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Abstract: Mapping the seagrass distribution and density in the underwater landscape can improve
global Blue Carbon estimates. However, atmospheric absorption and scattering introduce errors in
space-based sensors’ retrieval of sea surface reflectance, affecting seagrass presence, density, and
above-ground carbon (AGCseagrass) estimates. This study assessed atmospheric correction’s impact
on mapping seagrass using WorldView-2 satellite imagery from Saint Joseph Bay, Saint George Sound,
and Keaton Beach in Florida, USA. Coincident in situ measurements of water-leaving radiance (Lw),
optical properties, and seagrass leaf area index (LAI) were collected. Seagrass classification and
the retrieval of LAI were compared after empirical line height (ELH) and dark-object subtraction
(DOS) methods were used for atmospheric correction. DOS left residual brightness in the blue and
green bands but had minimal impact on the seagrass classification accuracy. However, the brighter
reflectance values reduced LAI retrievals by up to 50% compared to ELH-corrected images and
ground-based observations. This study offers a potential correction for LAI underestimation due to
incomplete atmospheric correction, enhancing the retrieval of seagrass density and above-ground
Blue Carbon from WorldView-2 imagery without in situ observations for accurate atmospheric
interference correction.

Keywords: satellite remote sensing; seagrass; atmospheric correction; WorldView-2

1. Introduction

Seagrasses represent the greatest data gap in Blue Carbon habitat mapping, with
their spatial extent largely under-represented in the Blue Carbon inventories for Canada,
Mexico, and the United States [1]. This under-representation is due to a combination of
fundamental uncertainties about the true extent and density of seagrass meadows, as well
as the logistical and labor challenges involved in the ground-based mapping of submerged
seagrass populations, many of which are located in remote coastal areas [2]. Remote
sensing imagery obtained from air- and space-borne sensors can quantify seagrass and
other benthic ecosystems, and the ability to remotely quantify seagrass meadows has been
greatly enhanced by high-spatial-resolution (≤30 m) space-based sensors such as Landsat,
IKONOS, Quickbird-2, RapidEye, WorldView-2 and -3, and Sentinel-2 [3–12].
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Space-based observations benefit from the radiometric calibration provided by most
satellite-based sensors, allowing the generation of optically consistent remote sensing
reflectance (Rrs, sr−1) products that account for differences in solar illumination across time
and space. This optical consistency is essential for change detection and the creation of
climate-quality data records [13]. Automated pixel-based classification, which also requires
optical consistency, enables more precise estimates of spatial cover compared to manually
delineated polygons obtained from aerial imagery [14,15]. It also facilitates the calculation
of landscape-scale metrics, such as patch shape, area, and separation, which are critical
for determining changes in the shape of seagrass meadows resulting from the loss, gain,
fragmentation, and/or merging of vegetated patches [16].

The automated classification of imagery is typically achieved via supervised methods,
often referred to as object-based image analysis (OBIA), which utilizes pre-determined
sections of the image as a training dataset. The use of complex machine learning techniques
to separate seagrass from other benthic classes based on spectral characteristics is in its
infancy, but a deep convolutional neural network (DCNN) has been shown to achieve high
accuracies for images generated by a variety of satellite-based sensors, including RapidEye,
WorldView-2 [3], and Landsat-5, -7, and 8 [5], with less computational complexity compared
to other approaches [17,18].

The retrieval of the above-ground carbon biomass of seagrass (AGCseagrass) is a crucial
step in utilizing satellite imagery for Blue Carbon mapping. The above-ground vegetation
density quantified from space can be linked to ecologically relevant properties, including
standing carbon biomass, ecosystem productivity, and Blue Carbon stocks ([19] and refer-
ences therein). These estimates are critical for understanding the carbon budget of coastal
oceans and can help quantify the economic value of these coastal ecosystems, which is
estimated to be between USD 5000 and USD 19,000 per hectare annually [20,21].

Methods to retrieve aquatic biomass from satellites have followed two pathways.
The first pathway incorporates radiative transfer modeling to remove the effects of the
overlying water column to provide top-of-canopy reflectance, from which the seagrass
density is then derived based on local in situ relationships between canopy reflectance
and the leaf area index (LAI) [22,23]. AGCseagrass is then calculated from LAI using a
series of transfer coefficients [24–26]. The second pathway uses locally derived, image-
specific empirical relationships between sea surface reflectance properties above seagrass
meadows and percent cover or above-ground carbon (AGCseagrass [10,11]), which are not
easily transferred to other images. By retrieving top-of-canopy reflectance, the radiative
transfer approach provides a more general solution that accounts for differences in water
column depth and optical properties that can obscure the estimation of LAI and standing
biomass. This correction is particularly important for improving seagrass mapping in
optically complex waters [12] and remote locations, where ground data can be difficult
to obtain.

If in situ observations of water-leaving radiances coincident with the satellite overpass
are available, then absorption and scattering by the atmosphere can be corrected using the
empirical line height (ELH) method [27]. However, the availability of in situ calibration
target measurements is rare, and it is therefore common to employ a correction procedure,
such as a dark-object subtraction (DOS [28,29]). As with the ELH approach, complex
radiative transfer correction methods, such as Fast Line-of-sight Atmospheric Analysis
of Hypercubes (FLAASH) and Atmospheric and Topographic Correction (ATCOR [30]),
require numerous input terms, including atmosphere optical thickness, that can be difficult
to parameterize for high-resolution imagery at these scales. Comparisons between in
situ water-leaving radiance and satellite retrievals processed through various atmospheric
correction methods typically leave residual brightness in all bands, especially the blue
region of the spectrum, across multiple sensors used for seagrass classification, including
Landsat, Sentinel-2, WorldView-2, and RapidEye [3,11,30–34]. However, those studies did
not routinely quantify the impact of the AC error on the quantification of the seagrass
distribution or density across the submarine landscape.
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Here, we explored the extent to which accuracy and precision in AC impact the ability
to retrieve the seagrass distribution and density from WorldView-2 multispectral images
from the Gulf Coast of Florida. Our primary goal was to develop a robust algorithm
for seagrass classification and density determination that provides a path for the routine,
accurate mapping of submerged aquatic vegetation (SAV) across the submarine landscape.
The future ability to exploit the growing archive of images from orbiting sensors to quantify
important changes in coastal environments requires us to assess the impacts of incomplete
atmospheric correction on our classification and quantification algorithms.

