
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Computational Modeling and Simulation
Engineering Theses & Dissertations

Computational Modeling and Simulation
Engineering

Summer 8-2016

Robust Algorithms for Estimating Vehicle Movement from Motion Robust Algorithms for Estimating Vehicle Movement from Motion

Sensors Within Smartphones Sensors Within Smartphones

Ilyas Ustun
Old Dominion University, ilyasustun@gmail.com

Follow this and additional works at: https://digitalcommons.odu.edu/msve_etds

 Part of the Artificial Intelligence and Robotics Commons, and the Transportation Engineering

Commons

Recommended Citation Recommended Citation
Ustun, Ilyas. "Robust Algorithms for Estimating Vehicle Movement from Motion Sensors Within
Smartphones" (2016). Doctor of Philosophy (PhD), Dissertation, Modeling Simul & Visual Engineering, Old
Dominion University, DOI: 10.25777/8fqh-vc04
https://digitalcommons.odu.edu/msve_etds/5

This Dissertation is brought to you for free and open access by the Computational Modeling and Simulation
Engineering at ODU Digital Commons. It has been accepted for inclusion in Computational Modeling and
Simulation Engineering Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more
information, please contact digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/msve_etds
https://digitalcommons.odu.edu/msve_etds
https://digitalcommons.odu.edu/msve
https://digitalcommons.odu.edu/msve
https://digitalcommons.odu.edu/msve_etds?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1329?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1329?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/msve_etds/5?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

ROBUST ALGORITHMS FOR ESTIMATING VEHICLE MOVEMENT

FROM MOTION SENSORS WITHIN SMARTPHONES

by

Ilyas Ustun

B.S. June 2008, Fatih University, Turkey

A Dissertation Submitted to the Faculty of

Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

MODELING AND SIMULATION

OLD DOMINION UNIVERSITY

August 2016

 Approved by:

 Mecit Cetin (Director)

 Roland Mielke (Member)

 Jiang Li (Member)

Tamer Nadeem (Member)

ABSTRACT

ROBUST ALGORITHMS FOR ESTIMATING VEHICLE MOVEMENT

FROM MOTION SENSORS WITHIN SMARTPHONES

Ilyas Ustun

Old Dominion University, 2016

Director: Mecit Cetin

Building sustainable traffic control solutions for urban streets (e.g., eco-friendly signal

control) and highways requires effective and reliable sensing capabilities for monitoring traffic

flow conditions so that both the temporal and spatial extents of congestion are observed. This

would enable optimal control strategies to be implemented for maximizing efficiency and for

minimizing the environmental impacts of traffic. Various types of traffic detection systems, such

as inductive loops, radar, and cameras have been used for these purposes. However, these

systems are limited, both in scope and in time. Using GPS as an alternative method is not always

viable because of problems such as urban canyons, battery depletion, and precision errors.

In this research, a novel approach has been taken, in which smartphone low energy

sensors (such as the accelerometer) are exploited. The ubiquitous use of smartphones in everyday

life, coupled with the fact that they can collect, store, compute, and transmit data, makes them a

feasible and inexpensive alternative to the mainstream methods. Machine learning techniques

have been used to develop models that are able to classify vehicle movement and to detect the

stop and start points during a trip. Classifiers such as logistic regression, discriminant analysis,

classification trees, support vector machines, neural networks, and Hidden Markov models have

been tested. Hidden Markov models substantially outperformed all the other methods. The

feature quality plays a key role in the success of a model. It was found that, the features which

exploited the variance of the data were the most effective.

In order to assist in quantifying the performance of the machine learning models, a

performance metric called Change Point Detection Performance Metric (CPDPM) was

developed. CPDPM proved to be very useful in model evaluation in which the goal was to find

the change points in time series data with high accuracy and precision.

The integration of accelerometer data, even in the motion direction, yielded an estimated

speed with a steady slope, because of factors such as phone sensor bias, vibration, gravity, and

other white noise. A calibration method was developed that makes use of the predicted stop and

start points and the slope of integrated accelerometer data, which achieves great accuracy in

estimating speed.

