3,158 research outputs found

    Detection and Discrimination of Injected Network Faults

    Get PDF
    Abstract Although the present work does in fact employ training data, it does so in the interest of calibrating the results Six hundred faults were induced by injection into five live obtained from an experimental detection and diagnostic campus networks at Carnegie Mellon University in order system designed specifically to accommodate noisy, to determine whether or not particular network faults nonstationary, nonspecific domains. The system have unique signatures as determined by out-of-band generalizes by virtue of its log analysis capabilities; all monitoring instrumentation. If unique signatures span monitored data and events are recorded in log files. networks, then the monitoring instrumentation can be These files are processed by the system, resulting in used to diagnose network faults, or distinguish among testable and reproducible detections and diagnoses of fault classes, without human intervention, using anomalous conditions. Any monitored process or machine-generated diagnostic decision rules. This device can be used to populate the logs with data. would be especially useful in large, unmanned systems in which the occurrence of novel or unanticipated faults The specific objective of the present work is to conduct could be catastrophic. Results indicate that significant a designed experiment to test the detection and diagaccuracy in automated detection and discrimination nosis capabilities of a system for handling faults in local among fault types can be obtained using anomaly sigarea networks. Networks were selected as a test natures as described here. domain because their operating characteristics include nonlinear, nonstationary dynamic behavior. The experiment uses automated injection techniques to induc

    System configuration, fault detection, location, isolation and restoration: a review on LVDC Microgrid protections

    Get PDF
    Low voltage direct current (LVDC) distribution has gained the significant interest of research due to the advancements in power conversion technologies. However, the use of converters has given rise to several technical issues regarding their protections and controls of such devices under faulty conditions. Post-fault behaviour of converter-fed LVDC system involves both active converter control and passive circuit transient of similar time scale, which makes the protection for LVDC distribution significantly different and more challenging than low voltage AC. These protection and operational issues have handicapped the practical applications of DC distribution. This paper presents state-of-the-art protection schemes developed for DC Microgrids. With a close look at practical limitations such as the dependency on modelling accuracy, requirement on communications and so forth, a comprehensive evaluation is carried out on those system approaches in terms of system configurations, fault detection, location, isolation and restoration

    Selection of sensors by a new methodology coupling a classification technique and entropy criteria

    Get PDF
    Complex industrial processes invest a lot of money in sensors and automation devices to monitor and supervise the process in order to guarantee the production quality and the plant and operators safety. Fault detection is one of the multiple tasks of process monitoring and it critically depends on the sensors that measure the significant process variables. Nevertheless, most of the works on fault detection and diagnosis found in literature emphasis more on developing procedures to perform diagnosis given a set of sensors, and less on determining the actual location of sensors for efficient identification of faults. A methodology based on learning and classification techniques and on the information quantity measured by the Entropy concept, is proposed in order to address the problem of sensor location for fault identification. The proposed methodology has been applied to a continuous intensified reactor, the "Open Plate Reactor (OPR)", developed by Alfa Laval and studied at the Laboratory of Chemical Engineering of Toulouse. The different steps of the methodology are explained through its application to the carrying out of an exothermic reaction

    Condition Monitoring of Power Cables

    No full text
    A National Grid funded research project at Southampton has investigated possible methodologies for data acquisition, transmission and processing that will facilitate on-line continuous monitoring of partial discharges in high voltage polymeric cable systems. A method that only uses passive components at the measuring points has been developed and is outlined in this paper. More recent work, funded through the EPSRC Supergen V, UK Energy Infrastructure (AMPerES) grant in collaboration with UK electricity network operators has concentrated on the development of partial discharge data processing techniques that ultimately may allow continuous assessment of transmission asset health to be reliably determined

    Fault tolerant architectures for integrated aircraft electronics systems, task 2

    Get PDF
    The architectural basis for an advanced fault tolerant on-board computer to succeed the current generation of fault tolerant computers is examined. The network error tolerant system architecture is studied with particular attention to intercluster configurations and communication protocols, and to refined reliability estimates. The diagnosis of faults, so that appropriate choices for reconfiguration can be made is discussed. The analysis relates particularly to the recognition of transient faults in a system with tasks at many levels of priority. The demand driven data-flow architecture, which appears to have possible application in fault tolerant systems is described and work investigating the feasibility of automatic generation of aircraft flight control programs from abstract specifications is reported

    Immunotronics - novel finite-state-machine architectures with built-in self-test using self-nonself differentiation

    Get PDF
    A novel approach to hardware fault tolerance is demonstrated that takes inspiration from the human immune system as a method of fault detection. The human immune system is a remarkable system of interacting cells and organs that protect the body from invasion and maintains reliable operation even in the presence of invading bacteria or viruses. This paper seeks to address the field of electronic hardware fault tolerance from an immunological perspective with the aim of showing how novel methods based upon the operation of the immune system can both complement and create new approaches to the development of fault detection mechanisms for reliable hardware systems. In particular, it is shown that by use of partial matching, as prevalent in biological systems, high fault coverage can be achieved with the added advantage of reducing memory requirements. The development of a generic finite-state-machine immunization procedure is discussed that allows any system that can be represented in such a manner to be "immunized" against the occurrence of faulty operation. This is demonstrated by the creation of an immunized decade counter that can detect the presence of faults in real tim

    A systematic evaluation of network protection responses in future converter-dominated power systems

