that one of the two
image views is mirrored for making the corresponding lines condensed.

Optical marker detection Triangulation error Euclidean distance

Method MSER SURF MSER SURF
Markers amount 52 43 52 43
Mean [mm] 0.29 0.30 0.63 0.62
Standard deviation [mm] 0.12 0.13 0.10 0.10
Rms [mm] 0.32 0.33 0.64 0.63

Min [mm] 0.02 0.03 0.23 0.22
Max [mm] 0.56 0.60 0.84 0.82
Median [mm] 0.28 0.31 0.62 0.62
Quartile 1 [mm] 0.21 0.20 0.58 0.57
Quartile 3 [mm] 0.39 0.40 0.69 0.68

Table 3.8 — Triangulation errors and Euclidean distances of the detected optical markers. The
measured statistics for the 3D triangulation errors are reported, when detecting and matching the
optical markers, using MSER and SURF. Furthermore, the statistics of the Euclidian distances
between the 3D locations computed with the proposed approach and with the surgical navigation
system (the ARSN), are listed.

errors and Euclidean distances for MSER and SURF detection methods, respec-
tively. Notably, the thresholding performed for segmenting the optical markers,
prior to applying the feature detection, can cause a non-ideal identification of the
markers and decrease the triangulation accuracy. This is the main reason why
the coordinates of the triangulated markers differ slightly from the ground truth.
However, all markers are triangulated with a sub-millimeter accuracy, resulting
in a triangulation error that is comparable to the error obtained with the skin
features.
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Figure 3.27 — Ground-truth assessment. The relative and cumulative distributions of (a) the 3D
triangulation errors and (b) the Euclidean distances of the detected optical markers for ground-truth
comparison with MSER and and SURF (colored, as indicated in the legend).

3.5 Case study: future-oriented patient tracking for AR
Image-guided surgeries allow guidance by performing image registration of pre-
liminary CT or MR images to a coordinate system (e.g. based on markers) with
a fixed relation to the patient. In this chapter, skin and spine feature detection
techniques have been investigated in order to achieve patient tracking, which can
be used to perform a patient-to-image registration. Thus, the patient anatomy
can be displayed on a dedicated screen to provide navigational feedback. This
can be achieved with augmented reality (AR), a technique where real-world im-
ages are overlaid with computer-generated information that is typically related
to the real-world image (anatomy) or the patient [108]. This case study presents
an application where patient tracking is employed for AR visualization during
an image-guided intervention. This intervention has a special nature and was ex-
plored for research purposes and was based on high-intensity focused ultrasound
imaging (HIFU) [109].

3.5.1 Patient positioning during HIFU procedures
High-intensity focused ultrasound (HIFU) enables ablation of pathological tis-
sues by non-invasively delivering a high level of acoustic energy in situ [110].
The technology relies on high-intensity ultrasound waves, focused on a small
region, depositing high levels of energy, which results in a local and precise ab-
lation without damaging the surrounding tissue. Clinical development has been
enabled by integration of magnetic resonance imaging giving guidance to high-
intensity focused ultrasound imaging (MR- HIFU), which has shown promising
results for pain palliation [111]–[113]. The MR-HIFU technology is currently being
used for palliative treatment of bone metastases, as a second-line treatment after
unsuccessful radiation therapy and is occasionally used for tumor control [114].

However, improvements and a better workflow integration remain an open
issue in the clinical domain. In the current workflow, from the available screening
CT and MR images, a treatment strategy is defined by the radiologist, which aims
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Figure 3.28 — Diagram schematizing the proposed system for patient positioning during MR-
HIFU treatment.

at finding the optimal acoustic window for the HIFU treatment. However, during
the HIFU treatment day, this positioning strategy has to be translated from pre-
interventional images to the patient on the HIFU table. This step is of utmost
importance, since it will enable to radiate high-intensity ultrasound waves safely
to the target area. Since the radiologist is currently lacking sufficient guidance
during the patient positioning, the patient has to be re-positioned multiple times
with repeated acquisitions of MR images in between the re-positioning tasks. It is
beyond doubt that this is a laborious action and complicates the treatment flow.

This case study proposes an augmented reality (AR) setup to display relevant
information such as the locations of the target lesion, the acoustic window and the
ultrasound beam path on the patient during the preparation phase [109]. In our
positioning approach, 3D real-time image overlay can validate the patient posi-
tioning and facilitate adequate ultrasound beam-path imaging without acquiring
extra MR images on the treatment day.

3.5.2 Method: marker-based image fusion
The methodology consists of fusing the MR on a stereo camera view. This will
enable to display the locations of the target lesion, thereby reaching adequate and
faster patient positioning. There are two types of AR technologies to fuse MR
data on top of the stereo camera view: marker-based using visual markers and
markerless-based approaches. This research employs a marker-based approach.
The proposed framework is then evaluated and tested on four volunteers enrolled
on a human subject study, with the objective to prove the feasibility of real-time
fusing MR with optical camera information, in order to achieve a more direct and
faster assessment of the patient position. A schematic diagram of the proposed
system is depicted in Figure 3.28

A ZED stereo camera [115] (Stereolabs Inc., San Francisco, CA, USA) has been
used to perform camera-based patient tracking with a marker-based approach.
The fiducial markers are printed in black and circular shaped on top of a white
background giving an encapsulated positive MRI contrast agent at the center,
which enables dual detection with both optical cameras and MRI. These markers
are positioned non-symmetrically on the right leg of each subject, such that at least
three markers are always visible from the camera view. The target area is found
by detecting the HIFU table position and subsequently obtaining the transducer
location. To do so, ArUco markers are additionally fixated to the surface of the
HIFU table, close to the border of where the patient is positioned and at the site of
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the table. More visual details about the markers and their positioning are provided
in Appendix A.

After having performed the marker detection using a Canny edge detector, the
3D model of the visible markers is reconstructed in space and the transformation
between the camera and the markers is defined and found. The markers are
visible both by the MR system and the camera system, so that they can be used for
performing the final image fusion. The leg of each subject is manually segmented
from the MR and the markers, positioned on the surface of the leg, are matched
with the markers detected from the video camera. The same approach is used to
segment the femur, tibia and fibula bones, aiming at a realistic clinical application,
which is in our case bone metastasis treatment. The external views of the optical
stereo camera have been combined with the internal 3D view, acquired via the MR
system, to construct a 3D AR view of the combined external and internal views.

3.5.3 Experimental setting and data acquisition
Data from four volunteers positioned in the HIFU table were acquired at the
University Medical Center Utrecht, the Netherlands. During the acquisitions, the
volunteer leg was positioned on the HIFU transducer. Each volunteer was asked to
move up and down and to rotate, to simulate movements made during positioning
of the patient. Finally, an MR scan of the lower legs was taken. Afterwards, the
AruCo markers were attached to the table in close proximity to the transducer
area, in order to define the acoustic window location in the camera view. The
markers attached to the leg can be seen and eventually tracked by the camera,
in order to always define the subject position in space and can serve as ground
truth. By matching the markers segmented from the MR images with the 3D
marker positions in space, the transformation from the MR to the markers is
defined as the product of the transformation from the markers to the camera and
the transformation from the MR to the markers, thereby allowing the MR to be
overlaid on the camera view. In the same way, the acoustic window is overlaid on
the camera using a transformation defined as the product of two transformations:
the transformation from the ArUco markers to the camera and the transformation
from the acoustic window to the ArUco markers. These transformations and
further details are further supplied by Appendix A.

3.5.4 Results for the case study
The accuracy of the overlay is assessed for each subject by calculating the (back-
ward) re-projection error (expressed in mm). Figure 3.29 depicts the obtained
segmented model result (in yellow) describing the right leg (a) and related bone
(b) of the subject which is rendered on top of the camera view. The re-projection
error is computed as the distance between the projected and the observed image
point. On average, a re-projection error of 3.13 ± 1.43 mm has been found, when
tracking the markers and using them to perform the MR image overlay with the
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Figure 3.29 — Two examples of overlaid views in (a) and (b). This is obtained by performing
matching of the 3D markers on a 2D image view with the 3D image fusion on a 2D camera view for
the first and second case.
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Figure 3.30 — Boxplots of the re-projection errors in the image overlay for the four subjects. The
re-projection error is the distance between the projected (i.e. product of two transformations) and
the same observed marker in the camera view.

camera views. As visualized in the boxplot in Figure 3.30, a median error within a
range of 3–4 mm is found for the examined subjects. The error can be correlated
to the amount of markers visible in the camera view, and to the distance between
the camera and the markers, as well as to the tilting angle of the markers with
respect to the image plane of the camera. This case study presents a first proto-
type system that combines an optical tracking system based on stereo cameras,
with preliminary MR images, to improve patient positioning during MR-HIFU
tumor ablation. This approach holds potential to provide a faster and more effi-
cient positioning of the patient, therefore simplifying the current workflow for
time efficiency. In the current clinical setting, once the patient is positioned on
the table, the radiologist can operate the HIFU transducer position and move it
maximally 1 cm, in order to fine-tune the target position to the exact area of the
lesion. Consequently, a registration-accuracy error in the order of magnitude of
1 cm would meet the clinical requirements. With the proposed approach, we have
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obtained a re-projection error smaller than 4 mm on average for all the subjects,
with an image fusion on the camera view that matches the clinical requirements
for this specific application.

3.5.5 Discussion on this case study
Prior to proceeding with clinical experiments on patients, the system needs further
improvements. A real-time implementation is necessary to facilitate its use for
the patient re-positioning. Also, an automated or semi-automated method for leg
and lesion segmentation from MR images can be implemented, e.g. following a
deep learning approach [116]. Furthermore, the ZED stereo camera can be further
exploited, developing a markerless approach based on the depth images provides
by the camera. By combining the video and depth images, a point cloud of the
scene can be found and overlaid with the 3D MR model. This approach is well
known in surveillance where camera data and point clouds are combined into
mesh-based 3D city models. In our case, existing algorithms such as iterative
closest point (ICP), allow to find the transformation between two point clouds,
that minimizes their overall averaged distance [117], [118]. After having matched
the two point clouds, the optimal transformation can be found using the video
data to optimally overlay the 3D MR model.

This presented case study is integrated in this chapter as a possible future
orientation of further research, where the proposed tracking solutions can be
exploited. Because this study is more future oriented than the methods earlier
presented in this chapter, it has been summarized as a case study that was worked
out in a paper which is fully presented in Appendix A for further reading.

3.6 Discussion and conclusions
This chapter has presented the methodologies for employing optical imaging for
non-invasive patient tracking. Several issues have been addressed when using
optical adhesive skin markers for patient tracking. Although skin markers of-
fer a good solution in spine surgery, they are impractical in open surgery cases.
Moreover, in the cervical spine, movements between adjacent vertebrae may go
undetected.

We have proposed a new innovative, accurate and unobtrusive alternative
approach for spine-feature localization, which can be used for patient tracking
in surgical navigation. This result has been achieved with the direct detection
of features on the patient’s spine, using high-resolution gray-scale cameras and
the subsequent analysis of the captured multi-view images. A computer vision
framework is created for preprocessing of the optical images, detecting and match-
ing local invariant image regions directly on the patient spine. Feature-detection
algorithms are compared to elucidate the best approach for detecting features on
the spine of the patient, while omitting the usage of markers. The framework is
validated in spinal-surgery patients and the 3D triangulation error of the matched
features calculated.
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3.6. Discussion and conclusions

Spine-feature tracking offers an extension and an improvement to current
tracking systems, aiming for optimal patient motion compensation and reliable
surgical guidance. To aim at a MIS during close surgeries, we apply a similar
methodology for tracking the skin of the patient. The skin-feature tracking may
simplify the existing patient preparation procedure and improve the reliability
of the tracking process, by relying on skin features instead of optical markers or
reference frames. A marker-less tracking framework has the advantage of building
a virtual reference grid that cannot be dislodged or completely obscured during
surgery. The framework is then applied to detect and track skin features on spinal
surgery patients.

The outcomes and findings of the two approaches, the spine and the skin-
feature detection methods, are addressed below.

A. Spine feature detection and 3D localization
SURF, MSER, FAST, and ORB algorithms are used to derive and detect spine fea-
tures. The resulting triangulation errors are typically well below 1 mm (< 0.5 mm)
and are clinically acceptable, proving the feasibility of assessing the 3D verte-
bra locations using direct spine features. An important criterion for achieving an
accurate feature matching is the number of extracted features. Although SURF
generates good results in terms of triangulation error, an average increase of 21%
in the number of matched features is achieved when ORB is employed. Further-
more, the lowest standard deviation and the least variability in the error range
and distribution among patients is reached with ORB features. This observation
can lead to a further improvement, where in an ideal system, the best detectors
for each frame are automatically selected to achieve the minimum error. As SURF,
MSER, and ORB achieve the highest number of matched inliers (see Table 3.3), a
combination of SURF-ORB features into a single vector with location and metric
information of the image feature, may lead to a higher matching accuracy. How-
ever, when SURF is employed, the minimum number of matched features among
all frames can be as low as only two. In fact, at least two matched feature points
guarantee the estimations of vertebrae transformation, as described in [119].

B. Skin-feature detection and 3D localization
In order to apply the proposed framework during MIS, skin-feature detection and
3D localization is proposed. The optical multi-view, gray-scale, camera system is
exploited and combined with image analysis and tracking techniques, to achieve
skin-feature detection and localization, benchmarking with optical skin mark-
ers. The accuracy, of roughly 0.4 mm at skin level, achieved with the proposed
framework should be considered in the viewpoint of previous results obtained by
the ARSN system relying on adhesive skin markers. In a recent study using the
ARSN, Burström et al. have demonstrated a technical accuracy of 0.94 ± 0.59 mm
and 1.97 ± 1.33 mm, respectively, for cadaveric and clinical cases of pedicle-screw
placement [120]. However, these accuracies are not sufficient for clinical applica-
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tion. In the proposed study, we have reached submillimeter accuracies in tracking
the patient skin, satisfying the current clinical requirements. MSER and SURF
have shown a good capability of detecting features of observable anatomical skin
details. It is visually verified that MSER provides a higher number of detected
features contributing to a better plane selection in the 3D outlier removal step.
Overall, the multi-camera system enables triangulation of each feature, to obtain
an accurate 3D triangulation performance. This performance can be potentially
evaluated by automatically computing the triangulation error continuously and
in real time, within a software function for navigation.

The markerless tracking framework presented in this chapter, has the advan-
tage of building a virtual reference grid that cannot be dislodged or completely
obscured during surgery. Compared to conventional dynamic reference frames
that track a single vertebra, a markerless framework can track the entire spine and
compensate for inherent movements within the spinal column during surgery.
The same concept can be applied to skin, where anatomical features have the po-
tential of being distributed in the patient back, with a higher chance to be always
visible for the cameras. Furthermore, skin-feature detection enables markerless
and non-invasive spine surgery.

C. Discussion on limitations
Despite the advantages achieved, the experiments presented in this study were
subject to conditions that can affect performance. Those conditions may cause
inaccurate matching. One limitation when using spine features for spinal naviga-
tion, is the issue of visibility of anatomy. Obviously, spine features cannot be used
in minimally invasive procedures, due to the nature of the surgery. However, a
considerable number of surgeries are still performed openly and offer a view of
the posterior aspects of the spine to be used for detection and tracking. Still, atten-
tion must be given to avoid occlusion of the camera view by retractors and other
surgical instruments, thereby limiting the detection of the spine. Blood may also
obscure spinal features and interfere with detection, especially when gray-scale
images are used. This can be mitigated by achieving adequate homeostasis and a
clean surgical site, which is arguably part of the routine in navigated spine surgery.
Another limitation that affects the performance of the anatomical feature detection
by using a gray-scale camera is the poor illumination. This can be improved by
using color or hyperspectral cameras. To this end, color or hyperspectral imaging
offer a non-invasive solution that may improve feature detection.

The overall findings of this chapter lead to the choice of SURF and MSER
as feature detection algorithms for spine and skin localization. SURF achieves
the highest accuracy in feature localization and lowest computation time, and
MSER has shown high reliability in term of amount of detected feature when
detecting skin features due to its capability to detect blob regions (e.g. moles). The
chapter has presented a method for detecting features directly on the spine of the
patient with a submillimeter accuracy. The same approach has been applied for
skin-feature localization, going from open to minimally invasive surgeries.
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3.6. Discussion and conclusions

In the following chapter, this work is extended by employing a hyperspec-
tral camera. The handcrafted feature detection is improved by employing local
features in more advanced way, by exploiting deep learning and using that for
including spectral imaging modalities. In this way, the drawbacks associated with
the poor illumination and the small amount of detected features are addressed
and alleviated. The main benefit of hyperspectral imaging is to reveal features
which are unseen by conventional gray-scale cameras, increasing the number of
matched inliers and thereby the robustness of the method. Although additional
patient cases would strengthen the conclusions and the clinical validation, the
presented algorithms offer an accurate solution to replace currently used dynamic
reference frames and optical markers, for navigated spine surgery.
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“One is always a long way from solving a problem until one actually has the answer. ”
Stephen Hawking
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er 4 Hyperspectral image analysis

for markerless tracking

4.1 Introduction
The previous chapter has presented a novel framework to bypass the use of
reference-marker solutions for current spinal-navigation surgery systems. In spinal-
fixation surgery, navigation systems provide accuracy to allow the safe placement
of pedicle screws [36], [83]. The improved accuracy facilitates minimally invasive
surgery (MIS), which aims to reduce tissue trauma and blood loss, shortening
recovery time [89]. The accuracy relies on the continuous tracking of the patient
position. The chapter has described the augmented reality navigation system
(ARSN) using adhesive optical markers placed on the skin and detected by live
video cameras for tracking [27]. In contrast to marker-based solutions with single
fixation points, it has been shown that salient skin features, such as spots, moles or
changes in pigmentation are more uniformly distributed and can enable accurate
tracking without the shortcomings of earlier solutions. The optical tracking system
(OTS) described in Chapter 3 has been successfully tested to detect and track skin
features in spine-surgery patients.

However, the described skin-feature detection needs to be improved in order
to track a high amount of features during the entire procedure and to ensure the
algorithm robustness. This is a necessary condition for enabling MIS in spine
surgery. This chapter aims to fully exploit and further improve skin-feature detec-
tion, employing multispectral and hyperspectral imaging (MSI and HSI). Spectral
imaging techniques such as MSI and HSI hold the potential to scan beyond the vis-
ible wavelength range, thereby extending the capturing of anatomical features at
level of deep cutaneous layers. As presented in Chapter 2, HSI is an optical imag-
ing technique that captures a wide range of the electromagnetic spectrum, making
it suitable for the detection of skin features, even beyond the visible spectrum. HSI
is a non-ionizing, non-invasive technique and relies on the use of special cameras
to acquire two-dimensional images across adjacent narrow spectral bands, thereby
reconstructing the reflectance spectrum for every pixel [9]. Compared to a normal
RGB (Red Green Blue) camera, with HSI the image signal is enriched by acquiring
images over a larger spectral range and with a broader spectral sampling. This al-
lows HSI to capture features that are not detectable within the three visible bands
and consequently additional information below the skin surface. The technology
is well established in the remote sensing field and has recently received increased
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attention for medical imaging. HSI is described in literature as a good method for
vein detection and localization, and it is a promising technology for our scope to
easily track landmarks in the skin. It has been used to assess tissue perfusion, the
identification of blood vessels, the differentiation of arteries from veins as well as
blood-flow measurement in the skin and ischemia detection [63]–[66]. Given these
various successful applications of HSI, we hypothesize that it can also be used to
obtain information about the superficial anatomical structure, allowing us to look
deeper below the skin surface and capture features that are not detectable with
visible wavelengths [67], [68]. These skin landmarks, such as moles and veins, are
found in cutaneous and subcutaneous tissues [18], [20].

This chapter aims to exploit spectral imaging techniques (MSI and HSI) to
track natural landmarks on human skin, and by doing so, take advantage of
spectral imaging to scan deeper in skin tissue. Furthermore, we propose a learning
network-based approach for local skin-feature detection and matching. To validate
and learn the network, a novel hyperspectral (HS) dataset has been acquired and
explored and based on using a newly developed experimental HS camera. For
detecting skin features by employing HSI, the following requirements need to be
addressed and satisfied where possible.

• Spectral camera requirements. Several aspects should be considered when
performing skin-feature detection with an HS camera such as a proper illu-
mination condition and a correct camera positioning, in order to image the
back of the patient. Furthermore, the HS camera system should be able to
scan the subcutaneous layers of the skin up to 1–2 mm in depth.

• Spectral imaging requirements. HS images should be correctly preprocessed, to
perform calibration and reduce the influence for the dark current present in
the sensor. Furthermore, the preprocessing should address dimensionality-
reduction techniques to lower the redundancy in the multispectral informa-
tion by e.g. selecting the most informative bands.

• Clinical applicability. The system should be applicable for a general clinical
setting. More in detail, it should be suitable to detect skin features on patients
with a clinically acceptable accuracy (submillimeters). Hence, it should work
for detecting skin features on human body within a diverse population,
avoiding any degradation in the performance for different genders, ages
and colors.

• Robustness against motion. Since the system should be integrated in the spinal
navigation system, it should be robust against various types of motion, such
as breathing and any movement that may happen during the surgical pro-
cedure.

The described requirements are needed to integrate HSI within the image-guided
spinal surgery navigation system, facilitating reliable patient tracking. In order
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to robustly track spectral features on spinal surgery patients, several technical
challenges should be considered and addressed.

• Spectral skin properties. The spectral properties of the skin should be exploited
and an approach should be developed to detect and localize spectral features
related to the skin, both at the surface layer and the deeper cutaneous layer.

• Spectral feature detection. Spectrum-resolved skin features should be detected
and matched to track motion. By overcoming the limitations found in the
previous chapter, deep learning methods will be explored to increase the
number of matched features and a comparison with handcrafted local fea-
ture methods should be provided.

• Experimental validation. An experimental protocol is needed to mimic the
patient motion in the surgical scenario, by performing a human subject study,
while the back of the subject is moving due to breathing. The experimental
study involving HSI for skin-feature detection can be used for performing a
validation with human volunteers, to assess the feature-localization accuracy
of the method.

• Ground-truth assessment. The optical markers employed by the ARSN system
should be used as ground truth to the detect the displacements of specific
skin areas. The difference between the localized patient position by using
the optical markers and the localized spectral skin features will be used to
assess HSI for patient localization.

To address the requirements and the above-described technical challenges, we
first investigate the basic feasibility and the potential of involving MSI for natural
landmark tracking in human subjects, where a simulated motion is applied. Sec-
ond, we exploit HSI proposing a method for spectral skin-feature detection and
matching. The approach is validated on novel MSI and HSI datasets, acquired
by performing human studies. The proposed method proves the feasibility of
a novel HSI clinical application for capturing features within deep skin layers,
that can leverage the accurate tracking of patients and thereby facilitate the non-
invasiveness of spinal surgery.

The sequel of this chapter is organizes as follows. Sections 4.2 and 4.3 describe
the HS camera system and the preprocessing needed to reduce the noise influence.
Band extraction and selection methods are illustrated in Sections 4.4 and 4.5, while
in Sections 4.6 and 4.7 the methods for learned local feature extraction and match-
ing, are presented. Section 4.8 covers a first feasibility study with multispectral
imaging and a study mimicking the patient motion in the operating room by using
a novel HS camera that will be extensively described. Furthermore, the accuracy
in localizing the skin features is analyzed. A discussion on system performance is
reported in Section 4.9, while Section 4.10 concludes this chapter.
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4.2 Hyperspectral imaging system used in this chapter
This section presents the HSI technology used in this chapter and provides impor-
tant characteristics of the HS camera.

In Chapter 2, the HS camera systems are broadly described. The HS systems
are mainly classified in pushbroom (line-scanning) cameras, and snapshot (single
shot) cameras. Snapshot cameras capture the entire scene in a single shot that
contains both spectral and spatial information [121]. For image-guided applica-
tions, such as patient tracking in spinal surgery, snapshot HS cameras that are
able to provide real-time HS video, without performing any spatial scanning, are
the most suitable cameras for capturing moving objects. The setting in which we
apply HSI for skin-feature tracking during spinal surgery while the patient moves
from breathing, explains why the snapshot HS camera is exploited in this chapter.
Although suitable for capturing moving objects, HS snapshot systems have the
main disadvantage of a lower spectral and spatial resolution compared to other
HS camera types. For this reason, images are acquired using a newly developed
snapshot HSI system (Hyperea, Quest Medical Imaging B.V., Middenmeer, The
Netherlands) with high spectral resolution. The camera and the spectral response
are visualized in Figure 4.1. Each wavelength is covered with narrow spectral
response bands, to obtain high spectral resolution.

The main characteristics of the camera are summarized in Table 4.1. The
camera captures 41 spectral bands in one snapshot, running at 16 frames/sec
(fps). These spectral bands are equally distributed in the visible near-infrared
(VIS-NIR) range of 450–950 nm. The camera setup consists of a charge-coupled
device (CCD) sensor, actually three sensors for RGB, VIS and NIR, of which the
latter two are mosaic spectral sensors and the former is an RGB sensor, where
all sensors are deployed in combination with a spectrally optimized lens. For 2D
reference, a high-resolution color image is included with each HS dataset. The
color image is co-registered with the HS data with subpixel accuracy, thereby fa-
cilitating accurate data fusion and visualization methods. The two mosaic sensors
have a 4×4 filter-aperture pattern for the VIS range and a 5×5 pattern for the NIR
range. Each HS image acquisition leads to a data cube with a spatial resolution of
1,080×2,048 pixels and 41 spectral bands after processing. The HS camera is based
on a tiled-filter approach (Figure 4.1(d)), where pixels are individually filtered

Spectral Sensitivity Mosaic Sensor Image properties

Spectr. range 450-950 nm VIS 5×5 Resol. (upscal.) 2048×1080 px
No. of bands 41 NIR 4×4 Resol. spectr. img ∼500×250 px
Avg. bandwidth ∼12 Frame rate 16 fps

Table 4.1 — Hyperspectral camera characteristics. From left to the right, the spectral sensitivity,
the mosaic sensor and imaging characteristics of the snapshot camera are listed.
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4.2. Hyperspectral imaging system used in this chapter

Figure 4.1 — Hyperspectral camera acquisition setup. (a) Schematic view of the HSI camera setup.
(b) Plot of the spectral response of the camera, where the different lines correspond to the individual
channel responses. Similar to an RGB camera with three filters for each color pixel, in a snapshot
HS camera each sensor is composed of several pixels that are responsive for a wavelength in the band
spectrum.

Figure 4.2 — Snapshot hyperspectral camera system. (a) Experimental prototype of snapshot
HSI camera. (b) Mosaic sensor technology. The picture describes a tiled-filter approach where for
different cavity heights, different wavelengths are captured.
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with narrow Fabry-Pérot bandpass filters. This method allows imaging without
the need to scan in either of the spatial dimensions (e.g. moving the camera) or
to change the pass-through characteristics of an optical filter. Currently, every
acquisition takes approximately one second. However, in the currently devel-
oped prototype, a postprocessing step is required to construct the HS data cubes
from the mosaic sensor acquisitions (see Figure 4.1(d)). The postprocessing will
improve when the full system is developed for a real commercial product.

4.3 Hyperspectral image preprocessing
Preprocessing is a crucial step for HS image analysis, since HS data suffer from
high dimensionality, redundancy within spectral bands and instrumentation noise.
First, the raw reflectance data are normalized in order to correct for the dark
current noise by applying the following computation:

Iref =
Iraw − Idark

Iwhite − Idark
, (4.1)

where Iref denotes the normalized reflectance value, Iraw is the diffuse reflectance
value, Iwhite the intensity value for a white reference plate and Idark represents
the dark reference, acquired by keeping the camera shutter closed. HS images are
typically degraded due to noise and low contrast [9]. To effectively enhance the
spectral images, contrast-enhancement methods are therefore required to improve
the global contrast and the perception of details without highlighting the noise
and introducing undesirable artifacts [122].

Conventional adaptive histogram equalization is based on separate histograms
for different image regions, which are used to redistribute the local intensity level
values. This approach solves the main limitation of having a global histogram
equalization, which tends to stretch out the intensity range of an image, resulting
in the over-enhancement of the background (introduction of noise) and a contrast
deterioration of small targets [122]. To this end, contrast-limited adaptive his-
togram equalization (CLAHE [123]) prevents these unwanted effects by limiting
the amplification, and it has been successfully applied in infrared imagery and
surveillance imagery. A dedicated Gaussian filter and contrast-limited adaptive
filtering have been designed for the VIS and the NIR wavelength range, respec-
tively. The Gaussian filter size is 2σ + 1, where σ represents a standard deviation,
set at σ = 0.05. To enhance the contrast, we employ CLAHE, setting a normalized
intensity limit of 0.05 for the VIS range and 0.1 for the NIR. The clip limit for the
NIR range is higher, since the contrast within this range is lower compared to the
VIS images.

4.4 Hyperspectral band extraction with PCA
The redundancy of information among bands in HS images is a well-known
problem, which can be attributed to the relatively high spectral resolution. HS
images typically comprise a large number of bands, resulting in high-dimensional
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4.4. Hyperspectral band extraction with PCA

data. This high dimensionality leads to considerable computational demands and
high storage costs. Potentially, a large number of spectral bands may discriminate
multiple different classes. However, the redundancy in the spectral dimension can
decrease the classification accuracy, as well as the amount of spectral bands.

As a consequence, to correctly analyze the HS data and extract the most useful
information trough a wide range of correlated bands, a dimensionality-reduction
step is needed [9]. Dimensionality-reduction techniques can be divided into band-
extraction methods and band-selection methods. The goal of band extraction and
selection is to obtain the most relevant information from the original data and
represent that information in a low-dimensional space [9].

One of the most common band-extraction methods is principal component
analysis (PCA), which projects the data in a low-dimensional space where the
spectral information is decorrelated [124](see Figure 4.3). PCA is based on the fact
that neighboring bands of HS images are highly correlated and the applied trans-
formation will remove this correlation between the bands [124]. PCA generates a
new set of linearly uncorrelated variables, where the first few retain most of the
signal variation, occurring in all original variables. PCA employs the statistical
properties of HS bands to examine band dependency or correlation, and apply an
Eigenvalue decomposition of the covariance matrix of the HS image bands to be
analyzed [124]. We will briefly present the basic formulation of PCA for HS band
extraction.

To explain PCA [124], one pixel vector in the HS image data can be defined as
follows:

x(i) = (x
(i)
1 , x

(i)
2 , ..., x(i)

n )T , for i = 1, ..., N ; (4.2)

where x(i) being the i-th pixel vector with the dimension count N denoting the
number of spectral bands. Having an HS image with m rows and n columns, the
number of pixel vectors x is equal to M = m×n, where the pixel index i = 1, ...,M .
The mean vector of all previously defined pixel vectors is computed by:

µ(i)
x =

1

M

M∑
i=1

(x
(i)
1 , x

(i)
2 , ..., x(i)

n )T , (4.3)

In order to calculate the covariance matrix, we define the center of the matrix as:

X = [x(1) − µ(1)
x ,x(2) − µ(2)

x , ...,x(M) − µ(M)
x ], (4.4)

which leads to:
U = X ·XT

. (4.5)

The PCA is based on the Eigenvalue decomposition of the covariance matrix U,
which can be defined by:

Ud = U ·∆ ·UT . (4.6)

The first K Eigenvectors v in the matrix ∆ will form the first K bands that ap-
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Figure 4.3 — Principles of PCA for hyperspectral images. (a) The pixel vector xi is indicated
in the hyperspectral image as defined for the PCA band-extraction algorithm. (b) Geometrical
representation of PCA for two bands, giving concentration of information along the first PCA axis.

proximate the original images:

∆ = [v1,v2, ...,vK ], (4.7)

where ∆ is the diagonal matrix composed by the Eigenvalues of the covariance
matrix and U is the orthonormal matrix composed of the corresponding K Eigen-
vectors uk, for k = 1, 2, ...,K of U, as follows:

U = (u1,u2, ...,uK), for k = 1, 2, ...,K. (4.8)

The linear transformation to a low-dimensional space is defined by:

yi = UT · xi, for i = 1, 2, ...,M, (4.9)

where yi represents the PCA pixel vector, while all pixel vectors form the PCA
(transformed) bands of the original images. The first K bands extracted for the
PCA analysis retain the highest variance, therefore they contain the majority of
the information.

One limitation of PCA is that it preserves the global variance of the original
data in the low-dimensional space, which differs from alternative approaches that
attempt to preserve local properties. Another limitation of PCA is the assumption
of linearly correlated bands which limits energy concentration. Linear methods,
such as independent component analysis (ICA) and PCA assume that data are
linearly mixed by a set of separate independent sources and they demix these
signal sources according to their statistical independency, measured by ICA using
mutual information. However, the linear projection transformation leads to the
mixing of the original spectral information. This affects feature-based localization
algorithms, since spatial structures in two corresponding images are more difficult
to be detected (e.g. while an object in the two different image frames is moving).
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This phenomenon is intensified when two images have differences in scale
and small overlapping areas [125].