The developed models can serve as the basis for many applications. One such field is fuel

consumption and CO2 emission estimation, in which speed is the main input. Transportation

mode detection can be improved by integrating speed information. By integrating Vehicle

(Phone) to Infrastructure systems (V2I), the model outputs, such as the stop and start instances,

average speed along a corridor, and queue length at an intersection, can provide useful

information for traffic engineers, planners, and decision makers.

iv

Copyright, 2016, by Ilyas Ustun, All Rights Reserved.

v

This dissertation is dedicated to my family

for their endless support and for their faith in me.

vi

ACKNOWLEDGMENTS

Over the course of my doctoral studies, I have received support and encouragement from

a great number of individuals. First, and foremost I would like to thank Dr. Mecit Cetin who has

been a mentor and a guide to me.

I would also like to mention the committee members who have guided me with their

comments and suggestions: Dr. Roland Mielke, Dr. Tamer Nadeem, and Dr. Jiang Li.

I would like to thank my friends and colleagues who were with me throughout my

curricular and extra-curricular activities. I could not forget to mention the Transportation

Engineering Students Organization, and I am grateful that I was elected as the founding

president.

I would like to give my deepest thanks to my mother, father, and wife. Their prayers,

encouragement, and love helped me a lot during this long journey. …and finally, I would like to

thank my little son Musab Omer as well, for all the joy he has brought into our family.

