21,864 research outputs found

    A Method for Counting People in Crowded Scenes

    Get PDF
    This paper presents a novel method to count people for video surveillance applications. Methods in the literature either follow a direct approach, by first detecting people and then counting them, or an indirect approach, by establishing a relation between some easily detectable scene features and the estimated number of people. The indirect approach is considerably more robust, but it is not easy to take into account such factors as perspective or people groups with different densities. The proposed technique, while based on the indirect approach, specifically addresses these problems; furthermore it is based on a trainable estimator that does not require an explicit formulation of a priori knowledge about the perspective and density effects present in the scene at hand. In the experimental evaluation, the method has been extensively compared with the algorithm by Albiol et al., which provided the highest performance at the PETS 2009 contest on people counting. The experimentation has used the public PETS 2009 datasets. The results confirm that the proposed method improves the accuracy, while retaining the robustness of the indirect approach

    The Visual Social Distancing Problem

    Get PDF
    One of the main and most effective measures to contain the recent viral outbreak is the maintenance of the so-called Social Distancing (SD). To comply with this constraint, workplaces, public institutions, transports and schools will likely adopt restrictions over the minimum inter-personal distance between people. Given this actual scenario, it is crucial to massively measure the compliance to such physical constraint in our life, in order to figure out the reasons of the possible breaks of such distance limitations, and understand if this implies a possible threat given the scene context. All of this, complying with privacy policies and making the measurement acceptable. To this end, we introduce the Visual Social Distancing (VSD) problem, defined as the automatic estimation of the inter-personal distance from an image, and the characterization of the related people aggregations. VSD is pivotal for a non-invasive analysis to whether people comply with the SD restriction, and to provide statistics about the level of safety of specific areas whenever this constraint is violated. We then discuss how VSD relates with previous literature in Social Signal Processing and indicate which existing Computer Vision methods can be used to manage such problem. We conclude with future challenges related to the effectiveness of VSD systems, ethical implications and future application scenarios.Comment: 9 pages, 5 figures. All the authors equally contributed to this manuscript and they are listed by alphabetical order. Under submissio
    corecore