Non-linear methods have the advantage to represent more realistic and com-
plex data. A non-linear alternative to PCA for band extraction and dimensionality
reduction is minimum noise fraction distributed Stochastic Neighbor Embedding
(t-SNE). This approach embeds high-dimensional points in a lower-dimensional
subspace, by preserving the similarities between points. Nearby points in the
high-dimensional space correspond to nearby embedded low-dimensional points,
and distant points in high-dimensional space correspond to distant embedded
low-dimensional points [9]. The main advantage of t-SNE is that it retains the local
structure of high-dimensional data and clusters similar global structures. How-
ever, when applied to HSI data, t-SNE is not consistent [9]. At each dimension-
reduction stage, it can randomly create representations that are persistent, so that
similar spectral properties (e.g. the spectral properties found in similar tissue
types) may be represented with different low-dimensional representations. For
this reason, alternative methods should be investigated to address individual spec-
tral bands across different data samples. This alternative is found in band-selection
algorithms and will be introduced in the next section.

4.5 Hyperspectral band-selection methods
Band-selection algorithms select a subset of bands without losing the complete
physical meaning and offer the preservation of relevant original information.
Furthermore, the selected bands can be used to optimize the signal acquisition,
thereby speeding up the sensing at lower energy cost. This is not possible with
PCA, where all the bands must be captured and only after the mixing transforma-
tion, a band extraction can be performed.

Literature presents a variety of band-selection methods, which can be clas-
sified into six groups: (1) ranking-based methods, (2) searching-based methods,
(3) clustering-based methods, (4) sparsity-based methods, (5) embedding learning-
based methods, and (6) hybrid scheme-based methods [126]. The ranking-based
methods select the spectral band according to a band-prioritization criterion and
select the top-ranked bands in a sorted sequence. Similarly, clustering-based tech-
niques assemble the original bands into clusters and select the representative
bands from each cluster to select the final band subset. Since each HS image can
be sparsely represented, the sparsity-based band selection uses this representation
to solve an optimization problem with sparsity constraints, revealing the specific
structure of HS data [126]. One of the most popular strategies is a searching-based
method. Its application consists of solving an optimization problem with a given
objective function and then search for the best bands to form an optimal solution.
However, the main drawbacks are in choosing the optimal objective function,
and searching strategy. Hybrid scheme-based methods use multiple techniques
to select appropriate bands. In particular, a clustering-based method is widely
combined with searching-based algorithms.
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As found in work of Sun et al. [126], searching-based and clustering-based
methods are more suitable for smaller hyperspectral datasets so easily applicable
to our case study. A searching-based and a hybrid-based method are described in
more detail in Section 4.5.1 and Section 4.5.2, respectively.

4.5.1 Searching: Volume-Gradient-Based Band Selection (VGBS)
Due to the high accuracy in comparison with other band-selection methods, we
exploit an unsupervised searching-based method: the Volume-Gradient-Based
Band Selection (VGBS) method from Geng et al. [127]. Since the training set is
required in advance when implementing supervised band selection, the unsuper-
vised band selection is generally the most effective approach. VGBS is a geometry-
based method that identifies the bands with the maximum ellipsoid volume for
capturing spectral information. The bands are treated as data points in a high-
dimensional space.

At the beginning of the algorithm, all bands are considered as candidate bands
and constitute a parallelotope. Then, bands leading to the minimal losses of the
parallelotope volume are removed iteratively, until the desired number of bands
in the subset remains. VGBS can effectively reduce the correlation among bands,
since low-correlated bands often represent a large-volume parallelotope [127]. If
m is the number of linearly independent bands, they belong to a m-1-dimensional
hyperplane. The distance from a band to the hyperplane spanned by other m-1
bands can be regarded as the derivation of the band from the other bands [127].
The removal of this band can result in less information loss. In the VGBS method,
the redundant band can be found simply by using the gradient of the covariance
matrix of the volume, which is constructed by all the bands in the image space.
Defining the pixel vector as in Equation (4.2), the gradient matrix of the determi-
nant of the covariance matrix of each pixel vector is calculated. The maximum
gradient will then identify the band to be removed. Although this algorithm is
suitable for small datasets and competitive for selecting the best HS bands, it
suffers from a high computational cost.

4.5.2 Hybrid: Saliency-Band-Based Selection (SBSS)
The saliency bands and scale selection (SBSS) method was introduced by Su et
al. [128]. This is a hybrid scheme-based method, which combines a ranking-based
approach and a cluster based-scheme, using the detection of local features. To this
end, it is chosen as band-selection method for our skin-feature detection and local-
ization purpose. In their work, Su et al. define an SBSS algorithm for HS images.
A saliency band is a band that is capable of characterizing multiple objects and
is scarce in the HS data. In order to select salient bands with high information
content, this method proposes the adoption of scale-selection techniques that can
characterize the objects of an image [129]. Based on this concept, the authors pro-
pose to imitate the optimal scale-selection process. In Chapter 3, Speed Up Robust
Features (SURF) [130] have achieved the best result in detecting skin features
when captured at different scales. Since a target may mingle with the background,
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it is reasonable to use a scale-selection technique and find extremum points for
selecting salient bands, as suggested in [128]. Commonly used band-selection
techniques are based on mathematical models, whereas the band-selection meth-
ods aim to solve an ill-posed problem [128]. Here, the SBSS method aims to select
saliency bands by solving a scale-selection problem, based on the fact that saliency,
scale and image description are connected aspects. In this way, the inner spectral
and spatial nature of an HS image will be jointly considered. Therefore, extremum
points are local extremes with respect to both spectral and spatial dimensions.

In the following, we formally describe an approach to select a salient band
according to the SBSS method. The presented algorithm is based on the theory
of [128] . To detect local structures and measure the saliency of a band, the Hessian
matrix is analyzed and the determinant of the Hessian matrix is computed to
identify possible extreme values. A salient band is selected if it has a higher
amount of local extrema compared to its neighboring bands (i.e., left and right
adjacent bands).

The determinant detH and the trace TrH of the Hessian matrix are defined
by:

TrH = Hxx +Hyy, (4.10)

detH = Hxx ·Hyy −Hx
2
y, (4.11)

where Hxx, Hyy and Hxy are calculated by differentiating twice in the correct
dimension(s), giving

Hxx = ∆x · (∆x ·H), (4.12)

Hyy = ∆y · (∆y ·H), (4.13)

Hxy = ∆y · (∆x ·H). (4.14)

If k is a real 2D point in a hyperspectral image, the set N of neighboring connected
points are computed by:

N = {k ∈ R2| ||k− ξ||∞ ≤ 1) ∪ (ξ ̸= k) }, (4.15)

where ξ is a grid point with ξ ∈ Z3. The infinity norm selects the largest vector
component in magnitude. If a band is salient, it must have a high amount of local
extremum points. In our implementation, we use the determinant of the Hessian
matrix H to detect the salient bands. The pseudocode of the above-given approach
is detailed in Algorithm 4.2.

4.6 Learned local feature detection
The main objective of this chapter is to find local features in the spectral images,
which are detected during the breathing phases. This approach is taken to mimic
the patient motion, which should be tracked during the surgical operation. The 2D
displacement of each local feature vector will be computed to benchmark the esti-
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ALGORITHM: band selection with SBSS

Input: HyperIm % Hyperspectral cube
Output: Selected bands
Start
1: Hxx, Hyy and Hxy ; % Hessian matrix calcul.

Hxx = ∆x·(∆x· H)
Hyy = ∆y·(∆y ·H)
Hxy = ∆y · (∆x ·H)

2: detH= Hxx ·Hyy - Hx
2
y % Determinant of Hessian

3: Find local extrema
for each band i
num band = 0

if detH > det[ξ] ∀ ξ ∈ N(k)
num bands = num bands + 1
loc max = detH at position k

end
5: Compute mean of local extrema

M(i)=
∑num bands

m=1 loc maxm

num bands
% Mean for noise removal

6: Find the extrema
M(i) is a local extrema

Table 4.2 — Algorithm description in pseudocode for band selection with SBSS.

mated movement with motion found by employing the optical markers (ground
truth). To detect the desired features, it is crucial to extract informative regions or
characteristic points on the skin, which should be invariant to geometric transfor-
mations and insensitive to degradation effects, such as small illumination changes
and intensity changes produced by noise. As a result of the study presented in
Chapter 3, we first detect skin features by applying SURF as a feature detection
algorithm [104], [130] to obtain the reference performance. We then adapt the al-
gorithm for this study where real subject motion is included. The SURF algorithm
exploits integral images to construct the scale space. This is an approximation of
the Gaussian scale space to reduce the computation time. Regarding the descrip-
tor, it is formed only by 64 dimensions, and the orientation is estimated using the
Haar wavelet [131].

As an alternative to handcrafted local descriptors, convolutional descriptors ex-
tracted from convolutional neural networks (CNNs) have recently shown promis-
ing results [132], [133]. A CNN-based approach has been proposed by Han et al. to
jointly learn the patch representations and feature metric with the MatchNet [134]
architecture. More recently, LIFT [135] and LF-NET [136] have been employed to
detect key points and compute the corresponding local descriptors. A novel archi-
tecture that learns and extracts local descriptors, called deep local features (DELF),
is proposed by [133]. Compared to conventional handcrafted local feature detec-
tion algorithms, the DELF framework offers a more accurate feature matching
and geometric verification through an attention-based mechanism which learns
the most discriminating features. Moreover, compared to previously mentioned
networks, the local features are not aggregated, but the deep features are extracted
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with a feature index. This enables to use algorithms such as RANSAC, for geomet-
ric verification and one-to-one matching. In the following, we discuss the DELF
method in more detail.

A. Deep local features (DELF)
The DELF module is designed for image retrieval and consists of the following
four steps: (1) dense localized feature extraction, (2) key point selection, (3) di-
mensionality reduction and (4) image retrieval. To evaluate this method for our
purpose, we execute it in parallel to the conventional SURF approach. The learned
feature extraction process can be divided into two steps. First, dense features are
generated from images with ResNet-50, which is initially trained for the classi-
fication of ImageNet [137]. Second, the obtained feature maps are regarded as a
dense grid of local descriptors. The features are localized, based on their receptive
fields, which can be computed by considering the configuration of convolutional
and pooling layers of the fully convolutional network (FCN), see for an example
Figure 4.4. Then, the pixel coordinates of the center of the receptive field are used
as the feature location. Lastly, an attention score function is trained to assess the
relevance of the extracted features.

The algorithm handles different image scales by constructing an image pyra-
mid and applies an FCN to each scale level, meaning that it is possible to obtain
features of an image region at different scales. As in the original approach, we scale
our images with the following coefficients: 0.25, 0.3536, 0.5, 0.7071, 1.0, 1.4142, 2.0
(note that most numbers are related to powers of 2 or

√
2). In the dimensionality-

reduction step, the feature dimension is reduced by PCA. The features produced
are vectors of length 1,024. Each DELF descriptor includes its location in the image,
the score and the scale at which the feature was found. Then, the descriptors are
extracted and also their locations for every pair of images, using the pre-trained
DELF network with landmark images. Next, we apply K nearest neighbors for
each descriptor. The network architecture for feature extraction and matching is
depicted in Figure 4.4.

B. Attention-based mechanism
In the context of image retrieval, an extensive research has been conducted for
identifying similar features and matching images based on query information.
In this field, local feature detection evolved from handcrafted descriptions (such
as SURF, MSER, FAST and ORB [99], [102], [130]) to learn convolutional descrip-
tors extracted with CNNs [132]. However, convolutional layers produce high-
dimensional tensors that require a more compact representation for efficient im-
age matching. The most common operation to find such a compact feature tensor
are pooling operations, like max-pooling [138]. The DELF algorithm learns and
extracts multi-scale, local descriptors in an image and outperforms other feature
representation algorithms and handcrafted descriptors. As previously discussed,
the main advantage of DELF is that relevant features are learned via an attention
mechanism. To train the classifier, features are pooled by using a weighted sum,
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where the weights are predicted by an attention function. In more detail, we in-
dicate the features we want to learn with the attention module as fn ∈ Rd where
n = 1, ..., N . The score function αscore(fn) is learned for each feature. The output of
the network is the weighted sum of the elements of each feature vector multiplied
by the learned , indicated as:

y = W · (
N∑

n=1

αscore(fn) · (fn) ), (4.16)

where W ∈ RM×d are the weights in tensor form of the last fully-connected layer
trained to predict M classes. The attention score function is designed as a two-
layer CNN with a softplus activation function on top [133]. During the test phase,
each feature has an attention score assigned and the features with the largest
attention scores are selected. In order to improve the training phase, the features
are learned by fine-tuning the ResNet-50 model, using a cross-entropy loss, while
the score function is learned based on the fixed descriptors. Furthermore, since the
attention model should be able to generate scores for features at different scales,
the images are randomly scaled during the training phase. Finally, the selected
features are normalized and a dimensionality-reduction step is applied by using
PCA.

4.7 One-to-one matching and 2D localization
Feature matching is established based on the pairwise distance between two
extracted feature descriptors during the two breathing phases, which are formally
specified by:

Fbi = (fbi1 , fbi2 , ..., fbin)
T and Fbo = (fbo1 , fbo2 , ..., fbon)

T , (4.17)

where Fbi is the feature vector extracted prior the movement of the back of the
subject and Fbo is the vector extracted after the movement of the back of the sub-
ject. Lastly, a geometric transformation (as indicated in the diagram in Figure 4.4)
is established using random sample consensus (RANSAC) [139], which removes
outliers to make matching more consistent. The RANSAC algorithm is designed
to handle a high proportion of outliers in the input data. Compared to common
parameter estimation techniques such as M-estimators and smallest value for the
median of the squared residuals (LMedS), RANSAC generates the model param-
eters by using the minimum number of observations (data). While conventional
sampling techniques use as much as possible of the data to obtain an initial solu-
tion and then proceed to prune outliers, RANSAC uses the smallest set possible
and proceeds to enlarge this set with consistent data points [139].

In our case, the purpose of RANSAC is to estimate transformations from ran-
dom subsets of matched feature pairs. These transformations are then tested
against the full set of matches, and the final transformation is the one that aligns
the highest number of candidate matched feature pairs. For benchmarking, we

96



C
ha

pt
er

4

4.8. Experimental results

Figure 4.4 — Architectures for feature extraction and matching adapted from Noh et al. [133]. The
left panel shows the input HS data corresponding to the two different breathing phases. The middle
panel (white background) depicts the feature extraction, indicating the attention scores assigned to
relevant features (separate blue boxes at the bottom) and used for feature selection. The matched
features are shown as the final output of the system in the right panel (KNN: K nearest neighbor).

compare the markerless approach with the optical-marker based methodology.
The adhesive optical markers, representing the ground truth, are glued at the back
of the subject and easily detected and matched with the described approaches.
The marker detection will serve as a reference to estimate the error made by using
skin-feature detection algorithms (SURF and DELF), as shown in Figure 4.7. Af-
ter the 2D geometric verification, for each matched pair of features, we compute
the Euclidean distance D(xin,xout,yin,yout) between the two different breathing
phases, which results in the following computation:

D(xin,xout,yin,yout) =
√

(xin − xout)2 + (yin − yout)2, (4.18)

where xin and yin are the 2D coordinates of a single matched feature in the first
phase of the protocol and xout and yout are the 2D coordinates for the correspond-
ing feature in the second phase. The mean distance is computed for both SURF and
DELF extracted features and used for performance comparison. The benchmark-
ing of the 2D Euclidean distance between the breathing phases for each detected
optical marker is calculated in the same way as shown in Equation (4.18).

4.8 Experimental results
The techniques described in the previous sections, are applied in order to employ
MSI and HSI in a number of experiments reported in this section. Spectral images
need to be properly preprocessed by performing the required calibration and di-
mensionality reduction (PCA, VGBS, SSSB). Then handcrafted (MSER and SURF)
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Figure 4.5 — Framework for spectral feature detection. The main steps for the multispectral
and hyperspectral image analysis are depicted with references for each block on the main adopted
technique involved in the experiments.

and deep learned (DELF) feature detection methods are applied to detect anatom-
ical features which are matched for localization purpose. Figure 4.5 summarizes
the image analysis framework with the main steps used in the experimental set-
tings of this chapter and their related techniques. The figure should be inspected
in the horizontal direction from left to right so that the chosen combination of tech-
niques for each step becomes apparent. For dimensionality reduction and feature
extraction, we will report on the performance of several options in parallel, which
will become clear from the tables and figures. In order to evaluate the feasibility
of spectral feature tracking on the skin, we perform a number of experiments in
MS and HS images. To build a robust framework, that can be adapted to differ-
ent datasets, we first detect skin features on 30 human subjects at eight different
wavelengths, then we assess the localization error, while simulating a 2D dis-
placement of the skin. Second, we adapt the framework on an HS dataset, where
the experimental protocol aims at mimicking the patient motion that needs to be
tracked in the surgical scenario. In addition, we measure the obtained accuracy
for skin-feature tracking by employing handcrafted local feature algorithms, such
as Speed Up Robust Feature, (SURF) [130], [140] and Maximal Stable Extremal
Region (MSER) [99]. These methods were already presented in Chapter 3 and are
capable of detecting veins, moles and skin patterns. The handcrafted descriptors
are compared with the learned local feature detection algorithms.

This section first presents the experimental results and evaluation datasets
of MS skin-feature tracking (Section 4.8.1). Next, the experiments and results for
the HS acquisitions will be presented (Section 4.8.2). Finally, the benchmarking
between the HSI representation and RGB color space is evaluated in detecting
and localizing the anatomical features (Section 4.8.3). Figure 4.6 visualizes some
MS acquisition examples where the veins start to become visible from 680 nm
wavelength onwards.

4.8.1 Feasibility of multispectral feature detection
An overview of the enclosed steps of the multispectral feature detection algorithm
is visualized in Figure 4.7. The three main steps are: (1) finding the most infor-
mative wavelengths (Section 4.3), (2) image preprocessing to enhance the desired
features (Section 4.4 and 4.5) and (3) feature detection with tracking for one-to-one
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Figure 4.6 — Multispectral acquisitions. Multispectral images acquired at 8 wavelengths for four
subjects.

Figure 4.7 — Patient tracking algorithm based on multispectral image analysis.

matching (Section 4.6 and 4.7). A median filter is applied to the entire dataset for
speckle removal. Then, to improve the quality of the feature detection, Gaussian
filtering is applied for noise reduction and the removal of high-frequency compo-
nents that could degrade the feature detection stage. Contrast-limited adaptive
histogram equalization (CLAHE) [95] is used to enhance the desired features, to
improve contrast and to redistribute the image intensities.
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(a) (b)

Figure 4.8 — Image preprocessing to enhance skin and veins. (a) Example of preprocessed skin
image at 430 nm and (b) at 970 nm.

Two examples of preprocessed images from the same subject at different wave-
lengths, are shown in Figure 4.8. To detect the skin features consistently after the
applied rigid transformation, we consider a pair of frames at different times It
and It+∆t . At the time t + ∆t, the image has undergone a rigid transformation.
For every image, a corresponding set of Nt and Nt+∆t features are extracted and
stored in a dedicated feature vector Ft and Ft+∆t . Here, the MSER and SURF
methods have been applied for feature design and detection. The locally most
stable feature vectors are returned as MSER detection result. An example of MSER
feature detection is shown in Figure 4.9 for two different wavelengths. It can be
observed that larger and smaller blobs occur for parent and child nodes, respec-
tively. It should be noted that the most stable detected region is associated to
the deepest tree node, as described in Section 3.4. As described in Chapter 3, the
SURF algorithm calculates an approximation of the Hessian matrix H(p, σ) to find
points of interest. An example of SURF feature detection is shown in Figure 4.9.
For MSER and SURF, each feature vector is then stored in a specific structure and
defined as an MSER object (location, axes, orientation, pixel list of every detected
blob) or SURF object (location, orientation, strength of detected feature computed
as det(H(p, σ)), sign of Laplacian, scale of detection). The involved properties of
the object definitions of MSER and SURF are different on several points.

For every designed blob, we extract a feature vector, which is a descriptor
providing information on the pixels related to the blob. The SURF [104] algorithm
is applied to extract the feature vector. In the feature extraction phase, the MSER
detected object is automatically converted into a SURF object. Using the descrip-
tors, the algorithm finds a matching between the detected features before and
after the applied (motion) translation, Ft and Ft+∆t . For this feature matching, the
adopted metric is the sum of squared differences (SSD). The algorithm performs
a matching between the feature vectors Ft and Ft+∆t

and provides also the cor-
respondences between them. The matching algorithm returns two vectors with
the indexes related to the matched features only. After matching, some features
can show a translation that can be far from the applied transformation. This can
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(a) (b)

Figure 4.9 — Blob-based feature detection. Blob detection on a skin multispectral image by using
MSER at a wavelength of (a) 430 nm and (b) 970 nm.

(a) (b)

Figure 4.10 — Feature matching and selection after outlier removal. (a) Feature matching from
images taken at two different times (before and after the simulated movement of the scanned subject),
when SURF is applied as a feature detection algorithm. (b) Feature matching from images taken at
two different times after the outlier removal stage.

occur because multiple features can have similar descriptors. Therefore, a number
of outliers Nout are discarded and two new feature vectors containing the inliers
are then created, which are specified by:

F(t) = (f(t)1, f(t)2, ..., f(t)N−Nout), (4.19)

F(t+∆T) = (f(t+∆T )1, f(t+∆T )2, ..., f(t+∆T )N−Nout). (4.20)

The M-estimator Sample Consensus (MSAC) [105] algorithm, which is a variant of
the Random Sample Consensus (RANSAC) algorithm, is used to exclude outliers.
Figure 4.10 visualizes an example of an image containing outliers (Figure 4.10) and
inliers (Figure 4.10(b)). In the following subsections, the experimental evaluation
with the presented approach is described. Furthermore, a benchmarking solution
is discussed afterwards and used as baseline reference.

101



C
hapter4

4 . H Y P E R S P E C T R A L I M A G E A N A LY S I S F O R M A R K E R L E S S T R A C K I N G

Wavelength MSER

430 nm
Step size for threshold= 1.6
Region size = [100,...,1000]
Area Variation extremal regions = 0.35

970 nm
Step size for threshold = 3
Region size = [1000,...,50000]
Area Variation extremal regions = 1

Table 4.3 — Control parameters for MSER at 430 nm and 970 nm wavelengths.

Wavelength SURF

430 nm
Feature threshold= 500
Number of octaves = 2
Number of scale levels per octave = 4

970 nm
Feature threshold = 1300
Number of octaves = 4
Number of scale levels per octave = 3

Table 4.4 — Control parameters for SURF at 430 nm and 970 nm wavelengths.

A. Multispectral image data evaluation
A group of 30 voluntary participants with different age, sex, skin type, height and
weight were included in this study. For each subject, two anatomical areas were
imaged: the lumbar area and the cervical area of the back of the human body. For
each area, 6 images, referring to 6 individual wavelengths, were acquired. The
dataset includes the following wavelengths (λ): 430 nm, 550 nm, 680 nm, 740 nm,
850 nm and 970 nm. The acquisitions are performed with a commercial multi-
spectral camera system based on a rotating filter wheel (6 narrow-band filters),
combined with a VIS-NIR CCD sensor (5 Mpixels) through a fixed optical lens
(30.5 mm, f1.4/12). In this research, the available data did not include motion.
Motion can result from breathing, or caused by the surgeon during the surgical
procedure. We have simulated rigid skin motion by performing a simple image
translation. For each image, two frames are cropped, extracted and used to sim-
ulate a translation of 90 pixels, in the x- and y-direction. Then, the height of the
corresponding anatomical area is measured and estimated to be 55 mm, which
is empirically derived from considering the region of interest in multiple experi-
ments. By exploiting the anatomical size of the area and the image resolution, it
is possible to compute the pixel size in spatial dimensions. More specifically, we
have found that pixel py = 40 µm and when assuming a squared pixel: py = px.
Since the applied translation is 90 pixels in both x, y-directions, we have a diagonal
shift of td = 5 mm. The proposed rigid translation has been chosen to facilitate
a preliminary study case. The results will provide the basis for a more complex
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Figure 4.11 — Detection of multispectral features for multiple wavelengths on the entire dataset.

scenario where a non-rigid displacement may be eventually simulated. As can
be observed from Figure 4.11, MSER and SURF show a higher amount of features
detected at wavelengths 430 nm and 970 nm. We have found that MSER is able to
detect more features at 970 nm, while SURF detects more features at 430 nm (Fig-
ure 4.11). Furthermore, the lumbar area has yielded a larger amount of features
compared to the cervical area, as shown in Figure 4.11. For these wavelengths,
we have customized the parameters for MSER and SURF, in order to maximally
support natural feature tracking (such as moles or veins), as listed in Tables 4.3
and 4.4. For each tracked feature, we compute the difference between the applied
translation from the coordinates of the detected features, which results in ϵx(i, j),
and ϵy(i, j), the error in x- and y-directions of the feature i originated in the im-
age j. To compute the tracking error, we subtract the translation components tx,
ty from the detected feature positions, in the translated image. This is specified
by:

(tx + ϵx(i, j), ty + ϵy(i, j)) = (x(i, j)(1), y(i, j)(1))− (x(i, j)(2), y(i, j)(2)), (4.21)

where (x(i, j)(n), y(i, j)(n)) are the coordinates of the feature i in the image j for
the frame n and (ϵx(i, j), ϵy(i, j)) the errors in x- and y-directions in tracking the
feature i in the image j. The Euclidean distance for the feature i in the image j of
the dataset is computed by:

E(i, j) =
√

(ϵx(i, j))2 + (ϵy(i, j))2, (4.22)

where ϵx(i, j) and ϵy(i, j) are the tracking errors in x- and y-directions, respectively,
for the feature i of image j. Computing the error for each feature, we can calculate
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Figure 4.12 — Frame extraction for motion simulation by employing mean shift tracking.

the mean error of all detected features, which results in 0.257 pixels at 430 nm and
0.562 pixels at 970 nm with SURF and 0.445 pixels at 430 nm and 0.973 pixels at
970 nm with MSER.

B. Mean shift tracking
We benchmark our feature tracking approach by comparing it with the Mean Shift
Tracking method (MST) [141]. The mean shift algorithm is a statistical method that
finds local maxima in a probability density function. The probability density func-
tion is measured in a subimage (window) and its surroundings (also a window in
size). The window inside the image moves in the direction of a local maximum
until it is reached. After this, the maximum is determined typically to be in the
middle of the window. Figure 4.12 visualizes the MST algorithm. The window
moves in the direction of the mean shift vector, represented by the red arrow. In
this simple case, the probability density function is higher in the area where more
points are located and lower where less points are located. The points can be seen
as a mean representation of pixel intensities in a certain area. A probability value
P (u,v) is assigned to every pixel u = (x, y), depending on its color v. Then, the
gradient is estimated and the mean shift vector is computed, that points to the
center of mass of a region in the image. After having a representation of a frame
as a two-dimensional probability distribution, the mean shift algorithm can be
applied. To set the algorithm, the following parameters have been determined:

• Block size: 512 x 512 pixels.

• The “ratio threshold” used for rejecting ambiguous matches.

• Computation time: 9 sec.

To apply the mean shift algorithm, it is necessary to represent the data as a prob-
ability distribution, using color histograms as a target. The probability density
function is computed using the normalized color images. Therefore, to obtain
those images, the spectral images of three relatively low wavelengths for RGB
are chosen (430 nm, 550 nm, 680 nm) and accumulated, and likewise the spectral
images of three larger wavelengths (740 nm, 850 nm, 970 nm) are combined in
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(a) (b)

Figure 4.13 — Derivation of two color images for the mean shift algorithm. Synthetically generated
color images by combining spectral images at (a) 430 - 550 - 680 nm and (b) 740 - 850 - 970 nm for
the lumbar areas of two different subjects.

Method accuracy 430 nm 970 nm

SURF 0.257 0.562
MSER 0.446 0.973

MST (manual) 4.076 6.272
MST (random) 9.708 9.912

Table 4.5 — Comparison of the obtained accuracies of several tracking methods, at two different
wavelengths (values expressed in the amount of pixels).

order to obtain two color images (Figure 4.13), where normalization is applied
after the accumulation. As can be observed, Figure 4.13(a) is based on visible
wavelengths, thus enhancing superficial skin features (e.g. moles and hair), while
Figure 4.13(b) is formed by more infrared wavelengths, thus scanning deeper
in the sub-cutaneous layers and showing blood vessels more clearly. At first, a
block of 512×512 pixels is randomly selected and then, a block containing visible
features (moles, veins), is selected manually. Only the lumbar area is used for
this experiment in both images, but similar results are expected to appear for the
cervical area. It should be noticed that MST is not able to perform the computation
in several cases, because it often terminates in a saddle point (e.g. when a really
small block is selected). In the previous case, the measurements are discarded.

The obtained average computation time for the preprocessing, described in
Section 4.3, is below 0.5 sec. The average time for our algorithm (Section 4.8.1)
is 2.85 sec. for images at 430 nm and 3.16 sec. for images at 970 nm. Since the
MST algorithm works with color images, the computational time is tripled for
creating a fair test environment. The accuracy reached by MST is 4.076 pixels at
430 - 550 - 680 nm and 6.272 pixels at 740 - 850 - 970 nm for manually selected
features, while for random features the accuracy is 9.708 pixels at 430 - 550 - 680 nm
and 9.912 pixels at 740 - 850 - 970 nm. The measured accuracy results are listed in
Table 4.5.
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4.8.2 Skin-feature detection with HSI
This section applies the same conceptual framework as previously used for MS
images, but now for the processing of the HS images. In this case, HSI is employed
for the detection of the skin features and the matching of those features to estimate
the 2D-Euclidean distance after one-to-one-matching. Here, we also perform a
human subject study and for each subject, we consider a pair of HS data cubes
obtained during different breathing phases. The snapshot HS camera system de-
scribed in Section 4.2 (available from Quest Medical Imaging B.V., Middenmeer,
The Netherlands) has been prototyped during this research and used for perform-
ing this study (Section 4.2). The snapshot HS system is intended to acquire both
spatial and spectral information with one single exposure on the area detector.
Compared to the conventional spectral imaging modalities, the applied snapshot
HS system is simple and robust to motion artifacts. The system uses a white-light
source to provide illumination and collects the skin-reflection images [10]. To
uniformly illuminate the field of view, the camera is mounted on a tripod with a
500-W 240-V halogen light (Philips Lighting B.V., Eindhoven, The Netherlands),
fixed 10 cm above the camera. In this study, the distance between the camera and
the subject is 20 cm, resulting in a 15×15-cm field of view (Figure 4.1(a)). We have
developed a computer vision framework to perform skin-feature detection and
matching for different breathing conditions of a subject. The framework is based
on the study described in the previous section, and consists of preprocessing the
acquired images, detecting the skin features and estimating the feature location
with respect to four adhesive optical markers, glued in the field of view. The glued
markers represent the ground truth in this study.

We first apply band-selection algorithms and then show how they can outper-
form band-extraction methods. Then, we evaluate two different approaches for
skin-feature detection, applying a handcrafted local feature algorithm and adapt-
ing a deeply learned local feature detection algorithm to our case. Afterwards, we
employ the system on 17 healthy subjects. The error is assessed using adhesive
optical markers on the skin of the volunteers, to measure the skin displacement.
An overview of the designed framework is depicted in Figure 4.14. This section
presents the results obtained with the proposed processing framework, as well as
the overall results by applying the band-selection algorithms. The experiments
also include a comparison with the results found when employing RGB images,
transformed from the HS radiance data. A schematic view of the experimental
setup is visualized in Figure 4.15.

A. HS dataset evaluation
A human subject study was performed in the laboratory of the Video Coding
Architecture (VCA) Research Group (Eindhoven University of Technology, Eind-
hoven, The Netherlands). Figure 4.16(a) illustrates the experimental setup. Each
subject provided written informed consent prior to participating in this study,
which was approved by the ethical committee (METC) of the Maxima Medi-
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Figure 4.14 — Schematic diagram of complete HS framework. The hyperspectral (HS) data cubes
are preprocessed and used for feature detection and matching, in order to estimate the 2D feature
localization. The 2D Euclidean distances between the matched inliers in the corresponding breathing
phases are computed and compared with the Euclidean distances found with the optical markers,
which represent the ground truth in this study.

