777 research outputs found

    Privacy Mining from IoT-based Smart Homes

    Full text link
    Recently, a wide range of smart devices are deployed in a variety of environments to improve the quality of human life. One of the important IoT-based applications is smart homes for healthcare, especially for elders. IoT-based smart homes enable elders' health to be properly monitored and taken care of. However, elders' privacy might be disclosed from smart homes due to non-fully protected network communication or other reasons. To demonstrate how serious this issue is, we introduce in this paper a Privacy Mining Approach (PMA) to mine privacy from smart homes by conducting a series of deductions and analyses on sensor datasets generated by smart homes. The experimental results demonstrate that PMA is able to deduce a global sensor topology for a smart home and disclose elders' privacy in terms of their house layouts.Comment: This paper, which has 11 pages and 7 figures, has been accepted BWCCA 2018 on 13th August 201

    Detection of abnormal behaviour for dementia sufferers using Convolutional Neural Networks.

    Get PDF
    In recent years, there is a rapid increase in the population of elderly people. However, elderly people may suffer from the consequences of cognitive decline, which is a mental health disorder that primarily affects cognitive abilities such as learning, memory, etc. As a result, the elderly people may get dependent on caregivers to complete daily life tasks. Detecting the early indicators of dementia before it gets worsen and warning the caregivers and medical doctors would be helpful for further diagnosis. In this paper, the problem of activity recognition and abnormal behaviour detection is investigated for elderly people with dementia. First of all, the paper presents a methodology for generating synthetic data reflecting on some behavioural difficulties of people with dementia given the difficulty of obtaining real-world data. Secondly, the paper explores Convolutional Neural Networks (CNNs) to model patterns in activity sequences and detect abnormal behaviour related to dementia. Activity recognition is considered as a sequence labelling problem, while abnormal behaviour is flagged based on the deviation from normal patterns. Moreover, the performance of CNNs is compared against the state-of-art methods such as NaĂŻve Bayes (NB), Hidden Markov Models (HMMs), Hidden Semi-Markov Models (HSMM), Conditional Random Fields (CRFs). The results obtained indicate that CNNs are competitive with those state-of-art methods

    Detection of Dementia-Related Abnormal Behaviour Using Recursive Auto-Encoders.

    Get PDF
    Age-related health issues have been increasing with the rise of life expectancy all over the world. One of these problems is cognitive impairment, which causes elderly people to have problems performing their daily activities. Detection of cognitive impairment at an early stage would enable medical doctors to deepen diagnosis and follow-up on patient status. Recent studies show that daily activities can be used to assess the cognitive status of elderly people. Additionally, the intrinsic structure of activities and the relationships between their sub-activities are important clues for capturing the cognitive abilities of seniors. Existing methods perceive each activity as a stand-alone unit while ignoring their inner structural relationships. This study investigates such relationships by modelling activities hierarchically from their sub-activities, with the overall goal of detecting abnormal activities linked to cognitive impairment. For this purpose, recursive auto-encoders (RAE) and their linear vs. greedy and supervised vs. semi-supervised variants are adopted to model the activities. Then, abnormal activities are systematically detected using RAE's reconstruction error. Moreover, to apply RAEs for this problem, we introduce a new sensor representation called raw sensor measurement (RSM) that captures the intrinsic structure of activities, such as the frequency and the order of sensor activations. As real-world data are not accessible, we generated data by simulating abnormal behaviour, which reflects on cognitive impairment. Extensive experiments show that RAEs can be used as a decision-supporting tool, especially when the training set is not labelled to detect early indicators of dementia

    Activity-driven detection of cognitive impairment using deep learning.

