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The usage of mobile phones is nowadays reaching full penetration rate in most countries. Smartphones are a valuable 
source for urban planners to understand and investigate passengers’ behavior and recognize travel patterns more precisely. Different 

investigations tried to automatically extract transit mode from sensors embedded in the phones such as GPS, accelerometer, and 

gyroscope. This allows to reduce the resources used in travel diary surveys, which are time-consuming and costly. However, 
figuring out which mode of transportation individuals use is still challenging. The main limitations include GPS, and mobile sensor 

data collection, and data labeling errors. First, this paper aims at solving a transport mode classification problem including (still, 

walking, car, bus, and metro) and then as a first investigation, presents a new algorithm to compute waiting time and access time to 
public transport stops based on a random forest model. Several public transport trips with different users were saved in Rome to test 

our access trip phase recognition algorithm. We also used Convolutional Neural Network as a deep learning algorithm to 

automatically extract features from one sensor (linear accelerometer), obtaining a model that performs well in predicting five modes 
of transport with the highest accuracy of 0.81%. 

Keywords: transport mode detection, machine learning, trip phase recognition, urban trips on public transport 

1. Introduction  

In urban studies, understanding daily travel patterns and transport modes can help transportation 

planners to build a more efficient transportation system. Data collection is a primary step. There are multiple 

techniques to collect trip information, such as questionnaires, interviews (Tennøy et al., 2022) and GPS-

based surveys (Axhausen et al., 2003). However, participants may report inaccurate data (Chia et al., 2016).  

Researchers should consider smartphone batteries when using mobile sensors for data collection, so 

sensor selection and sampling frequency are among the main factors for battery usage. The greater sampling 

frequency leads to higher energy usage (Khan et al., 2016) .In this paper, a two-step algorithm tries to 

recognize access trip phase at public transport stops via machine learning. The first stage determines transit 

mode of users in an urban context, and the second step includes access trip phase recognition. 

In the following, Section two includes a review of similar studies. Section three presents two 

different datasets, data preprocessing (cleaning and windowing), feature extraction, and training and 

testing stages. Evaluation metrices and a two-step access trip phase recognition algorithm, are described 

in section four. Section five concludes the paper. 

2. Theoretical Background 

This section discusses various studies applying machine and deep learning models in transport 

mode recognition. 

2.1. Transport Mode detection  

This section discusses various studies applying machine and deep learning models in transport 

mode recognition. 
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2.1.1. Machine Learning Models 

Machine learning techniques usually follow two key steps to predict mode of transportation. Frist, 

creation hand-crafted features and select the best set of features. Second, train and test models with 

machine learning algorithms. Accelerometer sensor data was used in one of the earliest motion 

categorization studies (Devaul and Dunn, 2001) to distinguish between sitting, walking, biking, and riding 

with a multi-component Gaussian mixture model. Apart from motion sensors in mobile phones, GSM 

data in one of the first studies on recognizing commuter modes applied and they reported that GSM 

signals are inadequate for distinguishing modes of transportation (Muller, 2006).  

In the following years, advances in GPS had a positive influence on not only monitoring individual 

trajectories but also identifying their mode of travel. However, poor reception of location data and high-

power consumption make real-world application with some difficulties. As a GPS based research (Zheng 

et al., 2008) classification model arrived to 72.8 percent accuracy to detect four different modes (cycling, 

driving, bus, and walking).  

Only a few public transport mode detection datasets are currently available, and one of the public 

datasets (Carpineti et al., 2018) tried to distinguish between five various modes, with highest accuracy of 

96 percent. Additionally, in another research using just GPS (Quintella et al., 2016) data for six-months, 

decision tree had the best performance among other classifiers. In another paper (Manzoni et al., 2010) 

accelerometer sensor used with 25Hz frequency and windowing into 10-24 second timesteps with 50% 

overlap (increasing overlap can increase the output accuracy) and resulting in an accuracy of 82.14 

percent for eight different modes. 

