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Abstract
We are motivated by a tantalizing open question in exact algorithms: can we detect whether an
n-vertex directed graph G has a Hamiltonian cycle in time significantly less than 2n?
We present new randomized algorithms that improve upon several previous works:
1. We show that for any constant 0 < λ < 1 and prime p we can count the Hamiltonian cycles

modulo pb(1−λ) n3p c in expected time less than cn for a constant c < 2 that depends only on
p and λ. Such an algorithm was previously known only for the case of counting modulo
two [Björklund and Husfeldt, FOCS 2013].

2. We show that we can detect a Hamiltonian cycle in O∗(3n−α(G)) time and polynomial
space, where α(G) is the size of the maximum independent set in G. In particular, this
yields an O∗(3n/2) time algorithm for bipartite directed graphs, which is faster than the
exponential-space algorithm in [Cygan et al., STOC 2013].

Our algorithms are based on the algebraic combinatorics of “incidence assignments” that we
can capture through evaluation of determinants of Laplacian-like matrices, inspired by the
Matrix–Tree Theorem for directed graphs. In addition to the novel algorithms for directed
Hamiltonicity, we use the Matrix–Tree Theorem to derive simple algebraic algorithms for de-
tecting out-branchings. Specifically, we give an O∗(2k)-time randomized algorithm for detect-
ing out-branchings with at least k internal vertices, improving upon the algorithms of [Zehavi,
ESA 2015] and [Björklund et al., ICALP 2015]. We also present an algebraic algorithm for the
directed k-Leaf problem, based on a non-standard monomial detection problem.
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1 Introduction

The Hamiltonian cycle problem has played a prominent role in development of techniques
for the design of exact algorithms for hard problems. The early O∗(2n) algorithms based on
dynamic programming and inclusion-exclusion [1, 20, 19], remained un-challenged for several
decades. In 2010, Björklund [3], gave a randomized algorithm running in O(1.657n) time for
the case of undirected graphs. The algorithm taps into the power of algebraic combinatorics,
and in particular determinants that enumerate cycle covers.

Despite this progress in the undirected Hamiltonian cycle problem, a substantial improve-
ment in the more general directed version of the problem remains an open problem and a
key challenge in the area of exact algorithms. The currently best known general algorithm
runs in O∗(2n−Θ(

√
n/ logn)) time [4], and there are no known connections with the theory of

SETH-hardness [18] that would – at least partly – dash the hope for a faster algorithm.
A number of recent works have attempted to crack directed Hamiltonicity, revealing that

the problem is indeed easier in certain restricted settings. Cygan and Pilipczuk [13] showed
that the problem admits an O∗(2(1−εd)n) time algorithm for graphs with average degree
bounded by d, where εd is a constant with a doubly exponential dependence on d. Cygan
et al. [12] showed that the problem admits an O∗(1.888n) time randomized algorithm for
bipartite graphs and that the parity of directed Hamiltonian cycles can also be computed
within the same time bound. Björklund and Husfeldt [6] showed that the parity of Hamiltonian
cycles can be computed in O∗(1.619n) randomized time in general directed graphs. Finally,
Björklund et al. [5] showed that the problem can be solved in O∗((2−Θ(1))n) time when the
graph contains less than 1.038n Hamiltonian cycles, via a reduction to the parity problem.
In this paper we improve or generalize all of these works.

Our results. As one would expect, all recent “below-2n” algorithm designs for the Hamilton-
icity problem rely on algebraic combinatorics and involve formulas that enumerate Hamilto-
nian cycles. But somewhat surprisingly, none of these approaches employs the directed
version of the Matrix–Tree Theorem (see e.g. Gessel and Stanley [17, §11]), one of the most
striking and beautiful results in algebraic graph theory. The theorem enables the enumeration
of spanning out-branchings, that is, rooted spanning trees with all arcs oriented away from
the root, via a determinant polynomial. Our results in this paper derive from a detailed
combinatorial understanding and generalization of this classical setup.

The combinatorial protagonist of this paper is the following notion that enables a “two-way”
possibility to view each arc in a directed graph:

I Definition 1 (Incidence assignment). Let G be a directed graph with vertex set V and arc
set E. For a subset W ⊆ V we say that a mapping µ : W → E is an incidence assignment if
for all u ∈W it holds that µ(u) is incident with u.

In particular, looking at a single arc uv ∈ E, an incidence assignment µ can assign uv in
two1 possible ways: as an out-arc µ(u) = uv at u, or as an in-arc µ(v) = uv at v.