2. Methods
2.1. Study Sites

We focused on three sites located along the Florida Gulf Coast, USA (Figure 1). Full
characterization of the water column optical properties and quantification of seagrass
abundance were undertaken at stations across all study sites (Figure 2) between 18 and
26 May 2010 near Keaton Beach, 1 and 9 November 2010 in Saint Joseph Bay, and 24 April
and 5 May 2012 in Saint George Sound, coincident with the scheduled image acquisition at
each site.
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USA, and the three WorldView-2 images analyzed in this study. From left to right, Saint Joseph Bay,
Saint George Sound, and Keaton Beach. Underlying imagery sources: CONANP, Esri, Garmin, FAO,
NOAA, USGS, EPA, Earthstar Geographics.

Saint Joseph Bay is the only embayment in the eastern Gulf of Mexico not directly
influenced by riverine input. It does, however, receive water rich in colored dissolved
organic matter (CDOM) from the Gulf County Canal, constructed in 1938, which links the
Intracoastal Waterway to the bay [35]. At Port Saint Joe, seagrass meadows are extensively
distributed in shallow nearshore waters (<2 m depth) throughout the bay, especially at
the southern (closed) end, and their distribution has been temporally stable from 1990 to
2020 [5].
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Figure 2. RGB images of all three study sites, stretched using histogram equalization (γ = 0.5) to
assist visualization of spectral differences. (A). St. Joseph Bay. (B). St. George Sound. (C). Keaton
Beach. Mapped are the locations of stations used for atmospheric correction (white) and those that
were fully characterized with respect to water column optics and seagrass abundance (purple) and
Regions of Interest (ROIs) used for DCNN classification.

Saint George Sound forms the eastern portion of the Apalachicola Bay estuary/lagoon
system, which is heavily influenced by the Apalachicola River, receiving discharge from
agricultural, industrial, and municipal activities in the 50,000 km2 Apalachicola–Flint–
Chattahoochee River Basin. Seagrasses are abundant in the shallow, quiescent waters along
the mainland coast of the eastern portion of Saint George Sound between Carrabelle and St.
Teresa and in the lee of Dog Island Reef (Figure 2B) that separates the southern boundary of
St. George Sound from the northern Gulf of Mexico. Seagrasses are absent from the highly
turbid waters in the western portion of Apalachicola Bay and in the much smaller Alligator
Harbor at the east end.

Keaton Beach is located at the northern end of the Big Bend Seagrass Aquatic Preserve,
which encompasses the second-largest contiguous area of seagrass habitat in the eastern
Gulf of Mexico [36]. Unlike St. Joseph’s Bay and St. George Sound, in which seagrass
meadows are confined to shallow embayments or protected lagoon waters, the seagrass
meadows along Keaton Beach inhabit the open Gulf Coast to depths extending to the 3 m
isobath. The coastal waters of Keaton Beach are influenced by CDOM-rich but oligotrophic
discharge from the Steinhatchee River, a short river derived from the relatively undeveloped
watershed dominated by cypress swamps, titi swamps, peat bogs [37], and other non-point
sources along this section of the coast.

2.2. Measurement of Water Column Optical Properties and In Situ Rrs

All symbols and definitions described in this and following sections are summarized
in Table 1. The inherent optical properties (IOPs) of spectral absorption (a, m−1) and beam
attenuation (c, m−1) were measured at nine channels (412, 440, 488, 510, 532, 555, 650,
676, 715 nm) using an ac-9 Plus (Sea-Bird Instruments) deployed 1 m below the surface at
each station. The ac-9 data were corrected for ambient temperature, salinity, and scattering
according to Method 3 [38] using a Conductivity, Temperature, and Depth (CTD) sensor
incorporated into the ac-9 package. Scattering correction was performed using data from a
Hydroscat-6P series 300 (HOBI Labs, Inc.) deployed alongside the ac-9. All data processing
of the Hydroscat-6 data was undertaken in accordance with manufacturers’ protocols,
including the σ correction for highly scattering waters. Attenuation and absorption by
particles plus CDOM (cpg, apg) were calculated by subtracting the absorption and scattering

B 
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of pure water [39] from the temperature- and salinity-corrected data. The total spectral
scattering coefficient (bp(λ),m−1) was calculated as:

bp(λ) = cpg (λ)− apg (λ) (1)

under the assumption that CDOM did not contribute to scattering.

Table 1. Summary of symbols, their definitions, and their dimensions.

Symbol Definition Dimensions

Basic parameters

Rrs(DOS) Remote sensing reflectance from DOS atmospheric correction sr−1

Rrs(ELH) Remote sensing reflectance from ELH atmospheric correction sr−1

Ed(λ) Spectral downwelling irradiance W m−2

Eu(λ) Spectral upwelling irradiance W m−2

Lu(λ) Spectral upwelling radiance W m−2 sr−1 nm−1

Lw(λ) Spectral water-leaving radiance W m−2 sr−1 nm−1

zb Depth of water column from digital elevation map m
z Depth of the water column corrected for canopy height and tidal state m

LAI Leaf area index m2 leaf m−2 ground
AGCseagrass Above-ground seagrass carbon g

Inherent optical properties of the water column (IOPs)

ap Absorption by particulate material (algal + sediment + detritus) m−1

an Absorption by non-pigmented particulate material m−1

ag Absorption by CDOM m−1

apg Absorption by particulate and CDOM m−1

bp Scattering by particulate material m−1

bbp Backscattering by particulate material m−1

cpg Beam attenuation coefficient m−1

Apparent optical properties of the water column (AOPs)

Kd(λ) Spectral downwelling diffuse water column attenuation coefficient m−1

KLu (λ) Spectral upwelling diffuse attenuation coefficient m−1

Rb(λ) Spectral benthic reflectance dimensionless

A HyperPro profiling radiometer (SatLantic Instruments) and hyperspectral tethered
spectroradiometer buoy (HTSRB, SatLantic Instruments) were floated in tandem at each
station to measure downwelling spectral irradiance (Es(λ,0+)) above the sea surface and
upwelling spectral radiances (Lu(λ)) at 0.21 m and 0.65 m, respectively, beneath the sea
surface. The diffuse attenuation coefficient for upwelling radiance was calculated as:

KLu(λ) = − 1
∆z

In
Lu (λ, 0.65 m)

Lu(λ, 0.21 m)
(2)

where ∆z was the difference in depth (0.44 m) between the sensors placed at 0.21 and
0.65 m. The water-leaving radiance (Lw(λ)) was calculated by propagating Lu(λ) to the
surface using KLu(λ) and transmitting it across the air–water interface:

Lw (λ) =
tuLu(l, 0.21)

exp[−0.21KLu(λ)]
(3)

where τu (=0.54,) represented the fraction of upwelling radiance transmitted upward across
the water–air interface of a flat ocean [40,41]. In situ remotely sensed reflectances (Rrs(λ),
sr−1) were then calculated as:

Rrs(λ) =
Lw(λ)

Es(λ, 0+)
(4)

Rrs(λ) was then averaged to match the multispectral wavelength bins of the WorldView-
2 sensor, using the response functions provided by DigitalGlobe (Table 2).
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Table 2. WorldView-2 spectral center wavelengths and band edges.