vii

TABLE OF CONTENTS

 Page

LIST OF TABLES ... viii
LIST OF FIGURES .. x

Chapter

1. INTRODUCTION .. 1
1.1 Smartphones and Accelerometers ... 3

1.2 Objectives .. 6

1.3 Dissertation Outline .. 7

2. LITERATURE REVIEW ... 8

3. MACHINE LEARNING METHODS .. 16
3.1 Support Vector Machines .. 18
3.2 Neural Networks ... 27

3.3 Hidden Markov Models .. 31

4. DATA COLLECTION ... 38

4.1 Data Analysis and Feature Creation .. 43
4.2 Feature Selection ... 49

5. METHODOLOGY ... 59
5.1 Assessing Model Accuracy ... 60

5.2 Experiments and Results ... 73
5.3 Analysis of the Results .. 93

6. SPEED ESTIMATION ... 98

6.1 Algorithm for Estimating Speed ... 98

7. CONCLUSIONS... 107
7.1 Potential Applications of Vehicle Motion Detection .. 110

REFERENCES ... 114

APPENDICES .. 118
A: PREVIOUS METHODOLOGY .. 118

B: PROBLEMS RELATED TO SENSORS .. 134
C: HMM VALIDATION .. 138

VITA ... 142

viii

LIST OF TABLES

Table Page

1. Aggregate summary of datasets used. ... 39

2. Classification Error and Change Point Detection Performance Metric Results 63

3. Classification Error and Change Point Detection Performance Metric Results 64

4. Classification Error and Change Point Detection Performance Metric Results 65

5. Error function values of time differences up to 20s when the values are divided by 20 67

6. Parameters that were used in the exhaustive search of RBF SVM. 77

7. Validation of RBF SVM for Driver 1 - Toyota Prius 2007 - Motorola XT 1063 78

8. Testing of RBF SVM for Driver 1 - Toyota Prius 2007 - Motorola XT 1063 78

9. Validation of RBF SVM for Driver 2 - Toyota Camry 2012 - Lg G4 78

10. Testing of RBF SVM for Driver 2 - Toyota Camry 2012 - Lg G4 79

11. Validation of RBF SVM Driver 3 - Mazda 3 - Samsung Galaxy S3 79

12. Testing of RBF SVM Driver 3 - Mazda 3 - Samsung Galaxy S3 79

13. The window sizes, and number of delays used in NARX exhaustive search. 82

14. Validation of NN for Driver 1 - Toyota Prius 2007 - Motorola XT 1063. 83

15. Testing of NN for Driver 1 - Toyota Prius 2007 - Motorola XT 1063. 83

16. Validation of NN for Driver 2 - Toyota Camry 2012 - Lg G4. .. 83

17. Testing of NN for Driver 2 - Toyota Camry 2012 - Lg G4. ... 84

18. Validation of NN Driver 3 - Mazda 3 - Samsung Galaxy S3. .. 84

19. Testing of NN Driver 3 - Mazda 3 - Samsung Galaxy S3. ... 84

20. Binning the continuous features into discrete values .. 86

21. Validation of HMM for Driver 1 - Toyota Prius 2007 - Motorola XT 1063. 87

ix

Table Page

22. Testing of HMM for Driver 1 - Toyota Prius 2007 - Motorola XT 1063. 87

23. Validation of HMM for Driver 2 - Toyota Camry 2012 - Lg G4. 89

24. Testing of HMM for Driver 2 - Toyota Camry 2012 - Lg G4. ... 89

25. Validation of HMM Driver 3 - Mazda 3 - Samsung Galaxy S3. .. 91

26. Testing of HMM Driver 3 - Mazda 3 - Samsung Galaxy S3. ... 91

27. F1 scores of the validation trips .. 93

28. F1 scores of the testing trips ... 93

29. Window sizes of the best models, as found in different ML techniques. 93

30. Prius HMM best model testing output for different threshold values. 96

31. Camry HMM best model testing output for different threshold values. 96

32. Mazda HMM best model testing output for different threshold values. 97

33. The RMSE of estimated speed w.r.t. GPS speed. ... 106

34. Saturn Ion 2007 Trip Info. .. 118

35. Features used and their explanation. ... 120

36. The consolidated testing error values of 7 trips. ... 121

37. The SVM error results for each feature of test trip 1. ... 124

38. The transition and emission probability matrices ... 127

39. The average errors of the 7 test trips using HMM for state estimation............................. 128

40. The HMM error results for each feature of test trip 1. .. 130

41. The best linear SVM by using grid search over several C values. 132

42. HMM Trained State Transition Matrices .. 138

x

LIST OF FIGURES

Figure Page

1. The X, Y, and Z axes of a phone... 5

2. SVMs for two-category linearly separable classification [39]. ... 20

3. Linearization of nonlinear and nonseparable data in higher dimension space [39]. 24

4. Slack variables allow for not-perfect separation, provide some tolerance [39]. 25

5. A feed forward neural network model with 2 hidden layers. .. 27

6. The model for treating independent data points [41]. ... 31

7. The model for first order Markov chain [41]. ... 32

8. Hidden Markov model, also known as state space model [41]. .. 33

9. The schema for data collection and processing... 39

10. Map of Hampton Roads and trips by three different drivers. ... 40

11. Map of Hampton Roads and the average speeds of the three drivers. 41

12. The X, Y and Z axes of a phone.. 42

13. Three-axis accelerometer data collected by the smartphone for a trip................................ 43

14. The boxplot of the magnitude of the raw data. ... 45

15. Center-based features and percentiles extracted from the data with a sliding window. 46

16. Extreme-value features extracted from the data with a sliding window. 46

17. Variation-based features extracted from the data with a sliding window. 47

18. Extracting features and preparing data for analysis. ... 48

19. Ranked feature scores w.r.t. alpha and the test for Toyota Camry, LG G4. 52

20. Ranked feature scores w.r.t. alpha and the test for Mazda 3, Samsung Galaxy S3. 53

21. Ranked feature scores w.r.t. alpha and the test for Toyota Prius, Moto X1063. 54

xi

Figure Page

22. ReliefF feature weights for each K nearest neighbor for Toyota Prius............................... 56

23. ReliefF feature weights for each K nearest neighbor for Toyota Camry. 57

24. ReliefF feature weights for each K nearest neighbor for Mazda3. 57

25. Example 1: Importance of using the right performance metric for model selection. 63

26. Example 2: Importance of using the right performance metric for model selection. 64

27. Example 3: Importance of using the right performance metric for model selection. 65

28. The error function values corresponding to time differences. .. 66

29. The schema for model development and testing. .. 75