Figure 4.15 — Schematic view of the hyperspectral acquisition set up. At the left, the setup is
depicted and consists of a light source, a 41-channel hyperspectral camera and an examination table
(shown at the right).

cal Centre (Eindhoven, The Netherlands). Seventeen healthy subjects, aged 26–
35 years old, participated in the study. Each volunteer was asked to follow the
following protocol: (1) inhale and hold the breath for approximately 3 sec., (2)
exhale and hold the breath for approximately 3 sec. For each subject, in every
phase of the experimental protocol, one HS data cube is acquired, setting the ap-
propriate exposure time for every sensor channel. Four adhesive optical markers
in the field of view represent the ground truth in the study.

In order to determine the 2D location of the markers, we detect and map the
four optical markers before and after the breathing phase. Then, during the skin-
feature detection phase, the images are cropped and the markers are disregarded,
as shown in the middle, black box in Figure 4.16(b). The HS raw image data and
white reference images are normalized to correct for the dark current influence
and illumination intensity differences. To perform initial calibration, prior to every
measurement, the white references are acquired by positioning a white reference
sheet in the field of view, while the black references are measured by keeping
the camera shutter closed. It is important for the white reference sheet to cover

107



C
hapter4

4 . H Y P E R S P E C T R A L I M A G E A N A LY S I S F O R M A R K E R L E S S T R A C K I N G

Figure 4.16 — (a) View on experimental setup. (b) The back of the subject is scanned by using
optical markers as references (see the magnified view box).

the whole field of view, to correct for the white light because the sensor is tiled,
whereas the white reference correction needs to be performed for the complete
field of view on all the pixels in the sensor.

B. Image preprocessing and feature detection results
The proposed system is evaluated by assessing the 2D error made by estimating
the 2D feature location using handcrafted and learned features. Thirty-four HS
data cubes, from 17 healthy volunteers, were acquired using the snapshot HS cam-
era (at two breathing phases). For each data cube, the dimensionality-reduction
step is used and the features are detected by using the described approaches, such
as PCA, VGBS and SBSS. Finally, feature matching is performed to estimate the 2D
feature location after breathing. The distances when the optical markers are de-
tected are computed and the location errors made when the skin features (instead
of markers) are calculated and expressed in millimeters (mm). Both SURF and
DELF are used as feature detection and extraction algorithms. A pre-trained DELF
network for learned feature extraction is deployed. The network is trained with
landmark images, which are different from HS images. However, these experi-
ments, using features trained on different images, merely serve as a preliminary
test of the system. When SURF is selected as feature detection algorithm, a feature
threshold equal to 500 is employed (two octaves and four scale levels per octave).

C. Band extraction and selection methods
In order to further illustrate the importance of selecting the most meaningful
bands, the obtained accuracy is reported in Table 4.6, when the PCA, VGBS and
the SBSS approaches are employed. The VGBS algorithm is evaluated for dif-
ferent numbers of bands (5, 10, 15), but only the results obtained with 10 bands
have been reported, because they are found to be the most competitive results.
When 10 bands are selected, the mean error for estimating the 2D displacement
is 0.42 (±0.05) mm when SURF is used as a feature detection algorithm, while an
error of 0.27 (±0.06) mm is found when DELF is employed instead. When 5 and
15 bands are selected, the error increases by 3% and 1%, respectively, when SURF
is applied, and a similar error growth of 3% is found with DELF.
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The plots provided in Figure 4.17 show the detailed results obtained with the
VGBS algorithm, where a side-by-side comparison is enabled in terms of number
of bands selected. For the SBSS algorithm, the output number of the selected
bands is determined by the input HS image itself [128] and selected bands cannot
be ranked. Due to the similarity in the nature of the input images, the number
of selected bands using the SBSS method is equal to 16, 15 and 14 for five, six
and four subjects, respectively. As an example, Figure 4.18 illustrates the selected
bands with the optical markers included in the image views for Subject 8 when
the SBSS algorithm is applied. It should be noted that the optical markers are more
distinctive and clear compared to skin features, which require a proper processing
when employed for markerless and anatomical feature detection. Figure 4.19(a),(b)
show the matching results when PCA is used as a band extraction algorithm for
SURF and DELF, respectively. Similarly, Figures 4.19(c) and (d) portray the results
when the band selection algorithms (VGBS and SBSS) are used for SURF and DELF,
respectively. The matched features, which are detected using DELF, are depicted
in red, and those detected by SURF are delineated in green. After performing the
geometric verification with RANSAC to ensure sufficient inliers, the region found
after the breathing of the subject is drawn in red, as in Figure 4.19(a), at the right.
As visualized in Figure 4.19(a)–(d), a higher amount of corresponding inliers is
found when DELF is employed for both band extraction and selection.

D. 2D localization error
The average errors based on the calculation of the 2D Euclidean distances between
the matched feature locations are reported in Table 4.6, presenting the performance
of the deep local feature approach and the SURF method. The 2D error averages
per subject are calculated for three different band extraction/selection algorithms.
Overall, the mean error values of 0.39 (±0.08), 0.27 (±0.07) and 0.25 (±0.05) mm are
found when deep features are detected using PCA, VGBS and SBSS, respectively.
The mean errors of 0.45 (±0.07), 0.42 (±0.07), and 0.30 (±0.08) mm are found
when handcrafted features are detected using PCA, VGBS and SBSS methods,
respectively. We observe a reduction in error performance of slightly more than
0.10 mm when using the band-selection algorithms compared to PCA for both
feature extraction algorithms (SURF and DELF). It can be observed that DELF
is capable of detecting skin features, which are clearly more visible when using
the original bands, while the distinctive information is partially lost when PCA is
used as dimensionality-reduction algorithm.

Overall, the results shows higher performances when DELF is applied in com-
bination with the SBSS method. The analysis of the number of inliers is plotted
in Figure 4.20, revealing a higher amount of matched features for the majority of
subjects, to detect and match features after outlier removal by using RANSAC.
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(a) SURF, 5 bands (d) DELF, 5 bands

(b) SURF, 10 bands (e) DELF, 10 bands

(c) SURF, 15 bands (f) DELF, 15 bands

Figure 4.17 — Boxplot results of the mean errors for individual subjects, employing the VGBS
algorithms with different numbers of bands. (a) 5 selected bands using SURF. (b) 10 selected bands
using SURF. (c) 15 selected bands using SURF. (d) 5 selected bands using DELF. (e) 10 selected
bands using DELF. (f) 15 selected bands using DELF.
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Figure 4.18 — Illustration of 10 selected bands for Subject 8 including the optical markers, used
as ground truth in this study. The bands are selected by using the SBSS algorithm [128] applied to
our dataset. Note the difference in clarity between markers and the smooth skin feature.
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Figure 4.19 — Detected and matched features using combination of SURF and DELF feature
detectors with PCA and VGBS algorithms. (a) SURF correspondences (green) after RANSAC
geometric verification for Subject 3 when PCA band extraction is used. The two images correspond to
the acquired images during inhalation and exhalation for the second principal component. (b) DELF
correspondences (red) after RANSAC geometric verification for Subject 3 with PCA band extraction.
The two images correspond are chosen in the same way as under (a). (c) SURF correspondences
after RANSAC geometric verification for Subject 3 (≈590 nm) using the band-selection algorithms
VGBS and SBSS. (d) DELF correspondences after RANSAC geometric verification for Subject 3
(≈590 nm) with VGBS and SBSS band selection.

Figure 4.20 — Barplot presenting the average number of matched inliers per subject when the
band-selection algorithms are applied. The number of matched inliers using SURF and DELF are
indicated and visualized in green and red, respectively.
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Handcrafted Features (SURF) Deep Local Features (DELF)

PCA VGBS SBSS PCA VGBS SBSS

Subject 1 0.40 0.39 0.25 0.38 0.25 0.22
Subject 2 0.41 0.39 0.21 0.46 0.25 0.21
Subject 3 0.44 0.38 0.20 0.32 0.24 0.24
Subject 4 0.52 0.42 0.34 0.47 0.40 0.32
Subject 5 0.60 0.41 0.28 0.46 0.29 0.35
Subject 6 0.57 0.42 0.30 0.30 0.28 0.20
Subject 7 0.46 0.41 0.28 0.35 0.25 0.15
Subject 8 0.50 0.44 0.30 0.40 0.26 0.19
Subject 9 0.44 0.43 0.34 0.40 0.27 0.23
Subject 10 0.47 0.41 0.31 0.60 0.24 0.28
Subject 11 0.41 0.44 0.23 0.37 0.24 0.25
Subject 12 0.47 0.48 0.45 0.30 0.27 0.19
Subject 13 0.34 0.44 0.34 0.46 0.27 0.31
Subject 14 0.47 0.43 0.20 0.35 0.30 0.28
Subject 15 0.34 0.45 0.20 0.37 0.28 0.20
Subject 16 0.45 0.44 0.44 0.40 0.31 0.25
Subject 17 0.44 0.38 0.41 0.31 0.32 0.27

Table 4.6 — Results of the measured mean error per subject (in mm) in 2D skin-feature localization
for PCA, VGBS, and SBSS-based band extraction and selection methods. Handcrafted local features
are compared with deep local features when PCA (3 principal components extracted) and band-
selection algorithms are used (10 selected bands).

4.8.3 RGB benchmark
HSI enhances the ability to reveal features that are not visible by the human visual
system. In order to prove and exploit the advantage of sampling throughout a
wider spectral range from the visible to the near-infrared light range, the obtained
results are compared with the results found when extracting features from RGB
color images synthesized from the HS data cubes. The advantages of HSI com-
pared to standard RGB are deeper tissue penetration and wider spectral coverage.
Aiming at a comparison with standard RGB, we synthesize and transform the HS
radiance data to RGB color images. The color images are then used to detect skin
features. To render and visualize HS images in a uniform RGB color space, we
adopt the approach of Foster et al. [142]. This methodology introduces image trans-
formation to the application of color metric representations and color rendering. A
color space for rendering is needed to visualize a spectral image [142] [143]. With
the RGB color space, the radiance values are converted to CIE-XYZ tristimulus val-
ues X, Y, Z [143]. Then, the RGB values are obtained by a linear transformation,
which is formulated by:RG

B

 =

 3.2406 −1.5372 −0.4986

−0.9689 1.8758 0.0415

0.0557 −0.2040 1.0570

XY
Z

 . (4.23)
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Figure 4.21 — Synthetic RGB images obtained from HS data cubes with optical markers super-
imposed on them. (a) RGB (Red Green Blue) color image obtained from the hyperspectral radiance
image of Subject 1. (b) Clipped version of image (a) with the clip level selected from the brightest
region.

Figure 4.22 — DELF correspondences after RANSAC geometric verification for Subject 3 in the
RGB-transformed image.

Figure 4.21 shows an example RGB rendering of an HS image. As suggested by
Le Moan et al. [144], to improve appearance, the RGB levels of the image can be
clipped to the level of a less specular but still bright region and then scaled [145].
The obtained result is visualized in Figure 4.21(b). Clipping can lead to artifacts
(such as specular glare), which can be reduced by adopting a further algorithm
that preserves the relationship between different colors [146]. The clipped image
is used to detect and match the 2D skin features with the method described in
Section 4.6. The results are then evaluated and compared with the results found
by using the HS images. For each subject, the transformed data (Figure 4.21)
are employed to detect the features during the different breathing phases and to
estimate the 2D feature locations. The results of the RGB-transformed color images
are illustrated in Table 4.7. The amount of matched inliers used for geometric
verification is not sufficient to perform robust feature matching (number of inliers
< 2). An error larger than 1 mm is found in four cases. The algorithm fails when
applied to Subjects 7, 8, 9 and 12. This means that in the geometric verification
step, matched features could not be found. Overall, for the remaining 9 patients
the combination of HSI with a detection algorithm outperforms the RGB-based
detection (see Table 4.7 and 4.8 ). Apart from the noise introduced by the RGB
transformation, it is easier to track skin features in the spectral images, which
are enhanced when light interacts with deeper tissue layers. It is clear that HSI
is much more powerful in identifying high amount of skin-surface features with
smaller errors compared to conventional RGB imaging. Figure 4.22 illustrates an
example of feature matching when the rendered RGB image is used for Subject 3.
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Architecture Error Subject No.

1 2 3 4 5 6 7 8 9

Error (RGB–SURF) (mm) 0.76 0.40 0.32 0.67 0.23 n.a.a n.a.a n.a.a 0.89
Error (RGB–DELF) (mm) 0.96 0.91 0.96 0.67 0.20 n.a.a n.a.a n.a.a 0.73

Error (HSI–DELF–SBSS) (mm) 0.22 0.21 0.24 0.32 0.35 0.20 0.15 0.19 0.23
a Not applicable. The algorithm failed when applied to Subjects 7, 8, 9, identified as n.a.

Table 4.7 — Results of 2D mean error values per subject (from Subject 1 to 9) for all the detected
skin features using RGB-transformed and HS images. For a better comparison, at the bottom row,
the found results are based on HSI images combined with the DELF and SBSS algorithms.

Architecture Error Subject No.

10 11 12 13 14 15 16 17

Error (RGB–SURF) (mm) 1.35 n.a.a 1.69 1.68 1.29 0.86 0.97 0.65
Error (RGB–DELF) (mm) n.a.a n.a.a 1.24 1.51 1.35 0.48 1.55 1.04

Error (HSI–DELF–SBSS) (mm) 0.28 0.25 0.19 0.31 0.28 0.20 0.25 0.28
a Not applicable. The algorithm failed when applied to Subject 12, identified as n.a.

Table 4.8 — Results of 2D mean error values per subject (from Subject 10 to 17) all the detected
skin features using RGB-transformed and HS images. For a better comparison, at the bottom row,
the found results are based on HSI images combined with the DELF and SBSS algorithms.

4.9 Discussion
A. Tracking for surgical guidance: Because HSI is scanning beyond the skin sur-

face and the human visual spectrum, it can be beneficial for surgical guidance
when accurate and continuous patient tracking is required. The currently available
surgical navigation systems use either invasive or noninvasive reference markers
or dynamic reference frames for patient-position tracking. However, tracking can
be compromised if the markers are covered or displaced during surgery, resulting
in navigational inaccuracies. Thus, using inherent skin features instead of visual
markers can offer a potential improvement of patient-position tracking and ro-
bustness for surgical navigation. To evaluate this potential, we have presented
two human-subject studies where MSI and HSI are employed to detect and match
features. In the first of these studies, the subject motion is simulated, while in the
second the subject is breathing normally.

A1. MSI for skin-feature detection: MSI demonstrates the potential to detect
and track features (blobs) that mostly represent natural landmarks. The results
have shown that the most informative wavelengths are λ1 = 430 nm and λ6 =
970 nm. We have found that at 430 nm, it is easier to detect superficial skin features,
since this wavelength gives more information about upper skin layers (cutaneous
tissue). At 970 nm, it is possible to enhance veins and have more information about
deeper skin layers (subcutaneous tissue). We have applied MST as benchmark
algorithm, obtaining lower accuracies that are measured to be approximately
4 pixels at 430 nm and 6 pixels at 970 nm.
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A2. HSI for skin-feature detection: In the HSI study, the 2D displacements be-
tween matched skin features are measured and benchmarked with adhesive opti-
cal markers. A mean error of 0.25 mm over all subjects is found when deep local
features (DELF) are detected, while the system performance decreases when SURF
is used as a handcrafted feature detection algorithm. Compared to MS images,
the HS images involve large data sizes in the range of Gigabytes, requiring high-
performance computing power to facilitate a feasible processing time for feature
detection [147]. To increase the feasibility of the approach, we have evaluated
different algorithms (PCA, SBSS, VGBS) for the extraction of the most informa-
tive bands to perform skin-feature detection and matching. We have found that
the SBSS method, which selects the spectral bands based on the number of local
extrema, gives the best results. One of the major reasons for this result is that the
conceptual idea of finding extreme local points is the basis for a scale-selection
algorithm that is employed to find local features in an image. Furthermore, we
have further validated HSI with synthesized RGB color imaging, and found that
the 2D skin feature-localization accuracy clearly decreases with RGB as reported
in Table 4.7.

B. Clinical applicability considerations: It should be noticed that the image acqui-
sition system does not operate in real time. A postprocessing phase is required
to create the HS data cube from the snapshot camera system for each image ac-
quisition. However, in an in-vivo clinical scenario, a camera setting is required
which should enable the construction of the data cube during the acquisition
phase to enable image processing on HS data. This facilitates real-time detection
and allows the usage of skin features in the clinical setting to directly provide
navigational feedback. It should be noticed that there are two major stages, which
are application/acquisition and data processing. This chapter has focused mostly
on the data processing rather than data acquisition and has contributed to make
this processing efficient for real-time operation. An future step is to redesign the
data acquisition procedure and optimize the illumination intensity, which will
create the desired improvements needed for real-time clinical application.

C. Technical limitations: The penetration depth of the HSI camera used in this
study has been found to be hundreds of micrometres to a maximum of 1 mm,
depending on the wavelength [67]. This limits its clinical applicability to the super-
ficial layers of the target tissue, although this appeared to be suitable for the scope
of this study. Besides this technical limitation, there is also a cost consideration.
An important trade-off can be considered, in the sense that using an HS camera
in a broad wavelength range (VIS-NIR) would increase the cost of the procedure.
The conclusion is that more spectral information incurs higher system costs. A
third element in this work is that we have computed a 2D displacement of the
skin features. In future work, a 3D stereo-vision scenario may be of interest for
capturing the 3D location of the skin features, which can be attractive for higher
performances in 3D patient motion compensation.
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4.10 Summary & conclusions
This chapter has focused on designing a framework for tissue tracking by ex-
ploiting spectral imaging. MSI and HSI are investigated to detect on-body salient
feature points and find reliable correspondences after skin displacements due
to breathing. This system addresses several requirements: (1) dedicated spectral
image acquisition to study the effectiveness on capturing the salient features, (2)
image analysis framework to detect and match skin features, (3) accuracy assess-
ment by using the optical markers as ground truth.

To meet the above requirements, first, an MS camera is employed for perform-
ing a feasibility study and to assess the potential of MSI for extracting anatomical
features. MSI is capable to scan up to 10 image bands, while HSI can scan up
to hundreds of bands, providing a near continuous spectral signal. The findings
of the MSI study proved that a limited amount of informative image bands is
provided (we found 10) to design informative anatomical features on the skin.
Furthermore, a snapshot HS camera that enables the scanning up to 41 bands
is exploited and applied to perform a human subject study. These methods are
briefly compared below.

A. MSI to reveal upper-layer skin features
MS skin-feature tracking offers an extension to current tracking systems, with
the aim of optimal patient motion compensation and reliable surgical guidance.
For feature detection, we have evaluated the MSER and SURF algorithms, while
applying a rigid translation for mimicking simple patient motion. To this end, we
have investigated the lumbar and cervical images from the back of the human
body, collected with an MS camera. In conclusion, we have proven that tracking
of natural landmarks is successfully realized and can serve as a further step to-
wards making complicated surgeries simpler and more efficient, from a clinical
prospective.

B. HSI to reveal deeper-layer skin features
A human subject study acquiring HS images from the back of the body is per-
formed, showing that HSI allows the detection of on-body salient feature points
and the finding of reliable correspondences after skin displacements due to breath-
ing. Optical markers have been used as ground truth, where we have found on
average an overall error of 0.25 mm in computing 2D feature locations when deep
local features are detected, This outperforms the handcrafted SURF method by
slightly more than 5%. A benchmark study between the ability to detect skin
features with HS and RGB images shows that HSI offers a richer signal for identi-
fying skin features than conventional RGB imaging. In several cases, the amount
of matched features in RGB images is not sufficient to perform a robust matching.
This means that the light interaction with subcutaneous tissue is captured by HSI
and absent in the RGB camera case.
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In this chapter, spectral imaging has been exploited to develop a markerless
tracking system, which has been evaluated on human subjects and benchmarked
with reference markers. A submillimeter accuracy has been reached, achieving
the feasibility of a possible integration of this technique in the clinical setting. As
part of a minimally invasive surgery setting, HSI has demonstrated the potential
to reveal unseen skin features and enable markerless guidance. In this scenario, as
described in Chapter 2, HSI should be further investigated to fully exploit its bene-
fit of penetrating and scanning deeper in the tissues, capturing not only structural
but also biochemical changes in the anatomy. Also, considerations on the clinical
applicability of this technique on scanning depth and costs should be addressed.
In this way, surgeons will fully leverage the integration of HSI in the operation
room, as an image-guided tool for different types of surgery, gaining confidence
and a more extensive validation of this novel technology.

Chapter 3 and 4 have extensively investigated and developed frameworks for
omitting the usage of reference markers during image-guided surgery. We have
proven the feasibility of skin-feature tracking with optical imaging, posing the
basis for a further study on applying HSI in the field. In these chapters, we have
observed that HSI offers a powerful method for characterizing human tissue. This
property may also be very attractive for other clinical applications. In the next
chapter, we will investigate such clinical applications focusing on the use of HSI for
tissue characterization during image-guided surgery. This could have a substantial
impact on surgical oncology applications, where real-time histological information
is highly valuable. In this context, HSI may replace invasive conventional histology
assessment by performing live optical biopsy.
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“A ship should not ride on a single anchor, nor life on a single hope.”
Epictetus
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er 5 Revealing cancerous features

to guide surgery

5.1 Introduction
The previous two chapters have addressed a relevant medical use case of the
methods proposed in this thesis. The main objective of these chapters focused
on improving the surgical guidance by performing accurate spinal surgery using
optical and hyperspectral imaging (HSI). Chapter 4 presented the results obtained
in a human hyperspectral (HS) database on applying HSI for patient tracking in
spinal surgery. The obtained results have shown the main characteristics of HSI in
providing a facilitating tool for surgical guidance and they enable an improvement
in patient tracking due to the high amount of robust and reliable skin features
captured by the HS system.

During minimally invasive surgery (MIS), computer-assisted systems augment
the surgeon’s vision and safely guide the surgical procedure. The principles and
usage of HSI are that it enhances the visual inspection in critical forms of surg-
eries like neurosurgery, overcoming the drawbacks related to reference frames or
markers, such as occlusion during surgery due to patient bleeding and surgical
liquids. We have proven the ability of HSI in visualizing anatomical features, such
as vascular structures, that might help the surgeons to visualize tissue under the
blood that cannot be seen by the human eye. In the medical field, the ability to
aid the surgeon in visualizing anatomical structures, can improve the surgical and
diagnostic outcome in the operating room.

The second medical use case, addressed in this thesis, is covered in this and
the subsequent chapter, and involves the exploitation of HSI during surgical guid-
ance for tissue characterization. The reflectance-based technology of HSI captures
diffuse reflectance spectra across a wide range in the electromagnetic field going
beyond the visible spectrum. In this way, it is possible to identify tissue types
(e.g. tumor tissue) and expedite surgical procedures. Characterizing tissue types
is crucial for surgical oncology procedures during which tumor tissue should be
identified and eventually resected.

Surgical oncology remains the foundation for cancer treatment, with the main
goal to properly resect the tumor, while preserving the healthy tissues [9]. How-
ever, tumor tissue infiltrates within the healthy tissue and is often indistinguish-
able which means that malignant tissue is left behind after the surgery, so that
second operation is needed to prevent the recurrence of cancer. Therefore, the suc-
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cess of the surgical intervention relies on accurate detection of malignant tumor
boundaries. The rationale of tumor detection with HSI lies in the fact that spec-
tral imaging can distinguish different spectral signatures for healthy and tumor
tissue. The potential of this increasingly popular technology is mainly to provide
a label-free intraoperative feedback to the surgeon for objective assessment of
cancer [148]. HSI in combination with state-of-the-art machine learning and deep
learning algorithms [9], [50] have been used to detect prostate [51], breast [52],
[53], colon [50], [54], oral, tongue [55]–[59], cervix [60], ovarian [149], and skin
cancer [61], [62]. Nevertheless, to the best of our knowledge, human studies based
on colon cancer detection with HSI for image-guided surgery, are quite limited.

This chapter aims at a proof-of-concept study investigating the feasibility of
incorporating HSI in the intraoperative scenario. Although machine learning and
deep learning techniques show great potential for HSI image classification, the
main approach for HS image classification is based on the wavelength spectrum
only [59]. This consideration leaves rooms for improvement when realizing tissue
characterization with HSI, which points to the following challenges for further
research.

• Hyperspectral image processing. A generic computer vision framework entail-
ing training and testing, needs to be adapted and designed for processing
the raw HS data. In particular, the best features for malignant and healthy
tissue discrimination should be first identified and then correctly extracted.

• Hyperspectral-based classification technique. A supervised classification algo-
rithm is required to learn spectral features and develop the appropriate
detection of cancerous tissue.

• Ground truth. A solid ground truth will form the basis for an accurate clas-
sification system. Pathology images should be outlined by an experienced
pathologist and then used as labels for validating the cancer detection.

In order to design a proper image classification system for cancer detection, this
chapter faces the main challenges on preprocessing correctly ex-vivo specimens
and extract useful features. Machine learning and deep learning techniques will be
explored, in order to improve the HS feature extraction. To avoid highly complex
feature vectors resulting from the broad spectrum of HSI, attention will be paid
to dimensionality-reduction techniques. The previous chapter has described an
efficient system for detecting discriminative HS features. We transfer the main
outcome for HS band extraction to gather the meaningful spectral and spatial
information for revealing cancerous features.

We focus on two main clinical use cases for cancer detection: tongue and
colon cancer detection. Furthermore, these cases will be addressed with different
machine learning approaches where HSI is utilized for automated tongue-tumor
detection in combination with machine learning-based approaches applied to
mice models [150] (sensitivity of 93% and specificity of 85%) [151], as well as on
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10 oral-cavity squamous cell carcinoma in real patients, where only three tongue-
tumor locations are included [148]. The lack of human studies in tongue cancer
patients and the relatively simple tongue anatomy structure, are leading aspects
for our first study on investigating processing and classification techniques to
build a solid framework for tongue-tumor detection with HSI. We then move on
examining more complex anatomy with DNNs, where literature studies are also
limited, such as colon cancer.

In both cases, there are common challenging aspects that need consideration.
First, noise appears in the HS data, due to the motion artifact induced by the HS
line-scan system. Second, histopathology co-registration is needed for labelling
besides the histopathology annotation. Third, standard classification models can-
not be readily used, but need adaptation to HS image data. This data are typically
available in small datasets, due to the novelty of this technology in the medical
imaging domain. Fourth and finally, the methods used in literature for feature
extraction and learning differ among the existing studies, due to the different
anatomies and model complexity.

Each aspect is analyzed in the following sections. First, the preprocessing steps
are provided in Section 5.3. Next, Section 5.4 presents the HS and pathology regis-
tration algorithms needed for data labeling. Section 5.6 examines the HS image
classification with traditional SVM, and presents the results when applying the
presented method on head & neck (tongue) cancer detection. Similarly, Section 5.7
describes deep learning models applied to the colon cancer dataset in Section 5.8.
Finally, Section 5.9 summarizes the conclusions and main outcomes of this chapter.

5.2 Clinical background and related work
This section briefly discusses the clinical background and related work to the two
use cases: head & neck (of which the tongue is the studied organ) and colon cancer.

5.2.1 Head & neck anatomy and tongue cancer
The tongue consists of a muscolar structure attached to the floor of the mouth [152].
The mucosal surface consists of squamous epithelium where suspicious lesions
should be biopsied to detect carcinoma [152]. As a first step towards exploiting
HSI for tumor detection, we first focus on tongue cancer, due to its relatively sim-
ple anatomy largely represented by muscle. Head and neck cancer (HNC) is the
sixth common cancer by incidence worldwide. About 90% of all head and neck
cancers are squamous cell carcinomas (HNSCC) [80]. Besides the elderly people
with HNC, recently an additional growing group of young patients (<45 years)
with HNSCC have been reported worldwide [153], thereby representing a rele-
vant public health problem. The standard treatment is surgical resection which is
correlated to a good prognosis. However, 40% of the resected tumors show posi-
tive margins, which are part of a total of 85% of inadequate resections, including
close positive margins [154]. Positive tumor margins are associated with disease
recurrence and a higher rate of second surgical operations. Currently, the surgeon
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has to rely on palpation and visual inspection for malignant margin assessment,
followed by histopathology of the surgical specimen [155]. This method is based
on subjective evaluation, which suffers from inter-observer variation. Moreover,
histopathology is time-consuming and exposing the patient to a significant risk
when residual tumor tissue is remaining after the initial surgery. HSI may be a
helpful imaging tool for the objective assessment of tumor tissue. Recent studies
show that HSI can be utilized for automated tongue-tumor detection with ma-
chine learning-based approaches applied to mice models [150] (sensitivity of 93%
and specificity of 85%) [151], as well as to 10 oral-cavity squamous cell carcinoma
in real patients, where only three tongue-tumor locations are included [148].

In order to satisfy the previously described aspects of labeling and the design
of a proper framework, a novel algorithm for tumor detection on surgical speci-
mens of tongue-cancer patients with HSI is needed, aiming at an objective disease
assessment. The most informative image bands should be identified and differ-
ent feature extraction approaches should be studied for automated classification
purposes.

5.2.2 Colorectal cancer
The second study of this chapter intends to contribute on improving the surgical
management of colorectal cancer and avoid bile duct and urethral injuries. Colon
cancer is the second-most common cancer worldwide [156] and is the second
cause of cancer death, counting 49,000 annual deaths in the USA [157]. The main
treatment for localized, primary and early-stage colon cancer is complete resection
of the tumor. The success of the surgical intervention relies on accurate detection of
malignant tumor boundaries. Visual inspection may lead to interpretation errors.
This in turn can lead to positive tumor margins, which may cause the recurrence
of cancer. An image-guided computer-aided tool for tumor recognition would
improve the visual and haptic perception of the surgeon in minimally invasive
and open colon surgeries [158].

In literature, several applications investigate the use of HSI as an image-guided
surgical tool for: abdominal organ delineations, colorectal surgery, bowel anas-
tomosis, biliary anatomy identification, gastric cancer and pathology detection
for identification of in-vitro and ex-vivo colon pathology samples [50]. However,
human studies, involving colon cancer detection with HSI are quite limited. The
colon is a more complex organ than the tongue, in term of different types of tissue
where cancer can infiltrate. The histological structure on human colorectal tissue
consists on mucosa, submucosa, muscularis, serosa/adventitia, connective tissue
and submucosal fat accumulation. The proposed study should exploit both spec-
tral and spatial information of HSI to detect the different tissues. Furthermore,
the study should include HSI for colon cancer classification and combine with
intraoperative guidance for enhanced surgeon vision.
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5.3 Normalization and preprocessing
Preprocessing is an essential step for raw data normalization and correction for
the instrumentation noise, which can significantly affect the classification accuracy.
First, the raw image data and white reference images are normalized, in order to
adapt to the dark current influence and illumination intensity differences. The data
normalization is based on Lu et al.[9] and specified by Eq. (4.1). The discussion
of this equation in Chapter 4 also refers to the calibration by using the white and
dark signals. Furthermore, reference is made also to the HS preprocessing stages
in that chapter, which also apply to the experiments conducted on this chapter.

5.4 Multi-modal image co-registration
Based on the optical process of light interacting with biological tissue, HSI can
reveal various tissue properties and discriminate among different diseases. Cur-
rently, during surgical oncology, the gold standard for assessing the optical prop-
erties of the resected specimens is the histopathology examination. During the
histological examination, the specimen is sectioned, stained in hematoxylin and
eosin (H&E). The H&E fixation follows a standard protocol concerning a blue ink
mark on the specimen sides, where H&E digitalization and labeling is performed
by an experienced pathologist. However, the H&E fixation process causes a tissue
deformation. This should be taken into account when using the histopathological
slide as ground truth for a learning algorithm involving HSI.

In order to correct for this, rigid and non-rigid registration algorithms are used
to match manually selected points in the histopathological slide and RGB image.
Prior to co-registering the pathology on the RGB image, both images should be
processed in order to remove the background and rescale using the tissue shape in
both images to match the size. Unfortunately, after rescaling and size matching, the
tissue in the H&E sections remains deformed compared to the RGB image of the
specimen, meaning that a rigid transformation (image overlay) is not suitable to
achieve perfect alignment. The formalin fixation and the paraffin embedding cause
the tissue to shrink and become compressed, so that the rigid transformation leads
to registration errors. Instead, affine transformation enables to create a geometric
transformation that can be used to rotate the two images with a cubic interpolation.

The aforementioned discussion describes dominantly the clinical processing
steps needed to preserve the specimens that are going to be imaged. In the fol-
lowing subsections, we approach this problem from the technical side, presenting
non-rigid transformations to perform matching with HS image data for providing
ground truth in our study.

5.4.1 Affine transformation
Let us consider a sample (x, y) in the target image and (X,Y ) a sample point in
the reference image. An affine transformation is described by a set of two linear
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Figure 5.1 — Local weighted mean transformation (f(x, y)) maps a polynomial using neighboring
control points. This polynomial represents the weighted average of the polynomials inferred at each
control point pair and neighboring control point.

equations in the 2D domain as follows:

x = a ·X + b · Y + c,

y = d ·X + e · Y + f.
(5.1)

The affine transformation includes the transformation of the Cartesian coordinate
system and preserves the parallelism in computation without taking into account
any camera distortion.