In this investigation (Wang et al., 2010) accelerometer saved for six modes of transport with an 8-

second time window without overlapping between windows. Decision three gained the best results. Use 

an approach similar to previous research, they (Nham et al., 2008) arrived to 93.88 percent accuracy for 

classifying four different modes at a frequency of 50Hz and five-second windows with a 50% overlap. 

Adding more sensors can improve the performance of the machine learning models. Investigation 

(Lorintiu and Vassilev, 2016) tried to recognize seven modes of transit by using three key sensors (GPS, 

Accelerometer and Magnetometer). Results show that classification performance reaching up to 96 

percent when GPS data is included and 94 percent with an accelerometer and magnetometer.  

In another investigation, the authors (Efthymiou et al., 2019) addressed a classification problem 

including accelerometer, gyroscope, orientation, and GNSS data, and random forest and gradient boosting 

were the main machine learning techniques. The biggest problem with this research is that just a few 

transport modes were considered. Random forest model arrived at the best results.  

One of the comprehensive experiments (Ferreira et al., 2020) tried to recognize different modes 

including walking, cycling, driving, bus, and train. Frequency to save Accelerometer and GPS data are 1 

Hz and 10 seconds respectively. The results show that walking is the most easily identified form of 

transportation, and the most difficult part belongs to detection car and bus. They reported that random 

forest has better performance than decision tree. 

2.1.2. Deep Learning Models 

Most investigations in transport mode detection area have recommended mode detection models 

based on hand-crafted features directly from raw data, but time consuming and human errors are main 

drawbacks of this approach. 

In this study (Dabiri and Heaslip, 2018) GPS data after a preprocessing step used to predict mode 

of transport. Convolutional Neural Network as a deep learning model arrived at the highest accuracy of 

the test data (84.8 percent). They reported that CNNs outperform classic machine learning algorithms. In 

another paper (Liang and Wang, 2017) using just an accelerometer applied a Convolutional Neural 

Network to build a deep learning model (CNN). In this study, data was recorded at a frequency of 50Hz 

(every 20 milliseconds), and seven modes of transportation, distinguished with an accuracy of 94.48 

percent, which was the highest among similar studies. To minimize the impact of rotation of the phones, 

magnitude of three axis was computed.  

Recurrent Neural Networks as one of the popular time series prediction algorithms in deep 

learning models was developed (Jiang et al., 2017) and achieved classification accuracy over 98 and 97 

percent when detecting four and seven modes of transportation. In another study (Asci and Guvensan, 

2019) using HTC dataset, a recurrent neural network (RNN) applied with new input set data to distinguish 

10 different modes of transportation. They employed three different types of sensors (accelerometer, 

magnetometer and, gyroscope) with a 96.82 percent accuracy. Similar to previous study, a deep Bi-LSTM 
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(bidirectional long short-term memory) neural network architecture (Zhao et al., 2019)tried to identify 

transportation modes. Accelerometer and gyroscope sensors played the main role to arrive 92.8 percent of 

accuracy to classify six types of transport. Final model trained width sliding window of 2.56 seconds with 

50 percent overlap.  

To compare machine and deep learning performance, in paper (Priscoli et al., 2020) data was 

recorded for seven modes of transportation. The sensor data was collected by 18 volunteers at a sample 

rate of 50 Hz and total of 140 hours of data. Random Forest had the best performance among machine 

learning models, with an accuracy of 81.4 percent, while DeepCNN arrived at an accuracy of 98.6 

percent. 

2.2. Trip Phase Recognition (public transport access walking and waiting time) 

There are several methods to calculate walking time to public transportation stops and waiting 

time inside bus and metro stations. The commonly used techniques include self-reported walking (El-

Geneidy et al., 2014; He et al., 2018) by users about their actual walking distance or time from home or 

work office to public transport stations.  

Traditional travel studies are unable to capture the real walking or biking distance to reach public 

transportation stops. Access time is often determined by self-reported interviews. To reduce the role of 

humans in data recording part of investigations, GPS sensors are used to calculate the walking distance 

from home to public transportation stations. In study (Tennøy et al., 2022) the purpose is to calculate the 

duration and distance of walking journeys to public transportation stops in four Norwegian cities. 