Band Name Center Wavelength (nm) (Lower and Upper Band Edges)

MS1 (NIR1) 835 (770–895)
MS2 (Red) 660 (630–690)

MS3 (Green) 545 (510–580)
MS4 (Blue) 480 (450–510)

MS5 (Red edge) 725 (705–745)
MS6 (Yellow) 605 (585–625)
MS7 (Coastal) 425 (440–450)
MS8 (NIR 2) 950 (860–1040)

2.3. In Situ Seagrass Density

Direct counts of Thalassia testudinum (turtle grass), Halodule wrightii (shoal grass),
and Syringodium filiforme (manatee grass) shoots were performed by SCUBA divers using
20 to 30 quadrats (0.04 m2) randomly located within a 20 m radius at optically shal-
low water stations at each site (Figure 2). Halophila spp. (paddlegrass) and Ruppia
maritima (widgeon grass) were not present in any of the quadrats. One shoot of each
species present was collected from each quadrat for subsequent measurement of total leaf
length, leaf width, and number of leaves per shoot and determination of leaf area index
(LAI = shoots

m2 seafloor ×
m2 leaf area

shoot ). The LAI of Syringodium filiforme was calculated using the
diameter of the cylindrical leaves for leaf width.

2.4. Top-of-Canopy Reflectance Measurements

Downwelling (Ed(λ,z)) and upwelling (Eu(λ,z)) spectral irradiances were measured
at the top of the seagrass canopy and at 15 cm above the bare sediment at ~10 randomly
selected spots at each station using our Diver-Operated Benthic Bio-Optical Spectrometer
(DOBBS), a three-channel radiometer (HR-3, HOBI Labs, Inc.) configured for portable in situ
operation by a diver. Instrument spectra (nominally 0.3 nm resolution) were interpolated to
1 nm with a cubic spline and smoothed using a 21 nm running average. Spectral reflectance
(Rb(λ), dimensionless) of the seagrass canopy or bare substrate was calculated as Eu(λ,z)

Ed(λ,z) .
Rb(green) was then calculated by averaging Rb(λ) across the WorldView-2 green band (511
to 581 nm). The mean and standard error of Rb(green) were calculated for each station.

The top-of-canopy reflectance measurements were paired with coincident LAI mea-
surements (Section 2.3) to generate a regression model that could be used with top-of-
canopy reflectance retrieved from Rrs (Section 2.6.3) to estimate LAI from the images.

2.5. Satellite Data

The WorldView-2 satellite imaging system operated by Maxar Technologies, Inc.
(formerly DigitalGlobe) was tasked to obtain multispectral images of Keaton Beach, Saint
Joseph Bay, and Saint George Sound. Tasking information included the optimal geometry
relative to the target to minimize direct solar reflectance (sunglint) and local cloud cover.
Image collection took place on 20 May 2010 (Keaton Beach), 14 November 2010 (Saint Joseph
Bay), and 27 April 2012 (Saint George Sound, Table 3 and Figure 2). Ground resolution,
which depended on the view angle required to minimize glint, varied from 2 m at Saint
Joseph Bay to 3 m at both Keaton Beach and Saint George Sound (Table 3).

Table 3. WorldView-2 image information for all three sites. Data from NOAA tide stations were used
to correct mean lower low water levels to water depth at the time of the image collection.

Date Location MAXAR Image ID View Angle
(Degrees Off-Nadir)

Ground
Resolution (m)

Sun
Elevation

NOAA Tide
Station ID

20 May 2010 Keaton Beach 10300100045A9500 36.7◦ 3 68.8◦ 8727695
14 Nov 2010 Saint Joseph Bay 103001000897AC00 15.6◦ 2 40.5◦ 8728912
27 Apr 2012 Saint George Sound 10300100184AB500 35.4◦ 3 67.6◦ 8728360
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2.6. Data Processing
2.6.1. Atmospheric Correction

Raw, top-of-atmosphere digital values (Level 1b data product) were converted to
sea surface reflectance (Rrs) for each image using two atmospheric correction methods
(Figure 3). The ELH method incorporates both radiometric calibration and atmospheric
correction into a single step [27,42] using in situ observations of Rrs collected coincidently
with the satellite overpass (Section 2.2) at “optically deep” stations where the geometric
water depth exceeded the depth of the 10% isolume, defined by the diffuse attenuation
coefficient Kd. These in situ reflectance values were regressed against the average digital
value obtained from a 4 × 4 pixel array extracted from the image corresponding to the
location of each station to create Rrs gains (slopes) and offsets (intercepts) for all bands that
were subsequently applied to the entire image. Accuracy of the in situ Lw(λ) measurements
was validated against HydroLight [43] simulations parameterized with IOP data from the
ac-9 and Hydroscat-6 measurements at those stations (Section 2.2). Rrs generated from this
method will be referred to in the text as Rrs(ELH) (Figure 3).
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Atmospheric correction was also undertaken using the DOS approach [44]. Radiomet-
ric calibration and DOS were performed on each image in separate steps, as described in
Coffer et al. [3], using radiometric calibration coefficients from Kuester [45]. The red-edge
band (MS5, Table 2) was used as the DOS reference band because radiometric calibration
of the near-infrared (NIR) bands using coefficients provided by Maxar frequently yielded
negative radiances over dark water targets before atmospheric correction, preventing their
use for DOS [3]. Inland water pixels were excluded from the red-edge analysis by masking
the land area using a shapefile of the coastline [46]. A normalized difference water index
(NDWI) was then applied to remove any remaining shoreline pixels [47]. The median of
the red-edge Rrs values was then computed from the optically darkest 5% of the remaining
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water pixels. We assumed that half of the red-edge radiance emanating from the dark
pixels represented atmospheric contamination [3], while the remainder represented true
water-leaving radiances. The scattering factor (s) was computed as

σ = λ4.75
red edge × αred edge (5)

where α is anchored to the correction at the red edge at 0.5. The wavelength-dependent
Rayleigh exponent was set to 4.75 [3]. The scattering factor was then applied to the center
wavelength of each band to compute the correction factor (ηband), which was subtracted
from the band-specific Rrs for all pixels in the scene:

ηband =
σ

λ4.75
red edge

(6)

The radiometrically calibrated and atmospherically corrected Rrs values generated
from this method are identified below as Rrs(DOS) (Figure 3).