5.4.2 Non-linear transformation
A non-linear transformation takes into account camera distortion and modifies
also straight lines, while preserving the relation between the image points [159].
Depending on the required registration, the adopted non-linear transformation
may vary. Generally, non-linear transformations can be divided into global and
local mapping. A global transformation maps one image in its entirety to another
image, whereas a local transformation maps only a part of an image into a part of
another image [159]. Local transformations are faster and allow a higher control,
since a local resampling is applied. Local transformation functions map local
areas in the images to each other. The characteristics of the functions used for local
transformations are piecewise linear, piecewise cubic, and local weighted mean.

Among these transformations, the local weighted mean transformation pro-
vides smooth transitions across adjacent areas. Each component of the transforma-
tion function is computed from the weighted mean of local polynomials. Consid-
ering the i-th control point in the target and reference image, having coordinates
(xi, yi) and (Xi, Yi), respectively, the required polynomial has n parameters so that
it fits each point and its n-1 nearest measurements. The mapping transformation
from (xi, yi) to (Xi, Yi) depends on the weighted average of the polynomials pass-
ing over the n closest points (control point pairs), as schematized in Figure 5.1. In
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order to make the transformation local, the local weights of a weight function W

assigned to a polynomial considered at pixel position (xi, yi), becomes zero at a
large distance from that pixel, so that the polynomial will not influence the points
at a certain distance (Rn) from the central point (xi, yi) in the target image. The
related weight function W is defined as [160]:

Wi(R) = 1− 3R2 + 2R3, for 0 ≤ R ≤ 1;

Wi(R) = 0, for R > 1;
(5.2)

where R = [(X − Xi)
2 + (Y − Yi)

2]1/2/Rn and Rn is the distance of (Xi;Yi) to
the nearest point (X,Y ) in the reference image. By using the weight function (see
Eq. (5.2)), the weighted mean transformation can be re-written as:

x =

∑n
i=1 W ([(X −Xi)

2 + (Y − Yi)
2]

1
2 /Rn)Pi(X,Y )∑n

i=1 W [(X −Xi)2 + (Y − Yi)2]
1
2 /Rn

,

y =

∑n
i=1 W ([(X −Xi)

2 + (Y − Yi)
2]

1
2 /Rn)Qi(X,Y )∑n

i=1 W [(X −Xi)2 + (Y − Yi)2]
1
2 /Rn

,

(5.3)

where Pi(X,Y ) and Qi(X,Y ) are the components of the local transformation
functions that map the i-th and n-1 nearest control points from the target image to
the corresponding control points in the reference image. The local transformation
function is the polynomial passing through the target points and their nearest
points in the target image and the reference points in the reference image.

5.4.3 Histopathology co-registration
In order to take into account affine and non-rigid transformations, a control point-
based image registration should be applied to register histopathology slides with
HS images. A point-based registration allows to pick some points in both images
and apply a geometric mapping to the same landmarks of these images. To control
point pairs, the local weighted mean transformation creates a mapping by infer-
ring a polynomial at each control point. The mapping at any location depends on
a weighted average of these polynomials. For each control point pair, n closest
points are used to fit a second-degree polynomial transformation.

To realize this transformation, clear landmarks that are visible on both the
pathology slide and the RGB image are manually selected (e.g. the outer border
pixel points of the tissue, transition points between different types of tissue).
The landmarks on the pathology slide are used as the moving points, and the
landmarks on the RGB image are the fixed points. To register the pathology slide
to the RGB image, the landmark position on the pathology slide is moved to the
corresponding position on the RGB image. In this way, the pathology slide is
projected onto the RGB image. Then, the tumor and healthy areas, which should
be annotated on the pathology slide, can be used to classify the tissue type on the
RGB image. The manual point selection is then repeated for the RGB image and
HS image, in order to match the created (RGB) mask with the HSI data cube.

125



C
hapter5

5 . R E V E A L I N G C A N C E R O U S F E AT U R E S T O G U I D E S U R G E R Y

5.5 Hyperspectral image classification for cancer analysis
In Chapter 2, the basis of HSI technology and the main algorithms used to perform
image classification have been presented. The state-of-the-art of HSI in cancer
analysis has been introduced as well. This section elaborates on extracting the
most informative feature, aiming at a spatial-spectral supervised learning method.

5.5.1 Feature extraction
The main goal of HS feature extraction is to select the useful information for
performing a disease assessment in a large dataset. As already described in Sec-
tion 4.4, the HS data contains useful diagnostic information. However, the data
contains also a high redundancy in the spectral domain and overall high number
of dimensions [9]. Furthermore, the relationship between spectral features and
biomedical mechanisms is not well understood.

Therefore, it is crucial to examine and extract the relevant information for
distinguishing different types of tissue. The feature extraction should consider
the inner nature of HSI, where each intensity value corresponds to a specific
wavelength that interacts with the biological tissue, revealing biochemical and
structural characteristics. However, by combining imaging and spectroscopy, HSI
can collect 2D images in a third spectral dimension. For this reason, spatial features
should be also extracted.

Recent exploitation on extracting the most useful bands have been described in
Sections 4.4 and 4.5. PCA has been extensively applied to HS data, since is optimal
in minimizing the mean-squared error, thereby separating molecular components
and identifying key features [9]. However, the PCA transformation projects the
data in the Eigenvector space, transforming the biological meaning (it reflects
the correspondences between wavelengths and respective intensity values) to
another domain. This meaning is crucial to interpret the classification results.
Several alternatives have been discussed in Chapter 4. The following subsections
describe the outcomes and limitations when applying different feature extraction
and selection techniques for cancer detection. These different techniques form a
set of novel approaches and solutions.

5.5.2 Pixel, patch and superpixel-based feature extraction
Each pixel in the HS dataset can be seen as an N -dimensional vector, where N

denotes the number of image bands spanned by the camera. The representation
of the spectral vector can be used for performing a pixel-wise classification, where
each vector is treated as a spectral measurement without giving attention to the
spatial representation. Recent advances have been made to exploit both spectral
and spatial features to improve classification accuracy [9], [161]. Spatial informa-
tion can be extracted at pixel level or set of pixels.

Pixel-wise feature extraction: This consists of extracting the normalized reflectance
intensity for each pixel. Each pixel is then labeled by using a pathology map to
perform a classification task. When extracting spatial features, averaging of small
patches or superpixels provides more accurate results than pixel-wise processing,
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Figure 5.2 — Patch-based feature extraction of hyperspectral images. (a) Hyperspectral 2D image,
(b) block-based segmentation, (c) averaged pixel values within each block.

Figure 5.3 — Superpixel-based feature extraction of hyperspectral images. (a) Hyperspectral 2D
image view, (b) superpixel segmentation, (c) averaged pixel values within each superpixel.

due to higher robustness against noise and pathology registration errors, as well
as a reduction of the spectral redundancy in neighboring pixels [151].

Patch-based feature extraction: This can be applied by performing a grid division
on an HS data cube (M × N × K, where M denotes height, N is width and K

the number of wavelengths) into patches or blocks with a size of m× n×K, and
averaging all the pixels from each block.

Superpixel-based feature extraction: As an alternative to the patch-based grid
division, superpixel segmentation shows high performance in building a discrim-
inative feature vector [57], [150]. The superpixel algorithm is based on the Simple
Linear Iterative Clustering (SLIC) [162] technique, which offers high segmenta-
tion performance. Furthermore, the superpixel segmentation has the advantage of
pixel clustering in meaningful regions based on statistical decorrelation of spectral
image bands. Figure 5.2 illustrates a block-grid division (Figure 5.2(b)), applied
to the HS image data (Figure 5.2(a)), and the computed mean for each block as
final step (Figure 5.2(c)). The SLIC algorithm is similar to K-means, with the main
difference of limiting the search region to an area having the superpixel size k.
The algorithms is initialized by sampling k cluster centers where each center is
denoted by Ci = [xi, yi]

T . Each superpixel is sampled on a regular grid-space of
S pixels (S =

√
N/K). The centers are moved to the lowest gradient in a 3 × 3

neighborhood. Each pixel is assigned to the cluster center having the same re-
gion, where in the k-means algorithm each pixel is compared with all the cluster
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centers. Instead, in the SLIC algorithm a distance measure D determines the near-
est cluster center, searching for similar pixels in a region size of 2S × 2S around
the superpixel, where S × S is the superpixel size. The next step is to perform
an update, setting the cluster center as the mean of all pixels of the cluster. The
error is computed with L2 norm between the updated and previous cluster cen-
ters. The iterative process is repeated until the error converges. Furthermore, a
postprocessing step assigns the disconnected pixels to nearby superpixels [162].
Figure 5.3 illustrates a superpixel segmentation (Figure 5.3(b)), applied to the HS
image data (Figure 5.3(a)), and the computed mean for each superpixel as final
step (Figure 5.3(c)).

5.6 Head & neck cancer classification with HSI
Most of the HNC are squamous cell carcinoma (SCC) from the epithelial region of
the lip, oral cavity, oropharynx, hypopharynx, larynx, etc. HSI scanning through
the epithelial layer can potentially provide information about the underneath
tissue type and guide surgery (Chapter 2). To this end, we have developed a novel
framework for tumor detection on ex-vivo surgical specimens of tongue cancer
patients with HSI, aiming at an objective disease assessment.

5.6.1 Machine learning-based classification for HSI
Chapter 2 has described commonly used supervised classification methods in
medical HSI. Non-parametric methods such as SVM, demonstrate to perform
well when classifying HS data, outperforming the KNN classifier and RBF neural
network [9]. In literature, SVM has been explored to extract and evaluate the
spectral signatures of both cancerous and normal tissue, as well as to detect organs,
blood, and Veins [65], [66]. In this section, SVM is employed for head & neck cancer
classification, combined with block-based and superpixel-based segmentation
approaches.

We propose two specific aspects: (1) a manual selection of the most informative
image bands in a spectral range, based on increased discriminative properties in
the reflectance spectrum of the tumor and healthy tissue and (2) a block-based
feature extraction approach for automated classification purposes. Besides the
proposed scheme, we have compared this work with an alternative and existing
framework that was already applied for mouse-cancer models [150], and evaluated
in our study on real patients.

5.6.2 Experimental setup
A framework entailing training and testing, as depicted in Figure 5.4, is applied
to evaluate the accuracy of the proposed classification algorithms combined with
different data preprocessing approaches. A wavelength range is chosen to extract
the best features for malignant and healthy tissue discrimination. The pathology
images are outlined by an experienced pathologist and then used as labels for
validating the cancer detection with HSI.
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Figure 5.4 — Illustration of the method applied for training and classification with HSI.

A. HS data acquisition
The HS images are acquired with an HS line-scan camera prototype (Philips Re-
search, Eindhoven, The Netherlands). The line-scan camera has a CMOS CMV2000
image sensor (CMOSIS, IMEC, Leuven, Belgium) with a wavelength range of 430-
920 nm, which produces a hypercube of 192 image bands with 2,048 pixels per
line (y-direction) and a variable number of lines (x-direction) per sample. Ex-vivo
tongue squamous cell carcinoma (SCC) are gathered at the Netherlands Cancer
Institute (NKI, Amsterdam, The Netherlands) and included in this study. After sur-
gical resection, each specimen is cut straight through the tumor, scanned with the
hyperspectral camera and sent for histological processing. The tissue is sectioned,
stained in hematoxylin and eosin (H&E) and then validated by an experienced
pathologist for cancer and healthy tissue annotation. This procedure represents
the gold standard to create a binary mask. All ethical guidelines for ex-vivo human
studies are followed. Experiments have been conducted on 7 patients (20 im-
ages per patient at different wavelengths), having cancerous and non-cancerous
tissue. For each patient, during the training phase, a region of interest (ROI) is
used as ground truth, containing the malignant tissue assessed by an experienced
pathologist, as shown in Figure 5.5.

B. Feature extraction and calibration
In Section 4.3, the importance of HS data normalization and correction for the
instrumentation noise have been described. First, the raw image data and white
reference images are normalized, in order to correct for the dark current influ-
ence and illumination intensity differences, based on Eq. (4.1). Within the spectral
ranges 430-480 nm and 580-630 nm, the spectrum is strongly affected by sen-
sor noise, which explains why the image bands within these spectral ranges are
discarded for further analysis, resulting effectively in 152 image bands per acqui-
sition. For each image band, a median filter of 6×6 pixels and a two-dimensional
(2D) Gaussian smoothing filter are applied to reduce the noise in the spectral
signatures.

By collecting the spectral signature for each pixel in a 2D array, the hyper-
specral data cube which is a three-dimensional (3D) dataset is generated and
considered as a hypercube. The pathological information is gathered in the diffuse
reflectance of each pixel in the hyperspectral image, for a range of 430-920 nm,
which is the quantitative result of light interaction with the biological tissue. To
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Figure 5.5 — Histopathology registration and labeling for hyperspectral data. (a) HS image band,
(b) histopathology and RGB co-registration and (c) labeled pathology to build a ground-truth mask.

extract the most discriminative information, it is crucial to handle the nature of
the high-dimensional data. The large amount of spectral bands and the high re-
dundancy within these bands, which may potentially contain detailed diagnostic
information, can decrease the classification accuracy [9]. For this reason, 20 image
bands showing the highest spectral variation in the reflectance values between the
tumor and healthy tissue, are manually selected for classification purposes. This
high spectral variation of the most informative wavelengths appears to be consis-
tent among the patients and allows to identify cancerous tissue discrimination.
The hypercubes are divided in a grid of 6×6-pixel blocks and within each block,
the pixels are averaged to obtain the average spectra. The averaged reflectance
value of each block is then used as input for supervised learning. The block-based
approach is a powerful solution for increasing the robustness to the spectral noise,
while reducing the redundancy between the neighboring pixels and decreasing
the computation load [151].

For each patient, the ground truth is extracted from the corresponding anno-
tated H&E section, outlined by an experienced pathologist, and registered with
the RGB image of the specimen by selecting control points and using a non-rigid
registration algorithm. Figure 5.6 shows an example of (a) HS image, (b) ground
truth registered with the RGB image, (c) annotated ground truth. A mask is man-
ually obtained for the region of interest (ROI) of the tumor area, discarding the
image borders affected by histological colorations and motion artifacts, which are
caused by the line-scanning technology.

As an alternative to the manual selection, we apply the implemented method
of Chung et al.[150]. This method employs: (1) PCA [124] (Section 4.4) for auto-
mated band extraction, (2) iterative clustering and superpixel segmentation of the
first components, (3) averaged pixel values within each superpixel, in order to
construct discriminative feature vectors. The superpixel algorithm is based on the
SLIC technique [162], which has been described in Section 5.5.2. The superpixel
segmentation enables high segmentation performance and has the advantage of
clustering pixels in meaningful regions, based on the statistical decorrelation of the
spectral image bands [150]. To summarize, three different approaches for dimen-
sionality reduction and feature extraction have been investigated to evaluate the
classification performances and required computational cost. These approaches
are as follows.
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1. The most informative bands are manually extracted. A 6×6 block-based
approach is then applied, extracting the mean intensity value within each
block.

2. The most informative bands are manually extracted. A 10×10 block-based
approach is then applied, extracting the mean intensity value within each
block (note the different block size).

3. PCA is used as feature extraction method, followed by a SLIC superpixel
segmentation. The mean intensity value of each superpixel area is used as
feature.

The effect of noise reduction on final classifications is studied by averaging spectral
values. The computation cost is also computed and analyzed when features are
extracted by applying a block-based grid division and a superpixel segmentation.

C. Classification of the spectral bands
Many supervised classification methods have been successfully applied to classify
HS data. However, these approaches are not always effective when dealing with
the large number of features in HS data, thereby suffering from the curse of dimen-
sionality [9]. The HS data used for the training are often limited, while the number
of spectral features increases, leading to a loss on the precision of class estimation.
As discussed in Chapter 2, SVM shows great potential on classifying HS data
with the main advantages of enabling large input spaces, robustness to noise and
sparse solutions [163]. Thus, our framework employs SVM as supervised learning
algorithm, providing a predictive model which can be used for tumor and healthy
tissue detection in HS images. For applying the SVM algorithm, the kernel func-
tion K(x, y) is an important parameter to consider. For a fast classification and to
avoid overfitting, in our study, we employ a linear kernel function, specified by:

K(x,y) = xT · y + c. (5.4)

To evaluate the classifier performance, we compute the receiver operating charac-
teristics (ROC) curve, area under the curve (AUC), sensitivity (Se) and specificity
(Sp). The last two metrics measure the tumor pixels correctly classified as tumor
and as healthy, respectively. The metrics are computed as follows. For that we
need to measure the number of positive and negative samples (NTN: no. of true
negatives, NTP: no. of true positives, NFP: no. of false positives, NFN: no. of false
negatives). For benchmarking, the same performance metrics are involved during
the validation process, which specifies sensitivity and specificity as:

Se =
NTP

NTP +NFN
, and Sp =

NTN

NTN +NFP
. (5.5)

Leave-one-patient-out cross-validation is applied, to avoid double patient usage
and prevent overfitting. After classification, each block is labeled as tumor or
normal tissue. As a result, we obtain binary classified images for each patient. We
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Figure 5.6 — Ground-truth generation for hyperspectral data. (a) Histopathology slide registered
on HS data, (b) region-of-interest (ROI) selection, (c) ROI segmentation for classification purposes.

compare this result with the pathology ground truth, used as labels for validating
the cancer detection with hyperspectral imaging.

5.6.3 Experimental results
First, we present some visual examples of the HSI classification results, compared
with pathology ground truth. Then, the performance curves of the classification
system are developed and discussed. Lastly, tables with numerical results com-
pare the obtained AUC, Se and Sp values on a patient basis.

Figure 5.7 visualizes the averaged spectra of healthy and cancerous regions
of interest among the patients. The tumor tissue shows higher reflectance values
for the wavelength range of 500–800 nm, where a difference between healthy and
tumor spectral fingerprints is revealed. Within this wavelength range, we extract
the most significant spectral bands for automatic discrimination of tumor and
healthy tissue in the proposed classification method. Illustrative examples of the
classification results are portrayed by Figure 5.8 and Figure 5.9. The malignant
tissue is clearly detected in both cases. An overestimation of the detected tumor
area can be observed, which can be due to the number of superpixels or pixel
blocks containing both tissues, classified as tumor, as described in [150]. As al-
ready mentioned in the reference publication, the problem can be overcome by
increasing the number of superpixels (which is 1,000 in the proposed algorithm)
or pixel blocks. Figure 5.10 and Figure 5.11 depict the measured ROC curves of
the detection rates. The AUC values, sensitivity (Se) and specificity (Sp) are listed
in Table 5.1. The proposed method is benchmarked with an existing framework,
which represents a reasonable alternative for classifying our HS dataset, using the
same classifier (SVM) while employing a different approach for dimensionality
reduction and feature extraction. Table 5.1 depicts that a sensitivity of 94%, speci-
ficity of 68% and AUC of 92%, are reached with the proposed method. The balance
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Figure 5.7 — Example visualization of reflectance spectra for tongue tumor and healthy tissues.
Left: schematic representation of tumor and healthy area for Patient no. 1. Right: averaged reflectance
spectra for healthy and tumor region of interest (ROI) in 7 tongue-tumor patients.

Figure 5.8 — Visualization of the cancer segmentation for Patient No. 6. (a) Image band at
680 nm applying 6× 6 block-grid processing and averaging pixel values within each block, (b) 6× 6
block-grid divided ground truth, (c) classification result using a 6× 6 block-based approach.

Figure 5.9 — Visualization of the cancer segmentation for Patient No. 6. (a) First principal
component from PCA applying superpixel segmentation and averaging pixel values within each
superpixel, (b) superpixel ground truth, (c) classification result using a PCA-superpixel approach.
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Figure 5.10 — ROC curves for 7 patients when detecting tumor and healthy tissues by employing
SVM as classifier and extracting superpixels as features.

Figure 5.11 — ROC curves for 7 patients when detecting tumor and healthy tissues by employing
SVM as classifier and extracting 6× 6 blocks as features.

between specificity and sensitivity can be improved, by performing a grid search
for hyperparameter optimization. However, in this feasibility study, our objective
is to aim at a proof-of-concept cancer detection algorithm, thereby choosing the
default parameters for the SVM classification model. By increasing the block size
to 10 × 10 pixels, we reach a higher sensitivity and specificity compared to the
6 × 6-pixel block size, while enhancing the average training time from 26 mins.
and testing time to 2.5 secs., while compromising on a lower image resolution.

A significant improvement is achieved in reducing the computation time,
when SVM is used for classification, which is essential for intraoperative imaging.
Training and testing time are 8 hrs. and 3 mins. (≈ 2 million samples), respectively,
when the method of Chung et al. is applied (E5-1650v4 CPU running at 3.60 GHz),
versus 6 hrs. and 1 min. (≈ 900,000 samples) when the 6×6-pixel block processing
is adopted (see Table 5.2). Lastly, Lu et al. [151] apply the block-based processing
approach for squamous dysplasia detection on 34 mice, reaching an AUC of 86%,
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Method-6x6 blocks Method-10x10 blocks Baseline Chung et al.
AUC Sens. Spec. AUC Sens. Spec. AUC Sens. Spec.

Patient 1 0.96 1.00 0.67 0.96 1.00 0.76 0.97 1.00 0.78
Patient 2 0.83 0.83 0.70 0.84 0.76 0.14 0.80 0.74 0.64
Patient 3 0.92 0.97 0.66 0.93 0.97 0.67 0.92 0.96 0.66
Patient 4 0.93 1.00 0.58 0.94 1.00 0.66 0.98 1.00 0.76
Patient 5 0.91 1.00 0.70 0.90 1.00 0.79 0.90 1.00 0.73
Patient 6 0.93 0.75 0.88 0.94 1.00 0.64 0.93 0.74 0.90
Patient 7 0.95 0.99 0.59 0.95 0.96 0.71 0.96 0.93 0.77

Mean 0.92 0.94 0.68 0.92 0.95 0.71 0.92 0.91 0.74

Table 5.1 — Performance comparison between block- and superpixel-based approach for 7 ex-vivo
patients with HNSCC.

Method-6x6 blocks Method-10x10 blocks Baseline Chung et al.
train [min] /test [s] train [min] /test [s] train [min] /test [s]

Patient 1 262/89 55/2.4 360/327
Patient 2 355/96 42/1.5 456/190
Patient 3 410/142 22/6.0 232/347
Patient 4 410/63 55/2.4 520/243
Patient 5 431/55 42/2.0 532/163
Patient 6 326/39 42/2.0 506/138
Patient 7 331/36 44/1.5 548/157

Mean 333/74 43/2.5 456/224

Table 5.2 — Computation performance comparison between block- and superpixel-based approach
for 7 ex-vivo patients with HNSCC.

sensitivity of 79%, and specificity of 79%. These numbers are outperformed by the
proposed system on human data using linear SVM for binary sample classification.

5.7 Deep learning model generation for HSI
The high dimensionality, together with limited training samples and interclass sim-
ilarity are the main drawbacks for performing HSI supervised classification [164].
As described in Chapter 2, deep learning techniques show great potential for
overcoming these limitations. Chapter 4 has demonstrated the strength of deep
learning on automatically extracting discriminative features from HS data when
compared to hand-crafted feature extraction methods. While standard ANN mod-
els extract only spectral features, a DNN allows to build various models, including
different learning strategies for HSI classification [73]. Different types of features
such as spectral, spatial and spectral-spatial features can be extracted with DNNs
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from HS datasets, so that deep networks for HSI classification can be divided
in feature networks with corresponding feature sets, accordingly. The following
sections will describe these types of networks in more detail.

5.7.1 Spectral networks
Spectral-feature based networks are able to extract the spectral information of
HS data. In this case, the spectral signatures are directly extracted in a vector-
based input form to feed the network layers. In conventional machine learning,
linear models have been used to extract spectral vectors. However, besides other
drawbacks, the main problem is that they cannot learn the very complex spectral
properties contained in the HS data cube. Deep neural networks are able to explore
the correlation within the spectral dimension, by computing the convolutions in
the spectral domain [164]. In particular, 1D DNN and RNN can be used to extract
the spectral features. To implement this, pixel-wise DNN classifiers exploit the
ability of HSI data for detecting reflectance-based features from each pixel. In this
sense, spectral-based DNN models learn spectral feature X from the pixel vector
xi with the assumption that each pixel contains a signature from a single material
or tissue surface [73]. In order to reach a good performance, a large amount of
data is needed due to the interclass similarity between the spectral vectors.

5.7.2 Spatial networks
To improve the classification accuracy, the spatial HS structure around each pixel
xi should be learned. The spatial information, encoded in the neighboring pixel
areas of the HS dataset, is exploited by 2D CNNs. In literature, dimensionality-
reduction techniques such as PCA are used in combination with 2D CNN, in order
to maximize the discriminative features and reduce the computational cost [54],
[164]. The spatial information is then used to feed a spatial-based DNN, which
learns only spatial feature representations from the data. Although spatial-based
DNN models may reach a good accuracy, in particular in high-resolution HS
images where spatial structures are clearly distinctive, they do not outperform
spectral methods [73]. To improve the deep-spatial feature extraction, pre-existing
networks, such as AlexNet [165], ResNet [166] and GoogleNet [167] can be used.
In detail, the pre-trained off-the-shelf networks are employed to extract deep struc-
ture information and the pre-trained weights are used to perform the classification
operation. 3D CNNs are also an alternative to extract spatial features. However,
they are highly complex in computation, due to the volume and spectral dimen-
sions. Furthermore, these models do not extract quality feature maps and may
underperform over the regions having similar textures.

5.7.3 Spectral-spatial networks
In order to further improve the HSI classification and overcome the drawbacks of
the above-mentioned approaches, spatial and spectral features are jointly learned
by a spectral-spatial network. Spectral-spatial networks can extract deep spectral
and spatial features from the original dataset, either from a dimension-reduced
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dataset, or by fusing separate deep (spectral and spatial) features. As described in
Section 5.7.2, a 2D CNN alone cannot extract good discriminating feature maps
from the spectral dimensions [168]. On the other hand, 3D CNNs are more com-
plex architectures, which do not show discriminating power for data with similar-
ity over many spectral bands [168]. Combining 3D and 2D CNNs may alleviate
the shortcomings of the single models and extract both spatial and spectral infor-
mation. Paoletti et al. [73] proposed a spectral-spatial capsule network to learn the
HS features, while Fang et al. [169] introduced deep-hashing neural networks for
HSI feature extraction. Recently, Roy et al. [168] and Luo et al. [170] have proposed
the concatenation of 3D convolution and 2D convolution operations to obtain
both spatial and spectral information and reduce the complexity of the 3D CNN
model.

5.7.4 Proposed spectral-spatial network for cancer detection with HSI
Inspired by the joint assembly of 3D and 2D CNNs and the strategy to achieve a
maximum possible accuracy with a hybrid CNN model, we propose the model
architecture shown in Figure 5.12, which is an adapted version of the network
proposed by [168]. As input for the network, Roy et al. have reduced the number
of spectral bands to remove the spectral redundancy with PCA. PCA as a band-
extraction method has been extensively described in Section 4.4. It generates
a new set of linearly uncorrelated features where the first few contain most of
the original-signal variation [171]. The first three principal components are used
as input for the 2D-3D CNNs, employed in the training phases. The first three
principal components are selected in our system, since they contain the largest
variance of information.

The image classification is performed by dividing the HSI data cube in over-
lapping 35×35-pixel patches. Data augmentation is then applied to improve the
classification results, by combining flipping, shifting and +20◦ and −20◦rotation.
The HybridSN by Roy et al. consists of three 3D convolutional layers, one 2D con-
volutional layer, three dense layers and a softmax classifier. The proposed hybrid
CNN architecture contains two 3D convolutional layers, four 2D convolutional
layers and three fully-connected layers where the last layer is a softmax layer.
Between 3D and 2D convolutions, a reshape layer converts 5D feature vectors into
4D feature vectors. It can be noticed that an HS patch has the shape of Np×Np× 3

where Np is the patch size and 3 is the number of bands. Since a 2D CNN model
is used to perform the HSI classification, the input patch data are converted to a
Np × (Np × 3) vector, subsequently mixing the spatial and spectral information.
However, the 2D CNN model is not able to perform spectral-feature learning. On
the other hand, with a deep 3D CNN model, the computation complexity increases
drastically, and the classification performance is not satisfactory for classes that
have similar spectral signatures [168]. Instead, the hybrid architecture combines
the advantages of both 2D and 3D CNNs, extracting and learning spectral-spatial
features with lower computation complexity. The 3D convolutional layers extract
the spectral information, while the 2D convolutional layers learn the distinctive
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Figure 5.12 — 3D–2D hybrid Convolutional Neural Network (CNN) architecture for feature
extraction and classification adapted from Roy et al. [168]. At the left, the band selection and patch
extraction are shown. The middle part shows the feature extraction stage, by applying 3D and 2D
CNNs for giving the final output depicted at the right.

spatial features of different spectral losses. Furthermore, band-selection techniques
are combined with the proposed hybrid model, thereby strengthening the effi-
ciency of using a CNN with HS data [73]. At last, a softmax activation function
is used to give the classification results. The above-described model is bench-
marked with a 2D CNN with three 2D convolutions, one average pooling, and
three fully-connected layers.

5.8 Colon cancer classification with HSI
In Section 5.1, we have illustrated the treatment need in colon cancer, as it repre-
sents the second leading cause of cancer death. For most of the colorectal cancer
patients, tumor resection is the main treatment [172], [173]. Although HSI can
contribute to reduce the lost information during surgery and interpretation error,
further investigations are needed involving more human studies and exploring
more effective feature extraction and learning algorithms [50].

5.8.1 Experimental setup
The adopted approach is schematically depicted in Figure 5.13. The raw hypercube
is preprocessed in order to perform data normalization, augmentation and feature-
space reduction. Then the first three principal components are used to extract the
spectral and spatial features for discriminating malignant and healthy tissue. The
extracted features are learned by using two dense layers and a softmax layer. The
histopathology outcome, annotated by an experienced pathologist, is employed
to create a mask for the healthy and tumor tissue and forms the ground truth in
the validation phase.

A. HS data acquisition
After colorectal surgical resection, hyperspectral images of six ex-vivo resected
specimens have been acquired with a hyperspectral line-scan camera (IMEC,
Leuven, Belgium), shown in Figure 5.12. The camera system acquisition has been
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Figure 5.13 — HSI system for ex-vivo data collection. At the left, the HSI system is depicted,
illustrating the camera and sample position. At the right, a picture from the real HSI setup, detailing
all main components of the acquisition system.

described in Section 5.6.2. The histology slides, resulting from the histological
examination of the superficial tissue layer, are used to label the tumor (red) and
healthy tissue (green), as shown in Figure 5.14, for creating a binary mask. During
the histological examination, each specimen is sectioned, stained in hematoxylin
and eosin (H&E), which causes a tissue deformation. In order to correct for this,
a non-rigid registration algorithm is used to match manually selected points in
the histopathological slide and RGB image (as described in Section 5.4.3). For this,
clear landmarks that are visible on both the pathology slide and the RGB image,
are manually selected (e.g. the outer border of the tissue, a transition between
different types of tissue). The landmarks on the pathology slide are used as the
moving points, and the landmarks on the RGB image are the fixed points. To
register the pathology slide to the RGB image, the landmark position on the
pathology slide is moved to the corresponding position on the RGB image. In this
way, the pathology slide is projected on the RGB image and the tumor and healthy
areas, already annotated on the pathology slide, can be used to classify the tissue
type on the RGB image. The manual point selection (for the RGB image and HSI
data) is then repeated, in order to match the mask with the HS data cube.

B. Classification setup for model evaluation
The spectral-spatial approach, presented in Section 5.7.3 is adopted for classify-
ing colon and healthy tissues in the surgical specimens. All model weights are
randomly initialized from an uniform Glorot distribution and trained using a
backpropagation algorithm with the Adam optimizer by employing the softmax
loss. For running the experiments, we use a batch size of 64 and train the network
for 100 epochs with a learning rate of 0.001.

Firstly, the spectral-spatial method is benchmarcked with 2D residual blocks
used to extract the spatial features. Residual architectures presented an inno-
vative approach for feature transfer which has led to an improvement in many
image recognition tasks [75]. Compared to conventional sequential models like
AlexNet [165] or VGG [166], residual networks have a higher potential for feature
extraction. Furthermore, a global average pooling is contained in the last layer of
the architecture which allows to reduce the number of features, redundancy and
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Figure 5.14 — RGB images of tissue samples with corresponding histopathology slides and labeling
masks. Annotated histology, RGB image of the specimen, labeled mask (tumor in red, healthy in
green, other tissue in blue) for Patient No. 1 (a-b-c) and No. 6 (d-e-f), respectively.

overfitting. A pre-trained ResNet50 with ImageNet weights is chosen as preferred
architecture in terms of performance and computation cost. The extracted features
are then used to train two dense layers and a softmax layer.

