11,397 research outputs found

    Detecting overlapping coding sequences in virus genomes

    Get PDF
    BACKGROUND: Detecting new coding sequences (CDSs) in viral genomes can be difficult for several reasons. The typically compact genomes often contain a number of overlapping coding and non-coding functional elements, which can result in unusual patterns of codon usage; conservation between related sequences can be difficult to interpret – especially within overlapping genes; and viruses often employ non-canonical translational mechanisms – e.g. frameshifting, stop codon read-through, leaky-scanning and internal ribosome entry sites – which can conceal potentially coding open reading frames (ORFs). RESULTS: In a previous paper we introduced a new statistic – MLOGD (Maximum Likelihood Overlapping Gene Detector) – for detecting and analysing overlapping CDSs. Here we present (a) an improved MLOGD statistic, (b) a greatly extended suite of software using MLOGD, (c) a database of results for 640 virus sequence alignments, and (d) a web-interface to the software and database. Tests show that, from an alignment with just 20 mutations, MLOGD can discriminate non-overlapping CDSs from non-coding ORFs with a typical accuracy of up to 98%, and can detect CDSs overlapping known CDSs with a typical accuracy of 90%. In addition, the software produces a variety of statistics and graphics, useful for analysing an input multiple sequence alignment. CONCLUSION: MLOGD is an easy-to-use tool for virus genome annotation, detecting new CDSs – in particular overlapping or short CDSs – and for analysing overlapping CDSs following frameshift sites. The software, web-server, database and supplementary material are available at

    Is There a Twelfth Protein-Coding Gene in the Genome of Influenza A? A Selection-Based Approach to the Detection of Overlapping Genes in Closely Related Sequences

    Get PDF
    Protein-coding genes often contain long overlapping open-reading frames (ORFs), which may or may not be functional. Current methods that utilize the signature of purifying selection to detect functional overlapping genes are limited to the analysis of sequences from divergent species, thus rendering them inapplicable to genes found only in closely related sequences. Here, we present a method for the detection of selection signatures on overlapping reading frames by using closely related sequences, and apply the method to several known overlapping genes, and to an overlapping ORF on the negative strand of segment 8 of influenza A virus (NEG8), for which the suggestion has been made that it is functional. We find no evidence that NEG8 is under selection, suggesting that the intact reading frame might be non-functional, although we cannot fully exclude the possibility that the method is not sensitive enough to detect the signature of selection acting on this gene. We present the limitations of the method using known overlapping genes and suggest several approaches to improve it in future studies. Finally, we examine alternative explanations for the sequence conservation of NEG8 in the absence of selection. We show that overlap type and genomic context affect the conservation of intact overlapping ORFs and should therefore be considered in any attempt of estimating the signature of selection in overlapping gene

    Turnip mosaic potyvirus probably first spread to Eurasian brassica crops from wild orchids about 1000 years ago

    Get PDF
    Turnip mosaic potyvirus (TuMV) is probably the most widespread and damaging virus that infects cultivated brassicas worldwide. Previous work has indicated that the virus originated in western Eurasia, with all of its closest relatives being viruses of monocotyledonous plants. Here we report that we have identified a sister lineage of TuMV-like potyviruses (TuMV-OM) from European orchids. The isolates of TuMV-OM form a monophyletic sister lineage to the brassica-infecting TuMVs (TuMV-BIs), and are nested within a clade of monocotyledon-infecting viruses. Extensive host-range tests showed that all of the TuMV-OMs are biologically similar to, but distinct from, TuMV-BIs and do not readily infect brassicas. We conclude that it is more likely that TuMV evolved from a TuMV-OM-like ancestor than the reverse. We did Bayesian coalescent analyses using a combination of novel and published sequence data from four TuMV genes [helper component-proteinase protein (HC-Pro), protein 3(P3), nuclear inclusion b protein (NIb), and coat protein (CP)]. Three genes (HC-Pro, P3, and NIb), but not the CP gene, gave results indicating that the TuMV-BI viruses diverged from TuMV-OMs around 1000 years ago. Only 150 years later, the four lineages of the present global population of TuMV-BIs diverged from one another. These dates are congruent with historical records of the spread of agriculture in Western Europe. From about 1200 years ago, there was a warming of the climate, and agriculture and the human population of the region greatly increased. Farming replaced woodlands, fostering viruses and aphid vectors that could invade the crops, which included several brassica cultivars and weeds. Later, starting 500 years ago, inter-continental maritime trade probably spread the TuMV-BIs to the remainder of the world

    Bioinformatics tools for analysing viral genomic data

    Get PDF
    The field of viral genomics and bioinformatics is experiencing a strong resurgence due to high-throughput sequencing (HTS) technology, which enables the rapid and cost-effective sequencing and subsequent assembly of large numbers of viral genomes. In addition, the unprecedented power of HTS technologies has enabled the analysis of intra-host viral diversity and quasispecies dynamics in relation to important biological questions on viral transmission, vaccine resistance and host jumping. HTS also enables the rapid identification of both known and potentially new viruses from field and clinical samples, thus adding new tools to the fields of viral discovery and metagenomics. Bioinformatics has been central to the rise of HTS applications because new algorithms and software tools are continually needed to process and analyse the large, complex datasets generated in this rapidly evolving area. In this paper, the authors give a brief overview of the main bioinformatics tools available for viral genomic research, with a particular emphasis on HTS technologies and their main applications. They summarise the major steps in various HTS analyses, starting with quality control of raw reads and encompassing activities ranging from consensus and de novo genome assembly to variant calling and metagenomics, as well as RNA sequencing