Participants responded to questions regarding the mode of transportation they used from home and 

workplace side of the public transport trip, as well as the travel time and distance of trips. Participants 

at the public transport stops reported the distance and duration of their walking journeys to public 

transportation stations. Distances were also calculated from self-reported duration using an average 

walking velocity of 80 meters per minute to provide a deeper understanding of the variances between 

self-reported distance and computed distance.  

In another study (Zuo et al., 2018) data from GPS-based Household Journey Survey (HTS) was 

used to calculate the travel distance and duration to reach public transportation stations. They used GPS 

data to calculate walking and cycling distances to public transportation stations. In one of a few studies 

(Voss et al., 2015) where GPS and Accelerometer were selected to extract trip characteristics, a total of 

100 trips were taken by 42 participants. They conclude that combining GPS and accelerometers improves 

our knowledge of travel behaviors in terms of physical activity.  

In paper (Nygaard, 2016) the waiting time of 1145 passengers at 24 unique bus stops were 

recorded. They also recorded the precise time each commuter arrived at the bus stop and the exact time 

each bus departed. In this study, to compute waiting time they defined that the waiting time for each 

traveler is calculated by subtracting their arrival time to bus stop from the departure time of bus from that 

station.  

To the best of our knowledge, in all aforementioned studies, waiting time and access time to public 

transport stops rely on self-reported data of user or some computational methods, while this study is the 

first investigation that tries to compute these indicators via machine learning models.  

3. Methodology    

In this part, we discuss about 1) Bologna and Sapienza datasets 2) Preprocessing and feature 

extraction procedures 3) Classification algorithms (machine and deep learning 4) Access trip phase 

recognition algorithm. 

 

Figure 1. Two-step access trip phase recognition algorithm 
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3.1. Bologna and Sapienza Dataset 

Sensor data was recorded in bologna dataset (Carpineti et al., 2018) into five transport modes 
including walking, vehicle, stationary, train, and bus with 20 Hz frequency .Totally 31 hours of data to 
train classification models. For the Sapienza dataset, three users saved five hours of data in Rome, 
recording linear accelerometer and magnetometer with 1 Hz frequency and GPS points saved each 10 
second which is similar to this study (Ferreira et al., 2020) including walking, standing, metro and bus. 
Mobile phones were not placed in a specific position when recording data. Furthermore, the main reason 
to save magnetometer is that the results of final model can improve with this sensor when try to detect 

metro segments.     

3.2. Mobile Sensors, Preprocessing, Windowing and Feature Extraction 

Mobile phone position can change during recording data, and to solve this problem, most of the 
research (Reddy et al., 2010; Wang et al., 2010) suggests computing the magnitude of three axes (x, y, z) 
for each record of data. 

 
Figure 2. Bologna dataset after filtering 

There are two major steps for the data preprocessing including filtering and windowing. The 
purpose is to reduce noise caused by the user's abrupt movements. The median filter (Erkan et al., 2018) 
as a non-linear noise filtering process of eliminating noise from images and signals was used to have 
more smooth data. After filtering, data divided into five second time window. Therefore, mean, standard 

deviation, minimum and maximum of each window as a training feature were computed. 

3.3. Machine Learning Classification 

Support vector machines (SVM), K-nearest neighbor, and Random Forests algorithms, as well-
known and often used in current literature were selected for the training, testing, and prediction phase. 
Random Forests (Ho, 1995) are ensemble methods that create a group of “weak learners” to form a 
“strong learner”, able to solve a complex problem. In random forests, the weak learners are decision trees 
(Breiman et al., 1984). Moreover, support vector machines (Andrew, 2001) are supervised learning 
models and, due to their ability to deal with nonlinear classification problems are widely used 
classification algorithms. Finally, K-nearest neighbors (KNN) stores all available samples and classifies 
new samples based on a similarity measure (e.g., distance functions) (Mucherino et al., 2009). 

