425 research outputs found

    Worldview-2 and Landsat 8 Satellite Data for Seaweed Mapping along Karachi Coast

    Get PDF
    Seaweed is a marine plant or algae which has economic value in many parts of the world. The purpose of this study is to evaluate different satellite sensors such as high-resolution WorldView-2 (WV2) satellite data and Landsat 8 30-meter resolution satellite data for mapping seaweed resources along the coastalwaters of Karachi. The continuous monitoring and mapping of this precious marine plant and their breeding sites may not be very efficient and cost effective using traditional survey techniques. Remote Sensing (RS) and Geographical Information System (GIS) can provide economical and more efficient solutions for mapping and monitoring coastal resources quantitatively as well as qualitatively at both temporal and spatial scales. Normalized Difference Vegetation Indices (NDVI) along with the image enhancement techniques were used to delineate seaweed patches in the study area. The coverage area of seaweed estimated with WV-2 and Landsat 8 are presented as GIS maps. A more precise area estimation wasachieved with WV-2 data that shows 15.5Ha (0.155 Km2)of seaweed cover along Karachi coast that is more representative of the field observed data. A much larger area wasestimated with Landsat 8 image (71.28Ha or 0.7128 Km2) that was mainly due to the mixing of seaweed pixels with water pixels. The WV-2 data, due to its better spatial resolution than Landsat 8, have proven to be more useful than Landsat8 in mapping seaweed patche

    Enhancing spatial resolution of remotely sensed data for mapping freshwater environments

    Get PDF
    Freshwater environments are important for ecosystem services and biodiversity. These environments are subject to many natural and anthropogenic changes, which influence their quality; therefore, regular monitoring is required for their effective management. High biotic heterogeneity, elongated land/water interaction zones, and logistic difficulties with access make field based monitoring on a large scale expensive, inconsistent and often impractical. Remote sensing (RS) is an established mapping tool that overcomes these barriers. However, complex and heterogeneous vegetation and spectral variability due to water make freshwater environments challenging to map using remote sensing technology. Satellite images available for New Zealand were reviewed, in terms of cost, and spectral and spatial resolution. Particularly promising image data sets for freshwater mapping include the QuickBird and SPOT-5. However, for mapping freshwater environments a combination of images is required to obtain high spatial, spectral, radiometric, and temporal resolution. Data fusion (DF) is a framework of data processing tools and algorithms that combines images to improve spectral and spatial qualities. A range of DF techniques were reviewed and tested for performance using panchromatic and multispectral QB images of a semi-aquatic environment, on the southern shores of Lake Taupo, New Zealand. In order to discuss the mechanics of different DF techniques a classification consisting of three groups was used - (i) spatially-centric (ii) spectrally-centric and (iii) hybrid. Subtract resolution merge (SRM) is a hybrid technique and this research demonstrated that for a semi aquatic QuickBird image it out performed Brovey transformation (BT), principal component substitution (PCS), local mean and variance matching (LMVM), and optimised high pass filter addition (OHPFA). However some limitations were identified with SRM, which included the requirement for predetermined band weights, and the over-representation of the spatial edges in the NIR bands due to their high spectral variance. This research developed three modifications to the SRM technique that addressed these limitations. These were tested on QuickBird (QB), SPOT-5, and Vexcel aerial digital images, as well as a scanned coloured aerial photograph. A visual qualitative assessment and a range of spectral and spatial quantitative metrics were used to evaluate these modifications. These included spectral correlation and root mean squared error (RMSE), Sobel filter based spatial edges RMSE, and unsupervised classification. The first modification addressed the issue of predetermined spectral weights and explored two alternative regression methods (Least Absolute Deviation, and Ordinary Least Squares) to derive image-specific band weights for use in SRM. Both methods were found equally effective; however, OLS was preferred as it was more efficient in processing band weights compared to LAD. The second modification used a pixel block averaging function on high resolution panchromatic images to derive spatial edges for data fusion. This eliminated the need for spectral band weights, minimised spectral infidelity, and enabled the fusion of multi-platform data. The third modification addressed the issue of over-represented spatial edges by introducing a sophisticated contrast and luminance index to develop a new normalising function. This improved the spatial representation of the NIR band, which is particularly important for mapping vegetation. A combination of the second and third modification of SRM was effective in simultaneously minimising the overall spectral infidelity and undesired spatial errors for the NIR band of the fused image. This new method has been labelled Contrast and Luminance Normalised (CLN) data fusion, and has been demonstrated to make a significant contribution in fusing multi-platform, multi-sensor, multi-resolution, and multi-temporal data. This contributes to improvements in the classification and monitoring of fresh water environments using remote sensing