2.6.2. Machine Learning Supervised Classification

A deep convolutional neural network (DCNN, [17]) previously used to separate sea-
grass from other targets in imagery from WorldView-2 and RapidEye [3] sensors was
used to classify the Rrs(ELH) and Rrs(DOS) images. Four classes were identified at all sites:
(i) optically deep water, in which the bottom type was unidentifiable, (ii) optically shallow
submerged sand, (iii) submerged seagrass, and (iv) dry land consisting of natural vege-
tation and human development. A fifth class of emergent intertidal sand covered with
benthic algal film was identified only in Saint Joseph Bay. The DCNN was trained using
representative patches (rectangular polygons) of each class, referred to as regions of interest
(ROIs), identified in each image through a combination of local knowledge and visual
confirmation (Figure 2). ROIs were split into training and testing subsets for the DCNN
model, and a subsequent patch size of 3 × 3 pixels was extracted from the ROIs to use
as training samples. The DCNN consisted of a sequential model, or linear stack, of six
layers. The first layer was a convolutional layer consisting of 32 filters with a kernel size
of 1 × 1 × 8 (containing 1 pixel and 8 channels), followed by a rectified linear activation
function. Next, a dropout layer randomly set 1% of the outputs from the first layer to zero.
The second convolutional layer consisted of 16 filters with a kernel size of 3 × 3 × 32 pixels,
again, followed by a rectified linear activation function. Then, another 1% dropout layer
was added before flattening the model. Finally, a dense layer with a SoftMax activation
function was used to compute pixel-based probabilities for each class [48]. This DCNN
model was trained for 500 epochs, where an epoch represented the point at which all
training data have been processed one time, using a batch size of 256. Once trained, the
model was applied across the entire image to classify all pixels, resulting in separately
classified images for Rrs(ELH) and Rrs(DOS) values.

2.6.3. Calculation of Seagrass Density

Rrs(ELH) and Rrs(DOS) values were used to generate benthic reflectance at the top of the
seagrass canopy in the green band (Rb(green)) [22,23]:

Rb(green) =
Rrs(green)Qb

τu

exp
[
−Klu(zb) zb

]
exp(−Kd zb)

(7)

where Rrs(green) represents either Rrs(ELH) or Rrs(DOS) values from band MS3 (green, cen-
tered at 545 nm). Water depth (zb) was extracted from NOAA’s Continuously Updated
Digital Elevation Model [49] at 1 m horizontal resolution and resampled to match the grid
dimensions and spatial resolution of the satellite imagery (2 to 3 m) using ArcGIS Pro. The
resulting digital elevation models (DEM) for all sites were then used along with local tide
predictions (Table 1) to calculate water depth across each scene at the times of WorldView-2
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image acquisition. Downwelling diffuse attenuation (Kd) and depth-averaged upwelling
radiance attenuation

[
−Klu(zb)

]
coefficients were modeled using Hydrolight (© C. Mob-

ley, Sequoia Scientific) parameterized with inherent optical properties (IOPs) measured
in situ. Qb represents the ratio of Eu to Lu at the base of the water column produced by
the reflectance of Ed from the sea floor, which was assumed to be π for a Lambertian
bottom boundary. The relative transmittance of Lu through the water–air interface (τu)
was approximated as 0.54 [40]. Leaf area index was determined by linear regression of
Rb(green) against direct shoot counts made at in situ stations distributed across each scene.
AGCseagrass was estimated from LAI using a series of transfer coefficients for fresh weight
(Equation (8)), dry weight (Equation (9) [25,26]), and organic carbon (Equation (10) [24]).

Above-ground Fresh Wt (g FW) = 500 (g m−2 leaf) × LAI (m2 leaf m−2 seabed) (8)

Above-ground Dry Wt (g DW) = fresh wt × 0.2 (g DW g−1 FW) (9)

Above-ground seagrass carbon stock (g C) = dry wt (g DW) × 0.35 (g C g−1 DW) (10)

2.7. Statistical Analysis
2.7.1. Comparison of Atmospherically Corrected Rrs Values

Rrs(ELH) and Rrs(DOS) values at 400 randomly generated points were selected across
each study site for comparison. Points were generated using the “create random points”
tool in ArcGIS Pro across all marine targets to collect a range of Rrs values. Rrs(ELH) and
Rrs(DOS) for each band were extracted from these points and subjected to linear regression.
Differences in the band-specific relationships between Rrs(ELH) and Rrs(DOS) among the
three sites were evaluated using Analysis of Covariance (ANCOVA).

2.7.2. Comparison of In Situ and Retrieved LAI

Direct comparisons of in situ and satellite-retrieved LAI are challenging due to the
small-scale spatial heterogeneity found in seagrass meadows, where quadrat-scale LAI
measured using a 0.04 m2 quadrat can range from 0 to 4 m2 m−2 within the 3 m footprint
of the WV-2 pixel. In order to determine whether in situ and satellite-derived LAI values
were statistically similar, we extracted LAI from image pixels within a 20 m radius of our
in situ seagrass stations using the “create buffer tool” in ArcGIS Pro (Figure 2). Box-and-
whisker plots were generated to illustrate similarities in mean, median, and data ranges.
Statistical similarity between in situ LAI calculated from direct quadrat counts (Section 2.3)
and remotely detected LAI was determined via a non-parametric Kruskal–Wallis test [50]
followed by a pairwise Mann–Whitney U-test [51], run using the SciPy statistical pack-
age [52].