30. NARX model representation with delayed feedback loops and delayed inputs [43]. 81

31. Closed and open loop architectures, respectively [43].. 81

32. Closed loop NARX with 5 tapped delay lines (MATLAB NN Toolbox). 82

33. HMM Representation. Z is the hidden states, X is the observations vector [41]. 85

34. Prius state estimation of test trips. Red: Prediction, Green: Observed. 88

35. Camry state estimation of test trips. Red: Prediction, Green: Observed. 90

36. Mazda state estimation of test trips. Red: Prediction, Green: Observed. 92

37. Percentage True, False, and Miss values w.r.t. the threshold and the vehicle type. 97

38. The route and speed of a Toyota Camry driven from Norfolk to Virginia Beach. 99

39. Raw accelerometer, magnitude of acceleration, and speed of GPS and OBD. 100

40. Speed estimations for each axis using the kinematic equation of 𝑉𝑓 = 𝑉𝑖 + 𝑎∆𝑡. 102

41. Calculating the slope, and finding the beginning and ending speeds of segments. 104

42. Calibrated speed estimation on each axis using the observed change points. 104

43. Calibrated speed estimation on each axis using the predicted change points. 105

xii

Figure Page

44. Acceleration data collected by a smartphone for each transportation type. 111

45. Ubiquitous use of smartphones could be utilized improve traffic. 113

46. Geographic boundaries of the trip data collected in Norfolk, VA 119

47. The SVM predictions of the same test trip of Saturn Ion using different features. 124

48. Lin. SVM, C=1, best models based on classif. error (green), and CPDPM (red). 125

49. The summary of the classification process from start to end. ... 127

50. The state estimation of the first test trip from Saturn Ion using different features. 129

51. The best HMMs. Classif. error (green), CPDPM (red) agree on the same feature. 131

52. The best SVMs based on Classification error (green), CPDPM (red). 132

53. Best HMM results. Class. error (green), CPDPM (red) agree on the same feature. 133

54. RBF SVM state estimation. .. 133

55. Loss of GPS signal several times, not reaching zero when the vehicle has stopped. 135

56. Loss of OBD signal, and the erratic behavior of the accelerometer data. 135

57. Some large variation in accelerometer data when the vehicle is stopping. 136

58. GPS signal not going below 10 mph even when the car is stopping. 136

59. GPS signal hanging around 3 mph while the car is in total standstill. 137

60. Change of orientation around 8 min mark, and lack of GPS at the beginning. 137

61. Prius state estimation of validation trips. Red: Prediction, Green: Observed. 139

62. Camry state estimation of validation trips. Red: Prediction, Green: Observed. 140

63. Mazda state estimation of validation trips. Red: Prediction, Green: Observed. 141

1

CHAPTER 1

INTRODUCTION

Building sustainable traffic control solutions for urban streets (e.g., eco-friendly signal

control) and highways requires effective and reliable sensing capabilities for monitoring traffic

flow conditions so that both the temporal and spatial extents of congestion are observed and the

optimal control strategies are implemented for maximizing efficiency and minimizing the

environmental impacts of traffic. In order to do so, agencies responsible for managing and

operating transportation networks install various types of traffic detections systems, such as

inductive loops, radar, and cameras. These detection systems require a large investment and

provide traffic information only for the specific locations where they are installed. An alternative

option for collecting data about vehicular movements in traffic is equipping vehicles with

tracking technologies, such as GPS. These so-called probe vehicles can provide information

about traffic conditions along their travel paths. Since mobile consumer devices, such as tablets

and smartphones, are equipped with GPS sensors, such devices may serve as a traffic data

collection platform1 .

Recent studies show that the market share of smartphones continues to grow, with over

60 percent U.S. mobile subscribers owning smartphones as of December 2013. Smartphones

have matured as a computing platform and are now equipped with multiple low-energy sensors

including a gyroscope, compass, accelerometer, proximity sensor, and ambient light sensor.

These low energy sensors are on all the time and perform certain tasks (such as screen rotation).

This research aims to exploit the vast amount of data that can be collected by these sensors,

which are always on and are collecting data in the background. Even though researchers have

1 IEEE Transactions and Journals style is used in this thesis for formatting figures, tables, and references.

2

used data from cell phones before, they have relied on GPS, which has the following

disadvantages:

 GPS sensors are energy expensive [1-3]. The GPS sensor, when enabled, consumes

significant energy and depletes the battery of the mobile device quickly.

 GPS has problems receiving a signal when surrounded by high structures such as

skyscrapers, high mountains, or when in a tunnel [4].

 GPS localization precision is low [5].

This research is focused on developing methods to estimate vehicle movement and

operating mode (e.g., being in motion, and stopping) from the raw data collected by the low-

energy sensors, such as the accelerometer. For example, speed estimation can be done using the

acceleration collected in the motion direction of the vehicle. However, because of the inherent

bias in the sensors, the effect of gravity, and the random noise due to environmental factors, the

error will accumulate once the acceleration is integrated to estimate speed. This will lead to

unrealistic speeds after a very short time period. The estimated speed needs to be adjusted at

certain points. The estimated stop or motion start points will serve to calibrate the speed

estimation. For example, if the vehicle stopping instances and the standstill durations can be

detected, the speed estimation at these intervals can be brought down to zero.