    Impact of Atmospheric Correction on Classification and Quantification of Seagrass Density from WorldView-2 Imagery

    Get PDF
    Mapping the seagrass distribution and density in the underwater landscape can improve global Blue Carbon estimates. However, atmospheric absorption and scattering introduce errors in space-based sensors’ retrieval of sea surface reflectance, affecting seagrass presence, density, and above-ground carbon (AGCseagrass) estimates. This study assessed atmospheric correction’s impact on mapping seagrass using WorldView-2 satellite imagery from Saint Joseph Bay, Saint George Sound, and Keaton Beach in Florida, USA. Coincident in situ measurements of water-leaving radiance (Lw), optical properties, and seagrass leaf area index (LAI) were collected. Seagrass classification and the retrieval of LAI were compared after empirical line height (ELH) and dark-object subtraction (DOS) methods were used for atmospheric correction. DOS left residual brightness in the blue and green bands but had minimal impact on the seagrass classification accuracy. However, the brighter reflectance values reduced LAI retrievals by up to 50% compared to ELH-corrected images and ground-based observations. This study offers a potential correction for LAI underestimation due to incomplete atmospheric correction, enhancing the retrieval of seagrass density and above-ground Blue Carbon from WorldView-2 imagery without in situ observations for accurate atmospheric interference correction

    Quantification of submerged seagrass total aboveground biomass for Malaysian coastal waters using remote sensing data

    Get PDF
    Multi-species of seagrass forms dense benthic communities in the coastal clear (Case 1) and less clear water (Case 2) in Malaysia. There are two types of seagrass, i.e. intertidal and submerged, which can easily be found in Malaysia. Satellite remote sensing data is an effective tool to be used in many marine applications, including monitoring seagrass distribution at large area coverage. The emphasizes of this thesis is to determine the best two steps satellite-based approach for mapping submerged seagrass and quantifying aboveground biomass at Merambong area and Pulau Tinggi, Johor. Multi-platforms satellite data that has different data specifications have been used at both Case 1 (water dominated by phytoplankton) and Case 2 (water concentrated with water floating substances and sediments). The satellite data used for Merambong are GeoEye-1, Worldview-2, ALOS AVNIR-2, Landsat-8 OLI and Landsat-5 TM, while the satellite data for Pulau Tinggi are Worldview-2, ALOS AVNIR-2, Landsat-8 OLI and Landsat-5 TM. The robustness of seagrass detecting techniques, namely Depth Invariant Index (DII) and Bottom Reflectance Index (BRI) on remotely sensed data at different water clarity have been tested. Both techniques require measurement of radiance, deep-water radiance and ratio of attenuation coefficients while BRI needs few additional elements from nautical chart and tide calendar to attain information of the sea bottom depth during satellite passes. Ground truth data has intensively been collected at both study areas to validate and assess the finding of this study. Comparative assessment and analysis between both techniques revealed that BRI is best to be used on Landsat-8 OLI (93.2% user accuracy) in Case 2 water while (95.0% user accuracy) in Case 1 water to identify submerged seagrass. An empirical model has been developed to devise quantification of aboveground biomass and the temporal changes by associating insitu seagrass coverage data with BRI value on the satellite images. Submerged seagrass biomass quantification using remotely sensed data is feasible in Case 2 water at required scale and accuracy (>80%), depending on the field data sufficiency, technique and choice of satellite data. In conclusion, Landsat-8 OLI with 16-bits quantization level produces more accurate results than Worldview-2 and GeoEye-1. It is able to cover a large area of study, hence it is very useful for spatio-temporal seagrass biomass monitoring project by local policy makers and related agencies

    Multitemporal Remote Sensing Based on an FVC Reference Period Using Sentinel-2 for Monitoring Eichhornia crassipes on a Mediterranean River

    Get PDF
    International audienceInvasive aquatic plants are a serious global ecological and socio-economic problem because they can cause local extinction of native species and alter navigation and fishing. Eichhornia crassipes (water hyacinth) is a dangerous invasive floating plant that is widely distributed throughout the world. In Lebanon, it has spread since 2006 in the Al Kabir River. Remote sensing techniques have been widely developed to detect and monitor dynamics and extents of invasive plants such as water hyacinth over large areas. However, they become challenging to use in narrow areas such as the Al Kabir River and we developed a new image-analysis method to extract water hyacinth areas on the river. The method is based on a time series of a biophysical variable obtained from Sentinel-2 images. After defining a reference period between two growing cycles, we used the fractional vegetation cover (FVC) to estimate the water hyacinth surface area in the river. This method makes it possible to monitor water hyacinth development and estimate the total area it colonizes in the river corridor. This method can help ecologists and other stakeholders to map invasive plants in rivers and improve their control

