3,976 research outputs found

    Transport Mode Detection and Classification from Smartphone Sensor Data Using Convolutional Neural Networks

    Get PDF
    Transportation is a significant component of human lives and understanding how individuals travel is an essential task in many fields. Understanding the modes of transport individuals use can lead to improvements in urban planning, traffic control, human health, and environmental sciences. The goal of transport mode detection and classification is to use smartphone devices as human behavioural sensors, to detect and classify individuals movement continuously. Smartphone devices are suitable for transport mode detection, as they are proliferated in modern societies and contain sensors that are suitable for transport mode detection. These sensors include GPS, accelerometers, gyroscopes, magnetometers, barometers, or microphones. The research in this thesis will focus on transport mode detection and classification using data from motions sensors; accelerometers, gyroscopes, magnetometers, and barometers as they do not contain the sensitive private data that is collected when using GPS or microphones. Currently, there are two approaches in state of the art in transport mode detection. In the first approach, time and frequency domain features are extracted from the signals of the motion sensors and used as input to decision tree or neural network machine learning models. In the second approach, Convolutional Neural Networks extract features by finding spatial relations in the signal data and using these for classification. This thesis investigates the use of Convolutional Neural Networks, as they have shown to outperform models trained using time and frequency domain features extracted from the data in the state of the art research. This research studies the effect of different model architectures on the accuracy of Convolutional Neural Network models when using multiple different sensors as input, as well as focusing on which combinations of sensors produce optimal results. Furthermore, the focus will be evaluating the models on real-world data in order to evaluate the feasibility of deploying applications utilizing transport mode detection. This research compares an optimized model architecture along with preprocessing techniques to state of the art Convolutional Neural Network architectures on real- world data. The best baseline algorithm achieved an overall F1 score of 0.57, while the final optimized achieved an overall F1 score of 0.72 on the testing dataset. The optimal combination of motion sensors is with the accelerometer, gyroscope, and barometer

    Smartphone-Based Recognition of Access Trip Phase to Public Transport Stops Via Machine Learning Models

    Get PDF
    The usage of mobile phones is nowadays reaching full penetration rate in most countries. Smartphones are a valuable source for urban planners to understand and investigate passengers’ behavior and recognize travel patterns more precisely. Different investigations tried to automatically extract transit mode from sensors embedded in the phones such as GPS, accelerometer, and gyroscope. This allows to reduce the resources used in travel diary surveys, which are time-consuming and costly. However, figuring out which mode of transportation individuals use is still challenging. The main limitations include GPS, and mobile sensor data collection, and data labeling errors. First, this paper aims at solving a transport mode classification problem including (still, walking, car, bus, and metro) and then as a first investigation, presents a new algorithm to compute waiting time and access time to public transport stops based on a random forest model

    Applied deep learning in intelligent transportation systems and embedding exploration

    Get PDF
    Deep learning techniques have achieved tremendous success in many real applications in recent years and show their great potential in many areas including transportation. Even though transportation becomes increasingly indispensable in people’s daily life, its related problems, such as traffic congestion and energy waste, have not been completely solved, yet some problems have become even more critical. This dissertation focuses on solving the following fundamental problems: (1) passenger demand prediction, (2) transportation mode detection, (3) traffic light control, in the transportation field using deep learning. The dissertation also extends the application of deep learning to an embedding system for visualization and data retrieval. The first part of this dissertation is about a Spatio-TEmporal Fuzzy neural Network (STEF-Net) which accurately predicts passenger demand by incorporating the complex interaction of all known important factors, such as temporal, spatial and external information. Specifically, a convolutional long short-term memory network is employed to simultaneously capture spatio-temporal feature interaction, and a fuzzy neural network to model external factors. A novel feature fusion method with convolution and an attention layer is proposed to keep the temporal relation and discriminative spatio-temporal feature interaction. Experiments on a large-scale real-world dataset show the proposed model outperforms the state-of-the-art approaches. The second part is a light-weight and energy-efficient system which detects transportation modes using only accelerometer sensors in smartphones. Understanding people’s transportation modes is beneficial to many civilian applications, such as urban transportation planning. The system collects accelerometer data in an efficient way and leverages a convolutional neural network to determine transportation modes. Different architectures and classification methods are tested with the proposed convolutional neural network to optimize the system design. Performance evaluation shows that the proposed approach achieves better accuracy than existing work in detecting people’s transportation modes. The third component of this dissertation is a deep reinforcement learning model, based on Q learning, to control the traffic light. Existing inefficient traffic light control causes numerous problems, such as long delay and waste of energy. In the proposed model, the complex traffic scenario is quantified as states by collecting data and dividing the whole intersection into grids. The timing changes of a traffic light are the actions, which are modeled as a high-dimension Markov decision process. The reward is the cumulative waiting time difference between two cycles. To solve the model, a convolutional neural network is employed to map states to rewards, which is further optimized by several components, such as dueling network, target network, double Q-learning network, and prioritized experience replay. The simulation results in Simulation of Urban MObility (SUMO) show the efficiency of the proposed model in controlling traffic lights. The last part of this dissertation studies the hierarchical structure in an embedding system. Traditional embedding approaches associate a real-valued embedding vector with each symbol or data point, which generates storage-inefficient representation and fails to effectively encode the internal semantic structure of data. A regularized autoencoder framework is proposed to learn compact Hierarchical K-way D-dimensional (HKD) discrete embedding of data points, aiming at capturing semantic structures of data. Experimental results on synthetic and real-world datasets show that the proposed HKD embedding can effectively reveal the semantic structure of data via visualization and greatly reduce the search space of nearest neighbor retrieval while preserving high accuracy