3.4. Convolutional Neural Network Architecture 

3.4.1. Input Layer 

The input data contains magnitude of linear acceleration for five seconds (fixed time window). A 
matrix with 100 height (20 records in each second multiply by five seconds) and a width of one (one 
sampling value of linear accelerometer). In our CNN model, the input shape for five second time window 
is 100x1. 

3.4.2. Convolutional Layer 

Convolutional layer defines a filter (also known as a feature detector) with a height of three (also 
called kernel size). With the defined kernel size and considering the length of the input matrix, each filter 
will contain weights. The result from the first CNN will be fed into the second CNN layer. We will again 
define different filters to be trained on this level. Convolution filters with equal size (1×3×C) selected for 
all convolutional layers and C indicates the number of channels and in our case is one (one dimensional 
convolutional network).  
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3.4.3. Activation layer 

In our model, activation function is Rectified Linear Units (ReLU) which substitutes all negative 

values in feature map with a value of zero. With respect to other activation functions such as tanh(x) and 

the sigmoid function, the CNN with ReLU has a substantially quicker learning rate (Lin and Shen, 2018). 

3.4.4. Batch Normalization 

Batch normalization layer can be used to normalize inputs before or after activation layers (Ioffe 

and Szegedy, 2015) and it can greatly accelerate the training process of a neural network and, in certain 

situations, enhance model performance via a minor regularization impact. 

3.4.5. Pooling Layer 

The goal of pooling layer is to reduced computation, and control overfitting by reducing the 

dimensionality of each feature map (Scherer et al., 2010). Global Average Pooling is a function that 

computes the average output of each feature map in the preceding layer. There are no trainable parameters 

in this layer.  

3.4.6. Dropout 

Dropout is the most feasible and extensively utilized method for dealing with the overfitting 

problem in CNNs. Dropout is the process of randomly selecting certain weights to zero in order to boost 

the network resiliency (Srivastava et al., 2014). 

3.4.7. Fully Connected Layer with SoftMax Activation 

Several Fully Connected (FC) layers can be used in CNN architecture. In our model, we used 200 

and 100 neurons to link the two final layers to the prior layer. Finally, the data are transferred into a 5×1 

output vector with full connection where the SoftMax activation function is used to build a probability 

distribution across the transportation labels. 

3.4.8. CNN Configurations 

To find the best, different configurations has been tested and results reported to find the optimal 

one for our purpose. We begin with fewer filters and layers, then add more layers and filters inside each 

layer (See Table 1). 

3.4.9. Training Process 

To compute the error at final layer (prediction step), we selected categorical cross-entropy as the 

loss function. In the back propagation phase, Adam optimizer used to update model parameters with 5 

iterations to train our model, and over each iteration our learning rate is divided by 10. We used a batch 

size of 64 and an initial learning rate of 0.01. The accuracy on test data is calculated after each epoch of 

training. 

 
Table 1. Multiple CNN configurations per column 

 A B C D E 

Input Layer 
The shape of input layer is (1×100×1) linear accelerometer segments where 

height and width are 100 and 1 respectively 

Convolutional 32 64 128 256 256 

Batch Normalization yes yes yes yes yes 

      
Convolutional 64 128 256 512 512 

Batch Normalization yes yes yes yes yes 

Convolutional 64 64 128 256 256 
Batch Normalization yes yes yes yes yes 

Global Average Polling yes yes yes yes yes 

FC No 200 200 100 200 
Dropout No 0.2 0.2 0.2 No 

FC No 100 100 50 100 

Dropout No 0.2 0.2 0.2 No 

FC 5 5 5 5 5 

Accuracy 79.00 79.50 80.30 80.45 81.00 



Transport and Telecommunication Vol. 23, no.4, 2022 

278 

3.5. Trip Phase Recognition 

Trip phase algorithm is the last part of this study, it consists of three major phases: 

1) Training a random forest model and prediction transit modes  

2) Post-preprocessing on transport mode detection results 

3) Counting the number of windows in each phase, multiply by window size to define the time 

spent on each phase of the trip. 