From an enumeration perspective the serendipity of this “two-way” possibility to assign
an arc becomes apparent when one considers how an incidence assignment µ can realize a

1 Strictly speaking we are here assuming that both u ∈ W and v ∈ W . To break symmetry in our
applications we do allow also situations where uv has only one possible assignment due to either u /∈ W
or v /∈ W .
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directed cycle in its image µ(W ). Indeed, let

u1u2, u2u3, . . . , u`−1u`, u`u1 ∈ E

be the arcs of a directed cycle C of length ` ≥ 2 in G with V (C) ⊆W . It is immediate that
there are now exactly two2 ways to realize C in the image µ(W ). Namely, we can realize C
either (i) using only in-arcs with

µ(u1) = u`u1, µ(u2) = u1u2, µ(u3) = u2u3, . . . , µ(u`) = u`−1u` , (1)

or (ii) using only out-arcs with

µ(u1) = u1u2, µ(u2) = u2u3, µ(u3) = u3u4, . . . , µ(u`) = u`u1 . (2)

Incidence assignments thus enable two distinct ways to realize a directed cycle. Furthermore,
it is possible to switch between (1) and (2) so that only the images of u1, u2, . . . , u` under
µ are affected. The algebraization of this combinatorial observation is at the heart of the
directed Matrix–Tree Theorem (which we will review for convenience of exposition in Sect. 2)
and all of our results in this paper.

Our warmup result involves a generalization of the directed Hamiltonian path problem,
namely the k-Internal Out-Branching problem, where the goal is to detect whether a given
directed graph contains a spanning out-branching that has at least k internal vertices. This is
a well-studied problem on its own, with several successive improvements the latest of which is
an O∗(3.617k) algorithm by Zehavi [24] and an O∗(3.455k) algorithm by Björklund et al. [9]
for the undirected version of the problem.

Using a combination of the directed Matrix–Tree Theorem and a monomial-sieving idea
due to Floderus et al. [15], in Sect. 3 we show the following:

I Theorem 2 (Detecting a k-Internal Out-Branching). There exists a randomized algorithm
that solves the k-internal out-branching problem in time O∗(2k) and with negligible probability
of reporting a false negative.

In the full version of the paper [10] we give a further application for the k-Leaf problem, that
is, detecting a spanning out-branching with at least k leaves. We note that Gabizon et al. [16]
have recently given another application of the directed Matrix–Tree Theorem for the problem
of detecting out-branchings of bounded degree.

Proceeding to our two main results, in Sect. 4 we observe that the directed Matrix–Tree
Theorem leads to a formula for computing the number of Hamiltonian paths in arbitrary
characteristic by using a standard inclusion–exclusion approach, which leads to a formula
that involves the summation of 2n determinants. To obtain a below-2n design, we present a
way to randomize the underlying Laplacian matrix so that the number of Hamiltonian paths
does not change but in expectation most of the summands vanish modulo a prime power.
Furthermore, to efficiently list the non-vanishing terms, we use a variation of an algorithm of
Björklund et al. [8] that was used for a related problem, computing the permanent modulo a
prime power. This leads to our first main result:

I Theorem 3 (Counting directed Hamiltonian cycles modulo a prime power). For all 0 < λ < 1
there exists a randomized algorithm that, given an n-vertex directed graph and a prime p
as input, counts the number of Hamiltonian cycles modulo pb(1−λ)n/(3p)c in expected time
O∗
(
2n(1−λ2/(19p log2 p))

)
. The algorithm uses exponential space.

2 Again strictly speaking it will be serendipitous to break symmetry so that certain cycles will have only
one realization instead of two.
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A corollary of Theorem 3 is that if G has at most dn Hamiltonian cycles, we can detect
one in time O(cnd ), where d is any fixed constant and cd < 2 is a constant that only depends
on d. As a further corollary we obtain a randomized algorithm for counting Hamiltonian
cycles in graphs of bounded average (out-)degree d in O(2(1−εd)n) time. The constant εd has
a polynomial dependency in d. Previous algorithms had a constant εd with an exponential
dependency on d [7, 13]. (The proofs of these results are relegated to the full version of the
paper [10].)

Returning to undirected Hamiltonicity, a key to the algorithm in [3] was the observation
that determinants enumerate all non-trivial cycle covers an even number of times. This is
due to the fact that each undirected cycle can be traversed in both directions. By picking a
special vertex, one can break symmetry and force this to happen only for non-Hamiltonian
cycle covers, so that the corresponding monomials cancel in characteristic 2. In Sect. 5 we
present a “quasi-Laplacian” matrix whose determinant enables a similar approach for the
directed case via algebraic combinatorics of incidence assignments, and furthermore enables
one to accommodate a speedup assuming the existence of a good-sized independent set. We
specifically prove the following as our second main result:

I Theorem 4 (Detecting a directed Hamiltonian cycle). There exists a randomized algorithm
that solves the directed Hamiltonian cycle problem on a given directed graph G with a maximum
independent set of size α(G), in O∗(3n(G)−α(G)) time, polynomial space and with negligible
probability of reporting a false negative.

Theorem 4 improves and generalizes the exponential-space algorithm of Cygan et al. [12].

Terminology and conventions. All graphs in this paper are directed and without loops
and parallel arcs unless indicated otherwise. For an arc e starting from vertex u and ending
at vertex v we say that u is the tail of e and v is the head of e. The vertices u and v are
the ends of e. A directed graph is connected if the undirected graph obtained by removing
orientation from the arcs is connected. A subgraph of a graph is spanning if the subgraph
has the same set of vertices as the graph. A connected directed graph is an out-branching if
every vertex has in-degree 1 except for the root vertex that has in-degree 0. We say that a
vertex is internal to an out-branching if it has out-degree at least 1; otherwise the vertex is a
leaf of the out-branching. The (directed) Hamiltonian cycle problem asks, given a directed
graph G as input, whether G has a spanning directed cycle as a subgraph. The notation
O∗( ) suppresses a multiplicative factor polynomial in the input size. We say that an event
parameterized by n has negligible probability if the probability of the event tends to zero as
n grows without bound.