3. Results
3.1. Water Column Optical Properties

The water column at all three sites consisted of optically complex Case 2 waters, with
high absorption and/or scattering dominated by a combination of non-algal particles and
CDOM. Keaton Beach had the highest apg; values at 412 and 443 nm were twice those
observed at the other sites (Figure 4A). The comparatively low contribution of bp to cpg
(Figure 4B,C) at Keaton Beach indicates that the apg was dominated by CDOM and not
high levels of phytoplankton or other particles. Saint Joseph Bay and Saint George Sound
had similar values of apg (Figure 4A). However, the bp in Saint George Sound was three
times higher than that observed at Saint Joseph Bay and accounted for 75% of the cpg,
suggesting a high load of non-algal particles in this lagoon fed by the Apalachicola River
(Figure 5B). There was a high degree of variation in the bp across Saint George Sound, with
lower bp and cpg observed offshore near Dog Island Reef. In Saint Joseph Bay, both apg and
bp contributed equally to light attenuation. Based on the optical properties, the depth of
the 10% isolume, which we used to define the limit for optically shallow water and which
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often corresponds to the lower limit of seagrass colonization [53,54], was 0.9 m in Saint
George Sound, 2.1 m at Keaton Beach, and 2.3 m in Saint Joseph Bay.
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linear, relationship between Rrs(ELH) and Rrs(DOS) (Figure 5A 425 nm, Table 4). Overall, the
Keaton Beach image was darker than both Saint Joseph’s Bay and Saint George Sound
images in bands MS7, 4, and 3 in both ELH and DOS corrections (Figure 5A–C). Rrs(DOS) was
more divergent from Rrs(ELH) (slopes > 1) in the yellow (MS6) and red (MS2) bands (Table 4
and Figure 5D,E) at Keaton Beach and Saint George Sound relative to St. Josephs Bay,
where Rrs(DOS) converged with Rrs(ELH) at higher values. The NIR bands MS1 and 8 (not
shown) had an insufficient signal-to-noise ratio to be useful, regardless of the atmospheric
correction method. The regression slopes between Rrs(DOS) and Rrs(ELH) were statistically
different between each of the three sites for all bands (ANCOVA p < 0.001, Table 5). In
the green band (MS3, 545 nm), the relationship between Rrs(DOS) and Rrs(ELH) appears to
converge between all the sites, with slopes that were close but still did not overlap within
the 95% confidence limits, rendering them significantly different (Figure 5C and Table 5).

Table 4. Slope (95% confidence intervals) of the regression between Rrs(ELH) and Rrs(DOS) for each
band and site.

Band Saint Joseph Bay Saint George Sound Keaton Beach

MS7: 425 nm 1.29 (1.26–1.33) 2.75 (2.72–2.78) −13.76 (−14.2–−13.29)
MS4: 480 nm 1.49 (1.48–1.50) 1.96 (1.93–1.98) 3.89 (3.68–3.95)
MS3: 545 nm 1.272 (1.268–1.275) 1.298 (1.286–1.309) 0.916 (0.893–0.940)
MS6: 605 nm 0.92 (0.915–0.922) 1.199 (1.19–1.21) 1.15 (1.09–1.22)
MS2: 660 nm 0.86 (0.863–0.852) 1.365 (1.35–1.37) 2.314 (2.26–2.37)
MS5: 725 nm 1.49 (1.47–1.5) 1.926 (1.92–1.93) 1.238 (1.21–1.26)

Table 5. Results of the ANCOVA statistical test to determine differences in slopes between Rrs(DOS)

and Rrs(ELH) between study sites. Only results for comparison of slopes are shown. F ratio is the
ANCOVA test statistic.

Band Degrees of Freedom Sum of Squares Mean of Squares F Ratio p-Value

1 2 0.0002 0.0001 4169.03 <0.001
2 2 0.00026 0.00013 3207.66 <0.001
3 2 0.00013 0.00006 208.92 <0.001
4 2 0.00123 0.00062 3318.18 <0.001
5 2 0.00203 0.00101 6078.29 <0.001
6 2 0.0001 0.00005 90.25 <0.001

3.3. Image Classification
3.3.1. Saint Joseph Bay

Despite differences observed in Rrs derived by the two atmospheric correction meth-
ods, there was broad agreement in the seagrass classification, with extensive continuous
seagrass beds identified covering the shallow areas of less than 2 m depth along the south-
ern edge of the bay (Figure 6A,B). The total seagrass area was classified as 25.2 km2 in the
ELH image and 27.0 km2 in the DOS image (Table 6), with an area of 23 km2 commonly
identified as seagrass in both images (Figure 6C). Differences in seagrass classification
largely occurred along the transition zones between submerged seagrass meadows and
the intertidal zone, which was dominated by filamentous red and brown algae, as well as
along the deeper edge of the meadows, where sparse vegetation was transitioning to bare
sand (Figure 6C). The greater seagrass area recovered from the DOS image was located
in the intertidal and in shallow inlets that were classified as intertidal in the ELH image
(Figure 6C). In situ observations identified these areas as benthic algae and not seagrass.
The ELH image also retrieved benthic information at greater depths, resolving 42% more
optically shallow sand area along the 2 m isobath that was classified as optically deep water
by the DOS image (Figure 6).
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Table 6. Retrieved area of benthic targets for empirical line height (ELH) and dark-object subtraction
(DOS) atmospherically corrected images for Saint Joseph Bay, Saint George Sound, and Keaton Beach.

Saint Joseph Bay Saint George Sound Keaton Beach

ELH DOS ELH DOS ELH DOS

Total seagrass area (km2) 25.2 27.0 17.9 17.3 70.5 72.4
Seagrass area not overlapping (km2) 2.2 4.0 3.6 3.0 3.2 5.1

Intertidal (km2) 8.9 8.6 0 0 0 0
Optically shallow sand (km2) 28.7 20.1 16.8 7.82 5.63 4.35
Optically deep water (km2) 102.8 110.2 76.7 86.8 33.2 35.8

Land (km2) 20 19.75 4.6 4.05 17.82 14.28
Total area mapped (km2) 186 186 116 116 127 127

3.3.2. Saint George Sound

In Saint George Sound, seagrass was identified along the shallow areas (<2 m depth)
close to the mainland shore and along the lee side of Dog Island Reef that forms the seaward
barrier between the Sound and the Gulf of Mexico (Figure 7A,B). A total of 17.9 km2 of
seagrass was classified from the ELH image, and 17.3 km2 was identified from the DOS
image (Table 6). Although the total area identified as seagrass differed by only 3% between
the images, there was 3 km2 of seagrass in the ELH-corrected image in a large patch to the
west of Alligator Harbor (Figure 7C, indicated by the circle) and a patch in deeper water
along the coastal margin between Lanark Reef and Turkey Point that was not resolved in the
DOS-corrected image. The presence of seagrass in these disputed areas was verified from in