We trained a random forest model with Sapienza dataset, using linear Accelerometer and 

Magnetometer (1 Hz frequency), and extract features (mean and standard deviation) of each one-minute 

segments. Data was labeled with (walking, standing, and in-vehicle). It means that we labeled bus and 

metro as in-vehicle, the main goal of access trip phase algorithm is to categorize public transport base 

trips into walking, waiting time, and in vehicle.  

After preprocessing (filtering and windowing), all segments are fed into a pretrained machine 

learning model, and the output is transport mode detection results. The prediction algorithm in some cases 

predicts the transport mode incorrectly since it is not perfect. To improve the final mode, understanding 

the logic of trip phases can reduce the errors of machine learning prediction. 

As part of the post-processing, an algorithm is defined to filter the final forecast. A window with 

length three (3 minutes) start searching and find predictions that are not similar to one before and after 

their index, i.e., a trajectory is predicted as walking, walking, standing, walking, walking. 

Post-preprocessing algorithm change standing in this trajectory to its previous window that here is 

walking. In another case when there are two standing, before and after walking, the walking can convert 

to standing. In these cases, a sudden movement can result saving linear accelerometer as walking. Final 

predictions will not change where the prediction results are walking, walking, standing, in vehicle.  

To recognize two main parts of access trip to public transport stations, we define walking and 

waiting time as following: 

(1) Walking time to public transit stop is the time from origin (home, or office) before waiting 

time at public transport stop. 

(2) Waiting time is the time after finishing walking time to public transport stop and before 

boarding a bus or metro. 

The last part of the algorithm works as following:  

(1) The start time of in-vehicle prediction will be fined. The condition is when algorithm detects 

three in-vehicle prediction segments respectively. 

(2) It will save all windows from start time a trip before starting in-vehicle prediction. The 

number of all walking prediction multiply with window length (one minutes) is defined as 

access time to public transport stops. 

(3) The number of all standing prediction after walking and before boarding vehicle multiply by 

window length is waiting time at public transport station. 

The main reason to not saving GPS points is that individuals are concerned about their privacy 

about saving GPS data. The final goal is to deploy our approach in a real-world situation where 

saving mobile phone battery and privacy is essential for consumers. 

 

 

Figure 3. Post-Processing algorithm for the access trip phase recognition 
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4. Results and Discussion 

We will discuss the results of machine and deep learning, as well as testing access trip phase 

recognition algorithm with new provided trajectories. 

4.1. Machine Learning 

First, we evaluate the performance of our machine learning models. To compare our results with 

investigation (Carpineti et al., 2018), that prepared bologna dataset, the same time window (5 second) and 

features (mean, standard deviation, max and min) were used similar to bologna investigation in both our 

machine and deep learning part. Dataset divided with 70 percent of data for training models and 30 

percent for the test part.  

Each ML algorithm includes unique parameters (hyper-parameters) that are relevant to internally 

operation and to choose the best hyper-parameter combination, we tested many combinations and selected 

number of estimators equal to 160 and bootstrap fixed as true. For the machine learning model evaluation, 

similar to (Carpineti et al., 2018), the accuracy on the test data is reported while deep learning models are 

evaluated with accuracy on the test data and confusion matrix, more details about the metrics can be 

found (Sokolova and Lapalme, 2009). 

Table 2. Results obtained from random forest algorithm selecting different sensors 

Sensor  Accuracy  
 Bologna results Our proposed random forest 

model 

Accelerometer 0.74 0.78 

Linear Accelerometer 0.74 0.77 
Gyroscope 0.68 0.74 

Orientation 0.61 0.63 

We applied the same machine learning algorithm (random forest) to compare our findings more 

effectively with Bologna results. Accelerometer sensor and linear accelerometer both reported 

improvements of 4 and 3 percent, respectively, while orientation accuracy improved up to 2 percent (See 
Table 2). 