2 The symbolic Laplacian of a directed graph

This section develops the relevant preliminaries on directed graph Laplacians.

Permutations and the determinant. A bijection σ : U → U of a finite set U is called a
permutation of U . A permutation σ moves an element u ∈ U if σ(u) 6= u; otherwise σ fixes u.
The identity permutation fixes every element of U . A permutation σ of U is a cycle of length
k ≥ 2 if there exist distinct u1, u2, . . . , uk ∈ U with σ(u1) = u2, σ(u2) = u3 , . . . , σ(uk−1) =
uk, σ(uk) = u1 and σ fixes all other elements of U . Two cycles are disjoint if every point
moved by one is fixed by the other. The set of all permutations of U forms the symmetric
group Sym(U) with the composition of mappings as the product operation of the group.
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Every nonidentity permutation factors into a unique product of pairwise disjoint cycles.
The sign of a permutation σ that factors into c disjoint cycles of lengths k1, k2, . . . , kc is
sgn(σ) = (−1)

∑c

j=1
(kj−1). The sign of the identity permutation is 1.

The determinant of a square matrix A with rows and columns indexed by U is the
multivariate polynomial

detA =
∑

σ∈Sym(U)

sgn(σ)
∏
u∈U

au,σ(u) .

The punctured Laplacian determinant via incidence assignments. Let G be a directed
graph with n vertices. Associate with each arc uv ∈ E = E(G) an indeterminate xuv. The
symbolic Laplacian L = L(G) of G is the n× n matrix with rows and columns indexed by
the vertices u, v ∈ V = V (G) and the (u, v)-entry defined3 by

`uv =


∑
w∈V :wu∈E xwu if u = v;

−xuv if uv ∈ E;
0 if u 6= v and uv /∈ E.

(3)

Observe that for each v ∈ V we have that column v of L sums to zero because the diagonal
entries cancel the negative off-diagonal entries. Furthermore, for each u ∈ V we have that
the monomials on row u of L correspond to the arcs incident to u. Indeed, each monomial
at the diagonal corresponds to an in-arc to u, and each monomial at an off-diagonal entry
corresponds to an out-arc from u. Thus, selecting one monomial from each row corresponds
to selecting an incidence assignment.

To break symmetry, select an r ∈ V . The symbolic Laplacian of G punctured at r
is obtained from L by deleting both row r and column r. We write Lr = Lr(G) for the
symbolic Laplacian of G punctured at r. Let us write Br = Br(G) for the set of all spanning
out-branchings of G with root r ∈ V . The following theorem is well-known (see e.g. Gessel
and Stanley [17, §11]) and is presented here for purposes of displaying a proof that presents
the cancellation argument using incidence assignments.

I Theorem 5 (Directed Matrix–Tree Theorem). detLr =
∑
H∈Br

∏
uv∈E(H) xuv.

Proof. Let us abbreviate Vr = V (G) \ {r} and study the determinant

detLr =
∑

σ∈Sym(Vr)

sgn(σ)
∏
u∈Vr

`u,σ(u) . (4)

In particular, let us fix an arbitrary permutation σ ∈ Sym(Vr) and study the monomials of
the polynomial

∏
u∈Vr `u,σ(u) with the assumption that this polynomial is nonzero. From

(3) it is immediate for each u ∈ Vr that `u,σ(u) expands either (i) to the diagonal sum∑
w∈V :wu∈E xwu, which happens precisely when σ fixes u with σ(u) = u, or (ii) to the

off-diagonal −xuv, which happens precisely when σ moves u with σ(u) = v.
Let us write M(σ) for the set of all incidence assignments µ : Vr → E with the properties

that (i) each u ∈ Vr fixed by σ is assigned to an in-arc µ(u) = wu ∈ E for some w ∈ V , and
(ii) each u ∈ Vr moved by σ is assigned to the unique out-arc µ(u) = uv ∈ E with σ(u) = v.