    Get PDF
    While life expectancy is on the rise all over the world, more people face health related problems such as cognitive decline. Cognitive impairment is a collective name for progressive brain syndromes which affect memory, cognition, behaviour and emotion. People suffering from cognitive impairment may lose their abilities to perform daily life activities and they get dependent on their caregivers. Although some medications can slow the progress of the disease, currently there is no way to stop its development. Sufferers may require special needs which increase the cost of care. Thus, detecting the indicators of cognitive decline before it gets worse would be very crucial. Current assessment methods mostly rely on queries from questionnaires or in-person examinations, which depend on recall of events that may poorly represent a person’s typical state. The aim in this thesis is to adapt deep learning techniques for analysing daily activities of elderly people and detecting abnormalities in the activity patterns. Recent studies suggest that indicators of cognitive decline can be observed in daily life activity patterns. The spatio-temporal and hierarchical relationship of activities and their intrinsic structures are important in the context of cognitive decline analysis. Existing studies treat each activity as an atomic unit and fail to capture the relationship among sub-activities. Also, existing studies rely on fixed length features to model activities, ignoring the granular level information coming from raw sensor activations. Moreover, there exists no daily activity dataset representing the behaviour of dementia sufferers because producing such datasets requires time and adequate experimental environment. Given these challenges, the present thesis addresses the following research questions: How can we cope with the scarcity of dataset reflecting on cognitive status of elderly people? How can activities be modelled taking into account their spatio-temporal neighbourhood and hierarchical information? How can we represent raw data to encode the granular level details? These research questions are addressed in the following way. Firstly, two methods are proposed to cope with the scarcity of data: (i) synthetic data generation and (ii) transfer learning adoption. Secondly, the activity recognition problem is emulated (i) as a sequence labelling problem to model spatio-temporal patterns. (ii) as a hierarchical learning problem to model sub-activities. (iii) as a graph labelling problem to encode granular level details. Thirdly, raw sensor measurements stemming from sequential data are used to model sensor activation relationships. The proposed methods are also compared against the state-of-art methods. The preliminary results obtained indicate that pro- posed data simulation and transfer learning approaches are useful to cope with the scarcity of data reflecting cognitive status of elderly people. Moreover, experiments show that the proposed deep learning methods are promising to detect abnormalities in the context of cognitive decline. Proposed methods are not only promising to detect abnormal behaviour at a fine-grained level, but some of them can also model activities hierarchically by taking sub-activities into account and then can detect abnormal behaviour occurring at granular levels

    Understanding Mobility and Transport Modal Disparities Using Emerging Data Sources: Modelling Potentials and Limitations

    Get PDF
    Transportation presents a major challenge to curb climate change due in part to its ever-increasing travel demand. Better informed policy-making requires up-to-date empirical mobility data to model viable mitigation options for reducing emissions from the transport sector. On the one hand, the prevalence of digital technologies enables a large-scale collection of human mobility traces, providing big potentials for improving the understanding of mobility patterns and transport modal disparities. On the other hand, the advancement in data science has allowed us to continue pushing the boundary of the potentials and limitations, for new uses of big data in transport.This thesis uses emerging data sources, including Twitter data, traffic data, OpenStreetMap (OSM), and trip data from new transport modes, to enhance the understanding of mobility and transport modal disparities, e.g., how car and public transit support mobility differently. Specifically, this thesis aims to answer two research questions: (1) What are the potentials and limitations of using these emerging data sources for modelling mobility? (2) How can these new data sources be properly modelled for characterising transport modal disparities? Papers I-III model mobility mainly using geotagged social media data, and reveal the potentials and limitations of this data source by validating against established sources (Q1). Papers IV-V combine multiple data sources to characterise transport modal disparities (Q2) which further demonstrate the modelling potentials of the emerging data sources (Q1).Despite a biased population representation and low and irregular sampling of the actual mobility, the geolocations of Twitter data can be used in models to produce good agreements with the other data sources on the fundamental characteristics of individual and population mobility. However, its feasibility for estimating travel demand depends on spatial scale, sparsity, sampling method, and sample size. To extend the use of social media data, this thesis develops two novel approaches to address the sparsity issue: (1) An individual-based mobility model that fills the gaps in the sparse mobility traces for synthetic travel demand; (2) A population-based model that uses Twitter geolocations as attractions instead of trips for estimating the flows of people between regions. This thesis also presents two reproducible data fusion frameworks for characterising transport modal disparities. They demonstrate the power of combining different data sources to gain new insights into the spatiotemporal patterns of travel time disparities between car and public transit, and the competition between ride-sourcing and public transport

    Modelling and Predicting Energy Usage from Smart Meter Data and Consumer behaviours in Residential Houses.

    Get PDF
    Efforts of electrical utilities to respond to climate change requires the development of increasingly sophisticated, integrated electrical grids referred to as the smart grids. Much of the smart grid effort focuses on the integration of renewable generation into the electricity grid and on increased monitoring and automation of electrical transmission functions. However, a key component of smart grid development is the introduction of the smart electrical meter for all residential electrical customers. Smart meter deployment is the corner stone of the smart grid. In addition to adding new functionality to support system reliability, smart meters provide the technological means for utilities to institute new programs to allow their customers to better manage and reduce their electricity use and to support increased renewable generation to reduce greenhouse emissions from electricity use. As such, this thesis presents our research towards the study of how the data (energy usage profiles) produced by the smart meters within the smart grid system of residential homes is used to profile energy usage in homes and detect users with high fuel consumption levels. This project concerns the use of advanced machine learning algorithms to model and predict household behaviour patterns from smart meter readings. The aim is to learn and understand the behavioural trends in homes (as demonstrated in chapter 5). The thesis shows the trends of how energy is used in residential homes. By obtaining these behavioural trends, it is possible for utility companies to come up with incentives that can be beneficial to home users on changes that can be adopted to reduce their carbon emissions. For example consumers would be more likely prompted to turn of unusable appliances that are consuming high energy around the home e.g., lighting in rooms which are un occupied. The data used for the research is constructed from a digital simulation model of a smart home environment comprised of 5 residential houses. The model can capture data from this simulated network of houses, hence providing an abundance set of information for utility companies and data scientist to promote reductions in energy usage. The simulation model produces volumes of outliers such as high periods (peak hours) of energy usage and low periods (Off peak hours) of anomalous energy consumption within the residential setting of five homes. To achieve this, performance characteristics on a dataset comprised of wealthy data readings from 5 homes is analysed using Area under ROC Curve (AUC), Precision, F1 score, Accuracy and Recall. The highest result is achieved using the Two-Class Decision Forest classifier, which achieved 87.6% AUC