4.2. Deep Learning 

CNN architecture has been developed and implemented in Keras, a Python deep learning open-

source library. Results of CNN model on the test data using just linear accelerometer arrived at 81.48%. 
Precision and recall indicators are the performance indicators used for deep learning results. 

Table 3. Performance of different algorithms on linear accelerometer data 

Model  Accuracy 

CNN 0.81 
random forest 0.77 

k nearest neighbor 0.73 

support vector machine 0.62 

Table 4. Performance of CNN model using only Linear Acceleration, 5 seconds time window 

Transport Mode Precision Recall 

Bus 0.62 0.33 
Car 0.78 0.95 

Standing 0.97 0.98 

Train 0.65 0.81 
Walking 0.94 0.91 

Overall 0.79 0.81 

 

Table 4 shows that deep learning layers can extract meaningful features from non-motorized 

modes (walking and standing) and predict segments with more than 0.94 percent accuracy. Train and bus 

had the lowest accuracy, and our model confused so we can safely claim that more features and sensors 

should apply to improve the accuracy of our model like magnetometer that is more sensitive in train 

stations.  
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Figure 4. Confusion matrix for CNN results, 5 second time window, linear acceleration 

The result of CNN model reported in a confusion matrix, the model predicts 247 standing 

segments and 190 walking segments correctly while 20 segments of walking predicted as in a bus, the 

reason can be some movements in a bus or errors of the model. Challenging part similar to machine 

learning model belongs to detection motorized transit modes.  

4.3. Trip Phase Results  

The purpose of this section is to identify the main components of any public transportation base 

journey, including walking time to PT stations and waiting time before boarding a bus or metro via 

pretrained machine learning model. We asked from participants to record public transport-based trips in 

Rome (using bus or metro in their trips and not using car) and fed trajectories into our algorithms to 

evaluate its effectiveness.  

Table 5. Prediction Walking time and Waiting time at bus and metro station 

Trajectory Number Self-report by participants Predicted walking time Predicted 

waiting time 

1 walking-standing-metro 6 min 2 min 

2 walking-standing-bus 5 min 0 min 

3 walking -standing-metro-walking-standing-bus 12 min 3 min 

4 walking-metro-walking-bus 3 min 0 min 

5 walking-standing-bus 5 min 8 min 

6 walking-standing-metro 4 min 5 min 

 

 

Figure 5. Results from prediction Random Forest model 

Access Time To 

Public Transport 

Stops 

    Waiting Time 

 

In Vehicle (Metro) 
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Figure. 6. Predicted probability of each one minutes 

Table 5, Figure 5, and Figure 6 shows algorithm results tested on some new trajectories saved by 

participants in Rome. Participants did not provide details about their journey stages. They described their 

activities as walking, waiting, and using metro or bus. The algorithm provides additional information 

about trajectories and reporting trip phases, as well as the time spent on each of them. There are some 

algorithm errors, i.e., in trip number 2, there is no predicted waiting time and participant claims they 

waited for a bus. From the algorithms performance when waiting time is less than 1 minute it considers 

waiting as in-vehicle when the mode of transport is changing. In total, walking prediction from random 

forest model was more than 95 percent, it means that most of the computed walking time were predicted 

correctly. 

5. Conclusions 

The first aim of this paper is to recognize transit modes using bologna dataset that contains data 

from five different modes. Our results show that, given the same set of features and time windows similar 

to bologna investigation, our suggested machine learning models outperform their results. Moreover, we 

applied a CNN deep learning model using just Linear Accelerometer. However, they did not use deep 

learning models. The results first have shown the effectiveness of the suggested deep learning model, 

which achieved approximately 81% classification accuracy and find that random forest model among 

machine learning models had the best performance for the classification task. Second, a random forest 

machine learning model trained with Sapienza dataset for access trip phase recognition algorithm to 

recognize trip phases including access time and waiting time at train and bus stations. As a first 

investigation to recognize access trip phases to PT stops with machine learning models, instead of using 

self-reported phases by users or applying computational GPS based methods, our algorithm predicts 

duration of walking and waiting to public transportation stations with high precision. 
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