3 Recall that we assume that G is loopless so the entries with u = v are well-defined.
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Let us write f = f(σ) for the number of elements in Vr fixed by σ. It is immediate by (i)
and (ii) that we have∏

u∈Vr

`u,σ(u) =
∑

µ∈M(σ)

(−1)n−1−f(σ)
∏
u∈Vr

xµ(u) . (5)

Next observe that from µ we can reconstruct σ = σ(µ) by (i) setting σ(u) = u for each u
assigned to an in-arc in µ, and (ii) setting σ(u) = v for each u assigned to an out-arc uv in
µ. Thus the union M =

⋃
σ∈Sym(Vr)M(σ) is disjoint. Let us call the elements of M proper

incidence assignments. By (4) and (5) we have

detLr =
∑
µ∈M

(−1)n−1−f(σ)sgn(σ(µ))
∏
u∈Vr

xµ(u) . (6)

We claim that an incidence assignment µ is proper if and only if for every u ∈ Vr there is
exactly one u′ ∈ Vr such that µ(u′) is an in-arc to u. For the “only if” direction, let σ be the
permutation underlying a proper µ, and observe that vertices moved by σ partition to cycles
so a σ never moves a vertex to a fixed vertex. Thus, we have u′ = u for the points fixed by σ,
and u′ = σ−1(u) is the vertex preceding u along a cycle of σ for points moved by σ. For the
“if” direction, define σ(u) = u if u = u′ and σ(u′) = u if u′ 6= u. In the latter case we have
µ(u′) = u′u, which means that u′′ 6= u′ and thus σ(u′′) = u′; by uniqueness of u′ eventually
a cycle must close so σ is a well-defined permutation underlying µ and thus µ is proper.

Let us write Hr for the set of all spanning subgraphs of G with the property that every
vertex in Vr has in-degree 1 and the root r has in-degree 0. From the previous claim it
follows that we can view the set µ(Vr) = {µ(u) : u ∈ Vr} for a proper µ as an element of Hr.
Furthermore, µ(Vr) is connected (and hence a spanning out-branching with root r) if and
only if µ(Vr) is acyclic.

Consider an arbitrary H ∈ Hr. If H has a cycle, let C be the least cycle in H according
to some fixed but arbitrary ordering of the vertices of G. (Observe that any two cycles in
H must be vertex-disjoint and cannot traverse r because r has in-degree 0.) Now consider
an arbitrary proper µ that realizes H by µ(Vr) = H. The cycle C is realized in µ by either
(1) (in which case σ(µ) fixes all vertices in C), or (2) (in which case σ(µ) traces the cycle
C). Furthermore, we may switch between realizations (1) and (2) so that the number of
fixed points in the underlying permutation changes by |V (C)| and the sign of the underlying
permutation gets multiplied by (−1)|V (C)|−1. It follows that the realizations (1) and (2)
have different signs and thus cancel each other in (6). If H does not have a cycle, that is,
H ∈ Br, it follows that there is a unique proper µ that realizes H. Indeed, first observe that
H can be realized only by assigning in-arcs since any assignment of an out-arc in µ implies a
cycle in H = µ(Vr), a contradiction. Second, the in-arcs are unique since each u ∈ Vr has
in-degree 1 in H. Finally, since µ assigns only in-arcs the underlying permutation σ(µ) is the
identity permutation which has sgn(σ(µ)) = 1 and (−1)n−1−f(σ(µ)) = 1. Thus, each acyclic
H contributes to (6) through a single µ ∈M with coefficient 1. The theorem follows. J

3 Corollary for k-internal out-branchings

This section proves Theorem 2. We rely on a substitution idea of Floderus et al. [15,
Theorem 1] to detect monomials with at least k distinct variables.

Let G be an n-vertex directed graph given as input together with a nonnegative integer
k. Without loss of generality we may assume that k ≤ n − 1. Iterate over all choices
for a root vertex r ∈ V . Introduce an indeterminate yu for each vertex u ∈ V and an
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indeterminate zuv for each arc uv ∈ E. Introduce one further indeterminate t. Construct
the symbolic Laplacian L of G given by (3) and with the assignment xuv = (1 + tyu)zuv to
the indeterminate xuv for each uv ∈ E. Puncture L at r to obtain Lr. Using, for example,
Berkowitz’s determinant circuit design [2] for an arbitrary commutative ring with unity,
in time O∗(1) build an arithmetic circuit C of size O∗(1) for detLr. Viewing detLr as a
multivariate polynomial over the polynomial ring R[t, yu, zuv : u ∈ V, uv ∈ E] where R is an
abstract ring with unity, from Theorem 5 it follows that G has a spanning out-branching
rooted at r with at least k internal vertices if and only if the coefficient of tk in detLr (which
is a polynomial that is either identically zero or both (i) homogeneous of degree k in the
indeterminates yu and (ii) homogeneous of degree n − 1 in the indeterminates zuv) has a
monomial that is multilinear of degree k in the indeterminates yu. Indeed, observe that
the substitution xuv = (1 + tyu)zuv tracks in the degree of the indeterminate yu whether u
occurs as an internal vertex or not; the indeterminates zuv make sure that distinct spanning
out-branchings will not cancel each other.

To detect a multilinear monomial in C restricted to the coefficient of tk we can invoke [11,
Lemma 1] or [21, Lemma 2.8]. This results in a randomized algorithm that runs in time
O∗(2k) and has a negligible probability of reporting a false negative. This completes the
proof of Theorem 2. J

4 Modular counting of Hamiltonian cycles

This section proves Theorem 3. Fix an arbitrary constant 0 < λ < 1. Let 0 < β < 1/2 be
a constant whose precise value is fixed later. Let p be a prime and let G be an n-vertex
directed graph with vertex set V and arc set E given as input. Without loss of generality
(by splitting any vertex u into two vertices, s and t, with s receiving the out-arcs from u, and
t receiving the in-arcs to u) we may count the spanning paths starting from s and ending
at t instead of spanning cycles. Similarly, without loss of generality we may assume that
2 ≤ p < n. (Indeed, for p ≥ n the counting outcome from Theorem 3 is trivial.)