Capturing the stopping events and the speed of vehicles on urban streets can support

various applications. If such information is collected from a large number of vehicles and is

aggregated at a traffic management center, useful information about the transportation network

can be extracted. For example, knowing where vehicles stop more frequently and for longer

durations help identify congested segments. In addition, the number of stops a vehicle makes and

its speed are directly related to the fuel consumption and emissions. If such congested segments

3

are along signalized arterials, signal timing adjustments can be made to improve vehicle stops,

delays, and emissions. The route information based on average speed and gas emission levels can

be used to calculate and inform people about speed-based shortest paths and fuel efficiency-

based shortest paths from their origins to destinations.

1.1 Smartphones and Accelerometers

Recent studies [6-8] show that smartphone market penetration has continued to grow

throughout the years. As of December 2013, more than three out of five Americans (65%) are

carrying smartphones, up from 44 percent in 2011 and from just 19 percent in 2009 [9]. The

September 2012 and June 2013 surveys conducted by Pew Research Center show that more than

45 percent, and 56 percent of American adults own a smartphone, respectively [10, 11]. It is

estimated that there will be more than 192 million smartphone users in the U.S. by the year 2016

[12]. As of 2012, phones operating on the Android platform are the most prevalent type (51.8%)

of smartphone, followed by iOS (34.3%) [7]. This ratio did not change much during 2013, when

the Android share stayed the same and the iOS share increased to 40% [13].

Mobile devices have become more sophisticated over the years and are now equipped

with several sensors which make them useful data collection devices. The sensors that are

present in the smartphones are:

1- Global Positioning System (GPS)

2- Vision (Front camera, back camera)

3- Audio (Microphone)

4- Light (Proximity)

5- Acceleration (Accelerometer, Gyroscope)

4

6- Temperature

7- Direction (Magnetic compass or magnetometer)

Since the smartphone penetration is already at high levels and continues to grow rapidly,

making use of smartphones for scientific purposes will provide new and cheap ways for

collecting, processing, and sending data. The ubiquitous use of smartphones will provide the

ability to collect data in large amounts, over longer periods, and in a cheap and passive way

without causing any trouble or expense to the user, since they already own it and are carrying it.

Smartphones are capable of many tasks such as:

1- Providing sensor data such as GPS, accelerometer, gyroscope, magnetometer etc.

2- Storing data

3- Using data and making computations

4- Sending and receiving data via Bluetooth, Wi-Fi, and/ or 3G or 4G connection

The reasons for using Android based operating system can be listed as:

1- It is free

2- It is open source

3- It is the leading operating system among smartphone operating systems, with

approximately 50% market share.

There are many studies that use devices with embedded accelerometers and other sensors

that track people to collect data and estimate daily activities. However, sensors are not practical

to use in everyday life since they involve physical accelerometers or other equipment being worn

on different parts of the body. While this can be done in a laboratory setting or in specialized

conditions, and for a short term (such as using a heartbeat sensor to test a patient for its heart

conditions at a hospital or at his home for a day or two), it definitely cannot be used in everyday

5

life for long durations. Smartphones provide a ubiquitous and cheap way to achieve long term

data collection.

1.1.1 Smartphone Accelerometers

An accelerometer is a sensor that returns a real valued estimate of acceleration along the

X, Y, and Z axes which are shown Fig. 1. These values can be used to estimate velocity and

displacement. The accelerometer used in smartphones are DC accelerometers and are capable of

measuring “static” acceleration. This means that the value reported by the accelerometer is not

the classic definition of time rate change of velocity, but is a function of the force exerted on it

[14]. For example, even when the phone is at rest on a table, one of its axes will report +g

(positive gravity) as acceleration resulting from the opposing force. The fact that the

accelerometer sensor can detect the effect of Earth’s gravity coupled with the gyroscope can be

very useful. By making use of these sensors phones can be used as: a steering wheel in car racing

games, a racket in tennis games, a sleeping behavior tracker, a pedometer that counts the number

of steps taken, a slider which can slide through pages without touching the phone by just tilting it

upward or downward, and in many more ways [15, 16].

Fig. 1. The X, Y, and Z axes of a phone.