Secondly, we have also compared the results with a 3D CNN-based approach.
The architecture consists of two 3D convolutional layers, two fully-connected
layers and a classifier. During training, we use a dropout layer with rate 0.6 and
batch normalization.

A patch-based classification is performed, dividing the HS cubes into non-
overlapping 3D patches. The frequency of each class is counted within every patch
and the patch label is assigned based on the majority class within the patch. Non-
overlapping 3D patches of size 6× 6× 3 voxels are created from each HS image.
Table 5.3 shows the amount of patches per patient and classes, that correspond to
each mask. We balance the tumor vs. healthy pixels (ratio of 3:1) during training,
by assigning class weights such that 50% of malignant patches and 50% of benign
patches are selected.

Our approach is validated using leave-one-patient-out cross-validation (LOPOCV):
for each iteration, we use the data from all but one patient to train a model and
we evaluate the trained model using the data from the left-out patient. In order to
evaluate the classifier prediction performance, the AUC, sensitivity and specificity
are computed. We define the tumor to be the positive class, hence the sensitiv-
ity indicates how often the tumor is correctly classified as tumor, whereas the
specificity shows how often healthy tissue is classified as healthy.
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Patient/No. of patches 1 2 3 4 5 6

Tumor 66,411 66,528 49,912 81,993 33,081 44,688
Healthy 35,607 19,063 28,698 9,329 10,021 20,519
Total 102,018 85,591 78,610 91,322 43,102 65,207

Ratio T/H 1.87 3.49 1.74 8.79 3.30 2.18

Table 5.3 — Count of patches per patient for tumor, healthy, total and tumor/healthy (T/H) ratio.

Figure 5.15 — Example results for Patient No. 1. (a) Ground truth. (b) Residual network prediction
(2D transfer learning). (c) 3D CNN prediction. (d) HybridSN prediction.

Figure 5.16 — Example results for Patient No. 6. (a) Ground truth. (b) Residual network prediction
(2D transfer learning). (c) 3D CNN prediction. d) HybridSN prediction.

5.8.2 Experimental results
The classification results for 3D CNNs, the 2D ResNet-based CNNs and the Hy-
bridSN are depicted in Table 5.4. The hybrid spectral-spatial network gives a mean
sensitivity of 0.88 and specificity of 0.78. The results obtained with the ResNet50-
extracted features achieve a mean sensitivity of 0.83 and specificity of 0.73, while
the 3D CNN reaches a mean sensitivity of 0.86 and specificity of 0.69. The results
listed in Table 5.4 are illustrated in Figures 5.15 and 5.16 by showing the classifi-
cation results using ResNet, the 3D CNN and HybridSN architectures. As can be
observed, the malignant tissue classification of HybridSN is better than ResNet
and shows a better quality classification map compared to the 3D CNN.
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3D CNN ResNet (2D CNN) HybridSN
AUC Sens. Spec. AUC Sens. Spec. AUC Sens. Spec.

Patient 1 0.86 0.87 0.84 0.81 0.91 0.71 0.88 0.83 0.94
Patient 2 0.80 0.87 0.74 0.70 0.93 0.67 0.80 0.76 0.90
Patient 3 0.75 0.94 0.60 0.68 0.84 0.60 0.81 0.90 0.77
Patient 4 0.69 0.80 0.65 0.84 0.85 0.68 0.80 0.89 0.70
Patient 5 0.65 0.86 0.65 0.86 0.72 0.84 0.78 0.94 0.69
Patient 6 0.69 0.84 0.63 0.70 0.65 0.87 0.83 0.94 0.71

Mean 0.74 0.86 0.69 0.77 0.83 0.73 0.82 0.88 0.78
Std 0.08 0.05 0.09 0.08 0.10 0.11 0.04 0.09 0.11

Table 5.4 — Performance comparison in terms of AUC, sensitivity and specificity between ResNet-
based, 3D CNN-based and HybridSN-based models for 6 ex-vivo patients with colon cancer.

In Figure 5.16, it can be observed that the HybridSN shows better results com-
pared to the 3D CNNs, and have a similar outcome when compared with the
ResNet model. However, the HybridSN classification achieves less noise com-
pared with ResNet, especially at the image edges. As presented in Table 5.4, the
AUC for Patients 2 and 3 are the lowest (< 0.70) when the ResNet model is used as
feature extractor, which clearly improves when employing the HybridSN instead.
When 3D CNNs are adopted, the AUC shows the lowest rate for Patients 4, 5
and 6 which increases when the HybridSN approach is used. It can be observed
that the results of the 3D CNN are worse than the 2D transfer learning method,
due to the increased redundancy in the spectral dimension. Figure 5.16 shows the
case where the prediction is similar in both cases, and the HybridSN generates
the best margin assessment outcome. The model does not obtain good results on
Patients no. 2 and 3 and when the ResNet50 is used as feature extractor, while
achieving better results with the HybridSN, as depicted in Table 5.4.

5.9 Summary & Conclusions
In this Chapter, HSI has been explored for non-invasive and automated cancer
discrimination. As an intraoperative tool for tumor assessment, HSI can facilitate
residual cancer removal and enhance the surgeon’s capability to visually identify
malignant tissue. In literature, many tissues have been studied for extracting
relevant spatial and/or spectral features. However, these studies have shown that
classifications results should be improved and more research is needed to adapt
the developed models to the high-dimensional and complex HS data. This chapter
has investigated two medical applications which delineate the main focus of our
research for HSI-based cancer detection.

• Head & neck cancer. In this research, we have first extracted spectral fea-
tures on a patch/block basis and applied a machine learning framework
on tongue-tumor specimens. The tongue tissue mainly consists on muscle,
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so it is chosen as first tissue type to analyze and exploit the differentiation
capabilities of HSI. The performed analysis reveals that a good classifica-
tion accuracy can be reached when the most discriminative HS bands are
extracted (AUC 92%).

The proposed method offers a superior sensitivity and a significant decrease
in computation time, when compared with existing approaches. Further-
more, the validation is more relevant for patients than in the existing litera-
ture, where the benchmark approach has been tested on 11 tongue-cancer
mouse models using HSI. Instead, we have performed our validation on
7 real tongue-cancer patients. To the best of our knowledge, the tongue-
tumor location is not completely explored in ex-vivo studies with machine
learning techniques combined with HSI, although it is the most aggressive
of all oral squamous carcinomas (OSCC) with higher rate of obscure lymph
node metastases. Instead, we have focused on the tongue-tumor location,
achieving superior performances for objective tumor-tissue discrimination
on real patients, compared to the state-of-the-art approaches. Furthermore,
we have outperformed the benchmark in speed by a factor 9, when applied
on real patients, which is straightforward for real-time intraoperative tumor
detection.

Although we have achieved the best performances in terms of accuracy
and computation speed, our method implies a manual extraction of image
bands, based on the discriminative power of the identified spectral range.
Therefore, automatic band-selection techniques should be explored further.

• Colorectal cancer. As second clinical application, we have explored the poten-
tial of automated colon cancer detection with DNNs to facilitate complete re-
moval of malignant colon tissue. The obtained sensitivity reaches almost 90%
and specificity is 78%, presenting promising results for HSI as a non-ionizing
technology for malignancy detection. First, we have explored the potential
of joint spectral and spatial features with a hybrid 3D-2D CNN. Second, we
have benchmarked the results with a pre-trained residual network-based
classification framework. The results show that the hybrid approach is able
to achieve a good classification outcome for colon cancer patients, which
regularly outperforms the conventional ResNet architecture and 3D CNNs.

To the best of our knowledge, deep learning approaches are not fully ex-
plored in ex-vivo colon cancer studies with HSI. Beaulieu et al. [158] report
their first step towards colon cancer detection with HSI to guide the col-
orectal surgery, exploiting the capability of HSI in assisting surgery. Their
results show a sensitivity of 61.7% and specificity of 90% for extraluminal
specimens, by using linear discriminant analysis (LDA) on 11 patients. Other
studies are mainly focused on investigating the use of HSI for classifying
H&E pathological slides [174], or for augmenting endoscopic diagnosis [9]
[174]. We aim at providing a surgical application and we have analyzed the
surface of the colon, cut in cross-sections.
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Baltussen et al. [174] show how combining a near-infrared camera (900-
1,700 nm) with a spectral camera (400-1,000 nm) can increase the accuracy in
assessing colon cancer with HSI (0.81 AUC, with visual camera, 0.87 AUC
with near-infrared camera, and 0.98 AUC with both cameras). These results
implicitly indicate an important trade-off: with employing a second camera
in the broad infrared range, the overall cost of the procedure significantly
grows. The results of Baltussen et al. show a clear improvement at expense
of a costly camera and the involved processing. We expect that the obtained
classification results can improve when extending the current wavelength
range up to 1,700 nm. Another limitation of this study is that we do not
have the ability in assessing the malignancy stage of the lesion. However,
the detection of secondary tumor would add a significant clinical relevance.

Overall, this chapter has provided an improvement to the use of HSI as a
non-invasive computer-aided tool for cancer resection, thereby enhancing the
surgeon view. We have demonstrated that HSI imaging offers the potential of
malignant and benign tumor assessments on ex-vivo cancer specimens. We have
benchmarked several machine and deep learning frameworks, demonstrating
that the 3D-2D CNN represents an attractive approach for exploiting HS image
analysis in an efficient way.

Although the proposed framework reaches the ability in assessing the cancer
disease for both studies, more data based on a broader wavelength range will
definitely improve the results, albeit yet with unknown costs. To deal with the
limited amount of data available in the performed studies, image augmentation
is proposed and LOPOCV is used for validating the models. However, a higher
dataset size is needed to strengthen the clinical application of HSI in surgical
oncology. It should be noted that for both studies, the acquisition setup uses a
push-broom camera system. In this setup, the specimen is scanned, by moving the
camera along a single line with an acquisition time of about 1 minute. In an in-vivo
scenario, a snapshot multispectral camera would be able to perform the acquisition
during surgery with a time of 1 second instead of 1 minute[174]. However, a
multispectral camera has only a limited number of wavelengths available. Future
research should be focused on employing a snapshot HS camera and on selecting
the most suitable wavelengths for malignant tissue assessment from healthy tissue.
Furthermore, some technical aspects should be taken into account such as the
illumination conditions, which can be less stable in a real surgical scenario [174].
For an in-vivo study, the above-described issues need to be considered. In this
scenario, the current method would allow then a real-time tissue classification.

All these aspects will be elaborated in the next chapter, where in-vivo acqui-
sitions are presented and combined with an automatic band-selection technique.
Besides this, more data will be available for the involved experiments.
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“Nobody said it was easy
No one ever said it would be so hard

I’m going back to the start.“

The Scientist, Coldplay

C
ha

pt
er 6 Hyperspectral brain-tumor

detection during neurosurgery

6.1 Introduction
In the previous chapter, HSI has been exploited to non-invasively detect and di-
agnose two cancer-disease applications. While originally employed in the remote
sensing field, HSI has recently found use in the detection and diagnosis of diseases,
in particular cancer, since cancer involves changes in the biochemical mechanism
of the cells [171]. We have presented HSI in combination with cutting-edge ma-
chine learning and deep learning approaches to detect head & neck [57] and colon
cancer [54]. In the neurosurgical scenario, studied in this thesis, brain tumors are
extremely difficult to identify with the naked eye, because they deeply infiltrate
the healthy brain tissue [175]. Furthermore, it is crucial to preserve the surround-
ing healthy areas, where there is no redundancy and usually the resected tumor
margins are less healthy tissue [176].

In this chapter introduction, the direction of research is first motivated here,
after which the depending aspects of that research are presented, in order to arrive
at the main research challenges for this chapter.

The research of Chapters 3 and 4 is based on intraoperative and non-ionizing
techniques, to expedite the clinical workflow in neurosurgery. Thus, real-time
identification of neuro-tumor tissue can considerably improve the surgical out-
come in neurosurgery. In Chapter 2, we have identified and elaborated on the
clinical need of detecting one the most aggressive forms of malignant brain tumor
which is the glioblastoma (GBM) [177]. This defines the clinical application area.
Now, several aspects of GBM surgery are discussed in more detail.

Tumor identification. Brain-tumor surgery aims to achieve gross total resection,
which, when combined with radiotherapy and chemotherapy, is associated with
improved survival. During surgery, tumor margins are identified visually in the
surgical microscope. However, GBM infiltrates the normal parenchyma and both
the likelihood of recurrence and of residual tumor are very high when only visual
delineation is used. Conversely, supratotal resection can cause severe neurological
impairment [178]. Currently, assistance in defining the tumor margins is provided
by preoperative imaging, mainly using MRI. However, due to the brain-shift phe-
nomenon, tumor boundaries change during the course of a surgery, yielding an
inaccurate navigation [179].
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Intraoperative surgical guidance. Intraoperative imaging modalities such as ul-
trasound and MRI, as well as fluorescent tumor agents, may be used to provide
up-to-date information. Intraoperative MRI has been suggested as a method to
compensate for brain shift, but suffers the drawbacks of poor spatial resolution,
high cost and time-consuming workflow [48]. In addition, it is not feasible to
perform multiple intraoperative MRI cycles during a single surgery [48], [49]. In-
traoperative fluorescent agents can help to identify GBM tissue, but the definition
of tumor margins remains difficult, due to the infiltrative growth [46]. Histopatho-
logical examinations are used to verify tumor-free margins and total resection
in surgical oncology (see Chapter 5). However, this is not applicable to glioma
surgery. The turn-around time of tissue analysis is counted in hours and gliomas
cannot be resected with a wide tumor-free margin, due to the risk of neurological
impairment.

Hyperspectral imaging for brain-tumor surgery. In GBM surgery, hyperspectral
imaging (HSI) has been applied to create an in-vivo HS human-brain image
database [175] and to develop a framework for qualitative tumor-margin de-
tection [79], [175]. This framework should provide a surgical tool that is capable
of visualizing the parenchymal area of the brain and the tumor location.

Since HSI allows the surgeon to observe what cannot be seen with the human
eye, several challenging aspects should be considered, of which the prominent
elements are listed below.

• Joint spectral-spatial feature extraction. As already shown in Chapter 5, the
HS data consist of a combination of spectral and spatial information, and
it is crucial to jointly capture both types of information when performing a
subsequent classification task.

• Broad dimension range of data. Second, the HS brain data are high-dimensional
data, characterized by high redundancy on the amount of image bands,
which may potentially degrade the information and decrease the classifica-
tion accuracy.

• Trading-off information extraction and computation time. Third, HS data are
heavy to compute, which is an important aspect for real-time use in surgery.
For enabling a proof-of-concept study, the spectral bands showing the most
discriminative reflectance signals (from VIS to NIR) for different types of
tissue should be investigated. The choice of a subset of wavelengths re-
duces the dimensionality and extracts the most relevant information, while
reducing the computation time.

To overcome these challenges, it is necessary to deploy processing algorithms that
are able to reduce the dimensionality of the HS data without losing the relevant
information and combine them with a classification tool able to exploit the joint
spectral and spatial information. In the previous chapter, we have proposed a
fusion of 3D-2D CNN, to jointly discriminate the features from both spectral and
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spatial information [168]. The so-called HybridSN has been applied to assess
colon cancer [54]. The specific objective of this chapter is to explore an efficient
deep learning architecture for differentiating between tumor and healthy tissue to
further aid brain-tumor surgery.

The research of this chapter leads to the following contributions. (1) Presenting
a selection technique to identify the most informative spectral bands from the
reflectance spectrum that contain discriminating spectral features. (2) Application
of the 3D-2D CNN classification framework which is adapted to an HS-brain
dataset. (3) Evaluation of the developed model and finding the influence of the
fully automated band-selection algorithms on patient data.

A hybrid deep learning-based framework is presented to quantitatively classify
brain and tumor tissue on using an in-vivo HS brain dataset. An automated band-
selection algorithm is applied to reduce the computation time and to provide
insights about the relevant spectral bands towards a real-time HSI acquisition
system. The proposed framework aims at showing the feasibility of HSI-based
classification for brain-tumor tissue and highlights the differentiation between
healthy, brain tissue and blood vessels, all together. The obtained results provide
a basis for aiding neurosurgeons in their critical surgical procedure during brain-
tumor surgery, while showing higher accuracy compared to the state-of-the-art
approaches.

This chapter is outlined as follows. First, Section 6.2 presents the HS in-vivo
system and methodology used to acquire and label the HS brain dataset. Sec-
tion 6.3 describes the main building blocks of the algorithm developed to process
the HS data and perform a multi-class classification, facing the main challenges of
reducing the data dimensionality and classifying different anatomical structures.
Next, a comparison with the diffuse reflectance spectroscopy (DRS) technology is
addressed in Section 6.4, where HS and DRS signals are compared by performing
an animal study. The results of the experiments are illustrated in Sections 6.5 and
discussed in Section 6.7. Finally, Section 6.8 concludes this chapter.

6.2 Intraoperative HS-image acquisition system
An HS acquisition system has been designed to collect data for the creation of an in-
vivo HS human-brain database [175]. This acquisition system is described in detail
in [79] and depicted in Figure 6.1. HS data have been captured in the VNIR (visible
and near-infrared) spectral range between 400 and 1000 nm. The system employed
is a Hyperspec ®VNIR A-Series pushbroom camera (Headwall Photonics Inc.,
Fitchburg, MA, USA) able to obtain 826 bands with a spectral resolution of 2–3 nm
and a sampling interval of 0.73 nm. This system integrates a silicon CCD detector
array with a minimum frame rate of 90 fps. The lens used is a Xenoplan 1.4
(Schneider Optics, Hauppauge, NY, USA) with a focal length of 22.5 mm, covering
a spectral range from 400 to 1000 nm. The HS camera captures the complete
spectral dimensions and only one spatial dimension of the scene in a single shot.
For this reason, it is necessary for the scanning to apply a linear displacement
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Figure 6.1 — Intraoperative system for in-vivo HS acquisitions during brain surgery, where
important elements are specifically indicated.

stage. By sliding the camera with the scanning technique, the complete HS cube
is obtained. The maximum spatial dimensions are 1004×826 pixels. The working
distance is 40 cm, covering a maximum effective area of 129×230 mm. The pixel
size is effectively 128.7 µm. The HS acquisition system has been installed at the
University Hospital Doctor Negrin of Las Palmas de Gran Canaria (Spain) and
the University Hospital of Southampton (UK) and has been used to capture brain
surfaces exposed to white light. The illumination system based on a 150-W QTH
(Quartz-Tungsten-Halogen) lamp, is connected to a cold-light emitter via a fiber-
optical light guide. The cold-light emitter ensures that the brain is not subjected
to high temperatures produced by the QTH lamp in the exposed brain surface.

6.2.1 In-vivo human-brain HS dataset
Within the context of the European project HELICoiD (HypErspectraL Imaging
Cancer Detection) (FP7-ICT, Grant Agreement 618080), an in-vivo human-brain
HS database was collected, consisting of twenty-six images (n = 26) from sixteen
adult patients [175]. This project had the main goal of demonstrating, as a proof-
of-concept, that the use of HSI can be helpful for the identification and delineation
of in-vivo human brain tumor boundaries in real-time neurosurgical operations.

Dataset composition. The research of this chapter employs data from those 12 pa-
tients collected in this project which are publicly available in [175]. Nine patients
had a histopathologically-confirmed Grade-IV glioblastoma (GBM), while the re-
maining seven patients were either affected by other types of tumors, or affected
by other pathologies that required a craniotomy. Next, a brief description is pre-
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sented of the procedure followed to acquire such data during the neurosurgical
operations within the HELICoiD project execution. More details can be found
in [175].

Dataset extraction. During surgery, after craniotomy and dural opening, the
neurosurgeon used preoperative imaging data to identify and mark normal brain
and tumor tissue by placing rubber-ring markers (with an external diameter of
10 mm), as shown in Figure 6.3(a). HS images were then captured during surgery
and biopsies of the tissue inside the tumor marker were taken to confirm the
presence of malignant tumor and determine its type and grade. Resected tissue
was sent for histopathological analysis. In case of superficial tumors, HS images
were acquired after the opening of the dura. Tumors located at deep layers were
recorded after beginning tumor resection. The labeling tool based on the Spectral
Angle Mapper (SAM) algorithm was employed to label data as described in [175].
This tool was used by the operating neurosurgeons to create the ground-truth
dataset. The study and consent procedures were approved by the Comité Ético de
Investigación Clı́nica-Comité de Ética en la Investigación (CEIC/CEI) of the Uni-
versity Hospital Doctor Negrin and the National Research Ethics Service (NRES)
Committee South Central–Oxford C for the University Hospital of Southampton.
Written consents were obtained from all participating patients.

6.2.2 Gold-standard generation
In order to obtain a gold standard of the captured HS image with 100% accuracy on
assessing the pixel class (healthy or tumor), the neurosurgeon should resect all the
tissue exposed to the camera. This is obviously not possible for ethical and healthy
reasons. In Chapter 5, we have presented the methods used for generating a gold
standard with ex-vivo tissue. A similar and relatively easy approach can be applied
using in-vitro tissue. However, this remains a quite challenging task with in-vivo
tissue. In this section, we describe the methodology proposed by Fabelo et al. [175]
which involves the following aspects: the pathological examination of the tumor
tissue, the experience of the neurosurgeon to assess the normal, hypervascularized
and background classes, the tumor tissue based on the pathological analysis, and
the spectral properties of each class.

The gold-standard generation is schematized in the flowchart depicted in Fig-
ure 6.2. Reference pixels for the normal and tumor classes are selected in the
image inside the ring markers and then pixels with similar spectrum in the image
are used to conform the ground truth for such classes (according to the neuro-
surgeons’ criteria). Additionally, the tumor marker is employed to identify the
location where the tissue biopsy was taken for confirming the pathological diag-
nosis of the tumor. The SAM is then applied to the pixels previously selected and
a threshold is set to identify other pixels with almost the same spectral proper-
ties. The spectral angle between the selected pixels and the other pixels of the HS
dataset is calculated. Spectrally similar pixels are highlighted using a binary mask,
and assigned to one class. Neurosurgeons selected a few reliable pixels in order
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Figure 6.2 — Flowchart of the labeling process. Preprocessed HS data are used to extract the RGB
image. The spectral angle mapper (SAM) is then applied to construct the gold-standard map.

to reduce the uncertainty. Tumor pixels are labelled based on the biopsy assess-
ment. Neurosurgeons labeled the normal tissue, blood vessels and background,
by visual inspection according to their experience. In previous work, the assigned
blood vessel class was called hypervascularized. However, since the labeled pixels
in such class involve mainly blood vessels, in this work we have redefined this
term because the label hypervascularized can be confusing for medical experts.

Figure 6.3(a) shows an example of the synthetic RGB image of brain tissue
and Figure 6.3(b) the corresponding obtained ground-truth map, where green,
red, blue and black pixels represent normal, tumor, blood vessels and background
labeled samples, respectively. The background class includes tissue and materials
other than the brain parenchyma, such as dura mater or surgical material, etc.,
exposed in the HS images. More details can be found in [175]. Overall, it should
be noted that the class labeling is fully according to medical standards, such as
the MR neuronavigation system for placing the rubber rings, the experience of
neurosurgeons for the gold-standard definition and the histopathological exam-
ination of the tumor tissue. Figures 6.3(c–f) depict examples of gray-scale band
representations for different wavelengths within the employed spectral range.
The total number of labeled pixels for each class within the HS images is listed in
Table 6.1.

6.3 Brain-tumor detection
6.3.1 Preprocessing
A step-wise preprocessing chain is applied to the acquired in-vivo brain data. The
raw data are first calibrated using the white and dark references, as indicated by
Eq. (4.1). As discussed in [175], the low-frequency and high-frequency bands show
high noise generated by the low performance of the CCD sensor in these extreme
bands. For this reason, Bands 1–55 (from 400–440 nm) and Bands 700–826 (from
902–1000 nm) are removed, obtaining HS cubes with 645 spectral bands, covering
the range between 440 and 902 nm. The last step of the preprocessing chain applies
normalization over the samples, to avoid different radiation intensities of each
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Figure 6.3 — Examples of RGB and HS images and the corresponding ground-truth map for
one patient. (a) Synthetic RGB image of the brain tissue extracted from the hyperspectral cube.
The marker has an external diameter of 10 mm. (c) Annotated ground truth obtained with the
semi-automated Spectral Angle Mapper (SAM) labeling tool. Normal, tumor, blood vessels and
background classes are represented in green, red, blue, and black color, respectively. White pixels
correspond with non-labeled data. (d–f) Examples of four gray-scale band representations for different
wavelengths in the employed spectral range. These wavelengths are selected by visual inspection of
the HS cube, in order to illustrate four of the most different spectral bands.

Patient ID-Image ID
Number of Pixels

NT TT BV BG

01 = 008-01 2,295 1,221 1,331 630
02 = 008-02 2,187 138 1,000 7,444
03 = 010-03 10,626 0 2,332 3,972
04 = 012-01 4,516 855 8,697 1,685
05 = 012-02 6,553 3,139 6,041 8,731
06 = 014-01 0 30 64 1,866
07 = 015-01 1,251 2046 4,089 696
08 = 016-04 1,178 0 1,064 956
09 = 016-05 2,643 0 452 5,125
10 = 017-01 1,328 0 68 3,069
11 = 020-01 1,842 3655 1,513 2,625
12 = 025-02 977 1,282 907 3,687

Total 35,396 12,366 27,558 40,486

Table 6.1 — Description of the HS image dataset. NT is normal tissue, TT is tumor tissue, BV is
blood vessel, BG is background.
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pixel produced by the non-uniform surface of the brain. Despite the noisy band
removal, the human-brain HS dataset consists of a large number of spectral bands
leading to a high-dimensional and highly redundant dataset, which can cause an
excessive computation cost and a decrease of the classification accuracy. In the
next section, we introduce band-selection techniques that show good potential for
the HS brain data, and in general for broad wavelength ranges in HS data.

6.3.2 Dimension reduction of HS image data
In order to reduce the amount of dimensions in HS image data, while preserving
the most relevant spectral information, a band-selection algorithm is applied for
optimally selecting a subset of bands. The objective of optimal band selection is
to preserve the discriminative features in such a way that the amount of bands is
clearly reduced, while maintaining a good classification accuracy. In Section 4.5,
the band-selection methods are presented and divided into six categories. For
that study, we have successfully applied a hybrid scheme involving ranking- and
clustering-based algorithms, as suitable approaches for a small dataset. We have
also exploited an eliminating search-based strategy (VGBS) where after prior
initialization with the full bands, unnecessary bands are removed based on the
volume gradient of a simplex with respect to the HSI data.

In the study of this chapter, involving the high-complexity HS brain dataset,
we apply an evolutionary algorithm for band searching, called the ant colony op-
timization (ACO). The ACO is a searching strategy based on metaheuristic algo-
rithms that are widely adopted to derive the optimal combination of bands [180],
[181]. These algorithms are often inspired by nature and have a satisfactory con-
vergence behavior. Gao et al. [181] performed the ACO-based band-selection tech-
nique, using both supervised and unsupervised objective functions. The ACO
algorithm, together with the genetic algorithm (GA) [180], and the particle swarm
optimization (PSO) [182], are improved searching-based methods, which itera-
tively replace elements of the current band subset with new elements during the
searching procedure to ensure that the evaluation criterion is optimized [126].
The evaluation criterion is based on an objective function, which has the goal to
measure the similarity. This objective function can be represented by a classifier,
as in the ACO algorithm. The ACO-based band-selection experiments and results
show that the classification accuracy on selected bands is higher than the accuracy
found when using all the bands [181].

In order to perform the multi-class classification on the HS brain dataset, the
ACO band-selection algorithm is employed to choose the bands with the most
distinctive information with respect to the multi-class classification accuracy. The
ACO algorithm is created to solve the optimization problem by imitating the
behavior of real ants in searching for food [183]. When ants are trying to find
the food source, pheromones are released on the route. The shorter the road, the
more pheromones will be released. This chemical substance contains information
which can attract other ants, so there are always more ants on the route with a
higher concentration of pheromones. The pheromone also has an evaporation
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coefficient, and it gradually vanishes on the route where there are few ants. Due
to the positive feedback, the ants can find the shortest route to the food source
after a short enough time. In the ACO band-selection algorithm, the artificial
ants pass a route that contains n different vertices of the graph. The number of
vertices represents the chosen bands. During one iteration, the pheromone would
be updated after all the ants find a route. The pheromone updating rule can be
written as [181]:

τij = ρ · τij +∆τij , (6.1)

∆τij =

{
Q · F (fbest) υi, υj ∈ Robest ,

0 υi, υj /∈ Robest ,
(6.2)

where ρ is the evaporation coefficient, ∆τij is the increasing pheromone, Q is a
constant and F is a function that can control the pheromone according to the
value of objective function f . The vertices υi, υj are along the best route Ro,
implicitly indicating the best selected bands. A better fbest denotes a higher ∆τij .
The object function is set to the subset accuracy of a linear SVM classifier to
perform supervised band selection. In this case, the SVM accuracy and the number
of selected bands are the search criterion of the ACO algorithm, which aims at
optimizing the objective function and identifying the most informative bands.

6.3.3 Spatial-spectral supervised classification
Traditional classification algorithms (e.g., spectral unmixing, SAM, SVM) have
been previously presented and studied for performing HSI classification. In Chap-
ter 5, CNNs have been applied to HS images for cancer detection. In more detail,
we have demonstrated that combining 2D and 3D CNNs enables to reveal the
relationship between spectral and spatial dimensions in the HS data. Inspired by
the network of Roy et al. [168], who propose the concatenation of 3D convolution
and 2D convolution operations to obtain both spatial and spectral information,
we propose a deeper version, as shown in Figure 6.4. The HybridSN by Roy et al.
consists of three 3D convolutional layers, one 2D convolutional layer, three dense
layers and a softmax classifier. Our hybrid CNN architecture contains four 3D
convolutional layers, two 2D convolutional layers and three fully-connected layers
where the last layer is a softmax layer. The added convolutional layers may extract
more features and improve the classification accuracy in our dataset. As input
for our network, the band-selection algorithm has been applied (Section 6.3.2),
with the advantage of selecting a subset of bands, while preserving their physi-
cal meaning and the spatial information. The network description is detailed in
Chapter 5.

In the study of this chapter, involving 826 image bands per subject from the
in-vivo brain acquisitions, the HS patch has the shape of P × P ×B voxels where
P is the patch size and B is the number of selected bands. The results from the
above-described model are benchmarked with the results obtained by using a 2D
CNN with three 2D convolutions, one average pooling, and three fully-connected
layers. We perform a patch-based classification, dividing the HS cubes into non-
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Figure 6.4 — 3D–2D hybrid Convolutional Neural Network (CNN) architecture for feature
extraction and classification. At the left, the band selection and patch extraction are shown. In the
middle, the feature extraction is performed by using 3D and 2D CNNs for providing the final output
depicted at the right.

overlapping 3D patches. The frequency of each class is counted within every patch
and the patch label is defined by the majority class label within the patch.

A schematic diagram of the proposed network is illustrated in Figure 6.4. In
order to demonstrate the effectiveness of selecting the most informative bands,
we have also applied the proposed deep learning framework without the band-
selection step and instead added a band-calibration phase. The band-calibration
phase consists of performing an image averaging, every 5 bands through the
spectral range. The results found by using the band-selection step and the band-
calibration phase are evaluated and compared. For benchmarking, we have fo-
cused on a subset of wavelengths and manually extracted 200 wavelengths, cover-
ing the spectral range that shows the most discriminative spectral features (from
600 to 800 nm, see Figure 6.5). Figures 6.6 and 6.7 depict the frameworks used for
performing the benchmarking of the band selection and calibration techniques,
respectively.

6.3.4 Benchmarking with conventional classification approaches
The results of the proposed framework are compared with traditional supervised
classification techniques. The first alternative is to replace the softmax function
inside the above-described CNN by a linear SVM classifier. This means that a
transfer learning approach is applied, in order to use a CNN as feature extractor
and separately train an SVM classifier. The pre-trained hybrid model (HybridSN)
is used, of which the fully-connected layers are removed. The output of the last
convolutional layer is then used as an input for the SVM classifier. After the
training and validation phase, the results are compared with the previously found
results obtained when using the softmax function and a linear kernel-based SVM
model, as shown in Figure 6.8.
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Figure 6.5 — Normalized diffuse reflectance spectrum for each class. Green: healthy tissue, blue:
blood vessels, red: tumor tissue.

Figure 6.6 — 3D–2D hybrid CNN architecture for feature extraction and classification, by
extracting 200 wavelengths to study the influence of band selection. This diagram depicts the
framework used when band selection is employed.