Sieving for Hamiltonian paths among out-branchings. Let s, t ∈ V be distinct vertices.
Let us write hp(G, s, t) for the set of spanning directed paths that start at s and end at t in
G. Recall that we write Vt = V \ {t} for the t-punctured version of the vertex set V . Let us
also write Vst = V \ {s, t}. For O ⊆ Vt, let LOs be the matrix obtained from the Laplacian
(3) by first puncturing at s and then substituting xuv = 0 for all arcs uv ∈ E with u ∈ Vt \O.
Since a path P ∈ hp(G, s, t) is precisely a spanning out-branching rooted at s such that every
vertex u ∈ Vt has out-degree 1, we have, by Theorem 5 and the principle of inclusion and
exclusion,∑

P∈hp(G,s,t)

∏
uv∈E(P )

xuv =
∑
O⊆Vt

(−1)|Vt\O| detLOs . (7)

In particular observe that (7) holds in any characteristic.

Cancellation modulo a power of p. With foresight, select k = b(1− λ)(1/2− β)n/pc. Our
objective is next to show that by carefully injecting entropy into the underlying Laplacian
we can, in expectation and working modulo pk, cancel all but an exponentially negligible
fraction of the summands on the right-hand side of (7). Furthermore, we can algorithmically
narrow down to the nonzero terms, leading to an exponential improvement to 2n.

Let us assign xuv = 1 for all uv ∈ E with u 6= t. Since no spanning path that ends at t may
contain an arc tu ∈ E for any u ∈ Vt, we may without loss of generality assume that G contains

ICALP 2017
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all such arcs, and assign, independently and uniformly at random xtu ∈ {0, 1, . . . , p − 1}.
Thus, the summands detLOs for O ⊆ Vt are now integer-valued random variables and (7)
evaluates to |hp(G, s, t)| with probability 1.

Let us next study a fixed O ⊆ Vt. Let FO be the event that LOs has no more than k rows
where each entry is divisible by p. In particular, detLOs 6≡ 0 (mod pk) implies FO. To bound
the probability of FO from above, observe that LOs is identically zero at each row u ∈ Vst \O
except possibly at the diagonal entries. Furthermore, because of the random assignment to
the indeterminates xtu, each diagonal entry at these rows is divisible by p with probability
1/p. Let us take this intuition and turn it into a listing algorithm for (a superset of the) sets
O ⊆ Vt that satisfy FO.

Bipartitioning. For listing we will employ a meet-in-the-middle approach based on building
each set O ⊆ Vt from two parts using the following bipartitioning. Let V (1)

t ∪ V (2)
t = Vt be a

bipartition with |V (1)
t | = dn/3e and |V

(2)
t | = n− 1− dn/3e. Associate with each O1 ⊆ V (1)

t

a vector zO1 ∈ {0, 1, . . . , p− 1,∞}Vst with the entry at u ∈ Vst defined by

zO1
u =

{
∞ if u ∈ O1;(
xtu +

∑
w∈O1:wu∈E xwu

)
mod p otherwise.

(8)

Similarly, associate with each O2 ⊆ V (1)
t a vector zO2 ∈ {0, 1, . . . , p− 1,∞}Vst with the entry

at u ∈ Vst defined by

zO2
u =

{
∞ if u ∈ O2;(
−
∑
w∈O2:wu∈E xwu

)
mod p otherwise.

(9)

Suppose now that we have O1 ⊆ V
(1)
t and O2 ⊆ V

(2)
t with O = O1 ∪ O2. We claim that

FO holds only if the vectors zO1 and zO2 agree in at most k entries. Indeed, observe that
zO1
u = zO2

u holds only if both u ∈ Vst \O and the (u, u)-entry of LOs is divisible by p. That
is, zO1

u = zO2
u implies the entire row u of LOs consists only of elements divisible by p. Thus it

suffices to list all pairs (O1, O2) such that zO1 and zO2 have at most k agreements.

Balanced and unbalanced sets. To set up the listing procedure, let us now partition the
index domain Vst of our vectors into b = b3 log2 pc pairwise disjoint sets S1, S2, . . . , Sb such
that we have b(n− 2)/bc ≤ |Si| ≤ d(n− 2)/be.

Let us split the sets O ⊆ Vt into two types. Let us say that O is balanced if (1/2−β)n/b ≤
|(Vst \ O) ∩ Si| ≤ (1/2 + β)n/b holds for all i = 1, 2, . . . , b; otherwise O is unbalanced.
Recalling that

∑`
j=0

(
n
j

)
≤ 2nH(`/n) holds for all integers 1 ≤ ` ≤ n/2, where H(ρ) =

−ρ log2 ρ− (1− ρ) log2(1− ρ) is the binary entropy function, observe that there are in total
at most

2n+1−mini |Si|b

d(1/2−β)n/be∑
j=0

(bn/b+2c
j

)
≤ 2n−(n−2)/b+32(n/b+2)H(1/2−β)b

≤ 2n(1−(1−H(1/2−β))/b)+7b (10)

sets O that are unbalanced.

