752 research outputs found

    Computed tomography segmental calcium score (SCS) to predict stenosis severity of calcified coronary lesions

    Get PDF
    To estimate the probability of ≥50 % coronary stenoses based on computed tomography (CT) segmental calcium score (SCS) and clinical factors. The Institutional Review Board approved the study. A training sample of 201 patients underwent CT calcium scoring and conventional coronary angiography (CCA). All patients consented to undergo CT before CCA after being informed of the additional radiation dose. SCS and calcification morphology were assessed in individual coronary segments. We explored the predictive value of patient’s symptoms, clinical history, SCS and calcification morphology. We developed a prediction model in the training sample based on these variables then tested it in an independent test sample. The odds ratio (OR) for ≥50 % coronary stenosis was 1.8-fold greater (p = 0.006) in patients with typical chest pain, twofold (p = 0.014) greater in patients with acute coronary syndromes, twofold greater (p < 0.001) in patients with prior myocardial infarction. Spotty calcifications had an OR for ≥50 % stenosis 2.3-fold (p < 0.001) greater than the absence of calcifications, wide calcifications 2.7-fold (p < 0.001) greater, diffuse calcifications 4.6-fold (p < 0.001) greater. In middle segments, each unit of SCS had an OR 1.2-fold (p < 0.001) greater than in distal segments; in proximal segments the OR was 1.1-fold greater (p = 0.021). The ROC curve area of the prediction model was 0.795 (0.95 confidence interval 0.602–0.843). Validation in a test sample of 201 independent patients showed consistent diagnostic performance. In conjunction with calcification morphology, anatomical location, patient’s symptoms and clinical history, SCS can be helpful to estimate the probability of ≥50 % coronary stenosis

    Accuracy of MSCT Coronary Angiography with 64 Row CT Scanner—Facing the Facts

    Get PDF
    Improvements in multislice computed tomography (MSCT) angiography of the coronary vessels have enabled the minimally invasive detection of coronary artery stenoses, while quantitative coronary angiography (QCA) is the accepted reference standard for evaluation thereof. Sixteen-slice MSCT showed promising diagnostic accuracy in detecting coronary artery stenoses haemodynamically and the subsequent introduction of 64-slice scanners promised excellent and fast results for coronary artery studies. This prompted us to evaluate the diagnostic accuracy, sensitivity, specificity, and the negative und positive predictive value of 64-slice MSCT in the detection of haemodynamically significant coronary artery stenoses

    A novel ultrafast-low-dose computed tomography protocol allows concomitant coronary artery evaluation and lung cancer screening

    Get PDF
    BACKGROUND:Cardiac computed tomography (CT) is often performed in patients who are at high risk for lung cancer in whom screening is currently recommended. We tested diagnostic ability and radiation exposure of a novel ultra-low-dose CT protocol that allows concomitant coronary artery evaluation and lung screening. METHODS: We studied 30 current or former heavy smoker subjects with suspected or known coronary artery disease who underwent CT assessment of both coronary arteries and thoracic area (Revolution CT, General Electric). A new ultrafast-low-dose single protocol was used for ECG-gated helical acquisition of the heart and the whole chest. A single IV iodine bolus (70-90 ml) was used. All patients with CT evidence of coronary stenosis underwent also invasive coronary angiography. RESULTS: All the coronary segments were assessable in 28/30 (93%) patients. Only 8 coronary segments were not assessable in 2 patients due to motion artefacts (assessability: 98%; 477/485 segments). In the assessable segments, 20/21 significant stenoses (> 70% reduction of vessel diameter) were correctly diagnosed. Pulmonary nodules were detected in 5 patients, thus requiring to schedule follow-up surveillance CT thorax. Effective dose was 1.3 ± 0.9 mSv (range: 0.8-3.2 mSv). Noteworthy, no contrast or radiation dose increment was required with the new protocol as compared to conventional coronary CT protocol. CONCLUSIONS:The novel ultrafast-low-dose CT protocol allows lung cancer screening at time of coronary artery evaluation. The new approach might enhance the cost-effectiveness of coronary CT in heavy smokers with suspected or known coronary artery disease

    Multi-slice computed tomography of coronary arteries

    Get PDF

    Systematic review of the clinical effectiveness and cost-effectiveness of 64-slice or higher computed tomography angiography as an alternative to invasive coronary angiography in the investigation of coronary artery disease

