4 research outputs found

    Efficient Underground Object Detection for Ground Penetrating Radar Signals

    Get PDF
    Ground penetrating radar (GPR) is one of the common sensor system for underground inspection. GPR emits electromagnetic waves which can pass through objects. The reflecting waves are recorded and digitised, and then, the B-scan images are formed. According to the properties of scanning object, GPR creates higher or lower intensity values on the object regions. Thus, these changes in signal represent the properties of scanning object. This paper proposes a 3-step method to detect and discriminate landmines: n-row average-subtraction (NRAS); Min-max normalisation; and image scaling. Proposed method has been tested using 3 common algorithms from the literature. According to the results, it has increased object detection ratio and positive object discrimination (POD) significantly. For artificial neural networks (ANN), POD has increased from 77.4 per cent to 87.7 per cent. And, it has increased from 37.8 per cent to 80.2 per cent, for support vector machines (SVM)

    Context-dependent fusion with application to landmine detection.

    Get PDF
    Traditional machine learning and pattern recognition systems use a feature descriptor to describe the sensor data and a particular classifier (also called expert or learner ) to determine the true class of a given pattern. However, for complex detection and classification problems, involving data with large intra-class variations and noisy inputs, no single source of information can provide a satisfactory solution. As a result, combination of multiple classifiers is playing an increasing role in solving these complex pattern recognition problems, and has proven to be viable alternative to using a single classifier. In this thesis we introduce a new Context-Dependent Fusion (CDF) approach, We use this method to fuse multiple algorithms which use different types of features and different classification methods on multiple sensor data. The proposed approach is motivated by the observation that there is no single algorithm that can consistently outperform all other algorithms. In fact, the relative performance of different algorithms can vary significantly depending on several factions such as extracted features, and characteristics of the target class. The CDF method is a local approach that adapts the fusion method to different regions of the feature space. The goal is to take advantages of the strengths of few algorithms in different regions of the feature space without being affected by the weaknesses of the other algorithms and also avoiding the loss of potentially valuable information provided by few weak classifiers by considering their output as well. The proposed fusion has three main interacting components. The first component, called Context Extraction, partitions the composite feature space into groups of similar signatures, or contexts. Then, the second component assigns an aggregation weight to each detector\u27s decision in each context based on its relative performance within the context. The third component combines the multiple decisions, using the learned weights, to make a final decision. For Context Extraction component, a novel algorithm that performs clustering and feature discrimination is used to cluster the composite feature space and identify the relevant features for each cluster. For the fusion component, six different methods were proposed and investigated. The proposed approached were applied to the problem of landmine detection. Detection and removal of landmines is a serious problem affecting civilians and soldiers worldwide. Several detection algorithms on landmine have been proposed. Extensive testing of these methods has shown that the relative performance of different detectors can vary significantly depending on the mine type, geographical site, soil and weather conditions, and burial depth, etc. Therefore, multi-algorithm, and multi-sensor fusion is a critical component in land mine detection. Results on large and diverse real data collections show that the proposed method can identify meaningful and coherent clusters and that different expert algorithms can be identified for the different contexts. Our experiments have also indicated that the context-dependent fusion outperforms all individual detectors and several global fusion methods

    Multiple instance fuzzy inference.

    Get PDF
    A novel fuzzy learning framework that employs fuzzy inference to solve the problem of multiple instance learning (MIL) is presented. The framework introduces a new class of fuzzy inference systems called Multiple Instance Fuzzy Inference Systems (MI-FIS). Fuzzy inference is a powerful modeling framework that can handle computing with knowledge uncertainty and measurement imprecision effectively. Fuzzy Inference performs a non-linear mapping from an input space to an output space by deriving conclusions from a set of fuzzy if-then rules and known facts. Rules can be identified from expert knowledge, or learned from data. In multiple instance problems, the training data is ambiguously labeled. Instances are grouped into bags, labels of bags are known but not those of individual instances. MIL deals with learning a classifier at the bag level. Over the years, many solutions to this problem have been proposed. However, no MIL formulation employing fuzzy inference exists in the literature. In this dissertation, we introduce multiple instance fuzzy logic that enables fuzzy reasoning with bags of instances. Accordingly, different multiple instance fuzzy inference styles are proposed. The Multiple Instance Mamdani style fuzzy inference (MI-Mamdani) extends the standard Mamdani style inference to compute with multiple instances. The Multiple Instance Sugeno style fuzzy inference (MI-Sugeno) is an extension of the standard Sugeno style inference to handle reasoning with multiple instances. In addition to the MI-FIS inference styles, one of the main contributions of this work is an adaptive neuro-fuzzy architecture designed to handle bags of instances as input and capable of learning from ambiguously labeled data. The proposed architecture, called Multiple Instance-ANFIS (MI-ANFIS), extends the standard Adaptive Neuro Fuzzy Inference System (ANFIS). We also propose different methods to identify and learn fuzzy if-then rules in the context of MIL. In particular, a novel learning algorithm for MI-ANFIS is derived. The learning is achieved by using the backpropagation algorithm to identify the premise parameters and consequent parameters of the network. The proposed framework is tested and validated using synthetic and benchmark datasets suitable for MIL problems. Additionally, we apply the proposed Multiple Instance Inference to the problem of region-based image categorization as well as to fuse the output of multiple discrimination algorithms for the purpose of landmine detection using Ground Penetrating Radar

    Katsaus tekoälyyn : tekoäly ja sen sovellutukset

    Get PDF
    Postgraduate seminar series with a title artificial intelligence and logic held at the Department of Military Technology of the National Defence University in 2020 and 2021. This book is a collection of some of talks that were presented in the seminar. The papers address ethics in autonomous military technology, algorithmic thinking, application of fuzzy logic in the Armed Forces, logic and skill, use of artificial intelligence technologies in information and psychological warfare, cyber security risks of artificial intelligence applications and algorithms, information acquisition strategies and artificial intelligence to support learning. This set of papers tries to give some insight to current issues of the artificial intelligence and logic. Seminars at the Department of Military Technology have a tradition to make publication based on the presentations, but only as an internal publication of the Finnish Defence Forces and in such a way has not hindered publication of the papers e.g. in international conferences. Publication of these papers in peer reviewed conferences has indeed been always the goal of the seminar, since it teaches writing conference level papers. We still hope that an internal publication in the department series is useful to the Finnish Defence Forces by offering an easy access to these papers
    corecore