Precomputation and listing. Suppose that O1 ⊆ V (1)
t and O2 ⊆ V (1)

t are compatible in the
sense that zO1 and zO2 agree in at most k entries. For S ⊆ Vst and a vector z whose entries
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are indexed by Vst, let us write zS for the restriction of z to S. If O1 and O2 are compatible,
then by an averaging argument there must exist an i = 1, 2, . . . , b such that zO1

Si
and zO2

Si

agree in at most k/b entries. In particular, this enables us to iterate over O2 and list all
compatible O1 by focusing only on each restriction to Si for i = 1, 2, . . . , b. Furthermore,
the search inside Si can be precomputed to look-up tables. Indeed, for each i = 1, 2, . . . , b
and each key g ∈ {0, 1, . . . , p− 1,∞}Si , let us build a complete list of all subsets O1 ⊆ V (1)

t

such that zO1
Si

and g agree in at most k/b entries. These b look-up tables can be built by
processing in total at most

b∑
i=1

2V
(1)
t (p+ 1)|Si| ≤ 2n/3+72(n/(b3 log2 pc)+2) log2(p+1) log2 p = O(20.87n)

pairs (O1, g). This takes time O∗(20.87n) in total.
The main listing procedure now considers each O2 ⊆ V

(2)
t in turn, and for each i =

1, 2, . . . , b consults the look-up table for direct access to all O1 such that zO1
Si

and zO2
Si

agree
in at most k/b entries. In particular this will list all compatible pairs (O1, O2) and hence all
sets O = O1 ∪O2 such that FO holds.

Expected running time. Let us now analyze the expected running time of the algorithm.
We start by deriving an upper bound for the expected number of pairs (O1, O2) considered by
the main listing procedure. First, observe that the total number of pairs (O1, O2) considered
by the procedure with O = O1 ∪O2 unbalanced is bounded from above by our upper bound
(10) for the total number of unbalanced O. Indeed, O1 = O ∩ V (1)

t and O2 = O ∩ V (2)
t are

uniquely determined by O.
Next, for a pair (O1, O2) with balanced O = O1 ∪ O2 and i = 1, 2, . . . , b, let GO1,O2,i

be the event that zO1
Si

and zO2
Si

agree in at most k/b entries. We seek an upper bound for
the probability of GO1,O2,i to obtain an upper bound for the expected number of pairs with
balanced O = O1 ∪O2 considered by the main listing procedure. Let AO1,O2,i be the number
of entries in which zO1

Si
and zO2

Si
agree. We observe that AO1,O2,i is binomially distributed with

expectation |(Vt \O) ∩ Si|/p. Since O is balanced, we have (1/2− β)n/b ≤ |(Vt \O) ∩ Si| ≤
(1/2 + β)n/b. We also recall that k = b(1− λ)(1/2− β)n/pc. A standard Chernoff bound
now gives

Pr(GO1,O2,i) ≤ Pr
(
AO1,O2,i ≤ k/b

)
≤ Pr

(
AO1,O2,i ≤ (1− λ)|(Vt \O) ∩ Si|/p

)
≤ exp

(
−λ2|(Vt \O) ∩ Si|/(2p)

)
≤ exp

(
−λ2(1/2− β)n/(2pb)

)
.

Recalling that b = b3 log2 pc, the main listing procedure thus considers in expectation at most
2n exp

(
−λ2(1/2−β)n/(2p(3 log2 p)

)
pairs (O1, O2) with O = O1∪O2 balanced. Recalling our

upper bound for the total number of unbalanced sets (10), we thus have that the main listing
procedure runs in O∗

(
2n exp

(
−λ2(1/2 − β)n/(2p(3 log2 p))

)
+ 2n(1−(1−H(1/2−β))/(3 log2 p))

)
expected time. Recalling that precomputation runs in O∗(20.87n) time, we thus have for
β = 1/6 that the entire algorithm runs in O∗(2n(1−λ2/(19p log2 p))) expected time and computes
|hp(G, s, t)| modulo pb(1−λ)n/(3p)c. This completes the proof of Theorem 3. J

5 Directed Hamiltonicity via quasi-Laplacian determinants

This section proves Theorem 4. Let G be a directed n-vertex graph given as input.
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Finding a maximum independent set. Let B ∪ Y = V (G) be a partition of the vertex set
into two disjoint sets B (“blue”) and Y (“yellow”) such that no arc has both of its ends in Y .
That is, Y is an independent set.