    Get PDF
    Objectives: To assess the clinical effectiveness and cost-effectiveness, in different patient groups, of the use of 64-slice or higher computed tomography (CT) angiography, instead of invasive coronary angiography (CA), for diagnosing people with suspected coronary artery disease (CAD) and assessing people with known CAD. Data sources: Electronic databases were searched from 2002 to December 2006. Review methods: Included studies were tabulated and sensitivity, specificity, positive and negative predictive values calculated. Meta-analysis models were fitted using hierarchical summary receiver operating characteristic curves. Summary sensitivity, specificity, positive and negative likelihood ratios and diagnostic odds ratios for each model were reported as a median and 95% credible interval (CrI). Searches were also carried out for studies on the cost-effectiveness of 64-slice CT in the assessment of CAD. Results: The diagnostic accuracy and prognostic studies enrolled over 2500 and 1700 people, respectively. The overall quality of the studies was reasonably good. In the pooled estimates, 64-slice CT angiography was highly sensitive (99%, 95% CrI 97 to 99%) for patientbased detection of significant CAD (defined as 50% or more stenosis), while across studies the negative predictive value (NPV) was very high (median 100%, range 86 to 100%). In segment-level analysis compared with patient-based detection, sensitivity was lower (90%, 95% CrI 85 to 94%, versus 99%, 95% CrI 97 to 99%) and specificity higher (97%, 95% CrI 95 to 98%, versus 89%, 95% CrI 83 to 94%), while across studies the median NPV was similar (99%, range 95 to 100%, versus 100%, range 86 to 100%). At individual coronary artery level the pooled estimates for sensitivity ranged from 85% for the left circumflex (LCX) artery to 95% for the left main artery, specificity ranged from 96% for both the left anterior descending (LAD) artery and LCX to 100% for the left main artery, while across studies the positive predictive value (PPV) ranged from 81% for the LCX to 100% for the left main artery and NPV was very high, ranging from 98% for the LAD (range 95 to 100%), LCX (range 93 to 100%) and right coronary artery (RCA) (range 94 to 100%) to 100% for the left main artery. The pooled estimates for bypass graft analysis were 99% (95% CrI 95 to 100%) sensitivity, 96% (95% CrI 86 to 99%) specificity, with median PPV and NPV values across studies of 93% (range 90 to 95%) and 99% (range 98 to 100%), respectively. This compares with, for stent analysis, a pooled sensitivity of 89% (95% CrI 68 to 97%), specificity 94% (95% CrI 83 to 98%), and median PPV and NPV values across studies of 77% (range 33 to 100%) and 96% (range 71 to 100%), respectively. Sixty-four-slice CT is almost as good as invasive CA in terms of detecting true positives. However, it is somewhat poorer in its rate of false positives. It seems likely that diagnostic strategies involving 64-slice CT will still require invasive CA for CT test positives, partly to identify CT false positives, but also because CA provides other information that CT currently does not, notably details of insertion site and distal run-off for possible coronary artery bypass graft (CABG). The high sensitivity of 64-slice CT avoids the costs of unnecessary CA in those referred for investigation but who do not have CAD. Given the possible, although small, associated death rate, avoiding these unnecessary CAs through the use of 64-slice CT may also confer a small immediate survival advantage. This in itself may be sufficient to outweigh the very marginally inferior rates of detection of true positives by strategies involving 64-slice CT. The avoidance of unnecessary CA through the use of 64-slice CT also appears likely to result in overall cost savings in the diagnostic pathway. Only if both the cost of CA is relatively low and the prevalence of CAD in the presenting population is relatively high (so that most patients will go on to CA) will the use of 64-slice CT be likely to result in a higher overall diagnostic cost per patient. Conclusions: The main value of 64-slice CT may at present be to rule out significant CAD. It is unlikely to replace CA in assessment for revascularisation of patients, particularly as angiography and angioplasty are often done on the same occasion. Further research is needed into the marginal advantages and costs of 256-slice machines compared with 64-sliceCT, the usefulness of 64-slice CT in people with suspected acute coronary syndrome, the potential of multislice computed tomography to examine plaque morphology, the role of CT in identifying patients suitable for CABG, and the concerns raised about repetitive use, or use of 64-slice or higher CT angiography in younger individuals or women of childbearing age.The Health Services Research Unit, Institute of Applied Health Sciences, University of Aberdeen, is core-funded by the Chief Scientist Office of the Scottish Government Health Directorates

    Inter-observer agreement of the Coronary Artery Disease Reporting and Data System (CAD-RADS^{TM}) in patients with stable chest pain

