research

Locally embedded presages of global network bursts

Abstract

Spontaneous, synchronous bursting of neural population is a widely observed phenomenon in nervous networks, which is considered important for functions and dysfunctions of the brain. However, how the global synchrony across a large number of neurons emerges from an initially non-bursting network state is not fully understood. In this study, we develop a new state-space reconstruction method combined with high-resolution recordings of cultured neurons. This method extracts deterministic signatures of upcoming global bursts in "local" dynamics of individual neurons during non-bursting periods. We find that local information within a single-cell time series can compare with or even outperform the global mean field activity for predicting future global bursts. Moreover, the inter-cell variability in the burst predictability is found to reflect the network structure realized in the non-bursting periods. These findings demonstrate the deterministic mechanisms underlying the locally concentrated early-warnings of the global state transition in self-organized networks

    Similar works

    Full text

    thumbnail-image

    Available Versions