6

Accelerometers offer a number of desirable features in monitoring the human movement.

First, they respond to both frequency and intensity of movement, and so they are superior to

actometers or pedometers, which are attenuated by impact or tilt. Second, some types of

accelerometers can be used to measure tilt as well as body movement, making them superior to

motion sensors that have no ability to measure static characteristics. Third, enhancements in

microelectromechanical systems (MEMS) technology have made possible the manufacture of

miniaturized, low cost accelerometers [17]. Another feature of the accelerometer is its high

degree of reliability in measurement, with little variation over time [18].

Recently, physical activity detection has become another use of smartphones with the

purpose of health monitoring. Because of their light weight, small size, and low energy

consumption, the accelerometer sensor embedded wearable systems or smartphones represent

one of the emerging fields that is becoming more and more frequently used, especially in patient

activity monitoring and in the classification of the ambulatory environment. Detecting physical

activities correctly can also help people in their daily lives, since the phone can trigger or block

certain apps during certain activities. For example, when it is detected that a person is jogging, a

pre-programmed type of music can start playing, and any incoming call can be directed to

voicemail [19].

1.2 Objectives

The specific objectives of this dissertation are:

 to develop robust algorithms that detect when the vehicle stops or starts to move based on

the smartphone accelerometer data,

7

 to investigate which feature(s) provide the most useful information for detecting stops

more accurately,

 to evaluate the performance of the algorithms based on field data collected by different

drivers, vehicles and phones,

 to develop a model that can estimate speed based purely on accelerometer data, without

the help of GPS,

 to develop a novel performance metric which will assist in model evaluation. The error

metric should be able to quantify performance based on accuracy - whether true points

are found, and precision- about how close the estimations are to the true points. The error

metric should be able to penalize any missed true points, and also be able to penalize any

false positives heavily.

1.3 Dissertation Outline

In Chapter 2, a literature survey is presented. It mainly focuses on previous studies that

have used smartphone, accelerometer, and other sensor data in their research. Chapter 3 is a

concise overview of some of the machine learning methods that are used in the model

development. Information about the dataset and how it is collected can be found in Chapter 4.

Chapter 5 is about the methodology applied and the experimental results obtained in detecting

the vehicle movement. The novel change point detection performance metric is also introduced

in Chapter 5. Chapter 6 presents a method for estimating speed from acceleration obtained with

accelerometer data of the smartphone. Chapter 7 concludes the dissertation with the summary of

findings, results, contributions, and possible applications of the developed models.

8

CHAPTER 2

LITERATURE REVIEW

Activity recognition and transportation mode identification are two major fields in which

accelerometer data have been widely used. Many of the early studies included wearable

accelerometers in order to detect activity and transportation mode. In the past, very few studies

have used mobile phones to collect data. This situation is rapidly changing, and the presence of

smartphone as a data collection tool can be seen more frequently in recent literature.

In some applications, GPS is also used to enhance the classification accuracy for

transportation mode detection. GPS is used mainly to provide speed information. The added

information of speed can help distinguish between certain modes such as bicycle, motorcycle,

and a passenger vehicle. Some researchers have also tried to integrate the Geographical

Information Systems (GIS) to the model in order to further increase accuracy and/or analyze

human behavior when subject to different conditions, such as being close to a metro station,

being close to shops, etc.

Accelerometers have been used to monitor a range of different movements, including

gait, sit-to-stand transfers, postural sway, and falls. They have also been used to measure

physical activity levels and to identify and classify movements performed by subjects [17]. The

physical activities of people such as walking, running, sitting, watching TV, scrubbing, brushing

teeth, and climbing are some that can be mentioned [20, 21]. Accelerometers have also been used

as motion detectors for body positioning and posture sensing [21]. GPS in combination with an

accelerometer has been used in recent research to detect physical activities [22-25].

Bao et al. used five biaxial accelerometers worn on different parts of the body [20].

Mean, energy, frequency domain entropy, and correlation of acceleration data were calculated to

9

be used in several classifier algorithms. Decision tree classifiers were the best performing among

the algorithms. A key finding here is that some activities are recognized well with subject

independent training data, while some others are subject dependent, i.e., they perform better

when both training and testing is done only on the same subject’s data. When only two out of

five accelerometers were used, the performance dropped only slightly. Accelerometers worn on

the thighs were found to be the most useful in detecting activity.