    Get PDF
    Purpose: To assess inter-observer variability of the Coronary Artery Disease - Reporting and Data System (CAD-RADS) for classifying the degree of coronary artery stenosis in patients with stable chest pain. Material and methods: A prospective study was conducted upon 96 patients with coronary artery disease, who underwent coronary computed tomography angiography (CTA). The images were classified using the CAD-RAD system according to the degree of stenosis, the presence of a modifier: graft (G), stent (S), vulnerable plaque (V), or non-diagnostic (n) and the associated coronary anomalies, and non-coronary cardiac and extra-cardiac findings. Image analysis was performed by two reviewers. Inter-observer agreement was assessed. Results: There was excellent inter-observer agreement for CAD-RADS (k = 0.862), at 88.5%. There was excellent agreement for CAD-RADS 0 (k = 1.0), CAD-RADS 1 (k = 0.92), CAD-RADS 3 (k = 0.808), CAD-RADS 4 (k = 0.826), and CAD-RADS 5 (k = 0.833) and good agreement for CAD-RADS 2 (k = 0.76). There was excellent agreement for modifier G (k = 1.0) and modifier S (k = 1.0), good agreement for modifier N (k = 0.79), and moderate agreement for modifier V (k = 0.59). There was excellent agreement for associated coronary artery anomalies (k = 0.845), non-coronary cardiac findings (k = 0.857), and extra-cardiac findings (k = 0.81). Conclusions: There is inter-observer agreement of CAD-RADS in categorising the degree of coronary arteries stenosis, and the modifier of the system and associated cardiac and extra-cardiac findings

    Concomitant screening of coronary artery disease and lung cancer with a new ultrafast-low-dose Computed Tomography protocol: A pilot randomised trial

    Get PDF
    We performed a pilot randomised study to assess the feasibility and radiation exposure of a new computed tomography (CT) protocol that allows screening of both coronary artery disease (CAD) and lung cancer. Current or former heavy smokers at high lung cancer risk with indication to cardiac CT for suspected or known CAD were randomised to undergo concomitant CT evaluation of either cardiac or thoracic area or cardiac CT only. Out of 129 subjects deemed eligible for the study, 110 agreed to participate and were randomised to simultaneous cardiac and lung CT (Gr.A; n = 55) or cardiac CT only (Gr.B; n = 55). The feasibility (i.e. adequate visualization of coronary artery segments) was noninferior with simultaneous cardiac and lung CT compared with the standard cardiac CT (870 of 889 segments [97%] in Gr.A vs 878/890 segments [99%] in Gr.B; mean difference 2.0% [90% confidence interval: -0.3% to 4.1%]). The safety (i.e. effective radiation dose) of the concomitant cardiac and lung CT protocol was noninferior to the standard cardiac CT (1.5 [95% confidence intervals: 1.2-1.7] vs. 1.4 [95% confidence intervals: 1.1-1.6] mSv; mean difference 0.1 mSv [90% confidence interval: -0.2 to 0.3 mSv]). In the two groups, a total of 25 significant (&gt;70%) coronary stenoses were found at cardiac CT (9/55 cases of Gr.A vs 11/55 cases of Gr.B). Pulmonary nodules &gt;2 mm were detected in 7 of the 55 Gr.A subjects. This pilot randomised study shows that concomitant CAD and lung cancer screening by means of a new CT protocol is both feasible and safe, thus allowing a comprehensive evaluation of both cardiac and thoracic regions during one CT scanning only. (ClinicalTrials.gov Identifier: NCT03727958)

    Automatic segmentation, detection and quantification of coronary artery stenoses on CTA

    Get PDF
    Accurate detection and quantification of coronary artery stenoses is an essential requirement for treatment planning of patients with suspected coronary artery disease. We present a method to automatically detect and quantify coronary artery stenoses in computed tomography coronary angiography. First, centerlines are extracted using a two-point minimum cost path approach and a subsequent refinement step. The resulting centerlines are used as an initialization for lumen segmentation, performed using graph cuts. Then, the expected diameter of the healthy lumen is estimated by applying robust kernel regression to the coronary artery lumen diameter profile. Finally, stenoses are detected and quantified by computing the difference between estimated and expected diameter profiles. We evaluated our method using the data provided in the Coronary Artery Stenoses Detection and Quantification Evaluation Framework. Using 30 testing datasets, the method achieved a detection sensitivity of 29 % and a positive predi
    corecore