    Get PDF
    This paper illustrates how converter interfaces, used to connect renewable energy sources, HVDC links and infeeds to the power system, may bring significant changes to the behaviour of protection systems in the future. A converter model, capable of providing adjustable fault responses, is used to investigate the response of power system protection to a range of fault conditions. Different scenarios have been simulated by applying different types of faults at different location of the transmission system with a variety of different converter response types. A dynamic, verified, relay model and a hardware relay device have been injected with the simulated results to ascertain network protection performance

    Fault-detection on an experimental aircraft fuel rig using a Kalman filter-based FDI screen

    Get PDF
    Reliability is an important issue across industry. This is due to a number of drivers such as the requirement of high safety levels within industries such as aviation, the need for mission success with military equipment, or to avoid monetary losses (due to unplanned outage) within the process and many other industries. The application of fault detection and identification helps to identify the presence of faults to improve mission success or increase up-time of plant equipment. Implementation of such systems can take the form of pattern recognition, statistical and geometric classifiers, soft computing methods or complex model based methods. This study deals with the latter, and focuses on a specific type of model, the Kalman filter. The Kalman filter is an observer which estimates the states of a system, i.e. the physical variables, based upon its current state and knowledge of its inputs. This relies upon the creation of a mathematical model of the system in order to predict the outputs of the system at any given time. Feedback from the plant corrects minor deviation between the system and the Kalman filter model. Comparison between this prediction of outputs and the real output provides the indication of the presence of a fault. On systems with several inputs and outputs banks of these filters can used in order to detect and isolate the various faults that occur in the process and its sensors and actuators. The thesis examines the application of the diagnostic techniques to a laboratory scale aircraft fuel system test-rig. The first stage of the research project required the development of a mathematical model of the fuel rig. Test data acquired by experiment is used to validate the system model against the fuel rig. This nonlinear model is then simplified to create several linear state space models of the fuel rig. These linear models are then used to develop the Kalman filter Fault Detection and Identification (FDI) system by application of appropriate tuning of the Kalman filter gains and careful choice of residual thresholds to determine fault condition boundaries and logic to identify the location of the fault. Additional performance enhancements are also achieved by implementation of statistical evaluation of the residual signal produced and by automatic threshold calculation. The results demonstrate the positive capture of a fault condition and identification of its location in an aircraft fuel system test-rig. The types of fault captured are hard faults such sensor malfunction and actuator failure which provide great deviation of the residual signals and softer faults such as performance degradation and fluid leaks in the tanks and pipes. Faults of a smaller magnitude are captured very well albeit within a larger time range. The performance of the Fault Diagnosis and Identification was further improved by the implementation of statistically evaluating the residual signal and by the development of automatic threshold determination. Identification of the location of the fault is managed by the use of mapping the possible fault permutations and the Kalman filter behaviour, this providing full discrimination between any faults present. Overall the Kalman filter based FDI developed provided positive results in capturing and identifying a system fault on the test-rig

    Detection of eccentricity faults in five-phase ferrite-PM assisted synchronous reluctance machines

    Get PDF
    Air gap eccentricity faults in five-phase ferrite-assisted synchronous reluctance motors (fPMa-SynRMs) tend to distort the magnetic flux in the air gap, which in turn affects the spectral content of both the stator currents and the ZSVC (zero-sequence voltage component). However, there is a lack of research works dealing with the topic of fault diagnosis in multi-phase PMa-SynRMs, and in particular, focused to detect eccentricity faults. The analysis of the spectral components of the line currents and the ZSVC, allows developing fault diagnosis algorithms to detect eccentricity faults. The effect of the operating conditions is also analyzed, since this paper shows that it has a non-negligible impact on the effectivity and sensitivity of the diagnosis based on the analysis of the stator currents and the ZSVC. To this end, different operating conditions are analyzed. The paper also evaluates the influence of the operating conditions on the harmonic content of the line currents and the ZSVC, and determines the most suitable operating conditions to enhance the sensitivity of the analyzed methods. Finally, fault indicators to detect eccentricity faults, which are based on the spectral content of the stator currents and the ZSVC are derived, and their performance is assessed. The approach presented in this work may be useful to develop fault diagnosis strategies based on the acquisition and subsequent analysis and interpretation of the spectral content of the line currents and the ZSVC.Peer ReviewedPostprint (published version

    HYPA: Efficient Detection of Path Anomalies in Time Series Data on Networks

    Full text link
    The unsupervised detection of anomalies in time series data has important applications in user behavioral modeling, fraud detection, and cybersecurity. Anomaly detection has, in fact, been extensively studied in categorical sequences. However, we often have access to time series data that represent paths through networks. Examples include transaction sequences in financial networks, click streams of users in networks of cross-referenced documents, or travel itineraries in transportation networks. To reliably detect anomalies, we must account for the fact that such data contain a large number of independent observations of paths constrained by a graph topology. Moreover, the heterogeneity of real systems rules out frequency-based anomaly detection techniques, which do not account for highly skewed edge and degree statistics. To address this problem, we introduce HYPA, a novel framework for the unsupervised detection of anomalies in large corpora of variable-length temporal paths in a graph. HYPA provides an efficient analytical method to detect paths with anomalous frequencies that result from nodes being traversed in unexpected chronological order.Comment: 11 pages with 8 figures and supplementary material. To appear at SIAM Data Mining (SDM 2020
    • …
    corecore