6.4 HSI and DRS for brain-tissue characterization
In the previous section, we have presented an approach to employ HSI for vi-
sualizing healthy and tumor tissue in neurosurgery. Furthermore, Chapter 5 has
investigated the ability of visualizing deep tissue in the skin by using HSI. The
results show that the NIR light penetrates deeper in the tissue (up to 4-5 mm [184]).
In particular, NIR (700-900 nm) demonstrates the maximum penetration depth into
the white and gray matters of the brain [185]. In Section 5.9, we have mentioned
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Figure 6.7 — 3D–2D hybrid CNN architecture for feature extraction and classification by
extracting 200 wavelengths to study the influence of band selection. This diagram depicts the
framework when band calibration is employed, by averaging 5 bands over the spectrum.

Figure 6.8 — 3D–2D hybrid CNN architecture for feature extraction and classification. At the
left, the band selection and patch extraction are shown. In the middle, (1) feature extraction is
implemented by using 3D and 2D CNNs for giving the final classification output based on an SVM
classifier. (2) The intensity values of the extracted patches are supplied to an SVM classifier which
performs the supervised classification.

that combining a NIR camera (900-1700 nm) with a spectral camera (400-1000 nm)
can increase the accuracy in assessing cancer with HSI [174]. Thus, we expect
that a NIR camera can extend the current wavelength range and improve the
visualization of structures beneath the tissue surface, enabling the visualization
of tumors and vessel boundaries.

In this section, the use of diffuse reflectance spectroscopy (DRS) (introduced in
Section 6.1 and Chapter 2) for extracting spectral features from the NIR range, is
studied and benchmarked with HSI. DRS is a technology similar to HSI, that sends
light from a broadband source through an optical filter. The light interacts with the
examined tissue, i.e. it becomes diffusely reflected and it is collected by another
optical fiber. Similar to HSI, the spectral signals are then analyzed to distinguish
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Figure 6.9 — HSI and DRS system setups. (a) HSI components. (b) DRS system components and
optical probe details.

different tissues. Although HSI allows to measure the spectral signature of each
imaged pixel, the DRS is a point-wise measure embedded in an endoscopic probe.
To study the applicability of DRS and HSI for brain-tissue analysis, we propose
an evaluation of an HS endoscopy imaging system, with a DRS probe.

Description of the HSI and DRS acquisition systems. The HSI system is composed
of a mosaic sensor, coupled to a rigid endoscope. The HS sensor is a CMOS snap-
shot mosaic device 5×5 NIR sensor (IMEC, Leuven, Belgium), which integrates
spectral filters per pixel on top of the image wafers in a mosaic pattern. This solu-
tion is one of the first commercial systems, offering true HS imaging at video rates
in a small form factor. The sensor captures 25 spectral bands, from 676 to 954 nm,
with a resolution of 2,050×1,080 pixels, while the 25 bands are arranged in a 5×5
mosaic grid. This results in achieving an imaging pixel resolution of 410×216 pix-
els for each of the 25 bands. The HS sensor is mounted in a vertical position on a
rigid frame, to image the specimens placed on the horizontal plane. Specimens are
illuminated by the light transmitting system of the endoscope, with light covering
the sensitive range of the sensor. The DRS system consists of a Tungsten halogen
broadband light source (360-2500 nm) with an optical spectrometer. A fiber-optic
probe of 1.6 mm contains two optic fibers, with a 1.22-mm center-to-center dis-
tance between them and axis of symmetry parallel to the axis of symmetry of the
probe. One fiber is connected to the Tungsten halogen broadband light source and
the second fiber is connected to the spectrometer, with a spectral response from
400-1600 nm. The system is depicted in Figure 6.9.

6.5 Experimental results for brain-tumor detection with HSI
In this section, the results for the band selection, the classification performances
as well as the benchmarking analysis are presented for the proposed framework
(described in Section 6.3.3) when applied to GBM tumor patients.

Band-selection results: The ACO band-selection algorithm requires almost three
hours of computations by using the subset accuracy of SVM as object function for
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Approach Accuracy
Sensitivity Specificity AUC

NT TT BV BG NT TT BV BG NT TT BV BG

SVM Mean 0.76 0.70 0.43 0.74 0.93 0.87 0.98 0.92 0.87 0.78 0.70 0.84 0.91
Std.D. 0.18 0.30 0.42 0.23 0.09 0.15 0.02 0.08 0.26 0.11 0.21 0.10 0.13

2D CNN Mean 0.72 0.69 0.14 0.77 0.93 0.88 0.97 0.89 0.83 0.88 0.71 0.93 0.93
Std.D. 0.17 0.29 0.15 0.27 0.08 0.14 0.05 0.12 0.29 0.17 0.23 0.07 0.16

1D DNN Mean 0.78 0.79 0.19 0.84 0.88 0.94 0.97 0.90 0.82 0.91 0.89 0.89 0.87
Std.D. 0.16 0.31 0.25 0.29 0.24 0.09 0.05 0.13 0.31 0.23 0.08 0.22 0.29

Hybr. 3D–2D-
CNN+SVM

Mean 0.75 0.68 0.42 0.73 0.91 0.86 0.98 0.91 0.87 0.81 0.76 0.82 0.91
Std.D. 0.18 0.30 0.41 0.23 0.09 0.15 0.03 0.08 0.27 0.13 0.20 0.12 0.12

Prop. hybrid
3D–2D CNN

Mean 0.80 0.76 0.68 0.74 0.96 0.87 0.98 0.92 0.87 0.78 0.70 0.84 0.91
Std.D. 0.18 0.28 0.47 0.25 0.04 0.15 0.02 0.08 0.26 0.11 0.21 0.10 0.13

Table 6.2 — Overall performance results for the approaches evaluated in this study. Accuracy,
sensitivity, specificity, and AUC are calculated for each class. NT: Normal tissue, TT: Tumor tissue,
BV: blood vessels, BG: Background.

selecting 100 bands (as described in Section 6.3.2), covering the spectral ranges of
410–423 nm, 457—485 nm, 500–533 nm, 593–621 nm, 638–667 nm, 731–740 nm, 757–
771 nm and 802–824 nm. The identified spectral ranges approximately correspond
to the ranges found in [147], where an extensive analysis was made for choosing
the best ranges in 26 HS images, obtained from 16 adult patients from the same
in-vivo brain database. In our study, the ACO band-selection algorithm is applied
by using the following parameters (described in Section 6.3.2), chosen as in the
original paper [181]: ant count=30, generation=30, α=1.0, β=10.0, ρ=0.5, q=10 and
strategy number=2. Non-overlapping 3D patches of size 11×11×100 voxels are
created from each selected HS image. The 2D 11×11-pixel patch size is empirically
chosen as the one achieving higher classification accuracy, after having conducted
experiments with several patch sizes (e.g., 6×6 and 22×22 pixels).

Classification results: In order to evaluate our classification model, a four-class
categorization is performed to test the 3D–2D hybrid network against conven-
tional deep learning and machine learning algorithms. The overall per-class accu-
racy, sensitivity, specificity and AUC of the fourfold classification obtained with
the 3D–2D CNN, are shown in Table 6.2. The proposed approach is compared with
(1) a 2D CNN, and (2) conventional approaches such as SVM, and (3) the combi-
nation of SVM when spatial-spectral features are extracted from the pre-trained
3D–2D CNN, as reported in Table 6.2. The extended results for each patient and
each approach are included in Tables 6.3–6.6. It should be noted that data distri-
bution is not uniform for all cases, so that any value is applicable to tumor and
healthy tissue, with respect to sensitivity, specificity and AUC for patients 010-03,
014-01, 016-04, 016-05 and 017-01. The 3D–2D hybrid CNN model achieves a mean
accuracy of 80%, which is 8% higher compared to the accuracy reached with the
2D CNN-based model, implying that more discriminative features are extracted
from the 3D–2D hybrid CNN model. The average accuracy of the hybrid 3D–2D
CNN combined with the SVM classifier (3D–2D CNN+SVM) is 75%, showing a
similar performance of the SVM model (accuracy equal to 76%). Since the combi-
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nation of 3D and 2D CNNs performs better than the SVM in preserving features,
the softmax classifier is more suitable for our experiments. The hybrid 3D–2D
CNN has a lower sensitivity in classifying the tumor tissue (68%), compared to
the healthy and the blood vessels classification (76% and 74%, respectively).

However, higher sensitivity values are obtained when using the hybrid model
compared to the SVM classifier, or the hybrid 3D–2D CNN combined with the
SVM model. The tumor-tissue sensitivity decreases significantly when the 2D CNN
is applied only, leading to the conclusion that this is an unsatisfactory model. This
implies that with such AI model, tumor tissue may be ignored and the left-behind
tumor tissue is potentially risky for the patient, since it can cause the recurrence
of cancer.

It is noteworthy that the sensitivity of the background is higher than 90%

for the hybrid model (3D–2D CNN) and the 3D–2D CNN combined with the
SVM (3D–2D CNN+SVM) and higher than 70% for the SVM and the 2D CNN.
Most of the background samples are classified correctly. For all four methods, the
results show high tumor specificity, with values higher than 97%, indicating that
all methods have a high confidence in classifying non-tumor tissue. This is crucial
to avoid the resection of normal tissue during surgery.

Overall, the hybrid 3D–2D CNN achieves the best results with a mean accuracy
of 80%, sensitivity of 76%, 68%, 74%, 96%, specificity of 87%, 98%, 92%, 87%, and
AUC of 78%, 70%, 84%, 91%, for normal, tumor, blood vessels and background,
respectively (Table 6.2). Whereas the measured AUCs for the four classes obtained
with the four methods are quite similar, the AUC for the tumor tissue is clearly
higher when the hybrid 3D–2D CNN is combined with the SVM classifier. Fur-
thermore, we have compared the proposed approach with the results found, after
having applied the 1D DNN (deep neural network) by Fabelo et al. [186]. This
1D DNN is conformed by two hidden layers of 28 and 40 nodes, respectively,
using the rectified linear unit as an activation function. These results are presented
in detail in Table 6.7.

Band selection vs band calibration. In Section 6.3.3, we have described the ap-
plied method for studying the impact of selecting the most informative bands. In
this case, the experiments are conducted by training and validating on the same
in-vivo HS image dataset from 9 patients diagnosed with Grade-IV GBM. The
ACO band-selection algorithm is applied to the normalized reflectance data in
the range 600-800 nm, resulting in 60 selected bands (empirically found the most
competitive number). Non-overlapping 3D patches of 10× 10× 60 voxels are ex-
tracted from each HS image. Leave-One-Patient-Out Cross-Validation (LOPOCV)
is employed in the validation phase, where each patient is used as a test set, while
the remaining patients are included in the training set. The procedure is repeated
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3D–2D Hybrid CNN

Image ID Accuracy Sensitivity Specificity AUC

NT TT BV BG NT TT BV BG NT TT BV BG

008-01 0.79 0.87 1.00 0.35 0.98 0.99 0.81 1.00 0.90 0.72 0.48 0.78 0.92
008-02 0.97 0.89 1.00 0.94 0.99 1.00 0.99 0.98 0.99 0.84 0.84 0.89 0.93
010-03 0.91 0.97 - 0.74 0.88 0.84 - 0.98 0.99 0.82 - 0.87 0.97
012-01 0.78 0.93 0.92 0.66 0.95 0.74 0.98 1.00 0.99 0.86 0.93 0.86 0.93
012-02 0.79 0.82 0.84 0.74 0.95 0.80 1.00 0.97 0.95 0.87 0.73 0.86 0.81
014-01 0.97 - - 1.00 0.97 0.97 - 1.00 1.00 - - 0.95 0.99
015-01 0.87 0.82 0.98 0.78 0.98 0.91 0.99 0.97 0.95 0.90 0.95 0.89 0.97
016-04 0.91 0.89 - 0.90 0.95 0.97 - 0.91 0.99 0.80 - 0.77 0.94
016-05 0.82 0.73 - 0.90 0.94 0.97 - 0.91 0.85 0.80 - 0.90 0.97
017-01 0.83 0.48 - 1.00 1.00 1.00 - 0.84 0.93 0.69 - 0.90 0.99
020-01 0.56 0.94 - 0.69 0.87 0.51 0.99 0.99 0.95 0.76 0.50 0.87 0.93
025-02 0.35 0.01 - 0.20 1.00 0.96 1.00 1.00 0.08 0.50 0.49 0.57 0.54
Mean 0.80 0.76 0.68 0.74 0.96 0.87 0.98 0.92 0.87 0.78 0.70 0.84 0.91
Std.D. 0.18 0.28 0.47 0.25 0.04 0.15 0.02 0.08 0.26 0.11 0.21 0.10 0.13

Table 6.3 — Overall results for the 3D–2D hybrid CNN. Accuracy, sensitivity, specificity, and
AUC are calculated for each class. NT: Normal tissue, TT: Tumor tissue, BV: blood vessels, BG:
Background. (Symbol ”-” denotes the absence of imaged tumor tissue).

3D–2D Hybrid CNN+SVM

Image ID Accuracy Sensitivity Specificity AUC

NT TT BV BG NT TT BV BG NT TT BV BG

008-01 0.60 0.72 0.07 0.57 0.96 0.68 0.99 0.83 0.81 0.98 0.89 0.67 0.99
008-02 0.88 0.72 0.79 0.92 0.93 0.97 0.96 0.94 0.96 0.84 0.88 0.93 0.95
010-03 0.90 0.95 - 0.69 0.91 0.84 - 0.97 0.99 0.90 - 0.83 0.95
012-01 0.82 0.93 0.84 0.76 0.86 0.80 0.99 0.96 0.99 0.87 0.92 0.86 0.93
012-02 0.74 0.93 0.36 0.79 0.69 0.77 0.98 0.86 0.97 0.86 0.67 0.84 0.84
014-01 0.96 - - 0.91 0.93 0.97 - 0.96 1.00 - - 0.95 0.98
015-01 0.87 0.91 0.88 0.84 0.94 0.89 1.00 0.94 0.99 0.91 0.94 0.89 0.96
016-04 0.69 0.63 - 0.67 0.83 0.98 - 0.76 0.88 0.81 - 0.73 0.87
016-05 0.83 0.67 - 0.87 0.97 0.97 - 0.89 0.90 0.82 - 0.88 0.95
017-01 0.78 0.38 - 0.93 0.99 1.00 - 0.78 0.99 0.69 - 0.86 0.99
020-01 0.57 0.90 - 0.73 0.89 0.53 1.00 0.98 0.91 0.72 0.50 0.86 0.93
025-02 0.32 - - 0.09 1.00 0.96 0.93 1.00 0.04 0.49 0.49 0.54 0.54
Mean 0.75 0.68 0.42 0.73 0.91 0.86 0.98 0.91 0.87 0.81 0.76 0.82 0.91
Std.D. 0.18 0.30 0.41 0.23 0.09 0.15 0.03 0.08 0.27 0.13 0.20 0.12 0.12

Table 6.4 — Overall results for the hybrid 3D–2D CNN + SVM applied to the features extracted
with the hybrid model. Accuracy, sensitivity, specificity, and AUC are calculated for each class.
NT: Normal tissue, TT: Tumor tissue, BV: blood vessels, BG: Background. (Symbol ”-” denotes the
absence of imaged tumor tissue).
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SVM

Image ID Accuracy Sensitivity Specificity AUC

NT TT BV BG NT TT BV BG NT TT BV BG

008-01 0.61 0.73 - 0.66 0.96 0.64 0.96 0.86 0.81 0.72 0.48 0.78 0.92
008-02 0.87 0.70 0.72 0.85 0.93 0.99 0.95 0.93 0.91 0.84 0.84 0.89 0.93
010-03 0.92 0.96 - 0.76 0.88 - 0.98 1.00 0.82 - 0.87 0.97 -
012-01 0.81 0.93 0.87 0.74 0.91 0.79 1.00 0.97 0.98 0.86 0.93 0.86 0.93
012-02 0.74 0.94 0.49 0.81 0.65 0.76 0.97 0.89 0.97 0.87 0.73 0.86 0.81
014-01 0.98 - - 0.91 0.98 0.98 - 1.00 1.00 - - 0.95 0.99
015-01 0.87 0.89 0.90 0.82 0.97 0.89 1.00 0.96 0.98 0.90 0.95 0.89 0.97
016-04 0.73 0.61 - 0.53 0.94 0.98 - 0.78 0.91 0.80 - 0.77 0.94
016-05 0.82 0.61 - 0.95 0.99 0.98 - 0.84 0.93 0.80 - 0.90 0.97
017-01 0.80 0.39 - 1.00 1.00 1.00 - 0.79 0.96 0.69 - 0.90 0.99
020-01 0.59 0.95 - 0.75 0.91 0.55 1.00 0.99 0.89 0.76 0.50 0.87 0.93
025-02 0.33 - - 0.14 1.00 0.99 0.96 1.00 0.06 0.50 0.49 0.57 0.54
Mean 0.76 0.70 0.43 0.74 0.93 0.87 0.98 0.92 0.87 0.78 0.70 0.84 0.91
Std.D. 0.18 0.30 0.42 0.23 0.09 0.15 0.02 0.08 0.26 0.11 0.21 0.10 0.13

Table 6.5 — Overall results for the SVM model. Accuracy, sensitivity, specificity, and AUC are
calculated for each class. NT: Normal tissue, TT: Tumor tissue, BV: blood vessels, BG: Background.
(Symbol ”-” denotes the absence of imaged tumor tissue).

2D CNN

Image ID Accuracy Sensitivity Specificity AUC

NT TT BV BG NT TT BV BG NT TT BV BG

008-01 0.66 0.89 - 0.63 1.00 1.00 0.88 0.71 0.93 0.99 0.50 0.81 1.00
008-02 0.83 0.68 0.19 1.00 0.90 0.93 0.99 0.93 0.82 0.92 0.87 1.00 0.94
010-03 0.83 0.82 - 0.84 0.84 0.82 - 0.91 1.00 0.92 - 0.93 0.98
012-01 0.66 0.92 0.38 0.56 0.96 0.64 0.93 1.00 0.91 0.82 0.87 0.97 0.99
012-02 0.74 0.96 0.15 0.81 0.75 0.77 0.97 0.87 0.98 0.97 0.91 0.95 0.97
014-01 0.99 - - 0.91 0.91 1.00 - 1.00 1.00 - - 1.00 1.00
015-01 0.64 0.77 0.23 0.79 0.98 0.67 1.00 0.88 0.91 0.83 0.90 0.93 0.99
016-04 0.76 0.65 - 0.90 0.86 0.95 - 0.74 0.99 0.94 - 0.89 1.00
016-05 0.71 0.33 - 1.00 1.00 1.00 - 0.68 1.00 0.93 - 0.93 1.00
017-01 0.88 0.64 - 1.00 1.00 1.00 - 0.91 0.88 0.99 - 0.99 1.00
020-01 0.59 0.88 - 0.78 0.93 0.79 1.00 1.00 0.51 0.93 0.35 0.99 0.90
025-02 0.30 - - 0.04 1.00 1.00 1.00 1.00 0.02 0.40 0.58 0.81 0.44
Mean 0.72 0.69 0.14 0.77 0.93 0.88 0.97 0.89 0.83 0.88 0.71 0.93 0.93
Std.D. 0.17 0.29 0.15 0.27 0.08 0.14 0.05 0.12 0.29 0.17 0.23 0.07 0.16

Table 6.6 — Overall results for the 2D CNN. Accuracy, sensitivity, specificity, and AUC are
calculated for each class. NT: Normal tissue, TT: Tumor tissue, BV: blood vessels, BG: Background.
(Symbol ”-” denotes the absence of imaged tumor tissue).
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1D DNN

Image ID Accuracy Sensitivity Specificity AUC

NT TT BV BG NT TT BV BG NT TT BV BG

008-01 0.67 0.99 0.02 0.57 1.00 0.99 0.87 0.71 0.99 1.00 0.82 0.82 1.00
008-02 0.89 0.84 0.32 0.89 0.92 0.96 0.98 0.97 0.87 0.97 0.96 0.99 0.96
010-03 0.90 0.86 - 1.00 0.96 0.98 - 0.90 1.00 0.98 - 1.00 1.00
012-01 0.90 0.85 0.65 0.93 1.00 0.92 0.96 1.00 0.99 0.95 0.96 1.00 1.00
012-02 0.70 1.00 0.03 0.95 0.54 0.73 0.97 0.79 1.00 0.91 0.85 0.97 0.90
014-01 1.00 - - 1.00 1.00 1.00 - 1.00 1.00 - - 0.24 -
015-01 0.78 0.99 0.29 0.93 1.00 0.80 1.00 1.00 0.92 0.97 0.83 1.00 0.98
016-04 0.72 0.92 - 0.93 0.23 1.00 - 0.61 1.00 1.00 - 0.82 1.00
016-05 0.96 0.88 - 1.00 1.00 1.00 - 0.96 1.00 0.99 - 1.00 1.00
017-01 0.77 0.41 - 1.00 0.92 1.00 - 0.89 0.64 0.99 - 0.99 0.96
020-01 0.59 0.94 - 0.86 1.00 0.90 1.00 1.00 0.46 0.98 0.82 1.00 1.00
025-02 0.45 - 0.02 - 1.00 1.00 1.00 1.00 0.01 0.21 0.99 0.88 0.70
Mean 0.78 0.79 0.19 0.84 0.88 0.94 0.97 0.90 0.82 0.91 0.89 0.89 0.87
Std.D. 0.16 0.31 0.25 0.29 0.24 0.09 0.05 0.13 0.31 0.23 0.08 0.22 0.29

Table 6.7 — Overall results for the 1D DNN. Accuracy, sensitivity, specificity, and AUC are
calculated for each class. NT: Normal tissue, TT: Tumor tissue, BV: blood vessels, BG: Background.
(Symbol ”-” denotes the absence of imaged tumor tissue).

Approach Accuracy Sensitivity Specificity

NT TT BV BG NT TT BV BG

SVM 0.66 0.60 0.33 0.52 0.85 0.84 0.96 0.84 0.81
2D CNN 0.66 0.63 0.10 0.57 0.83 0.83 0.98 0.84 0.80
Hybr. 3D-2D CNN 0.77 0.67 0.33 0.76 0.92 0.92 0.95 0.85 0.95
Hybr. 3D-2D CNN
+SVM 0.73 0.64 0.34 0.94 0.93 0.89 0.95 0.85 0.95

Table 6.8 — Overall average results for comparing the approaches evaluated on 60 image bands
extracted from 200 wavelengths by using the ACO algorithm. Mean values of accuracy, sensitivity,
specificity, and AUC are calculated for each class, NT: Normal tissue, TT: Tumor tissue, HT: hyper-
vascularized tissue, BG: Background.

until every patient is chosen once as test set and then averaged over all repeated
experiments. For comparison, the following classifiers are benchmarked: SVM,
2D-CNN, the hybrid CNN with the SVM as classifier and the hybrid CNN. The
overall accuracy of the four-class classification when bands are selected from 200
wavelength is shown in Table 6.8.

Per-patient analysis. The performance-comparison results obtained after the
ACO band selection, measured in terms of overall accuracy, tumor tissue sensitiv-
ity, normal tissue sensitivity and tumor tissue AUC, for each patient, are shown in
Figures 6.10–6.11. Due to non-uniform data distribution, Figures 6.12, 6.13 and 6.11
have a few ”not applicable” (n/a) values and missing bars.

Furthermore, for the HS images 020-01 and 025-01, a sensitivity of zero is found
for the tumor tissue. On one hand, in case of the 020-01 image, the detection of
the tumor area is quite challenging, since the tumor is not clearly visible in the
surface of the brain during data capturing, although the neuronavigation system
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clearly indicates the presence of it. Hence, as can be observed in Figure 6.14(a), the
spectral signatures from the labeled tumor (red) and normal (blue) tissue are quite
similar. Considering the other tumor spectral signatures found in the database,
e.g. from the images 012-01 (Figure 6.14(c)) and 015-01 (Figure 6.14(d)), the tumor
signature from 020-01 is more resembling to the normal tissue signature than the
tumor-tissue signatures from 012-01 and 015-01 images.

The differences found between tumor and normal tissue in the spectral range of
600 to 800 nm in 012-01 and 015-01 are not found in 020-01. This could explain the
misclassifications of the tumor samples in 020-01 using the LOPOCV methodology.
On the other hand, all the HS brain data employed in this study were acquired
at the University Hospital Doctor Negrin of Las Palmas de Gran Canaria (Spain),
except for the 025-01 image, which was captured at the University Hospital of
Southampton (UK). As shown in Figure 6.14(b), a decrease in the level of reflection
from 700 nm is produced in the labeled spectral signatures of this image, which are
quite different from the other data in the database. Although a specific acquisition
protocol was followed to acquire the data, this HS image seems to suffer from a
different illumination condition. One possibility is that some kind of protection
element was placed in front of the illumination system of the camera lens, thereby
filtering the light in the infrared region.

Another possibility is facilitated by using surgical lights, illuminating the brain
surface during the capturing process, which can interfere with the acquisition
process. The surgical lights are quite powerful and affect the capturing process by
interfering with the halogen light of the system, thereby disrupting the calibration
stage.

In most cases, the proposed algorithms outperform the 1D CNN for the de-
tection of tumor tissue. Similar results are found for the sensitivity of the normal
tissue. One of the reasons is that the 1D DNN exploits only the spectral informa-
tion with a pixel-based approach, where each pixel has a dimension of 1×128.
Furthermore, the labeling process highly relies on the pathological examination.
The ground truth was generated mostly based on the examination results. How-
ever, the excision area was very limited, and the data were not sufficient for a
2D-pixel-wise classification. Therefore, a 2D CNN in combination with the 3D
CNN, used in this study, jointly exploits both spectral and spatial information, by
using image patches with a dimension of 11×11 pixels.

Result visualization. The classification results are visualized in Figure 6.15 for
patients 008-01, 008-02, 010-03, 012-01. This is illustrating that the proposed hy-
brid 3D–2D CNN approach is able to correctly discriminate the tumor area, which
overlaps with the ground truth. As suggested by Fabelo et al., the obtained low
sensitivities are caused by the relatively lower number of tumor samples in the
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Figure 6.10 — Average accuracy results of the leave-one-patient-out cross-validation of the fourfold
classification for each method: 1D CNN, hybrid 3D-2D CNN, hybrid 3D–2D CNN + SVM, only
SVM and the 2D CNN.

Figure 6.11 — Average AUC results for the tumor-tissue classification of the leave-one-patient-out
cross-validation of the fourfold classification for each method: 1D CNN, hybrid 3D–2D CNN, hybrid
3D–2D CNN + SVM, only SVM and the 2D CNN.
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Figure 6.12 — Average sensitivity results for the normal tissue classification of the leave-one-
patient-out cross-validation of the fourfold classification for each method: 1D CNN, hybrid 3D–2D
CNN, hybrid 3D–2D CNN + SVM, the SVM and the 2D CNN.

Figure 6.13 — Average sensitivity results for the tumor-tissue classification of the leave-one-
patient-out cross-validation of the fourfold classification for each method: 1D CNN, hybrid 3D–2D
CNN, hybrid 3D–2D CNN + SVM, only SVM and the 2D CNN.
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Figure 6.14 — Examples of the different means and variances of the normal (blue) and tumor (red)
spectral signatures from different HS images that compose the labeled dataset. (a) Data from image
020-01. (b) Data from image 025-02. (c) Data from image 012-01. (d) Data from image 015-01.

training set, and by the fact that only pixels with a high certainty of being correctly
classified were selected, which causes the sparse distributions visualized in Fig-
ure 6.15 [175]. In this case, the hybrid CNN model achieves an accuracy of 77%,
which is 11% higher compared to the result of the 2D CNN model. The accuracy
of the hybrid CNN combined with the SVM classifier is 73%, showing an im-
provement of 7% compared to the SVM model. The combination of 3D CNN and
2D CNN has a higher performance than the SVM, highlighting a clear advantage
when using the softmax function as classifier. The results show high specificity
for the tumor tissue (> 95%), which indicates a good accuracy for classifying
healthy tissue. The tumor tissue sensitivity is low on the average, reaching 10%
when the 2D CNN is used, confirming that most of the tumor tissue cannot be
detected. As already mentioned, the left-behind tumor tissue is potentially risky,
since it can cause the recrudescence of cancer. We have already noticed that the
sensitivity of the background is very high (more than 85%). This can be explained
by the heterogeneous data distribution, which may cause a loss of generalization
during the validation phase. To evaluate the influence of the ACO band-selection
algorithm, we have validated the same framework also without using the band-
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Figure 6.15 — Multi-class classification maps of four patients with the related HS test images
obtained with the hybrid 3D–2D CNN model. Subfigures (a–d) depict the predicted map of their
respective ground truth, Subfigures (a’–d’) represent normal, tumor tissue and blood vessels in
green, red, and blue colors, respectively, with background represented in black.

selection step. In this case, a band calibration is performed to reduce the data
dimensionality, by averaging every 5 image bands over the spectrum. Table 6.9
shows the results for multi-class classification for each tested patient, performed
by using the ACO band-selection algorithm, while Table 6.10 presents the results
found when applying the image averaging as band-calibration step. The data
are not uniformly distributed, resulting sometimes in ”not applicable” values in
both Tables 6.9 and 6.10, due to the absence of imaged tumor tissue. In Tables 6.9
and 6.10, the results are presented per patient, in order to compactly visualize
the differences on the performances between the two methods. It can be noticed
that the accuracy decreases from 77% to 71% without the band-selection step. In
contrast, band selection gives an improvement of 20% and 9% in sensitivity for
finding the hypervascularized tissue and the healthy tissue, respectively, based
on the selection of most suitable bands. These results render the conclusion that
the band-selection procedure is effective in improving the classification results.

6.6 Exp. Results for DRS and HSI brain-tissue characterization
Eight ex-vivo porcine brain-tissue samples are studied and scanned by using the
HS and DRS sensors. The acquisitions were conducted by Philips Research (Eind-
hoven, The Netherlands) following the ethical guidelines for ex-vivo animal stud-
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Per patient results of 3D-2D CNN with band selection

Patient ID Accuracy Sensitivity Specificity

NT TT HT BG NT TT HT BG

p08 0.78 0.82 0.25 0.82 0.91 0.94 0.94 0.85 0.93
p10 0.86 0.89 0.00 0.58 1.00 0.83 1.00 0.93 0.99
p12 0.70 0.92 0.51 0.72 0.56 0.82 0.94 0.84 0.98
p14 0.99 0.00 0.00 0.86 1.00 0.99 1.00 1.00 1.00
p15 0.85 0.78 0.89 0.83 0.89 0.88 0.98 0.92 0.96
p16 0.85 0.89 - 0.47 0.97 0.96 0.93 0.98 0.93
p17 0.80 0.38 - 1.00 1.00 1.00 1.00 0.16 0.93
p20 0.58 0.65 - 0.82 0.91 0.90 1.00 0.97 0.54
p25 0.48 - - 0.72 1.00 1.00 0.69 0.88 0.77
Mean 0.77 0.67 0.33 0.76 0.92 0.92 0.94 0.84 0.89
Std.D. 0.16 0.32 0.38 0.16 0.14 0.07 0.10 0.26 0.15

Table 6.9 — Accuracy, sensitivity, specificity, calculated for each class NT: Normal tissue, TT:
Tumor tissue, HT: hypervascularized tissue, BG: Background, when band selection is used to reduce
the data dimensionality. (Symbol ”-” denotes the absence of imaged tumor tissue).

Per patient results of hybrid CNN with band calibration

Patient ID Accuracy Sensitivity Specificity

NT TT HT BG NT TT HT BG

p08 0.75 0.75 0.22 0.84 0.88 0.95 0.90 0.78 0.97
p10 0.79 0.96 0.00 0.04 0.99 0.61 0.99 0.99 0.99
p12 0.69 0.91 0.47 0.56 0.78 0.73 0.98 0.90 0.97
p14 0.99 0.00 0.00 1.00 0.00 0.99 1.00 1.00 1.00
p15 0.85 0.38 0.94 0.88 0.93 0.84 0.99 0.95 0.93
p16 0.77 0.74 - 0.32 1.00 0.99 0.92 0.98 0.80
p17 0.74 0.25 - 0.75 0.99 0.99 0.98 0.13 0.93
p20 0.49 0.65 - 0.50 0.89 0.80 1.00 0.99 0.51
p25 0.30 - - 0.13 1.00 0.96 0.95 1.00 0.16
Mean 0.71 0.58 0.33 0.56 0.83 0.87 0.97 0.86 0.81
Std.D. 0.20 0.34 0.40 0.34 0.32 0.14 0.10 0.28 0.29

Table 6.10 — Accuracy, sensitivity, specificity, calculated for each class NT: Normal tissue, TT:
Tumor tissue, HT: hypervascularized tissue, BG: Background, when band calibration is used to
reduce the data dimensionality. (Symbol ”-” denotes the absence of imaged tumor tissue).
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ies. Each porcine brain specimen was cut in slices and imaged with a color camera.
DRS and HS acquisitions were captured from the gray an white matter, with an-
notated DRS capturing location on the color images. For each specimen, 140 DRS
signals (70 for the white matter and 70 for the gray) and 25 HS were collected.
Then, since the HS sensor was scanning through 25 wavelength bands, the num-
ber of dimensions of the DRS signals was matched to that amount of bands. We
have calibrated the DRS and HSI data, as specified in Section 6.3.1. The HS images
are segmented according to the DRS signals and annotated on the color images
and then averaged to obtain the same spatial density of information for DRS sig-
nals. The averaged HSI and DRS signals for the the white and gray matter of the
eight samples are shown in Figures 6.16 and 6.17, respectively. DRS signals are
smoother than HSI signals.