    Computational methods for inferring location and genealogy of overlapping genes in virus genomes: approaches and applications

    Get PDF
    Viruses may evolve to increase the amount of encoded genetic information by means of overlapping genes, which utilize several reading frames. Such overlapping genes may be especially impactful for genomes of small size, often serving a source of novel accessory proteins, some of which play a crucial role in viral pathogenicity or in promoting the systemic spread of virus. Diverse genome-based metrics were proposed to facilitate recognition of overlapping genes that otherwise may be overlooked during genome annotation. They can detect the atypical codon bias associated with the overlap (e.g. a statistically significant reduction in variability at synonymous sites) or other sequence-composition features peculiar to overlapping genes. In this review, I compare nine computational methods, discuss their strengths and limitations, and survey how they were applied to detect candidate overlapping genes in the genome of SARS-CoV-2, the etiological agent of COVID-19 pandemic

    Overlapping genes and the proteins they encode differ significantly in their sequence composition from non-overlapping genes.

    Get PDF
    Overlapping genes represent a fascinating evolutionary puzzle, since they encode two functionally unrelated proteins from the same DNA sequence. They originate by a mechanism of overprinting, in which point mutations in an existing frame allow the expression (the "birth") of a completely new protein from a second frame. In viruses, in which overlapping genes are abundant, these new proteins often play a critical role in infection, yet they are frequently overlooked during genome annotation. This results in erroneous interpretation of mutational studies and in a significant waste of resources. Therefore, overlapping genes need to be correctly detected, especially since they are now thought to be abundant also in eukaryotes. Developing better detection methods and conducting systematic evolutionary studies require a large, reliable benchmark dataset of known cases. We thus assembled a high-quality dataset of 80 viral overlapping genes whose expression is experimentally proven. Many of them were not present in databases. We found that overall, overlapping genes differ significantly from non-overlapping genes in their nucleotide and amino acid composition. In particular, the proteins they encode are enriched in high-degeneracy amino acids and depleted in low-degeneracy ones, which may alleviate the evolutionary constraints acting on overlapping genes. Principal component analysis revealed that the vast majority of overlapping genes follow a similar composition bias, despite their heterogeneity in length and function. Six proven mammalian overlapping genes also followed this bias. We propose that this apparently near-universal composition bias may either favour the birth of overlapping genes, or/and result from selection pressure acting on them

    Candidates in Astroviruses, Seadornaviruses, Cytorhabdoviruses and Coronaviruses for +1 frame overlapping genes accessed by leaky scanning

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Overlapping genes are common in RNA viruses where they serve as a mechanism to optimize the coding potential of compact genomes. However, annotation of overlapping genes can be difficult using conventional gene-finding software. Recently we have been using a number of complementary approaches to systematically identify previously undetected overlapping genes in RNA virus genomes. In this article we gather together a number of promising candidate new overlapping genes that may be of interest to the community.</p> <p>Results</p> <p>Overlapping gene predictions are presented for the astroviruses, seadornaviruses, cytorhabdoviruses and coronaviruses (families <it>Astroviridae</it>, <it>Reoviridae</it>, <it>Rhabdoviridae </it>and <it>Coronaviridae</it>, respectively).</p

    Rapid Sequence Identification of Potential Pathogens Using Techniques from Sparse Linear Algebra

    Full text link
    The decreasing costs and increasing speed and accuracy of DNA sample collection, preparation, and sequencing has rapidly produced an enormous volume of genetic data. However, fast and accurate analysis of the samples remains a bottleneck. Here we present D4^{4}RAGenS, a genetic sequence identification algorithm that exhibits the Big Data handling and computational power of the Dynamic Distributed Dimensional Data Model (D4M). The method leverages linear algebra and statistical properties to increase computational performance while retaining accuracy by subsampling the data. Two run modes, Fast and Wise, yield speed and precision tradeoffs, with applications in biodefense and medical diagnostics. The D4^{4}RAGenS analysis algorithm is tested over several datasets, including three utilized for the Defense Threat Reduction Agency (DTRA) metagenomic algorithm contest

    Evidence for a novel coding sequence overlapping the 5'-terminal ~90 codons of the Gill-associated and Yellow head okavirus envelope glycoprotein gene

    Get PDF
    The genus Okavirus (order Nidovirales) includes a number of viruses that infect crustaceans, causing major losses in the shrimp industry. These viruses have a linear positive-sense ssRNA genome of ~26-27 kb, encoding a large replicase polyprotein that is expressed from the genomic RNA, and several additional proteins that are expressed from a nested set of 3'-coterminal subgenomic RNAs. In this brief report, we describe the bioinformatic discovery of a new, apparently coding, ORF that overlaps the 5' end of the envelope glycoprotein encoding sequence, ORF3, in the +2 reading frame. The new ORF has a strong coding signature and, in fact, is more conserved at the amino acid level than the overlapping region of ORF3. We propose that translation of the new ORF initiates at a conserved AUG codon separated by just 2 nt from the ORF3 AUG initiation codon, resulting in a novel 86 amino acid protein
    • …
    corecore