    Robust Algorithms for Estimating Vehicle Movement from Motion Sensors Within Smartphones

    Get PDF
    Building sustainable traffic control solutions for urban streets (e.g., eco-friendly signal control) and highways requires effective and reliable sensing capabilities for monitoring traffic flow conditions so that both the temporal and spatial extents of congestion are observed. This would enable optimal control strategies to be implemented for maximizing efficiency and for minimizing the environmental impacts of traffic. Various types of traffic detection systems, such as inductive loops, radar, and cameras have been used for these purposes. However, these systems are limited, both in scope and in time. Using GPS as an alternative method is not always viable because of problems such as urban canyons, battery depletion, and precision errors. In this research, a novel approach has been taken, in which smartphone low energy sensors (such as the accelerometer) are exploited. The ubiquitous use of smartphones in everyday life, coupled with the fact that they can collect, store, compute, and transmit data, makes them a feasible and inexpensive alternative to the mainstream methods. Machine learning techniques have been used to develop models that are able to classify vehicle movement and to detect the stop and start points during a trip. Classifiers such as logistic regression, discriminant analysis, classification trees, support vector machines, neural networks, and Hidden Markov models have been tested. Hidden Markov models substantially outperformed all the other methods. The feature quality plays a key role in the success of a model. It was found that, the features which exploited the variance of the data were the most effective. In order to assist in quantifying the performance of the machine learning models, a performance metric called Change Point Detection Performance Metric (CPDPM) was developed. CPDPM proved to be very useful in model evaluation in which the goal was to find the change points in time series data with high accuracy and precision. The integration of accelerometer data, even in the motion direction, yielded an estimated speed with a steady slope, because of factors such as phone sensor bias, vibration, gravity, and other white noise. A calibration method was developed that makes use of the predicted stop and start points and the slope of integrated accelerometer data, which achieves great accuracy in estimating speed. The developed models can serve as the basis for many applications. One such field is fuel consumption and CO2 emission estimation, in which speed is the main input. Transportation mode detection can be improved by integrating speed information. By integrating Vehicle (Phone) to Infrastructure systems (V2I), the model outputs, such as the stop and start instances, average speed along a corridor, and queue length at an intersection, can provide useful information for traffic engineers, planners, and decision makers

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Deep neural networks in the cloud: Review, applications, challenges and research directions

    Get PDF
    Deep neural networks (DNNs) are currently being deployed as machine learning technology in a wide range of important real-world applications. DNNs consist of a huge number of parameters that require millions of floating-point operations (FLOPs) to be executed both in learning and prediction modes. A more effective method is to implement DNNs in a cloud computing system equipped with centralized servers and data storage sub-systems with high-speed and high-performance computing capabilities. This paper presents an up-to-date survey on current state-of-the-art deployed DNNs for cloud computing. Various DNN complexities associated with different architectures are presented and discussed alongside the necessities of using cloud computing. We also present an extensive overview of different cloud computing platforms for the deployment of DNNs and discuss them in detail. Moreover, DNN applications already deployed in cloud computing systems are reviewed to demonstrate the advantages of using cloud computing for DNNs. The paper emphasizes the challenges of deploying DNNs in cloud computing systems and provides guidance on enhancing current and new deployments.The EGIA project (KK-2022/00119The Consolidated Research Group MATHMODE (IT1456-22

    Traffic Prediction using Artificial Intelligence: Review of Recent Advances and Emerging Opportunities

    Full text link
    Traffic prediction plays a crucial role in alleviating traffic congestion which represents a critical problem globally, resulting in negative consequences such as lost hours of additional travel time and increased fuel consumption. Integrating emerging technologies into transportation systems provides opportunities for improving traffic prediction significantly and brings about new research problems. In order to lay the foundation for understanding the open research challenges in traffic prediction, this survey aims to provide a comprehensive overview of traffic prediction methodologies. Specifically, we focus on the recent advances and emerging research opportunities in Artificial Intelligence (AI)-based traffic prediction methods, due to their recent success and potential in traffic prediction, with an emphasis on multivariate traffic time series modeling. We first provide a list and explanation of the various data types and resources used in the literature. Next, the essential data preprocessing methods within the traffic prediction context are categorized, and the prediction methods and applications are subsequently summarized. Lastly, we present primary research challenges in traffic prediction and discuss some directions for future research.Comment: Published in Transportation Research Part C: Emerging Technologies (TR_C), Volume 145, 202
    • …
    corecore