For the gray matter, DRS curves show a decrease in reflectance value, from
676 nm to 954 nm. HSI reflectance signals portray almost flat curves, which sud-
denly drop in the range of 900 nm and afterwards start rising again. However,
for Sample 3, 4 and 6, an increase is observed between 840 and 870 nm, before
dropping at 900 nm.

For the white matter, DRS curves are almost flat with a slight drop after 900 nm.
A linear SVM model is designed to perform the brain-tissue classification from HSI
and DRS acquisitions, following the procedural method described in Section 5.6.3
for training, testing and performance evaluation. The AUC values, sensitivity and
specificity are shown in Table 6.11. For DRS, sensitivity, specificity and AUC, all
scores reach 96%, where for HSI, the sensitivity achieves 95%, specificity becomes
93% and AUC 95% [187].

Both infrared sensing techniques can obtain a good accuracy when automated
tissue classification is performed. DRS signals appear with low variance, resulting
in a well-balanced sensitivity and specificity, while the sensitivity becomes 93%
for the HS signals, reaching the lowest value of 69%. However, DRS is a point
contact-based measurement, requiring contact with the scanned tissue. On the
other hand, HSI is a non-contact technique, providing the spectral signature for
each pixel of an image. This is an important feature for a possible integration into
an image-guided tool for neurosurgery. Although HSI shows less smooth behavior
in the spectrum, the experiments demonstrate a reliable result on classifying the
brain tissue. The experiments show comparable results on detecting white and
gray matter, by using an HSI sensor, coupled to an endoscope and a DRS probe.

Thus far, we have demonstrated that coupling HSI to the endoscope can per-
form brain-tissue classification reaching comparable performances to the DRS,
with the advantage of providing an image view. Further developments in the
near future should involve the use of endoscopic HSI for the correct classification
of healthy tissue and tumor tissue, which would improve brain-tumor detection
during minimally invasive procedures.
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Figure 6.16 — Averaged intensity signals for HSI acquisitions. (a) White matter of the eight brain
samples. (b) Gray matter of the same samples.

6.7 Discussions
This chapter has described a neurosurgical application of HSI employed for brain-
tumor detection. A novel framework for tumor classification with HSI on an in-
vivo HS brain database is presented. The proposed 3D–2D hybrid CNN approach
for brain-tumor detection has shown promising results for achieving the highest
classification performances, when compared with supervised machine learning
algorithms, as well as conventional 2D CNNs and 1D DNN approaches.

Brain-tissue classification with HSI. Glioblastoma (GBM) patients have been
employed to train and test the models and to classify tumor, healthy and blood
vessels by performing an inter-patient cross-validation. A sensitivity of 68%, speci-
ficity of 98% and AUC of 70% for tumor-tissue classification are achieved. The
obtained specificity is 10% higher compared to the current state of the art [186],
where other types of brain tumors are included and analyzed. This demonstrates
a better identification of the tumor pixels with the joint normal, blood vessels and
background classification. In [186], Fabelo et al. propose a 1D DNN architecture
as main classifier. In that work, the training set included patients who underwent
craniotomy for other diagnoses than GBM. Only the GBM cases were employed
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Figure 6.17 — Averaged intensity signals for DRS acquisitions. (a) White matter of the eight
brain samples. (b) Gray matter of the same samples.

for testing the algorithm and the rest of the cases were used for the healthy and
blood vessel classification. The accuracy reached by the 1D DNN was 77%, and
the same result was achieved with the 2D CNN and a traditional SVM-based
approach. In order to reduce the false positives in the multiclass classification,
Fabelo et al. [186] propose to combine the 1D DNN with the 2D CNN applied
to a gray-scale representation of the HS data. However, the tumor classification
accuracy does not improve (42%). It should be noted that accurate tumor detec-
tion is crucial to delineate the malignant lesions, thereby reducing the risk for
recurrence. In our work, when implementing the 3D-2D DNN architecture, the
results show an increase of the overall accuracy by 2%, and a tumor sensitivity of
68%, compared to the 19%, achieved by the 1D DNN. Aiming at identifying brain-
tumor margins to aid the surgeon during resection, the results are promising and
are improved when compared to the state-of-the-art methods for the multi-class
classification of the in-vivo human-brain HS dataset.

In Fabelo et al., the sensitivity for the tumor tissue is higher in the binary classi-
fication case, compared with the multi-class classification where the false negatives
are caused by the presence of blood vessels and background classes [186]. This
multi-class classification issue is also reflected in our experiments, which can be
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Results of DRS and HSI brain-tissue classification

HSI DRS

Spec. ID Sensitivity Specificity AUC Sensitivity Specificity AUC

s01 0.76 0.10 0.91 0.92 0.95 0.93
s02 0.96 0.96 0.96 0.95 0.91 0.93
s03 1.00 0.69 0.85 0.98 1.00 0.99
s04 1.00 0.96 0.98 0.91 1.00 0.96
s05 0.98 1.00 0.99 1.00 0.85 0.93
s06 0.91 0.98 0.96 0.99 0.99 0.99
s07 1.00 1.00 1.00 0.96 1.00 0.98
s08 1.00 0.87 0.93 1.00 0.95 0.98

Mean 0.95 0.93 0.95 0.96 0.96 0.96

Table 6.11 — Sensitivity, specificity, AUC result comparisons between brain-tissue classification
using DRS and HSI, for eight animal specimens.

noticed from Figure 6.15(a’), (b’), (d’), where tumor pixels are classified as blood
vessels. The specificity found for the tumor classes is quite high on the average,
leading to the conclusion that the algorithm correctly identifies the non-tumor
tissue. This is an important feature for a future intraoperative tool, ensuring that
the resected tissues are not normal brain tissue which can positively impact the
patient outcome. It should be noted that part of the HS acquisitions were made
when the superficial tumor was resected, or when normal tissue was removed to
visualize the tumor at deeper layers. This procedure may have affected the area
acquired, where bleeding and irrigation fluid can have resulted in misclassifica-
tions of the tumor pixels. Although the surface of the brain was cleaned prior
to HS image acquisition, blood may still have interfered with the images due to
the time required for the acquisition process (≈1 min). This may have caused
misclassifications, especially between the blood vessels and the tumor tissue.

Limitations. This study also has a number of limitations. First, the gold-standard
map is based on similarities in the HS cubes which introduces a bias, since the
same HS similarities are later exploited by the subsequent classification methods.
Other important limitations are the lack of a dense ground truth as well as the
absence of clinical evaluations on the tumor boundaries. Furthermore, the non-
uniform distribution in some cases may cause a very high background sensitivity,
while leading to a loss of generalization. The large variability between different
patients represents a further limitation in this study, mainly due to different ac-
quisitions done in two clinical centers. This difference can affect the robustness of
the method. A simple way to address this would be a processing step preceding
the system that would identify the patient scans on which the system will not
work properly, and label those as low-confidence predictions accordingly. Further
studies should be conducted to evaluate the influence of resection on the spectral
signature of tissues. Furthermore, a snapshot HS acquisition system would allow
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real-time acquisition, without the constraint of acquiring HS images at certain
surgery times. A snapshot HS acquisition system may also increase the accuracy
of the proposed CNN method, by adding spatial resolution to the system.

Classification maps. A visualization map is created to evaluate the ability of the
system for detecting and localizing the tumor during neuronavigation. While the
four-class classification is a challenging task, it is essential to provide surgeons
with an easy interpretation of the classification map, in which different structures
are visualized. In our visualization maps, the tumor tissue overlapped with the
ground truth and the main mismatches were found for the blood vessels that were
sometimes classified as tumor. Tumor tissues have higher metabolism, hyperpla-
sia and are more vascularized compared to the normal tissue [9]. This can cause
the mismatched classification of blood vessels into tumor tissue. In this sense, HSI
could be combined with spectroscopy to better analyze the biological differences
between tumor and blood vessels, as proposed in Section 6.4. For instance, analy-
sis of the spectral properties of hemoglobin on the brain surface, can also lead to a
better understanding of the classification outcome.

DRS and HSI for brain-tissue characterization. In this chapter, we have also
explored the potential of automated brain-tissue classification using DRS and
HSI technologies, extracting spectral features from the near-infrared range. DRS
achieves good sensitivity and specificity, due to the low variance in the DRS signals
for the gray and white matter. However, for the HSI signals, sensitivity reaches
95% while specificity is 93%, with the lowest classification score obtained for Sam-
ple 3 (69%) and Sample 8 (87%), due to the signals for these two samples that
differ from the others. Whereas DRS allows to analyze the biochemical composi-
tion of the scanned tissue, it is a spot measurement which requires contact with
the tissue for spectral signature acquisition. However, HSI is a contactless imaging
technique that can be potentially used in real-time operation during surgery.

6.8 Conclusions
This chapter has studied HSI for brain-tissue classification on glioblastoma pa-
tients, using an intraoperative HSI system. A hybrid 3D–2D CNN has been pro-
posed that offers higher accuracy in detecting tumor, healthy and blood vessels
compared with the state-of-the-art approaches. By employing a hybrid network,
both spectral and spatial features are jointly exploited and used for a patch-based
classification. In parallel, a comparison study has addressed and highlighted the
potential of extracting the most discriminative bands. A reduced spectral interval
is selected to minimize the redundant information which leads to lower perfor-
mance in classifying tissue.

Accuracy, sensitivity, and specificity are computed when the ACO band-selection
algorithm is used, to select a subset of bands and when applying band calibration,
in order to reduce the HS dimensionality. Band selection yields an improvement
in sensitivity of the overall accuracy of identifying the healthy and hypervas-
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cularized tissue. While further experiments are warranted to optimize the deep
learning algorithm and the multi-class classification, the spectral-spatial approach
outperforms traditional deep and machine learning techniques and can serve as a
robust basis for a future intraoperative real-time image-based guidance system.

In this study, HSI-based classification is compared with the DRS to characterize
brain tissue in animal specimens. Both sensing techniques show good performance
when applied for classifying healthy brain tissue (gray and white matter). While
DRS can provide a point-based contact and spectroscopic measurement, HSI is
able to display an image view which is crucial for an image-guided surgery appli-
cation. The combination of both technologies can potentially reveal the relation
between the relevant wavelengths and the biological properties of the different
imaged tissue classes. In particular, scattering measurements, acquired with DRS
at different wavelengths, can be used to improve delineation and differentiation
of tissues.

This chapter has presented a novel approach achieving a high confidence in
the correct detection of tumor and non-tumor brain-tissue areas, which is a key
element for the design of a feedback system in neurosurgery. The ability of the
proposed framework to detect tumor and improve the surgical outcome should
be further studied and extended, employing larger patient datasets. The results
achieved in this chapter prove the feasibility of both brain tumor and healthy
tissue identification using HSI. These results can serve as a basis for improving
the detection of tumor and surrounded tissue using HSI and may open a future
for image-guided neurosurgery applications.
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“What we know is a drop, what we don’t know is an ocean.”

Isaac Newton

C
ha

pt
er 7 Conclusions

This concluding chapter first summarizes the most important findings of each
chapter in Section 7.1 after a short summary of the complete thesis. Second, Sec-
tion 7.2 addresses the posed research questions from the first chapter and discusses
the answers to these questions, thereby also highlighting contributions of this the-
sis. Finally, a future outlook on optical and spectral imaging for surgical guidance
is provided in Section 7.3.

7.1 Conclusions of individual chapters
This thesis has investigated the possible improvements for surgical guidance for
the two medical use cases: (1) accurate spinal surgery using optical and hyperspec-
tral imaging, (2) tumor identification with hyperspectral imaging for advancing
oncology surgery. Both use cases are addressed to advance surgical guidance with
non-invasive and non-ionizing imaging technologies. Several contributions have
been proposed, such as an optical-based method to provide better tracking during
spinal surgery without markers, and a benchmarking with the existing marker-
based approaches. Furthermore, a novel application of hyperspectral imaging
is applied for skin-feature detection and patient localization in navigated spine
surgery and for tissue characterization, by enabling tumor detection with exten-
sive evaluations on patients.

This section summarizes the findings of the individual chapters, described in
separate paragraphs below.

Chapter 2 indicates the relevance of surgical guidance in complex interven-
tions. The state of the art in surgical guidance is described and optical imaging
techniques currently used in complex interventions (such as spinal surgeries), are
presented. Besides the existing methods for feature detection and tracking, the
chapter presents hyperspectral imaging (HSI) systems and related image analysis
techniques. HSI can enable the enhancement of surgical guidance by: (1) offering
an alternative to optical-based approaches for patient tracking, and (2) aiding the
surgeon to detect tumor tissues. We have found that HSI is a powerful imaging
technique for improving the surgeon vision in surgical applications, such as pa-
tient localization and tissue characterization. This chapter has also presented a
technical overview of machine learning (SVM) and deep learning methods (in-
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volving 3D-2D CNNs), which are employed for creating a prediction model and
the metrics used to perform the evaluation of such a model.

Chapter 3 has established a baseline of patient tracking without the usage
of any reference markers in spinal surgery, which are currently used in clinical
practice. The less invasive markers, currently used during surgery, are adhesive
frames which can be dislodged or obscured causing errors in the navigational
feedback.

A novel framework for skin-feature localization is designed and tested on open
spinal surgery patients to track the patient spine. This framework is needed to
detect the vertebrae location in open surgeries, e.g. in the cervical area of the spine,
when minimally invasive surgery cannot be performed. The proposed optical-
based framework reaches a 3D triangulation error below 1 mm (< 0.5 mm) on open
spinal surgery patients which is a clinically acceptable accuracy. Secondly, when
applying the novel framework at skin level for MIS, a submillimeter accuracy
is achieved on spinal surgery patients, which satisfies the clinical requirements
and outperforms the state-of-the-art approach. Despite the advantages achieved,
several conditions can cause inaccurate matching and influence the robustness
of the framework. These conditions lead to a low amount of matched features in
the optical cameras and are caused by issues with visibility of the anatomy, poor
illumination and obscure areas due to blood and surgical liquids. These limita-
tions are improved in Chapter 4, by using a multispectral or hyperspectral camera
which can offer a more stable, as well as a non-invasive solution for skin-feature
detection.

Chapter 4. For efficient anatomical feature detection, a spectral-based method
is proposed in this chapter. To prove that HSI can offer a valid alternative to
marker-based tracking techniques, we have introduced a computer vision frame-
work for detecting and matching spectral skin features. The framework employed
in Chapter 3 on the optical data, has been extended and applied onto human
subjects to assess the 2D error in detecting on-body spectral features.

First, an evaluation is performed employing a multispectral camera on data of
30 subjects, where patient motion is simulated. A subpixel error in matching skin
features is obtained, and the most informative bands (430 nm and 930 nm) are
identified, which provide the highest amount of matched features. This study has
formed the basis for proving that on-body feature tracking with spectral imaging
is feasible.

Second, a more realistic study is performed, where an HS camera acquiring
41 bands is employed to detect skin features on 17 subjects. Deep learning com-
bined with band-selection techniques are introduced to find the most informa-
tive bands. The performance evaluation demonstrates that an error of 0.25 mm
(on average) is achieved with the proposed method for detecting and matching
2D features after the breathing of the subjects. This outperforms handcrafted lo-
cal feature methods (SURF and MSER) with ≈5%. Furthermore, this chapter has
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proven that HSI can offer a richer signal compared to the standard RGB images,
where the measured error is higher (around 1 mm, in some cases), and the amount
of matched features is insufficient for robust matching.

Chapter 5 has more extensively investigated the potential of HSI for charac-
terizing human tissues during image-guided surgery. In particular, AI methods
have been used to detect healthy and malignant tissues in surgical oncology with
the objective to perform a real-time biopsy.

First for developing research for HSI-based cancer detection, a machine learn-
ing framework entailing preprocessing, feature extraction and classification via
an SVM classifier, has been studied. The proposed method is applied in tongue-
tumor patients and achieves 92% AUC, thereby outperforming the state-of-the-art
approaches in sensitivity and computation time. Although the tongue-tumor lo-
cation is not fully explored in in-vivo studies, this chapter provides a method for
objective tumor-tissue discrimination achieving a superior performance compared
to state-of-the-art approaches.

Second, colon cancer detection is studied in combination with CNNs, which
offer higher classification performance when different types of tissue are present
in one organ. A joint 3D-2D CNN demonstrates that combining spectral and spa-
tial features leads to 82% AUC and superior sensitivity and specificity, compared
to 3D CNNs (2% and 9%, respectively) and 2D CNNs (5% in both cases). This
chapter has also briefly discussed the trade-off between using a wide-band HS
camera and the related involved costs.

Chapter 6 has applied the outcome and methods deployed in Chapter 5 to the
neurosurgical oncology field. In particular, the hybrid 3D-2D CNN is used for clas-
sifying brain tumor in glioblastoma patients. In this chapter, the effectiveness of
a band-selection algorithm is proven by performing and comparing experiments
with a simple band-averaging approach. A higher accuracy and sensitivity is
reached in detecting brain tumor, healthy tissue and blood vessels when the most
informative bands are selected with the ACO-band selection algorithm. Therefore,
the latter is included in the designed framework used for brain-tissue classification
on 12 patients. Extensive evaluation, performed via LOPOCV, achieves an AUC
of 70%, a sensitivity of 68% and a specificity of 98%, which outperforms 2D CNN,
1D DNN, and SVM classifiers.

This chapter has also proposed the embodiment of HSI in an endoscope for
neuro-navigation and a comparison with the existing DRS technique to reveal
spectral tissue properties. On 8 porcine specimens, DRS and HSI have reached
comparable results on detecting white and gray brain matter. HSI shows a slightly
lower specificity (93%) compared to DRS (96%), while preserving the advantage
of being an image-based technology that can be used as a contactless technique
during surgery.
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7.2 Discussion and contributions to research questions
This section evaluates the proposed methods addressing the research questions
formulated in Section 1.7.

RQ1: Tracking on-body patient features with optical cameras during spinal
surgery

• RQ1a: How can optical cameras be used for detecting on-body features in spinal
surgery with millimeter accuracy, such that a novel markerless tracking is realized?

In Chapter 3, a non-invasive feature detection is proposed to omit the usage
of markers in spinal surgery and enable on-body feature tracking with at
least two position-calibrated optical cameras. In this setting, a clinical vali-
dation on spine patients is performed, which has demonstrated that spine
features can be localized with an error lower than 1 mm with these optical
cameras, thereby omitting any reference frames or markers. The reliability of
the proposed approach is studied in the framework of analyzing the amount
of detected features. In a benchmark study that involves several handcrafted
feature detection techniques, the Oriented FAST and Rotated Brief (ORB)
feature detection algorithm has proven to achieve a higher amount of de-
tected features in patient spine data. This is crucial to ensure an accurate
and robust feature matching.

Chapter 3 has also studied skin-feature detection, aiming at the usage
of similar position-calibrated optical cameras during minimally invasive
surgery. Skin features have been detected and tracked with submillimeter
accuracy by employing optical imaging, thereby satisfying the clinical accu-
racy requirements for spinal surgeries. In conclusion, a few optical cameras
combined with a proper image analysis framework have shown to be an at-
tractive, non-invasive and non-ionizing modality for detecting and matching
on-body features during surgery.

• RQ1b: What are the main processing steps for the image analysis framework to
detect and localize the anatomical features and what performance is obtained?

To properly detect and localize anatomical features with calibrated optical
cameras in patient spine or skin, an image analysis framework is proposed
in Chapter 3. This framework addresses all the processing steps related to
on-body feature detection and localization. These steps are: (1) optical cam-
era calibration, (2) optical image preprocessing, (3) feature detection and
(4) feature matching from different image views, (5) 3D feature localization.
When applied to detect spinal features, the proposed framework achieves a
mean triangulation error lower than 0.5 mm. The same framework is used
to detect skin features reaching a mean error lower than 0.3 mm.

In these studies, the designed framework is further used to analyze and
benchmark different handcrafted feature detectors (Step (3)). When detect-
ing spine features, more than 95% of the analyzed frames reaches a triangu-
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lation error lower than 0.5 mm when either SURF, FAST or ORB is employed
as feature detection algorithm. When applied to detect skin features during
several spinal surgery procedures, the proposed framework reaches a local-
ization accuracy of 0.24 mm and 0.22 mm for MSER and SURF, respectively.
No statistical differences between the two methods are found (p > 0.05).
When benchmarking markerless feature detection and localization, the over-
all performance of the proposed image analysis framework combined with
either MSER or SURF is superior than a solution with marker-based detec-
tion (p < 0.05). In a validation study involving execution time analysis, the
proposed framework reaches 20 fps and 33 fps when employing SURF and
FAST as feature detectors, respectively, proving the feasibility for a real-time
implementation.

RQ2: Beyond the visible spectrum for spectral feature detection with HSI

• RQ2a: Is it possible to employ an HS camera and further improve the current feature
detection for patient localization?

To further enhance the feature detection for non-invasive patient localiza-
tion, Chapter 4 has proposed to employ spectral imaging techniques, such
as multispectral and hyperspectral imaging (MSI and HSI), to scan deeper
in the tissue layers. The feasibility of these approaches is first evaluated in
a human study involving 30 volunteers, where MSI has demonstrated to
reach a subpixel accuracy in tracking spectral on-body features, by scanning
through 8 wavelengths (from the VIS to the NIR spectral range). In this eval-
uation, human movement has been simulated, making it possible to apply
MSI for patient localization. However, a real-world scenario should be also
provided for further clinical validation.

Secondly, HSI has been further validated with a different experimental
setup on 17 volunteers, which have followed a protocol where they were
asked to normally breath, thereby realistically mimicking the patient move-
ment during a the surgical scenario. In this study, HSI scans over 40 wave-
lengths, which enables to reach 2D skin localization with an error lower
than with optical cameras. The results demonstrate that HSI offers richer
data information for identifying skin features, compared to the conventional
RGB imaging with cameras. It can be concluded that HSI can be potentially
integrated into a navigation system to provide markerless tracking and
to further improve patient localization during minimally invasive surgery.
However, this improvement comes with a more complex system which in-
duces also a higher cost.

• RQ2b: In what steps can the image analysis framework facilitate the use of HSI to
create markerless localization and enhance the detection of on-body spectral features?

To enable the use of HSI for anatomical landmark detection and tracking,
Chapter 4 has proposed an image analysis framework that involves: (1) hy-
perspectral image preprocessing, (2) dimensionality-reduction techniques,
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(3) handcrafted and deep-learned local feature detection of skin features,
(4) skin-feature matching during subject breathing, (5) a geometric verifi-
cation to assess the feature localization and compute the localization error.
Extensive validation of the framework has demonstrated that band-selection
techniques (in particular the Saliency Bands and Scale Selection algorithm
(SBSS)) can extract the relevant information, reduce redundancy in the spec-
tral bands and lead to a higher localization accuracy than non-selective
algorithms. Furthermore, a deep learning method integrated in the frame-
work has shown better performance compared to handcrafted feature de-
tection (e.g. SURF), hence outperforming the state-of-the-art approaches.
The proposed image analysis framework forms a good basis for employing
spectral-based skin features without using any external marker.

• RQ2c: What is the accuracy of the detection algorithm based on RQ2b, and does the
approach provide a good performance in terms of detected features and localization?

The accuracy of the detection algorithm for HSI-based skin features is eval-
uated on a human study, mimicking the patient breathing and employing
the image analysis framework from Chapter 4. The accuracy is evaluated
by computing the error made in localizing the skin features compared with
ground truth, which is established by using adhesive optical markers. Deep
local features, detected and matched by using the proposed image analysis
framework, are localized with a mean 2D error of 0.25 mm and are out-
performing handcrafted local feature detectors. The mean error reaches its
lowest value when band-selection techniques are integrated into the system.
A reduction of 0.10 mm in localization performance is observed when using
conventional band-extraction methods, such as PCA.

In general, the best performances are achieved by deep-learned features
combined with optimally-selected spectral bands. In the latter case, a higher
amount of matched features is reached for the majority of subjects. A per-
formance analysis is also conducted to assess the advantage of revealing
features that are not visible, compared to standard RGB color images. This
evaluation has proven that RGB either fails, or provides a 2D localization
error exceeding 1 mm, which indicates that HSI is more powerful in iden-
tifying the amount of skin-surface features and with a higher localization
accuracy.

RQ3: Going beyond the visible spectrum and the tissue surface for detecting
cancerous tissue for surgical oncology

• RQ3a: Can HSI detect tumor and in particular discriminate between healthy and
malignant tissues on ex-vivo tissue specimens of at least two organs?

Chapter 5 has demonstrated the ability of HSI in characterizing different
types of tissue such as cancer, by combining the spectral imaging technology
with machine learning and deep learning techniques. This has been proven
by validating HSI on ex-vivo specimens from surgery-resected tumor tissue.
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7.2. Discussion and contributions to research questions

HSI is able to perform automated tongue-tumor detection in combination
with a standard, yet tuned SVM classifier reaching an AUC of 92%.

A more complex experimental scenario is also tested, by employing HSI
for detecting colon cancer. In the latter case, the colon anatomy presents
a higher diversity in the tissue composition compared to the tongue. Be-
cause of this increased diversity, we have designed a novel hybrid network
architecture, exploiting both 3D and 2D information. The employment of
3D CNNs jointly coupled with 2D CNNs, is not only efficient in terms of
computation, but also offers a good mean AUC of 82% when discriminating
between healthy colon and tumor tissue. The two proposed validations form
the basis for detecting tumor and neighboring tissues with HSI and show
that this technique can be employed for multiple organs.

• RQ3b: What processing and validation is needed to select the most suitable infor-
mation (spatial and/or spectral) in hyperspectral image data to detect cancer?

In order to properly employ HSI for characterizing tissue during surgery,
Chapter 5 has proposed a proper processing and validation analysis to be ap-
plied for revealing cancerous and healthy tissue features. When employing a
machine learning algorithm, hyperspectral feature extraction is a crucial step,
which can be leveraged by using PCA, manual band-extraction or automatic
band-selection approaches. Furthermore, the ground truth is a key element
for classifying healthy and tumor tissue, which is employed for supervised
learning tasks. In the studied cases, the ground truth is resulting from the
histopathological examination and it is registered with the hyperspectral
cube. The final labeling is then created by an experienced pathologist. When
applying deep learning to HSI data, more complex features are extracted
by jointly exploiting the spectral and spatial dimensions. A novel frame-
work involving the hybrid 3D-2D CNN, which has been introduced under
RQ3a, is put into practice to jointly extract 3D and 2D features, leading to
better performance compared to state-of-the art approaches (separate 2D
and 3D CNNs). Clinical validation on patient data is provided by leveraging
leave-one-patient-out cross-validation (LOPOCV), which has the potential
to mitigate data-overfitting issues.

Generally speaking, feature extraction methods combined with band-
extraction techniques (e.g. PCA, or manual band averaging), and in con-
junction with machine learning and deep learning approaches, these feature
extraction methods are able to extract the relevant descriptive hyperspectral
information. In this way, HSI can be successfully applied to achieve tissue
characterization in surgical specimens.
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RQ4: Detection system validation for brain tumors using HSI in neurosurgery
oncology.

• RQ4a: How do we apply the algorithms deployed for ex-vivo studies (RQ3a) on an
in-vivo study such as intraoperative brain-tumor detection?

Chapter 6 has developed a method to apply HSI and the algorithms de-
ployed for ex-vivo studies on in-vivo specimens for intraoperative brain-
tumor detection. Thus, following the research direction of Chapter 3 and
Chapter 4, the method is able to identify brain-tumor tissue, healthy brain
tissue and blood vessels, thereby improving the surgical vision and expe-
diting the surgical workflow in neurosurgery. To implement this, a gold
standard for labelling tumor, healthy tissues and blood vessels is generated
by using a semi-automatic approach, which employs the surgeon labeling
and a partial histopathology for the tumor tissue. The employed framework
in Chapter 5 is used to properly process and classify different types of tissue
in a human-brain HS dataset. The novel hybrid 3D-2D CNN demonstrates
to achieve a higher accuracy in detecting, tumor, healthy tissue and blood
vessels compared with state-of-the-art approaches (mean accuracy of 80%
with AUC of 81%, 0.76% and 82% for tumor, healthy tissue and blood ves-
sels, respectively). Furthermore, a comparison study has demonstrated the
effectiveness of extracting the most informative bands with the ACO band-
selection algorithm to reduce the redundancy in the spectral dimension.

Overall, the detection system represents a novel approach to detect tumor
and healthy brain tissue, which is key for providing a feedback in neuro-
surgery to improve patient outcome.

• RQ4b: Is it possible to compare HSI with diffuse reflectance spectroscopy for a neu-
rosurgical technology, embedded in an endoscope for minimally invasive surgery?

Diffuse reflectance spectroscopy (DRS) has been compared with HSI by
coupling and embedding an HS camera in an endoscope, with the objective
to employ HSI during minimally invasive surgery. Brain-tissue classification
has been performed with DRS and HSI and validated on an animal study.
HSI has reached a sensitivity of 95%, a specificity of 93% with an AUC of
95%, which is comparable with DRS (AUC of 96%).

By achieving the same performances of a point-based measurement, HSI
can be potentially embedded in an endoscope to perform minimally invasive
surgery. Thereby, it can provide an image view rather than a point-based
measurement, which is crucial for image-guided surgery applications.

7.3 Overview and outlook
The research presented in this thesis has discussed the application of novel light-
based imaging techniques, such as optical and hyperspectral imaging, for patient
tracking and tissue discrimination during image-guided surgery. The experiments
have shown that the developed algorithms for patient tracking by using optical
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7.3. Overview and outlook

and hyperspectral imaging systems are sufficiently accurate or even improve on
clinical acceptable accuracy. Further research experiments have demonstrated that
deep learning techniques represent an optimal solution for performing classifica-
tion or feature detection tasks with hyperspectral imaging.

However, further optimization is required to include hyperspectral imaging in
the operating room and achieve robust performance for future applications. First,
a broader applicability of HSI should be accepted by clinicians and further investi-
gated. Artificial intelligence (AI) can potentially learn the large spectral variability
of hyperspectral data, and combined with HSI, form an intelligent system that
is capable to detect, head & neck, colorectal cancer, etc., anatomical structures
and measure tissue perfusion. However, to realize AI in HSI systems suited for
clinical practice, extended validation is needed which should involve clinical re-
search studies to test deep learning approaches on large medical datasets. Thus,
HSI datasets should be collected by clinical centers across countries and publicly
released to enhance the reliability and the performance of HSI, even if there are
considerable clinical variations in methods and associated data. Once a big vol-
ume of hyperspectral data will be available, AI-based algorithms can be improved
to achieve organ or tumor segmentation and accurate margin delineation.

Such databases should contain a sufficient amount of expert annotation, to
ensure high-quality professional scoring and for supervised learning purposes.
However, it is not a problem if a part of the data is not annotated because self-
supervised learning approaches are increasingly exploited in research, which
could also validate such medical data. Self-supervised learning is immensely
useful in many healthcare applications, where data are lacking and annotation is a
challenging task (e.g. intraoperative data), or where multi-modal data are used. It
should be considered that to perform self-supervising learning, high-quality data
should be collected to prevent model biases. At present, this is still a challenge
in the healthcare scenario, which might be mitigated by applying distributed
learning approaches (e.g. federated learning), and by creating databases in the
operation room for ad-hoc collection of intraoperative data.