We can find an Y of the maximum possible size as follows. First, in time polynomial
in n compute the maximum-size matching in the undirected graph obtained from G by
disregarding the orientation of the arcs. This maximum-size matching must consist of at
least bn/2c edges or G does not admit a Hamiltonian cycle. (Indeed, from a Hamiltonian
cycle we can obtain a matching with bn/2c edges by taking every other arc in the cycle.)
Since for each matching edge it holds that both ends of the edge cannot be in an independent
set, we can in time O∗(3n/2) find a maximum-size independent set Y of G. Furthermore,
α(G) = |Y | ≤ bn/2c+ 1, so we are within our budget of O∗(3n(G)−α(G)) in terms of running
time. In fact, |Y | ≤ bn/2c or otherwise G trivially does not admit a Hamiltonian cycle.

The symbolic quasi-Laplacian. We will first define the quasi-Laplacian and then give
intuition for its design. Let us work over a field of characteristic 2. For each y ∈ Y introduce
a copy yin and let Yin be the set of all such copies. Similarly, for each y ∈ Y introduce a
copy yout and let Yout be the set of all such copies. We assume that Yin and Yout are disjoint.
For each j ∈ Yin ∪ Yout let us write j ∈ Y for the underlying element of Y of which j is a
copy. Let B∗ be a set of n− 2|Y | elements that is disjoint from both Yin and Yout. For each
uv ∈ E and each j ∈ B∗ ∪ Yin ∪ Yout, introduce an indeterminate x(j)

uv .
Select an arbitrary vertex s ∈ B for purposes of breaking symmetry and let I,O ⊆ B.

The quasi-Laplacian QI,O,s = QI,O,s(G) of G with skew at s be the n×n matrix whose rows
are indexed by u ∈ B ∪ Y and whose columns are indexed by j ∈ B∗ ∪ Yin ∪ Yout such that
the (u, j)-entry is defined by

qI,O,suj =



∑
w∈O:wu∈E,u∈I x

(j)
wu

+
∑
w∈I:uw∈E,u∈O\{s} x

(j)
uw (a) if u ∈ B and j ∈ B∗;

x
(j)
uj (b) if u ∈ O \ {s} and j ∈ Yin with uj ∈ E;
x

(j)
ju (c) if u ∈ I and j ∈ Yout with ju ∈ E;∑
w∈O:wu∈E x

(j)
wu (d) if u ∈ Y and j ∈ Yin with u = j;∑

w∈I:uw∈E x
(j)
uw (e) if u ∈ Y and j ∈ Yout with u = j;

0 otherwise.

(11)

Let us next give some intuition for (11) before proceeding with the proof.
Analogously to the Laplacian (3), the quasi-Laplacian (11) has been designed so that the

monomials of each row u ∈ B ∪ Y of QI,O,s control the assignment of either an in-arc or an
out-arc to u in an incidence assignment, and the skew at s is used to break symmetry so that
s is always assigned an in-arc to s. In particular, without the skew at row s and with I = O,
each column of QI,O,s would sum to zero, in analogy with the (non-punctured) Laplacian.

Let us now give intuition for the columns j ∈ Yin and j ∈ Yout. First, observe by (b)
and (d) in (11) that selecting a monomial from column j ∈ Yin corresponds to making sure
that the in-degree of j is 1. Such a selection may be either a “quasi-diagonal” assignment of
the in-arc wj to u = j ∈ Y via (d) for some w ∈ B; or an “off-diagonal” assignment of the
out-arc uj to u ∈ B via (b). Second, observe by (c) and (e) in (11) that selecting a monomial
from column j ∈ Yout corresponds to making sure that the out-degree of j is 1. Thus, the
columns j ∈ Yin ∪ Yout enable us to make sure that an incidence assigment has both in-degree
1 and out-degree 1 at each u ∈ Y without the use of sieving. This gives us the speed-up from
O∗(3n) to O∗(3n−|Y |) running time. Observe also that the structure for the quasi-Laplacian
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QI,O,s is enabled precisely because Y is an independent set and thus no arc contributes to
both in-degree and out-degree in Y .

The quasi-Laplacian determinant sieve. Recalling that we are working over a field of
characteristic 2, let us study the sum∑

I,O⊆B
I∪O=B
s∈I

detQI,O,s =
∑
I⊆B

∑
O⊆B

detQI,O,s =
∑

σ:B∪Y→B∗∪Yin∪Yout
σ bijective

∑
I⊆B

∑
O⊆B

∏
u∈B∪Y

qI,O,su,σ(u) . (12)

Observe that the first equality in (12) holds because QI,O,s has by (11) an identically zero
row unless I ∪O = B and s ∈ I; the second equality holds by definition of the determinant
in characteristic 2 and changing the order of summation. From (11) and the right-hand side
of (12) it is immediate that (12) is either identically zero or a homogeneous polynomial of
degree n in the n|E| indeterminates x(j)

uv for j ∈ B∗ ∪Yin ∪Yout and uv ∈ E. 4 We claim that
(12) is not identically zero if and only if G admits at least one spanning cycle. Furthermore,
each spanning cycle in G defines precisely |B∗|! distinct monomials in (12).

