59,119 research outputs found

    Method for Detecting Anomalous States of a Control Object in Information Systems Based on the Analysis of Temporal Data and Knowledge

    Get PDF
    The problem of finding the anomalous states of the control object in the management information system under conditions of uncertainty caused by the incompleteness of knowledge about this object is considered. The method of classifying the current state of the control object in real time, allowing to identify the current anomalous state. The method uses temporal data and knowledge. Data is represented by sequences of events with timestamps. Knowledge is represented as weighted temporal rules and constraints. The method includes the following key phases: the formation of sequences of logical facts; selection of temporal rules and constraints; classification based on a comparison of rules and constraints. Logical facts are represented as predicates on event attributes and reflect the state of the control object. Logical rules define valid sequences of logical facts. Performing a classification by successive comparisons of constraints and weights of the rules makes it possible to more effectively identify the anomalous state since the comparison of the constraints reduces the subset of facts comparing to the current state. The method creates conditions for improving management efficiency in the context of incomplete information on the state of a complex object by using logical inference in knowledge bases for anomalous states of such control objects

    DeepSignals: Predicting Intent of Drivers Through Visual Signals

    Full text link
    Detecting the intention of drivers is an essential task in self-driving, necessary to anticipate sudden events like lane changes and stops. Turn signals and emergency flashers communicate such intentions, providing seconds of potentially critical reaction time. In this paper, we propose to detect these signals in video sequences by using a deep neural network that reasons about both spatial and temporal information. Our experiments on more than a million frames show high per-frame accuracy in very challenging scenarios.Comment: To be presented at the IEEE International Conference on Robotics and Automation (ICRA), 201

    Locally embedded presages of global network bursts

    Full text link
    Spontaneous, synchronous bursting of neural population is a widely observed phenomenon in nervous networks, which is considered important for functions and dysfunctions of the brain. However, how the global synchrony across a large number of neurons emerges from an initially non-bursting network state is not fully understood. In this study, we develop a new state-space reconstruction method combined with high-resolution recordings of cultured neurons. This method extracts deterministic signatures of upcoming global bursts in "local" dynamics of individual neurons during non-bursting periods. We find that local information within a single-cell time series can compare with or even outperform the global mean field activity for predicting future global bursts. Moreover, the inter-cell variability in the burst predictability is found to reflect the network structure realized in the non-bursting periods. These findings demonstrate the deterministic mechanisms underlying the locally concentrated early-warnings of the global state transition in self-organized networks

    Differential Recurrent Neural Networks for Action Recognition

    Full text link
    The long short-term memory (LSTM) neural network is capable of processing complex sequential information since it utilizes special gating schemes for learning representations from long input sequences. It has the potential to model any sequential time-series data, where the current hidden state has to be considered in the context of the past hidden states. This property makes LSTM an ideal choice to learn the complex dynamics of various actions. Unfortunately, the conventional LSTMs do not consider the impact of spatio-temporal dynamics corresponding to the given salient motion patterns, when they gate the information that ought to be memorized through time. To address this problem, we propose a differential gating scheme for the LSTM neural network, which emphasizes on the change in information gain caused by the salient motions between the successive frames. This change in information gain is quantified by Derivative of States (DoS), and thus the proposed LSTM model is termed as differential Recurrent Neural Network (dRNN). We demonstrate the effectiveness of the proposed model by automatically recognizing actions from the real-world 2D and 3D human action datasets. Our study is one of the first works towards demonstrating the potential of learning complex time-series representations via high-order derivatives of states

    Content-based Video Retrieval by Integrating Spatio-Temporal and Stochastic Recognition of Events

    Get PDF
    As amounts of publicly available video data grow the need to query this data efficiently becomes significant. Consequently content-based retrieval of video data turns out to be a challenging and important problem. We address the specific aspect of inferring semantics automatically from raw video data. In particular, we introduce a new video data model that supports the integrated use of two different approaches for mapping low-level features to high-level concepts. Firstly, the model is extended with a rule-based approach that supports spatio-temporal formalization of high-level concepts, and then with a stochastic approach. Furthermore, results on real tennis video data are presented, demonstrating the validity of both approaches, as well us advantages of their integrated us
    • …
    corecore