Second, to advance in the operating room and enable minimally invasive
surgery aided by a smart HSI-based detection and tracking system, hyperspectral
cameras should be miniaturized and included in robot-assisted surgery (RAS). The
first step is to embed hyperspectral cameras in endoscopes and combine them with
pioneering tools such as augmented reality or virtual reality, to perform accurate
surgical manipulation supported by full understanding of the anatomy below
the tissue surface. A case study is presented in Section 3.5 to illustrate a possible
integration of patient tracking techniques with AR technologies towards image-
guided surgery. In this scenario, HSI will become a crucial sensing technique for
robotic surgery, empowered by data-driven innovation. Therefore, AI will enable
the design of intelligent robotic systems where HSI cameras will image the patient
(for tracking purposes) or an area of interest (e.g. with focal cameras on a cancerous
specimen), and perform patient tracking and instrument manipulation towards
an anatomical target (e.g. tumor identification and resection, or anatomy detection
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for robotic spinal fixation procedures). However, to integrate robotic systems in
healthcare, a haptic, accurate and precise feedback should be provided. To this
end, many challenges should be considered, such as the bleeding of the resected
anatomical areas during surgery that might obscure the camera field of view and
lead to unwanted errors in the surgical maneuvering. Furthermore, robotics and
AI are lacking a harmony with surgeons, which should grow in the direction of
smooth co-design of prediction algorithms that facilitate the clinician in navigation
through the anatomy and delineation of what is visible. In addition, AI-based
robotic systems should facilitate smooth communication between surgeons and
be able to interpret gestures to efficiently interact with the machine.

The above-described technology advancement for intraoperative guidance
will gradually lead to a shift from robot-assisted surgeries to surgeon-assisted
procedures, where robots can perform tasks autonomously with high accuracy
(e.g. intraoperative tumor segmentation and resection). Currently, during robot-
assisted surgeries, trained surgeons control the robot arms from a screen, owning
the full control of these arms. In future, standard surgeries (e.g. surgical sewing)
envision the surgeon as robot manager in standard cases, where the robot can
achieve higher manipulation accuracy and associated performance than a surgeon
(for example in eye surgery). Thus, the technology supported by this thesis may in-
fluence the role in intraoperative guidance. The surgical robot will directly control
the instruments via the robotic arms, while receiving input from camera sensors
(e.g HSI) which will become the robot’s eyes. The number of minimally invasive
surgeries will increase, due to the robot capability to access more easily unseen
parts of the human anatomy (tracked and characterized by optical or spectral
cameras), without experiencing the surgeon’s fatigue, or discomfort due to relying
on a monitor view for instrument manipulation, or consequential errors made by
tremors. Nevertheless, the surgeon will still remain responsible for the operation.
However, AI and robotics will represent a facilitating system able to work closely
with clinicians, e.g. by supporting the surgeons to perform highly accurate and
minimally invasive interventions. WTowards the integration of HSI in minimally
surgeries, the combination with other light-based imaging methodologies such as
optical coherence tomography (OCT) can offer a better imaging view where the
OCT endoscopic imaging provides a volumetric view and HSI supports the tissue
characterization. In this way, the low spatial resolution of HSI (especially when a
higher spectral resolution is provided) will be compensated by the combination
with OCT, which is able to assess and detect morphological differences in tissue.

The days of continuously innovating with technologies for image-guided in-
terventions are not yet over, despite the expected budget constraints due to de-
mographic changes. This is because of a few fundamental driving forces, like
more accurate imaging and automated understanding and robots taking over
standardized tasks with high precision and low risk. Since knowledge becomes
increasingly data-driven, surgeons and medical experts will have to embrace these
developments because they have a direct benefit from it.
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A Improving patientpositioning
workflow during MR-HIFU

This appendix presents a study on applying a marker-based tracking approach
to improve patient positioning during high-intensity focused ultrasound (HIFU)
procedures. Marker tracking enables the fusion of MR images on video data, to
accurately augment the radiologist view.

A.1 Introduction
High-intensity focused ultrasound (HIFU) enables ablation of pathological tissues
by non-invasively delivering a high level of acoustic energy in situ [110]. The
technology relies on high-intensity ultrasound waves, focused on a small region,
depositing high levels of energy, and results in a local and precise ablation without
damaging the surrounding tissue. Recent advances in medical imaging have
resulted in a renewed clinical interest on this technology [112], [113].

Clinical development has been enabled by integration of magnetic resonance
imaging giving guidance to high-intensity focused ultrasound imaging (MR-
HIFU), which has shown promising results for pain palliation [111]–[113]. The
MR-HIFU technology is currently being used for palliative treatment of bone
metastases, as a second-line treatment after unsuccessful radiation therapy and is
occasionally used for tumor control [114]. MR-HIFU provides real-time tempera-
ture mapping, enabling the visualization of the thermal dose within the targeted
tissue and giving a clear indication of the tissue damage [114], [188].

However, improvements and a better workflow integration remain an open is-
sue. Bone metastasis treatment with HIFU consists of several treatment phases [112].
From the available screening CT and MR images, a treatment strategy is envi-
sioned by the radiologist, which aims at finding the optimal acoustic window.
However, during the HIFU treatment day, this positioning strategy has to be
translated from pre-interventional images to the patient on the HIFU table. This
step is of utmost importance, since it will enable to sonicate safely to the tar-
get area. Because the radiologist is currently lacking sufficient guidance during
the positioning, the patient has to be re-positioned multiple times with repeated
acquisitions of MR images in between the re-positioning tasks. After having con-
firmed the optimal patient positioning, the treatment planning is finalized and
the sonication starts. The extra burden of multi-cycle MR image acquisitions and
re-positioning tasks lead to a long preparation phase, which is critical for the time

187



A
ppendix

A

A . I M P R O V I N G PAT I E N T P O S I T I O N I N G D U R I N G M R - H I F U

budget available for patient treatment. Thereby, methods for adequate patient
positioning outsidev of the MRI, are needed to accelerate the process.

Motivated by this need, this appendix proposes an augmented reality (AR)
setup to display relevant information such as the locations of the target lesion,
the acoustic window and the ultrasound beam path on the patient during the
preparation phase. In our positioning approach, 3D real-time image overlay can
enable validating patient positioning and facilitate adequate ultrasound beam
path imaging without acquiring extra MR images on the treatment day.

This study aims at accelerating the patient positioning for MR-HIFU proce-
dures, by implementing a real-time AR setup that displays the anatomical struc-
tures, which are segmented from the MR image on the patient view in relationship
with the HIFU beam path. In this context, AR systems were broadly applied to
aid surgical guidance by using either marker- or markerless-based approaches.
They are used in numerous medical applications to provide patient tracking and
an augmented visualization through image fusion [189], [190]. Wang et al. [191]
performed MR image fusion on CT scans by automatically detecting and track-
ing markers located on the patient skin, achieving a patient-to-image registration.
Similarly, in Lai et al. [108], [192] CT images were overlaid on top of the endoscopic
view, by using an optical tracking system for endoscope tracking to conduct exper-
iments on a phantom model, reaching a good accuracy in tracking and rendering
the augmented view. Thus, the fusion of MR information on optical cameras by
directly tracking markers on a patient, can be used in this specific application to
assess the patient position and correct for it. Therefore, this approach can offer an
additional advantage in the current clinical practice.

For patient tracking and image augmentation the following requirements need
to be considered during each MR-HIFU procedure.

• Stereo camera calibration.

• MR acquistion and co-registration with stereo camera system.

• Image fusion on camera view.

The main challenge is to develop a novel approach to provide a visul feedback
by fusin MR data on video recordings. The AR system presented in this appendix
describe a first approach towards accurate patient positioning during HIFU treat-
ment. We developed a marker-based system tested on volunteers to simulate the
HIFU treatment workflow and assess the accuracy. Our system require the patient
to wear the markers during the preliminary MRI scan and the patient positioning
phase.

This appendix is structured as follows. AR systems are presented in Sec-
tion A.2. Section A.3 describes the methods used for building an AR setup during
MR-HIFU procedures, and Section A.4 elaborate on the image fusion from video
to MR data. The acquired dataset is illustrated in Section A.5, while Section A.6 de-
scribes the workflow applied for performing the augmentation. The re-projection
error analysis is reported in Section A.7 and Section A.8 concludes this Appendix.

188



A
pp

en
di

x
A

A.2. Augmented reality systems in medical applications

A.2 Augmented reality systems in medical applications
Image-guided procedures allow aided guidance, based on co-registration of pre-
liminary CT or MR images to a coordinate system (e.g. markers) with a fixed
relation to the patient. In Chapter 3 and 4 marker detection techniques have been
presented in order to achieve patient tracking which can be used with prelim-
inary imaging for visualizing the internal anatomy. The use of markers on the
skin enables a patient-to-image registration by automatically locating the markers.
Thus, the patient anatomy can be displayed on a dedicated screen to provide a
navigation feedback.

In order to achieve a real-time navigation AR has been investigated for di-
agnostic radiology, as a technique where real-world objects are overlaid with
computer-generated perceptual information [108]. The user can display a virtual
image from the patient’s imaging and the real-world image, that can vary based
on the specific application[193]. The real-world image is the patient’s anatomy
which can be integrated on a pre-operative planning assessment in the radiology
reading room. In the context of MR-HIFU therapy, AR may advance the patient
positioning workflow by augmenting video data with image data from prelimi-
nary MR. Therefore, a computer generated image of a target lesion is integrated
in a real-world view.

A.3 Methods
This appendix presents a method for MR image fusion on a stereo camera view.
This will enable to display the locations of the target lesion, thereby reaching
adequate and faster patient positioning. In order to fuse the MR data on top of the
stereo camera view, we employ a marker-based image fusion approach, by using
fiducial markers attached on the target area.

The framework is evaluated and tested on four volunteers enrolled on a hu-
man subject study. The accuracy of the method will be evaluated to meet the
application requirements, proving the feasibility of fusing MR information on
optical cameras in real time and allowing a more direct and faster assessment of
the patient position. There are two types of AR technologies: marker-based which
uses visual markers, and markerless-based approaches. In this research, we use a
marker-based approach, and the key steps of each method are further elaborated.

A.3.1 Marker and markerless-based image fusion
Marker-based image fusion is performed by using markers and determine their
locations in the space for building the virtual environment. For marker-based AR,
marker can be either a 2D image with visual features that are easy to be extracted
or natural objects directly in the real environment. Most of the markers are black
and white as the contrast can easier allow target object recognition [194]. In this
case, a camera detect the markers and perform the AR view for the virtual objects.
A camera is used with AR software to detect augmented reality markers as the
location for virtual objects. The final result consists on visualizing an image into
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the scene where the location of markers is detected. Markerless image fusion can
be performed by using surface matching. In this case, the point cloud obtained
from a CT or MR data and the point cloud obtained by using a stereo camera
can be registered by extracting and matching the corresponding key points and
computing the coarse transformation between them [195]. The main difference
between maker and markerless approaches is the need of markers to establish the
relation between the virtual and real world.

For markerk-based AR, the crucial part is to detect markers and superimpose
the extracted features in the real environment [194]. To develop a marker-based AR
application, the most important step is to identify a marker through the extracted
features and superimpose virtual objects in the real environment. To identify a
marker, particular algorithms are needed to extract features from the marker and
recognize it. Currently, there are several algorithms available in the market, that
can automatically detect and extract features from a marker [194]. The marker
detection would then allow to find the relation between the virtual object and the
marker as well as their position. For markerless AR, several technologies can be
used to identify the relationship between virtual objects and users. Currently, the
existing software tools are developed for marker-based AR [194].

The study presented in this Appendix start with investigating on AR in the
MR-HIFU workflow, by developing a framework for establishing the relation-
ship between virtual objects and the real world. The feasibility of integrating AR
during MR-HIFU is investigated by employing a marker-based image fusion. A
schematized diagram of the proposed system is depicted in Figure A.1.

A.3.2 Experimental setup
A ZED stereo camera [115] (Stereolabs Inc., San Francisco, CA, USA) was em-
ployed to perform patient tracking with a marker-based approach. The ZED cam-
era embeds two high-resolution cameras (2560 × 720 pixels) rigidly fixed inside
the stereo camera frame. Intrinsic and extrinsic camera parameters are estimated
using the ZED proprietary software. The stereo camera enables video recording
with a frame rate equal to 30 frames per second (fps), and provides a depth map
with a depth range of up to 25 meters. Camera parameters such as focal length,
field of view or stereo calibration can be retrieved from the ZED Calibration tool
for each eye and resolution. The following parameters are provided:

• Focal length: fx, fy.

• Principal points: cx, cy.

• Lens distortion: k1, k2, k3, p1, p2.

• Horizontal, vertical and diagonal field of view.

• Stereo calibration: rotation and translation between left and right eye.

The fiducial markers used in this study are visualized in Figure A.2. The
markers were printed in black and circular shaped on top of a white background,
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A.4. Image fusion on video data

Figure A.1 — Architecture for AR visualization of MR images on video data.

giving an encapsulated positive MRI contrast agent at the center which enabled
dual detection with both optical cameras and MRI. Figure A.2a) and Figure A.2(b)
depict the marker and its positioning on the leg of a subject. In the experimental
acquisition, seven markers were positioned non-symmetrically on the right leg of
each subject, such that at least three markers are always visible from the camera
view. Then, the target area was found by detecting the HIFU table position and
subsequently obtaining the transducer location. To do so, the ArUco markers were
used and fixated to the surface of the HIFU table as shown in Figure A.3(a) and
Figure A.3(b). After having performed the marker detection using a Canny edge
detector, the 3D model of the visible markers was reconstructed in space and the
transformation between the camera and the markers could be found. The markers,
which were visible from both the MR system and the camera system, were used
for the image fusion.

A.4 Image fusion on video data
The leg of each subject is manually segmented from the MR and the markers,
positioned on the surface of the leg, are matched with the markers detected from
the video camera. The same approach is used to segment the femur, tibia and
fibula bones, aiming at a realistic clinical application (bone metastasis treatment).
The external views were then combined with the internal 3D view, acquired via the
MR system, to construct a 3D augmented-reality view of the combined external
and internal views. This process is now specified in a more formal way. The
transformation from the MR image to the markers in the optical space is denoted
as TMR

M and the transformation from the marker to the camera as TM
C . Then, the

transformation from the MR image to the camera which is represented as TMR
C ,

can be found by computing:

TMR
C = TMR

M × TM
C . (A.1)

This transformation between the MR image and the camera system allows to
register the MR data with the camera view and to render anatomical structures.
The virtual view of the internal structure will be subsequently used to guide the
radiologist in better positioning the patient. A schematic diagram of the marker-
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Figure A.2 — (a) Marker position on the subject leg to be visible on the MR and video acquisitions.
(b) Magnified view on the marker employed to achieve visual tracking.

Figure A.3 — (a) HIFU table with the AruCo markers attached to determine the table position.
(b) Magnified view of an AruCo marker.

based workflow is depicted in Figure A.4. At the left, the experimental phase is
illustrated, resulting in the MRI and image data acquisition. The acquired images
are then combined to create the AR view, as shown at the right side in Figure A.4.
Furthermore, following a similar approach, an acoustic window can be defined
at the transducer location and can be overlaid on the camera view, together with
the MR image and used for patient positioning. We specify the transformation
from the acoustic window to the ArUco markers as TW

Ar and the transformation
from the ArUco markers to the camera by TAr

C . Then the transformation from the
transducer to the camera TW

C can be found as follows:

TW
C = TW

Ar × TAr
C . (A.2)
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A.5. Experimental dataset

Figure A.4 — Marker-based approach. Left: experimental setup with the optical cameras mounted
at the top of the MR-HIFU table. Right: augmented reality output of the MR video data and the
acoustic window fusion.

Figure A.5 — Relationship of the transformations.

This transformation allows to overlay the acoustic window on top of the video
images.

A.5 Experimental dataset
The experiments were conducted on volunteers positioned on the HIFU table.
Data from four volunteers were gathered at the University Medical Center Utrecht,
the Netherlands. Images from the right leg of each volunteer were recorded and
considered as target area. During the acquisitions, the volunteer was asked to
place seven MRI markers on the leg. Then, the volunteers laid down on the HIFU
table and positioned their legs over the transducer. Each volunteer was asked
to somewhat move up and down and to rotate, to simulate movements made
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Figure A.6 — Relationship of the transformations for HIFU table positioning.

Figure A.7 — Example of the stereo camera acquisition with the volunteer laying on the HIFU
table and the markers attached on the right leg.

during positioning of the patient. Finally, an MRI scan of the lower legs was taken.
Figure A.7 shows an example of the stereo camera acquisition with a volunteer
laying on the HIFU table and the markers used for tracking attached onto the
right leg.

A.6 Workflow for achieving the augmentation
The system was tested on the right leg of each subject as a target area. Thus, to
simulate a realistic MR-HIFU procedure, the right leg is tracked. Evidently, the
same setup can be applied to the left leg. The leg of the patient and the markers
positioned on its surface are manually segmented from the MR images. After-
wards, the AruCo markers are attached to the table in close proximity to the
transducer area, in order to define the acoustic window location in the camera
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A.7. Statistical analysis of the re-projection error

ALGORITHM: AR for patient positioning

Input: frame % Recordered data
Output: Re-projection error
Start
1: Camera calibration; % get calibration parameters

Find transducer location;
Find marker location from MR data;
Import model mesh from MR data;

2: Import video data
3: Marker detection

for each frame i
aruco.detectmarkers % marker pose
MR.detectmarker and matching % marker contours
MR.matchingmarker
Overlay MR on top of video data % Overlay of contour
end

5: Compute re-projection error
E(i) compute reprojection error
6: Compute error in mm
E(i)[mm]=E(i)[pixel] × markerdim.[mm]

markerdim.[pixel]

Table A.1 — Algorithm architecture for AR during patient positioning.

view. The markers attached to the leg can be seen and eventually tracked by the
camera, in order to always define the subject position in space and can serve as
ground truth. By matching the markers segmented from the MR images with the
3D markers position in space, the transformation from the MR to the markers is
defined, following Equation (A.1), allowing the MR to be overlaid on the camera
view. In the same way, the acoustic window is overlaid on the camera following
Equation (A.2). The algorithm workflow is shown in Table A.1.

The MRI augmented view, as well as the acoustic window, are displayed on
the camera view and can be used to assess the position of the target area inside
the leg with respect to the acoustic window, and eventually for adjusting the leg
position prior to starting the HIFU tumor treatment. The MR and the video images
are overlaid and displayed as shown in Figure A.8(a) and Figure A.8(b), where the
segmented model (in yellow) is rendered on top of the video image. The volunteer
study was performed with the approval of the institutional review board of the
University Medical Center of Utrecht (NL53099.041.15), and written informed
consents were obtained from the volunteers.

A.7 Statistical analysis of the re-projection error
Preliminary experiments were performed by using the marker-tracking approach
from the optical cameras. The markers were segmented from the MR image and
overlaid on the stereo views. The accuracy of the overlay is assessed for each
subject by calculating the (backward) re-projection error (expressed in mm). The
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Figure A.8 — Two examples of overlaid views in (a) and (b). This involves matching of the 3D
markers on a 2D image view with the 3D image fusion on a 2D camera view for the first and second
volunteer.

re-projection error is the distance between the projected and the observed image
point. For the conversion from pixels to mm, we use the ratio between the AruCo
markers in the camera view (expressed in pixels) and their real dimensions (in
mm) as in the following formula:

Error[mm] = Error[pixel]× markerdim.[mm]

markerdim.[pixel]
(A.3)

On average, a re-projection error of 3.13 ± 1.43 mm was found, when tracking
the markers and using them to perform the MR image overlay with the camera
views. Figure A.9 illustrates the boxplots of the errors in the image overlay for
each subject. The number of data points includes the error computed from each
marker through the video recording. It can be noticed that the error appears to
be nearly constant and behaves in stable way among the volunteers. A median
error within a range of 3–4 mm was found for the examined subjects. The error
can be correlated to the amount of markers visible in the camera view, and to
the distance between camera and markers, as well as to the tilting angle of the
markers with respect to the image plane of the camera. The upper whisker in
Figure A.9 increases and reaches its maximum at the third subject of 2.5 mm,
while it decreases for the last subject, whereas the lower whisker does not move
from the range 1.0–1.5 mm. Therefore, it can be concluded that the system yields
a quite high accuracy in MR image overlay on the stereo camera view.

The one-way analysis of variance (ANOVA) was used to assess whether there
are differences between the means of the studied subjects. It was found that there
were no statistically significant differences between the re-projection means of the
subjects on the basis of the one-way ANOVA analysis (F-score = 1.47, p = 0.22).

A.8 Discussion and conclusions
This study presents a first prototype system that combines an optical tracking
system based on stereo cameras, with preliminary MR images, to improve patient
positioning during MR-HIFU tumor ablation. This approach holds potential to
provide a faster and more efficient positioning of the patient, therefore simplifying
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Figure A.9 — Boxplots of the re-projection errors in the image overlay for the four subjects.

the current workflow for time efficiency. In the current clinical setting, once the
patient is positioned on the table, the operator can operate the HIFU transducer
position and move it maximally 1 cm in order to fine-tune the target position to the
exact area of the lesion. Consequently, a registration-accuracy error in the order of
magnitude of 1 cm would meet the clinical requirements. With our approach, we
obtained a re-projection error smaller than 4 mm on average for all the subjects,
with an image fusion on the camera view that matches the clinical requirements
for this specific application. The system was tested by recording data from the
right leg of the volunteers. No statistically significant differences were found
on the re-projection errors (p>0.05), leading to the conclusion that the error is
consistent for the examined subjects. Future studies will involve the investigation
on different anatomical locations (i.e., the entire pelvic area, shoulders and ribs).

Prior to proceeding with clinical experiments on patients, the system needs
further improvements. A real-time implementation is necessary, to facilitate its use
for the patient re-positioning. Also, an automatic or semi-automatic method for leg
and lesion segmentation from MR images could be implemented, e.g. following a
deep learning approach [116]. Furthermore, the ZED stereo camera can be further
exploited, developing a markerless approach based on the depth images provides
by the camera. By combining the video and depth images, a point cloud of the
scene can be found and overlaid with the 3D MR model. In particular, existing
algorithms such as iterative closest point (ICP), allows to find the transformation
between two point clouds, that minimizes their distance [117], [118]. After having
matched the two point clouds, the optimal transformation can be found using the
video data to optimally overlay the 3D MR model. All the adopted improvements
from the future will be benchmarked with the existing system.
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H. Bulstrode, A. Szolna, et al. “An intraoperative visualization system using hyperspectral
imaging to aid in brain tumor delineation”. In: Sensors 18.2 (2018), p. 430.

[80] N. Vigneswaran and M. D. Williams. “Epidemiologic trends in head and neck cancer and
aids in diagnosis”. In: Oral and Maxillofacial Surgery Clinics 26.2 (2014), pp. 123–141.

[81] S. L. Parker, M. J. McGirt, S. H. Farber, A. G. Amin, A.-M. Rick, I. Suk, A. Bydon, D. M.
Sciubba, J.-P. Wolinsky, Z. L. Gokaslan, et al. “Accuracy of free-hand pedicle screws in the
thoracic and lumbar spine: analysis of 6816 consecutive screws”. In: Neurosurgery 68.1 (2011),
pp. 170–178.

[82] D. J. Mirota, M. Ishii, and G. D. Hager. “Vision-based navigation in image-guided interven-
tions”. In: Annual review of biomedical engineering 13 (2011).

[83] N.-F. Tian, Q.-S. Huang, P. Zhou, Y. Zhou, R.-K. Wu, Y. Lou, and H.-Z. Xu. “Pedicle screw
insertion accuracy with different assisted methods: a systematic review and meta-analysis
of comparative studies”. In: European Spine Journal 20.6 (2011), pp. 846–859.

[84] V. Kosmopoulos and C. Schizas. “Pedicle screw placement accuracy: a meta-analysis”. In:
Spine 32.3 (2007), E111–E120.

[85] Y. J. Kim, L. G. Lenke, K. H. Bridwell, Y. S. Cho, and K. D. Riew. “Free hand pedicle screw
placement in the thoracic spine: is it safe?” In: Spine 29.3 (2004), pp. 333–342.

[86] M. Viau, B. B. Tarbox, S. Wonglertsiri, E. E. Karaikovic, W. Yingsakmongkol, and R. W.
Gaines. “Thoracic pedicle screw instrumentation using the “Funnel Technique”: part 2.
Clinical experience”. In: Clinical Spine Surgery 15.6 (2002), pp. 450–453.

[87] I. D. Gelalis, N. K. Paschos, E. E. Pakos, A. N. Politis, C. M. Arnaoutoglou, A. C. Karageorgos,
A. Ploumis, and T. A. Xenakis. “Accuracy of pedicle screw placement: a systematic review
of prospective in vivo studies comparing free hand, fluoroscopy guidance and navigation
techniques”. In: European Spine Journal 21.2 (2012), pp. 247–255.

[88] J. P. Du, Y. Fan, Q. N. Wu, J. Zhang, D. J. Hao, et al. “Accuracy of pedicle screw insertion
among 3 image-guided navigation systems: systematic review and meta-analysis”. In: World
neurosurgery 109 (2018), pp. 24–30.
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Prof. Callicò, the researchers and surgeons at the Netherlands Cancer Institute
(NKI), University of Las Palmas de Gran Canaria and Quest Medical Imaging, for
their collaboration and contribution to this thesis.

A warm thanks also goes to Adrian Elmi-Terander and his neurosurgery team
at the Korolinska University Hospital. Adrian, your brilliant mind and clinical
expertise not only shaped the foundation of my research but also provided me
with the privilege of working alongside one of the best clinicians I have ever met.
Your open-minded approach to my research ideas and your ability to grasp the
technical aspects and seamlessly integrate technology into healthcare was truly
inspiring. The fusion of medicine and technology has always been a driving force
for me, and I am grateful to have shaped this vision through our work. The lessons
learned from your guidance will remain a lasting influence in my career.

I would like to extend my gratitude to my manager, Dimitrios, for his guid-
ance, trust and support. I am also deeply grateful to my colleagues at Philips for
providing me with countless learning opportunities that have helped me to grow.
I am particularly thankful to Anca, for her understanding about the person I am,
my passions and motivations and her help in shaping my career. Our brainstorm-
ing and mentorship sessions have been a vital source of inspiration over the last
two years and I hope we will continue working together. And last but not least,
I would like to thank Calina, who has been my sunshine at Philips, my Italian
island in the vast ”Philips ocean”.

My gratitude also goes to my colleagues at the VCA lab, Luis, Joost, Hongxu,
Patrick, Tom, Nikoo, Christiaan, Fabrizio, Joy & all the others, and our secretary
Anja for her endless support.

218



Acknowledgements

These years in The Netherlands have been a transformative experience for me
and I am incredibly grateful to have met such wonderful friends who have become
a family to me. They are a reflection of the new person I became and the new life I
have built up during my time here. Everything started with a warm Greek smile
in the VCA lab and ended with daily Greek lunches with a Mediterranean, noisy,
funny and vibrant group during (Dutch) lunch time. I am thankful to Panos,
Roger, Arash, Antoine, Joana and Eleonora for their contributions to this special
bond and the amazing time spent together at work and during our (Greek) trips.
Someone is missing from this group and I want to dedicate a few words to them,
which will never be enough to express my gratitude for their importance in my
life.

First, to Chara, thank you for always being there and giving me the unique
chance to know the best of Greek culture, from unforgettable trips to coffees and
our friendship. To Naila, you hold a special place in my heart and I am grateful
for the constant energy and enthusiasm you bring into my life. But more than
that, you became my soulmate; just with a hug, few words, in good or sad life
moments, you have always empowered me. I want to thank you for that, because
many times I have seen in your eyes a better version of myself.

To my dear paranymphs Eleni & Federica, I can’t thank you enough for your
steadfast support. Eleni, you were the first friendly face I saw when I arrived at
TUe and you have been a constant source of strength and inspiration ever since.
Your warm and encouraging words have helped me through all the life moments.
You are my guru, a true motivator always inspiring me to be my best self in life
(and in calisthenics). Fede, you have been and you are my favorite person and
my brilliant friend, since before my PhD or my move to the Netherlands. It all
started back in our university time, when, among hundreds of students, our paths
crossed and I immediately felt a strong connection with you. There is something
that keep us connected, the wire that binds us together. This is our little secret and
strength ever since. I still remember the day you encouraged me to pursue my
PhD and now you are my go-to for guidance and inspiration. Despite the time,
the distance, whether it is just a few kilometers or an entire ocean, our friendship
is unbreakable. I feel fortunate to have you both in my corner.

My heart has a special place for Esther, Marc, Lars, and Sven, who became
my family. Marc, words cannot fully express what you mean to me and how
much I appreciate everything you have done and continue to do. At times, I have
wondered how we would manage without you, whether we could be able to
think about a potential Marc Janssen in our lives. I think, it is almost impossible.
You are proof that one can find a family even thousands of kilometers away
from where they were born and raised, despite differences in language, food and
culture. You are all what you can be for us. Thanks to all of you for representing
an indispensable part of my life and for being exactly who you are.

My special thanks goes to Marco. Thanks for your invaluable support through-
out these years, your contributions to this thesis, but also your company during
our memorable time in US at SPIE Medical Imaging. I think I will always remem-

219



A C K N O W L E D G E M E N T S

ber that experience we did together. I feel lucky to have met such a friend and
colleague like you. I would also like to thank Alessio for being a wonderful and
rare friend to me. Thank you for your constant presence, which is now a certainty
in my life. I hope we will always remain close and dance together in one of our
colorful worlds.

Thank you, Sara, Federico & little Emma, for the unforgettable moments with
a Roman taste in the Netherlands. Thanks for being a safe harbour for me. Emma,
your presence brought a much-needed spark of joy to my life in a moment with
not so much light. Seeing you growing fills my heart and maybe one day I will
share this heartwarming story with you.

Thanks to Ilaria & Davide for bringing so much happiness, a true sense of
friendship, home and smiles into my life. Our time together is always a great relief
for me.

I am so grateful to have three special people in my life, whose love have made
a significant impact on me. Silvia, you are the one and only for me, since our
first years at school. You have accompanied my life in the last 25 years, and I feel
so safe to know that you are always there, no matter where life has brought us.
Thanks for your constant support and the positive energies you bring in my life.
Ilenia, you have allowed me to enter your most sensitive inner self, where we can
always connect and gaze into each other’s eyes. I know you have suffered a lot
from our distance, and no matter how much time we spend together, it always
feels too brief for you. I promise to always hold you a bit tighter the next time we
meet, and to linger a little longer when it is time to say goodbye. Fabiana, you
brought so much joy and happiness into my life during our teenage years and
now you have become one of my strongest pillars, my best example of a strong
woman that I look up to. It is for these reasons, among others, that I have come to
realize you are like sisters to me. I am truly happy to have you all in my life and I
am grateful for the encouragement you have given me. You are my never-ending
Amiche.

To my other half, Alice. Any word would be reductive to describe our friend-
ship. You have been my shoulder, my life and study partner, and since the real
beginning my first and best fan. I swept you away into what became the most
exciting months of our lives. We have shared a life experience together, and day
after day, year after year, you have supported, loved me, and you became the
lighthouse where I land when I feel lost. Sweet Ali, I dedicate this thesis to you,
to that passion and dedication we share, to the electric spark we are when being
together. You are my home, my best friend and I want to take this opportunity to
thank you for your tireless support and infinite love that you constantly show me.

There is one important piece that marks the beginning of everything, Ale &
Davide, my Italian family in Eindhoven. I would like to thank you for your warm
love and unwavering support throughout these years. Without you, this journey
would not have been the same. Ale, I cannot thank you enough. You are such
a great example of strength and courage for me, the reason why I came in the
Netherlands for the first time and why I am here today. I still remember our

220



Acknowledgements

discussions in the corridors of Philips Research, where you already understood
that my mind sometimes runs at a very high speed, which is difficult to follow.
From that times, you started being my big sister and now, if I need a voice of
guidance, I know where to find it. You have always been there, reminding me to
believe in myself more than I do. I am grateful to have you in my life.

To my father in law. Libero, I still find it hard to express how much you mean
and have meant to me, but I felt compelled to thank you as my thesis work is in
some way connected to you. My research and your diagnosis. For the following
years, you have been for me the embodiment of true strength. Your courage and
spirit gave me a big sense of hope and showed me what it means to be resilient.
I feel honored to have met and had you in my life, and I have often wondered
how you were able to be so strong throughout your journey. It is only now that I
believe I have found the answer; you were strong because of your love for those
that surrounded you. Your courage for us was so powerful that it inspired and
motivated me to be a better person. I hope this thesis work can serve as a small
reward for all that you have brought into my life. To you and those who face this
difficult battle every day, with the vision that hopes continue to grow stronger.

To my parents, who have always believed in me and supported my dreams.
I would not be where I am today without you. Thanks for your unconditional
love and encouragement. Your vision and sacrifice have inspired me to always
stay strong and work hard. You taught me to be brave, go out from my comfort
zone to reach the true freedom. Thank you, Papà, for the day you told me that I
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To my Riccardo, who is my soulmate, confidante, best friend, life partner and
my biggest supporter. Like many other times, that time you told me I could do it.
Then, we started this journey together, which became our journey. I cannot imagine
having made it without you. You are the pillar that holds me up in everything
I do, the strongest force in my life, my refuge and the person I admire the most.
Thank you for believing in me, encouraging me to always follow my dreams and
for being my rock in every single life step. This thesis is for you, even though I
owe you so much more. ”Tu si’ ’na cosa grande pe’ mmé”.
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