A B C 
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situ diver surveys conducted by the authors in 2017. Visual in situ surveys also confirmed
the sandbank south of Turkey Point to consist of benthic algae, reef invertebrates, and
shelly aggregates that were classified as submerged sand in the ELH image but incorrectly
classified as seagrass in the DOS image (Figure 7C, indicated by the rectangle). Twice
as many pixels of optically shallow sand were identified in the ELH image (16.7 km2)
compared to the DOS image (7.8 km2), which classified these disputed pixels as optically
deep water. In particular, the ELH image resolved more of the optically shallow sand
around Dog Island Reef and the optically shallow sand between the shore and Dog Island
Reef. These discrepancies have no in situ verification but visually appear to be dominated
by submerged sand, as classified in the ELH image.
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3.3.3. Keaton Beach

Seagrass was distributed at Keaton Beach in a more-or-less continuous meadow
from the shoreline out to optically deep water (~2 m isobath) (Figure 8). The total cover
encompassed 70.5 km2 in the ELH image and 72.3 km2 in the DOS image, equating to a 2%
difference between calibration/atmospheric correction methods (Table 6). A narrow strip of
seagrass of approximately 3.2 km2 identified along the deeper edge of the seagrass beds in
the ELH image and positively identified as sparse seagrass by diver surveys (Figure 8A,C)
was classified as optically deep water in the DOS image (Figure 8B). Conversely, 5.1 km2 of
seagrass along the shallow intertidal shoreline was classified as seagrass in the DOS image
and as land in the ELH image, including Hagens Cove, which is an optically shallow area
with some seagrass, as seen in the DOS image (Figure 8C). There may be more seagrass
at the deeper edge of identified meadows on the south end of the image; however, the
verification of seagrass in water with high CDOM loads required in situ observations that
we did not make.
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3.4. Seagrass Density
3.4.1. Determination of LAI from Top-of-Canopy Reflectance

The strong negative relationship between in situ log-transformed Rb(green) and LAI
for all stations across the three study sites yielded the predictive relationship shown in
Figure 9 and expressed in Equation (11) (R2 = 0.75, slope SE = 0.31, intercept SE = 0.39). The
negative log-transformed Rb values in the green band represent lower (darker) reflectance
at the top of the canopy and are correlated with a higher seagrass density (LAI). This
relationship provided the mathematical basis for predicting LAI on a pixel-by-pixel basis
from Rb(green) retrieved from the WorldView-2 imagery using Equation (7).

LAI = −2.98log Rb(green) − 2.17 (11)

It should be noted when using this model that, once densities increase past 3 m2

leaf m−2 ground, the relationship is expected to no longer be linear, with little additional
reduction in canopy reflectance in the green occurring once LAI becomes dense enough to
occlude any reflectance from the brighter sand at the base of the vegetation.

3.4.2. Saint Joseph Bay

LAI was spatially variable throughout Saint Joseph Bay (Figure 10A). The densest
areas identified in the ELH image were in the shallow waters at the southern end of the bay,
reaching 2.6 m2 leaf m−2 ground. The median LAI of the whole bay was 1.89 m2 leaf m−2

ground (Table 7). The seagrass density decreased sharply as the deeper edges of the mead-
ows transitioned to bare sand. AGCseagrass in Saint Joseph Bay estimated from LAI(ELH) was
1.66 Gg, with an area-specific carbon density of 66 g m−2 (Table 7). Although the spatial
pattern of seagrass distribution retrieved from Rrs(ELH) was similar to that produced using
Rrs(DOS) (Figure 10A,B), LAI(DOS) was approximately 50% lower than LAI(ELH) across the
entire image (median LAI 0.98 m2 leaf m−2 ground, Table 7 and Figure 10B). Correspond-
ingly, the underestimation of LAI reduced the bay-wide AGCseagrass by 47% to 0.88 Gg
(Table 7). LAIs obtained through in situ measurements (LAI(IN SITU)) were not significantly
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different from the retrieved LAI(ELH) from pixels within our station locations (Table 8 and
Figure 11A). There were, however, notable differences in the range of values between these
two datasets, with the LAI(IN SI) exhibiting a substantially broader span in comparison to
the values retrieved via satellite. The distribution of LAI(ELH) values exclusively fell within
the interquartile range of the in situ dataset but failed to capture LAI values surpassing
2.5 m2 m−2, densities that were observed in situ. LAI(DOS) values were significantly lower
than observed in situ (Table 8), with the majority of LAI(DOS) values falling below the lower
quartile of the LAI(IN SITU) and entirely below the lowest LAI(ELH) values (Figure 11A).
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Table 8. Results of pairwise Mann–Whitney tests to compare satellite-based LAI values with in situ
observations for each study site. Raster values were collected from a 20 m radius around the in situ
station locations (Figure 1). Symbol * indicates a significant difference.

Saint Joseph Bay Saint George Sound Keaton Beach

LAI(INS ITU) LAI(ELH) LAI(DOS) LAI(INS ITU) LAI(ELH) LAI(DOS) LAI(INS ITU) LAI(ELH) LAI(DOS)

LAI(INS ITU)
U = 280,464

p = 0.118
U = 423,261
p = <0.00 *

U = 126,423
p = 0.000 *

U = 285,869
p = <0.00 *

U = 36,241
p = <0.00 *

U = 377,731
p = <0.00 *

LAI(ELH)

U =
51,225,352
p = <0.00 *

U =
1,084,540

p = <0.00 *

U = 114,048
p = <0.00 *

LAI(DOS)

3.4.3. Saint George Sound

LAI(ELH) values were high along the mainland shore of Saint George Sound behind
the complex of shallow sandbars created by Lanark Reef and Turkey Point Reef and along
the leeward edge of Dog Island Reef that separates the Sound from the Gulf of Mexico
(Figure 12A). The median LAI(ELH) across the scene was 1.96 m2 leaf m−2 seafloor, and the
highest LAI(ELH) of ~2.6 m2 leaf m−2 seafloor was found in the relatively turbid shallow
water (~0.5 m deep) close to shore (Figure 12A). Similar densities (~2.6 m2 leaf m−2 ground)
were found in the meadows occupying the deeper (~2 m) but clearer waters along the
lee of Dog Island Reef. The total AGCseagrass derived from LAI(ELH) was 1.24 Gg, with
an area-specific carbon of 68 g m−2 (Table 7). As with Saint Joseph Bay, LAI(DOS) values
were ~50% lower than LAI(ELH) (Figure 12B), reducing the estimation of total AGCseagrass
to 0.62 Gg and the area-specific carbon to 36g m−2 (Table 7).
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While the median values of LAI(IN SITU) and LAI(ELH) appear to be similar (Figure 11B),
the two datasets were found to be significantly different (Table 8) due to the small dy-
namic range of LAI(ELH). The middle 50% of LAI(ELH) encompassed values of 1.98 to
2.10 m2 leaf m−2 ground (Figure 11B), in contrast to the larger range observed in LAI(IN SITU),
from 1.7 to 2.8 m2 leaf m−2 ground. With such a narrow range of distribution of LAI(ELH),
the higher and lower range of values measured in situ was not resolved. As in Saint
Joseph Bay, both the mean and median of LAI(DOS) fell below the lower quartile of the in
situ dataset and entirely below the lowest LAI(ELH) retrieval (Figure 11B), making these
retrievals significantly different from both LAI(ELH) and LAI(IN SITU) (Table 8).