    Unsupervised monitoring of an elderly person\u27s activities of daily living using Kinect sensors and a power meter

    Get PDF
    The need for greater independence amongst the growing population of elderly people has made the concept of “ageing in place” an important area of research. Remote home monitoring strategies help the elderly deal with challenges involved in ageing in place and performing the activities of daily living (ADLs) independently. These monitoring approaches typically involve the use of several sensors, attached to the environment or person, in order to acquire data about the ADLs of the occupant being monitored. Some key drawbacks associated with many of the ADL monitoring approaches proposed for the elderly living alone need to be addressed. These include the need to label a training dataset of activities, use wearable devices or equip the house with many sensors. These approaches are also unable to concurrently monitor physical ADLs to detect emergency situations, such as falls, and instrumental ADLs to detect deviations from the daily routine. These are all indicative of deteriorating health in the elderly. To address these drawbacks, this research aimed to investigate the feasibility of unsupervised monitoring of both physical and instrumental ADLs of elderly people living alone via inexpensive minimally intrusive sensors. A hybrid framework was presented which combined two approaches for monitoring an elderly occupant’s physical and instrumental ADLs. Both approaches were trained based on unlabelled sensor data from the occupant’s normal behaviours. The data related to physical ADLs were captured from Kinect sensors and those related to instrumental ADLs were obtained using a combination of Kinect sensors and a power meter. Kinect sensors were employed in functional areas of the monitored environment to capture the occupant’s locations and 3D structures of their physical activities. The power meter measured the power consumption of home electrical appliances (HEAs) from the electricity panel. A novel unsupervised fuzzy approach was presented to monitor physical ADLs based on depth maps obtained from Kinect sensors. Epochs of activities associated with each monitored location were automatically identified, and the occupant’s behaviour patterns during each epoch were represented through the combinations of fuzzy attributes. A novel membership function generation technique was presented to elicit membership functions for attributes by analysing the data distribution of attributes while excluding noise and outliers in the data. The occupant’s behaviour patterns during each epoch of activity were then classified into frequent and infrequent categories using a data mining technique. Fuzzy rules were learned to model frequent behaviour patterns. An alarm was raised when the occupant’s behaviour in new data was recognised as frequent with a longer than usual duration or infrequent with a duration exceeding a data-driven value. Another novel unsupervised fuzzy approach to monitor instrumental ADLs took unlabelled training data from Kinect sensors and a power meter to model the key features of instrumental ADLs. Instrumental ADLs in the training dataset were identified based on associating the occupant’s locations with specific power signatures on the power line. A set of fuzzy rules was then developed to model the frequency and regularity of the instrumental activities tailored to the occupant. This set was subsequently used to monitor new data and to generate reports on deviations from normal behaviour patterns. As a proof of concept, the proposed monitoring approaches were evaluated using a dataset collected from a real-life setting. An evaluation of the results verified the high accuracy of the proposed technique to identify the epochs of activities over alternative techniques. The approach adopted for monitoring physical ADLs was found to improve elderly monitoring. It generated fuzzy rules that could represent the person’s physical ADLs and exclude noise and outliers in the data more efficiently than alternative approaches. The performance of different membership function generation techniques was compared. The fuzzy rule set obtained from the output of the proposed technique could accurately classify more scenarios of normal and abnormal behaviours. The approach for monitoring instrumental ADLs was also found to reliably distinguish power signatures generated automatically by self-regulated devices from those generated as a result of an elderly person’s instrumental ADLs. The evaluations also showed the effectiveness of the approach in correctly identifying elderly people’s interactions with specific HEAs and tracking simulated upward and downward deviations from normal behaviours. The fuzzy inference system in this approach was found to be robust in regards to errors when identifying instrumental ADLs as it could effectively classify normal and abnormal behaviour patterns despite errors in the list of the used HEAs
    • …
    corecore