    Benthic mapping of the Bluefields Bay fish sanctuary, Jamaica

    Get PDF
    Small island states, such as those in the Caribbean, are dependent on the nearshore marine ecosystem complex and its resources; the goods and services provided by seagrass and coral reef for example, are particularly indispensable to the tourism and fishing industries. In recognition of their valuable contributions and in an effort to promote sustainable use of marine resources, some nearshore areas have been designated as fish sanctuaries, as well as marine parks and protected areas. In order to effectively manage these coastal zones, a spatial basis is vital to understanding the ecological dynamics and ultimately inform management practices. However, the current extent of habitats within designated sanctuaries across Jamaica are currently unknown and owing to this, the Government of Jamaica is desirous of mapping the benthic features in these areas. Given the several habitat mapping methodologies that exist, it was deemed necessary to test the practicality of applying two remote sensing methods - optical and acoustic - at a pilot site in western Jamaica, the Bluefields Bay fish sanctuary. The optical remote sensing method involved a pixel-based supervised classification of two available multispectral images (WorldView-2 and GeoEye-1), whilst the acoustic method comprised a sonar survey using a BioSonics DT-X Portable Echosounder and subsequent indicator kriging interpolation in order to create continuous benthic surfaces. Image classification resulted in the mapping of three benthic classes, namely submerged vegetation, bare substrate and coral reef, with an overall map accuracy of 89.9% for WorldView-2 and 86.8% for GeoEye-1 imagery. These accuracies surpassed those of the acoustic classification method, which attained 76.6% accuracy for vegetation presence, and 53.5% for bottom substrate (silt, sand and coral reef/ hard bottom). Both approaches confirmed that the Bluefields Bay is dominated by submerged aquatic vegetation, with contrastingly smaller areas of bare sediment and coral reef patches. Additionally, the sonar revealed that silty substrate exists along the shoreline, whilst sand is found further offshore. Ultimately, the methods employed in this study were compared and although it was found that satellite image classification was perhaps the most cost-effective and well-suited for Jamaica given current available equipment and expertise, it is acknowledged that acoustic technology offers greater thematic detail required by a number of stakeholders and is capable of operating in turbid waters and cloud covered environments ill-suited for image classification. On the contrary, a major consideration for the acoustic classification process is the interpolation of processed data; this step gives rise to a number of potential limitations, such as those associated with the choice of interpolation algorithm, available software and expertise. The choice in mapping approach, as well as the survey design and processing steps is not an easy task; however the results of this study highlight the various benefits and shortcomings of implementing optical and acoustic classification approaches in Jamaica.Persons automatically associate tropical waters with spectacular views of coral reefs and colourful fish; however many are perhaps not aware that these coral reefs, as well as other living organisms inhabiting the seabed are in fact extremely valuable to our existence. Healthy coral reefs and seagrass assist in maintaining the sand on our beaches and fish populations and are thereby crucial to the tourism and fishing industries in the Caribbean. For this reason, a number of areas are protected by law and have been designated fish sanctuaries or marine protected areas. In order to understand the functioning of theses areas and effectively inform management strategy, the configuration of what exists on the seafloor is crucial. In the same vein that a motorist needs a road map to navigate unknown areas, coastal stakeholders require maps of the seafloor in order to understand what is happening beneath the water’s surface. The location of seafloor habitats within fish sanctuaries in Jamaica are currently unknown and the Government is interested in mapping them. However a myriad of methods exist that could be employed to achieve this goal. Remote sensing is a broad grouping of methods that involve collecting information about an object without being in direct physical contact with it. Many researchers have successfully mapped marine areas using these techniques and it was believed crucial to test the practicality of two such methods, specifically optical and acoustic remote sensing. The main question to be answered from this study was therefore: Which mapping approach is better for benthic habitat mapping in Jamaica and possibly the wider Caribbean? Optical remote sensing relates to the interaction of energy with the Earth’s surface. A digital photograph is taken from a satellite and subsequently interpreted. Acoustic/ sonar technology involves the recording of waveforms reflected from the seabed. Both methods were employed at a pilot site, the Bluefields Bay fish sanctuary, situated in western Jamaica. The optical remote sensing method involved the classification of two satellite images (named WorldView-2 and GeoEye-1) and this process was informed using known positions of seafloor features, this being known as supervised image classification. With regard to the acoustic method, a field survey utilising sonar equipment (BioSonics DT-X Portable Echosounder) was undertaken in order to collect the necessary sonar data. The processed field data was modelled in order to convert lines of field point data to one continuous map of the sanctuary, a process known as interpolation. The accuracy of each method was then tested using field knowledge of what exists in the sanctuary. The map resulting from the image classification revealed three seafloor types, namely submerged vegetation, coral reef and bare seafloor. The overall map accuracy was 89.9% for the WorldView-2 image and 86.8% for GeoEye-1 imagery. These accuracies surpassed those attained from the acoustic classification method (76.6% for vegetation presence and 53.5% for bottom type - silt, sand and coral reef/ hard bottom). Similar to previous studies undertaken, it was shown that the seabed of Bluefields Bay is primarily inhabited by submerged aquatic vegetation (including seagrass and algae), with contrastingly smaller areas of bare sediment and coral reef. Ultimately, the methods employed in this study were compared and the pros and cons of each were weighed in order to deem one method more suitable in Jamaica. Often, the presence of cloud and suspended matter in the water block the view of the seafloor making image classification difficult. On the contrary, acoustic surveys are capable of operating throughout cloudy conditions and attaining more detailed information of the ocean floor, otherwise not possible with optical remote sensing. A major step in the acoustic classification process however, was the interpolation of processed data, which may introduce additional limitations if careful consideration is not given to the intricacies of the process. Lastly, the acoustic survey certainly required greater financial resources than satellite image classification. In answer to the main question of this study, the most cost effective and feasible mapping method for Jamaica is satellite image classification (based on the results attained). It must be stressed however that the effective implementation of any method will depend on a number of factors, such as available software, equipment, expertise and user needs, that must be weighed in order to select the most feasible mapping method for a particular site