3.4.4. Keaton Beach

The seagrass at Keaton Beach occupied a 3 km wide band of homogeneous density
~3 m2 leaf m−2 ground parallel to the shore (Figure 13A). The 2 m isobath marked the
edge of the continuous seagrass meadow, with densities dropping sharply to bare sand,
transitioning to optically deep water. The median LAI(ELH) was the highest of all three
regions at 3.33 m2 leaf m−2 ground (Figure 13A and Table 7). Both the higher total area and
densities in Keaton Beach were reflected in the highest AGCseagrass and area-specific carbon
of all three study sites at 8.34 Gg, with an area-specific carbon of 118 g m2 (Table 7). As
with the other two sites, LAI(DOS) was lower than LAI(ELH) (Figure 13B), which translated
into a 58% underestimation of AGCseagrass calculated from LAI(DOS) compared to that from
LAI(ELH) (Table 7).
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observed at this site when compared to Saint Joseph Bay and Saint George Sound. LAI(DOS)
was significantly lower than LAI(IN SITU) (Table 8), exhibited a significantly narrower range
of values when compared to LAI(ELH), and had the greatest divergence from LAI(ELH) of all
three sites (Figure 11C).

3.4.5. LAI(ELH) Compared to LAI(DOS)

The underestimation of LAI from Rrs(DOS) relative to both Rrs(ELH) was a consistent
pattern across all three sites (Figure 14). The highly predictive relationship between LAI(ELH)
and LAI(DOS) (r2 0.94) can be approximated across the entire dataset with an exponential
function (Figure 14A and Table 9). When analyzed separately, the relationships at both Saint
Joseph Bay and Saint George Sound were best represented by linear functions (Figure 14B,C
and Table 9), while the Keaton Beach fit remained slightly exponential (Figure 14D and
Table 9).
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absolute error (MAE) at all three sites was less than 0.2 m2 leaf m−2 ground, which is
approximately 10% of the mean LAI values for Saint Joseph Bay and Saint George and
6% for Keaton Beach. The root-mean-square error (RMSE) was similar in magnitude to
the MAE (Table 10), with the greatest errors occurring for LAI predicted at Saint George
Sound. Using algorithms tuned for individual study sites improved both the MAE and
RMSE for Saint Joseph Bay and Saint George Sound by approximately 50%, reducing the
error in the predicted LAI to less than 5% of the mean values (Table 10). For Keaton Beach,
an individual exponential fit increased MAE over algorithm 1 and produced only a small
improvement in RMSE.

Table 10. Statistical output comparing accuracy of regression models for predicting LAI from LAI(DOS)

when using regression relationships detailed in Table 9.

Site Algorithm Mean Absolute Error Root-Mean-Square Error

Saint Joseph Bay 1 0.089 0.11
2 0.0419 0.068

Saint George Sound 1 0.114 0.148
3 0.0422 0.061

Keaton Beach
1 0.084 0.185
4 0.130 0.175

4. Discussion

This study revealed that the use of published radiometric calibration factors com-
bined with DOS atmospheric correction produced images with much higher reflectances
than those produced by empirical calibration of the raw satellite images against direct
ground observations. However, the residual brightness, which we assume to be primarily
atmospheric contamination but could include radiometric calibration inaccuracy, did not
dramatically affect the supervised classification of seagrass presence in these optically com-
plex coastal environments. Classification differences between the ELH and DOS methods
were most apparent at the transition zones defining the shallow and deep edges of the
meadows, but these transition zones represented a relatively small fraction of the total area.
Thus, the choice of atmospheric correction method may not be critical for detecting the
presence of seagrass beds, but it may be important for accurately identifying the boundaries
of the meadows. Furthermore, the residual brightness in the green band resulting from the
DOS approach caused the retrievals of seagrass LAI, and therefore, the carbon biomass, to
be underestimated by approximately 50% compared to the ELH-processed image, which
showed a stronger concordance with in situ measurements. Nonetheless, our comparison
provides a potential path for rectifying DOS-based LAI retrievals that may permit seagrass
LAI and above-ground carbon to be estimated from the existing collection of WorldView-2
images that lack in situ observations needed to accurately correct atmospheric interference
in the green region of the spectrum.

Residual atmospheric contamination leading to higher radiances, especially in the
blue and green bands, relative to in situ observations has been observed in both WorldView-
2 and other high-spatial-resolution sensors, such as Pleiades, Sentinel-2, and Landsat-5
and 7 [30,33,34], and may be a widespread problem in atmospheric correction methods
generally (B. Collister, NASA, pers comm). Coffer et al. [3] compared WorldView-2 Rrs after
DOS correction to in situ observations and concluded that it may not be just an atmospheric
correction problem, as uncalibrated drift in post-launch sensor responsivity may also play
a role.

Despite the presence of high residual radiances in the blue and green bands (bands
1 and 2), the classification of the DOS-processed image successfully separated seagrass
pixels from optically shallow sand and optically deep water in three distinct WorldView-
2 images that represented a range of optically complex waters characteristic of coastal
Florida. This indicates that the WorldView-2 archive can be used to produce reliable
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supervised classification maps of seagrass distributions, even when atmospheric correction
is imperfect.

The differences in the seagrass area between ELH- and DOS-corrected images were
found to account for less than 8% of the total coverage, primarily resulting from the
overclassification of (i) optically shallow bare sand along the deep margins and (ii) intertidal
environments vegetated by benthic algae as seagrass from Rrs(DOS). These misclassifications
were caused not only by the overestimation of Rrs(DOS) but also by the narrow dynamic
range seen in the blue band, which limits the ability to resolve targets with small spectral
differences, such as the shallow edges of the seagrass meadows and green intertidal
environments. The ELH method better replicated the true spectral shape of sea surface Rrs,
preserving the larger dynamic range in all bands, but especially in the blue band, which
improved the resolution of some boundaries between the deeper seagrass meadows and
bare sand that were spectrally indistinguishable in the DOS image.

