1,222 research outputs found

    Directed Hamiltonicity and Out-Branchings via Generalized Laplacians

    Get PDF
    We are motivated by a tantalizing open question in exact algorithms: can we detect whether an nn-vertex directed graph GG has a Hamiltonian cycle in time significantly less than 2n2^n? We present new randomized algorithms that improve upon several previous works: 1. We show that for any constant 0<λ<10<\lambda<1 and prime pp we can count the Hamiltonian cycles modulo p⌊(1−λ)n3p⌋p^{\lfloor (1-\lambda)\frac{n}{3p}\rfloor} in expected time less than cnc^n for a constant c<2c<2 that depends only on pp and λ\lambda. Such an algorithm was previously known only for the case of counting modulo two [Bj\"orklund and Husfeldt, FOCS 2013]. 2. We show that we can detect a Hamiltonian cycle in O∗(3n−α(G))O^*(3^{n-\alpha(G)}) time and polynomial space, where α(G)\alpha(G) is the size of the maximum independent set in GG. In particular, this yields an O∗(3n/2)O^*(3^{n/2}) time algorithm for bipartite directed graphs, which is faster than the exponential-space algorithm in [Cygan et al., STOC 2013]. Our algorithms are based on the algebraic combinatorics of "incidence assignments" that we can capture through evaluation of determinants of Laplacian-like matrices, inspired by the Matrix--Tree Theorem for directed graphs. In addition to the novel algorithms for directed Hamiltonicity, we use the Matrix--Tree Theorem to derive simple algebraic algorithms for detecting out-branchings. Specifically, we give an O∗(2k)O^*(2^k)-time randomized algorithm for detecting out-branchings with at least kk internal vertices, improving upon the algorithms of [Zehavi, ESA 2015] and [Bj\"orklund et al., ICALP 2015]. We also present an algebraic algorithm for the directed kk-Leaf problem, based on a non-standard monomial detection problem

    Determinant Sums for Undirected Hamiltonicity

    Full text link
    We present a Monte Carlo algorithm for Hamiltonicity detection in an nn-vertex undirected graph running in O∗(1.657n)O^*(1.657^{n}) time. To the best of our knowledge, this is the first superpolynomial improvement on the worst case runtime for the problem since the O∗(2n)O^*(2^n) bound established for TSP almost fifty years ago (Bellman 1962, Held and Karp 1962). It answers in part the first open problem in Woeginger's 2003 survey on exact algorithms for NP-hard problems. For bipartite graphs, we improve the bound to O∗(1.414n)O^*(1.414^{n}) time. Both the bipartite and the general algorithm can be implemented to use space polynomial in nn. We combine several recently resurrected ideas to get the results. Our main technical contribution is a new reduction inspired by the algebraic sieving method for kk-Path (Koutis ICALP 2008, Williams IPL 2009). We introduce the Labeled Cycle Cover Sum in which we are set to count weighted arc labeled cycle covers over a finite field of characteristic two. We reduce Hamiltonicity to Labeled Cycle Cover Sum and apply the determinant summation technique for Exact Set Covers (Bj\"orklund STACS 2010) to evaluate it.Comment: To appear at IEEE FOCS 201

    Absolutely Koszul algebras and the Backelin-Roos property

    Full text link
    We study absolutely Koszul algebras, Koszul algebras with the Backelin-Roos property and their behavior under standard algebraic operations. In particular, we identify some Veronese subrings of polynomial rings that have the Backelin-Roos property and conjecture that the list is indeed complete. Among other things, we prove that every universally Koszul ring defined by monomials has the Backelin-Roos property
    • …
    corecore