    Unmanned Aerial Vehicles (UAVs) in environmental biology: A Review

    Get PDF
    Acquiring information about the environment is a key step during each study in the field of environmental biology at different levels, from an individual species to community and biome. However, obtaining information about the environment is frequently difficult because of, for example, the phenological timing, spatial distribution of a species or limited accessibility of a particular area for the field survey. Moreover, remote sensing technology, which enables the observation of the Earth’s surface and is currently very common in environmental research, has many limitations such as insufficient spatial, spectral and temporal resolution and a high cost of data acquisition. Since the 1990s, researchers have been exploring the potential of different types of unmanned aerial vehicles (UAVs) for monitoring Earth’s surface. The present study reviews recent scientific literature dealing with the use of UAV in environmental biology. Amongst numerous papers, short communications and conference abstracts, we selected 110 original studies of how UAVs can be used in environmental biology and which organisms can be studied in this manner. Most of these studies concerned the use of UAV to measure the vegetation parameters such as crown height, volume, number of individuals (14 studies) and quantification of the spatio-temporal dynamics of vegetation changes (12 studies). UAVs were also frequently applied to count birds and mammals, especially those living in the water. Generally, the analytical part of the present study was divided into following sections: (1) detecting, assessing and predicting threats on vegetation, (2) measuring the biophysical parameters of vegetation, (3) quantifying the dynamics of changes in plants and habitats and (4) population and behaviour studies of animals. At the end, we also synthesised all the information showing, amongst others, the advances in environmental biology because of UAV application. Considering that 33% of studies found and included in this review were published in 2017 and 2018, it is expected that the number and variety of applications of UAVs in environmental biology will increase in the future

    Assessment of Aquatic Weed in Irrigation Channels Using UAV and Satellite Imagery

    Get PDF
    Irrigated agriculture requires high reliability from water delivery networks and high flows to satisfy demand at seasonal peak times. Aquatic vegetation in irrigation channels are a major impediment to this, constraining flow rates. This work investigates the use of remote sensing from unmanned aerial vehicles (UAVs) and satellite platforms to monitor and classify vegetation, with a view to using this data to implement targeted weed control strategies and assessing the effectiveness of these control strategies. The images are processed in Google Earth Engine (GEE), including co-registration, atmospheric correction, band statistic calculation, clustering and classification. A combination of unsupervised and supervised classification methods is used to allow semi-automatic training of a new classifier for each new image, improving robustness and efficiency. The accuracy of classification algorithms with various band combinations and spatial resolutions is investigated. With three classes (water, land and weed), good accuracy (typical validation kappa >0.9) was achieved with classification and regression tree (CART) classifier; red, green, blue and near-infrared (RGBN) bands; and resolutions better than 1 m. A demonstration of using a time-series of UAV images over a number of irrigation channel stretches to monitor weed areas after application of mechanical and chemical control is given. The classification method is also applied to high-resolution satellite images, demonstrating scalability of developed techniques to detect weed areas across very large irrigation networks
    corecore