A few estimates of the seagrass area for these sites are available for comparison. In
September 2006, airborne hyperspectral imagery was collected at Saint Joseph Bay, from
which seagrass was estimated to cover 18.3 km2 [23]. The flight lines did not cover the
northernmost section of the bay, which may account for the slightly lower estimate. A
30-year analysis of seagrass populations in Saint Joseph Bay between 1990 and 2021 using
Landsat 5 through 8 imagery returned areal estimates varying from 17.5 to 27 km2, with
no discernable temporal trend [5], placing our 2010 estimate at the higher end of seagrass
coverage estimates. Variations in the total seagrass coverage in Saint Joseph Bay have been
linked to hurricanes, which can cause short-term (6-month) declines in seagrass [5].

Importantly, our DCNN analysis of this multispectral imagery generated a classifica-
tion map of Saint Joseph Bay that was nearly identical to that achieved with hyperspectral
imagery collected over the same site in 2006 [23] that included an intertidal class dominated
by filamentous red algae. However, Hill et al. (2014) also demonstrated how the delineation
of the seagrass habitat deteriorated when the spatial resolution was coarsened beyond
10 m. Thus, the ability to generate similar classification results with multispectral and
hyperspectral sensors suggests that the greatest need in categorical classification coastal
remote sensing may be spatial rather than spectral resolution.

Seagrass Density Quantification

Although the ELH imagery produced seagrass densities that were comparable to in
situ observations, direct comparisons to the latter present challenges due to the small-scale
spatial heterogeneity found in seagrass meadows. This heterogeneity results in larger
variances in shoot counts measured by small quadrats (e.g., 0.04 m2) within a 20 m radius
than in corresponding satellite pixels at the same locations. At our sites, in situ seagrass
densities exhibited high variability on small scales, ranging from sparse to dense within a
few meters. This variability is reflected in the large range of LAI observed in the in situ
datasets. In contrast, the coarser spatial resolution of the WorldView-2 sensor (4 to 9 m2)
resulted in lower variability in retrieved LAI due to the integration of the bottom reflectance
signal over the larger footprint of each pixel. Despite the limitations in assessing match-ups
between remotely sensed and in situ seagrass densities, LAI(ELH) in Saint Joseph Bay and
Saint George Sound from pixels within our in situ station locations did show similarity to
the mean densities measured in situ. At Keaton Beach, the mean LAI(ELH) from our station
locations was double the mean from the collocated in situ observations. However, high
seagrass densities were prevalent in the in situ counts conducted at Keaton Beach, as seen in
the presented box plots, which show a skew toward higher LAI, with several high-density
quadrats more than 5 m2 leaf m−2 ground. LAI(ELH) retrievals at Keaton Beach did resolve
lower densities closer to the coastline, which is seen when considering the whole Keaton
Beach image, which had a mean of 3.38 m2 leaf m−2 ground.

At all sites, the imagery effectively captured density variations across the underwater
landscape, which can provide crucial insights into the spatial ecology of seagrass meadows.
The ability to differentiate between sparse and dense seagrass can be critical in the man-
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agement of seagrass resources, as sparse areas are more susceptible to disturbances, and
therefore, the retrieval of density from satellites provides a tool to aid in the early detection
of changes.

The underestimation of LAI(DOS) was caused by the residual reflectance in band MS3
(green) remaining after calibration/atmospheric correction. The strong correlation between
LAI(DOS) and LAI(ELH) provides a mechanism for correcting LAI(DOS) to values equivalent
to those retrieved from an image with accurate atmospheric correction (i.e., ELH). Both the
comprehensive regression encompassing all datasets and the individual regressions for
each dataset yielded high accuracy in correcting LAI(DOS). This study therefore indicates
that there exists a model to correct the underestimation of LAI(DOS) that is stable across
a 2-year gap and 220 km of the Gulf of Mexico coastline, which supports a considerable
range of water column optical properties.

LAI(DOS) was also underestimated in a study utilizing Landsat 5 images of Saint
Joseph Bay [5]. The offset in that case was a simple upward correction of LAI(DOS) of 0.98,
indicating that while the underestimation of LAI from incomplete atmospheric correction
is prevalent, the LAI correction may be sensor-specific.

WorldView-2 was tasked to collect the images used in this study, but an archive of
images extending back to 2010 is available over other coastal areas with seagrass. Although
it appears that the use of published radiometric calibration values and DOS atmospheric
correction are sufficient for the reliable classification of areal distribution, the retrieval
of biogeochemically relevant products such as LAI and, therefore, AGCseagras) may be
underestimated without in situ measurements to apply accurate calibration/atmospheric
correction. Ultimately, the robustness of this correction needs to be further studied if it
is to be a pathway for processing the WorldView-2 archive for density and Blue Carbon
estimates. Further studies of LAI retrieved from WorldView-2 using available atmospheric
correction methods will be needed to determine whether underestimation is consistent
across geographical regions and sensors.

5. Conclusions

WorldView-2 provides sufficient spectral resolution to separate spectral characteristics
of seagrass from the surrounding benthic targets in optically complex waters. Accuracy
in atmospheric correction was found to be less important than precision in enabling the
identification of seagrass. Therefore, images could be classified routinely even if atmo-
spheric contaminants remain in the data. Incomplete atmospheric correction appears to be
universal in the blue and green regions of the spectrum and not just in WorldView-2 images;
therefore, we expect that without accounting for this omission, the seagrass density will be
consistently underestimated from coastal imagery. As coincident in situ Rrs measurements
are not available with most image collections, the development and testing of an empirical
correction to LAI is a critical step for carbon retrieval from WorldView-2 and other sensors.

WorldView-2 and other high-spatial-resolution satellites provide the ability to retrieve
the absolute density on a per-pixel basis, as opposed to classifying polygons using rela-
tively broad categories of percent cover. The benefit of retrieving LAI lies in the strong
correlation between the density and above-ground seagrass carbon, which in turn can be
used to estimate below-ground carbon. The percent seagrass cover is a commonly retrieved
attribute that can be estimated via manual delineation of aerial imagery or through sea
surface reflectance, but unlike LAI, it is not strongly predictive of biomass [19]. For this
reason, we suggest that finding an appropriate correction for LAI when residual brightness
remains in the spectra after atmospheric correction or finding a way to improve our atmo-
spheric correction is critical in moving our estimates forward for the seagrass contribution
to Blue Carbon.
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