To establish the claim, fix a bijection σ : B ∪ Y → B∗ ∪ Yin ∪ Yout. Let us write M(σ) for
the set of all incidence assignments µ : B ∪ Y → E that are proper in the sense that all of
the following six requirements hold (cf. (11)):

(s): µ(s) is an in-arc to s;
(a): for all u ∈ B with σ(u) ∈ B∗ it holds that µ(u) has both of its vertices in B;
(b): for all u ∈ B with σ(u) ∈ Yin it holds that µ(u) is an in-arc to σ(u);
(c): for all u ∈ B with σ(u) ∈ Yout it holds that µ(u) is an out-arc from σ(u);
(d): for all u ∈ Y with σ(u) ∈ Yin it holds that µ(u) is an in-arc to u and u = σ(u); and
(e): for all u ∈ Y with σ(u) ∈ Yout it holds that µ(u) is an out-arc from u and u = σ(u).

Observe that each µ ∈M(σ) defines a collection of n arcs µ(B ∪Y ) = {µ(u) : u ∈ B ∪Y }.
Let us write Zµin (respectively, Zµout) for the set of vertices in B ∪ Y with zero in-degree
(out-degree) with respect to the arcs in µ(B ∪ Y ). Since σ is a bijection and thus has a
preimage for each j ∈ Yin ∪ Yout, from (b,c,d,e) above it follows that Zµin ⊆ B and Zµout ⊆ B.
Furthermore, from (a,b,c,d,e) it follows that for the arcs in µ(B∪Y ) the sum of the in-degrees
(and the sum of the out-degrees) of the vertices in B is |B| = |B∗|+ |Y |. Thus, we have that
Zµin and Zµout are both empty if and only if for the arcs µ(B ∪ Y ) both the in-degree and the
out-degree of every vertex u ∈ B ∪ Y is 1. (Note that the claim is immediate for u ∈ Y by
(b,c,d,e) and bijectivity of σ.)

Let us now study the right-hand side of (12) for a fixed σ. Using (a,b,c,d,e) and (11) to
rearrange in terms of incidence assignments, we have∑

I⊆V

∑
O⊆V

∏
u∈B∪Y

qI,O,su,σ(u) =
∑

µ∈M(σ)

∏
u∈B∪Y

x
(σ(u))
µ(u)

∑
I⊆Zµin

∑
O⊆Zµout

1 . (13)

Since we are working in characteristic 2, all other µ ∈M(σ) except those for which µ(B ∪ Y )
is a cycle cover will cancel in the right-hand side of (13).

Take the sum of (13) over all bijections σ. Consider an arbitrary cycle cover of B∪Y . Let
C be a cycle in this cycle cover. Assuming that C does not contain s, we can realize C in an
incidence assignment µ : B ∪ Y → E either using (1) or (2). If C contains s and µ is proper,

4 Our algorithm for deciding Hamiltonicity will naturally not work with a symbolic representation of (12)
but rather in a homomorphic image under a random evaluation homomorphism.
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only the realization (1) is possible by (s). To see that realization with a proper µ ∈M(σ) for
some σ is possible, consider an arbitrary u ∈ B ∪ Y and observe that each image µ(u) by
(b,c,d,e) uniquely determines the image σ(u) ∈ Yin ∪ Yout when µ(u) has one vertex in Y ;
when µ(u) has both vertices in B, an unused σ(u) ∈ B∗ may be chosen arbitrarily so that
µ ∈ M(σ). It follows that any cycle cover with c cycles is realized as exacly |B∗|! distinct
monomials

∏
u∈B∪Y x

(σ(u))
µ(u) in (12), each with coefficient 2c−1. This coefficient is nonzero if

and only if c = 1.

Completing the algorithm. To detect whether the given n-vertex directed graph G admits
a Hamiltonian cycle, first decompose the vertex set into disjoint V = B ∪ Y with Y an
independent set of size |Y | = α(G) using the algorithm described earlier. Next, in time O∗(1)
construct an irreducible polynomial of degree 2dlog2 ne over F2 (see e.g. von zur Gathen and
Gerhard [23, §14.9]) to enable arithmetic in the finite field of order q = 22dlog2 ne ≥ n2 in
time O∗(1) for each arithmetic operation. Next, assign an independent uniform random
value from Fq to each indeterminate x(j)

uv with j ∈ B∗ ∪ Yin ∪ Yout and uv ∈ E. Finally, using
the assigned values for the indeterminates, compute the left-hand side of (12) using, for
example, Gaussian elimination to compute each determinant detQI,O,s in O∗(1) operations
in Fq. Let us write r ∈ Fq for the result of this computation. In particular, we can compute
r from a given G in total O∗(3|B|) = O∗(3n(G)−α(G)) operations in Fq, and consequently in
total O∗(3n(G)−α(G)) time. If (12) is identically zero, then clearly r = 0 with probability 1.
If (12) is not identically zero (and hence a homogeneous polynomial of degree d = n in the
indeterminates) then by the DeMillo–Lipton–Schwartz–Zippel lemma [14, 22, 25] we have
r 6= 0 with probability at least 1− d/q ≥ 1− n/n2 ≥ 1− 1/n = 1− o(1). Thus we can decide
whether G is Hamiltonian based on whether r 6= 0. In particular this gives probability o(1)
of reporting a false negative. This completes the proof of Theorem 4. J
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