Automated recognition of human daily activities from wearable sensor signals has many

applications in health care, sports, and aged care. Wang et al. proposed a Hidden Markov model

(HMM)-based recognition method to recognize six human daily activities from sensor signals

collected from a single waist-worn tri-axial accelerometer [26]. The HMM performed very well

in recognizing the activities.

Patient care, chronic disease management, and the well-being of aged people are some

areas in which automatic recognition and classification of a person’s activity are of critical

importance [27]. Ermes et al. used signal features calculated for each second of the data

collection. Time-domain features calculated were mean, variance, median, skew, kurtosis, 25%

percentile, and 75% percentile. Frequency-domain features included the estimation of power of

the frequency peak and signal power in different frequency bands. Speed was calculated from

GPS location data. Spectral entropy was also used. The authors used custom decision trees,

automated decision trees, and artificial neural networks as methods to classify different activities.

In their proposed hybrid method, they combined the best qualities of the custom decision tree

model and neural networks.

Lester et al. used acceleration data together with GPS to detect the mode of transport used

by the passenger and also to extract trip information and dwell locations [28]. Activity inference

10

provides information on what the user is doing, and the localization (such as cell-tower/WIFI

localization and/or GPS) provides location. They also make use of GIS overlay, so that, together

with GPS data, they can more accurately classify whether the passenger is in a car or a bus by

checking the stop and go behavior together with the bus stops along the route. The research was

done in 2008 when mobile phones were just beginning to evolve into small computers, i.e.

smartphones. iPhones and Nokia N95 are mentioned in the paper; however, since the technology

was very new, the authors preferred to use a device called Mobile Sensing Platform (MSP)

instead. MSP combines an Intel XScale processor with an accelerometer, barometric pressure

sensor, light sensors, humidity sensors, microphone (not used in this experiment), GPS, and

storage capacity. The participants of the experiment wore the device on the waist and entered

information about the current environment (in a bus, car, at a café, etc.) into a cellphone. This

type of research can be useful in the analysis of how the behavior of a person is affected in the

proximity of a built environment. For example, how does the proximity or lack thereof of metro

station, bus stop, shops etc. affect the behavior of an individual? Based on the options available,

do people tend to use public transit or to drive to work? This kind of knowledge can provide

valuable information to city management, transit planners, road network planners, and the like.

Jennifer et al. have used smartphone accelerometer sensors to detect walking, jogging,

sitting, standing, climbing upstairs, and climbing down stairs [19]. Their study is part of research

project called Wireless Sensor Data Mining, which aims to collect the sensor data from smart

phones and other mobile devices (e.g., tablet computers, music players, etc.) and mine this sensor

data for useful knowledge [29]. Also, their intention is to bring attention to mining wireless

sensor data in the area of activity recognition. A window size of 10 seconds is used for data

extraction. This window size quite large and is not suitable for a real-time or near-real-time

11

recognition process. 29 people volunteered for data collection, and they carried their phone in

their pants leg pocket. They did nothing regarding orientation correction; the x y and z axis

readings from the phone were directly used in feature extraction. A total of 43 features were

extracted from the data, all from six basic features. In many cases, the X, Y, and Z directions had

their own feature calculated separately. The following features were calculated for each

window: average, standard deviation, average absolute difference, average resultant acceleration,

time between peaks, and binned distribution. Here, the noteworthy feature is the average

resultant acceleration, which is defined as the average of the square root of the sum of the values

of each axis squared over the example duration. Example duration refers to the data points that

are within the window size. So, in essence, they have used the orientation invariant total

acceleration.

 𝑎𝑇𝑜𝑡 = √𝑎𝑥
2 + 𝑎𝑦

2 + 𝑎𝑧
2 (1)

Different machine learning techniques such as decision trees (J48), logistic regression,

and multilayer neural networks present in the WEKA data mining suite were applied. The results

show that climbing up and down stairs are the most difficult to recognize, while sitting and

standing are easily recognized, thanks to the effect of earth’s dramatically gravity changing the

values of acceleration in each axis. The results also agree with other research, where it was found

that an accelerometer attached to the thighs provided the best results [20].

Chen et al. used smartphone accelerometer data to recognize the states of the users

(whether they were in-vehicle or pedestrian) [30]. The aim of the study was to trigger the WiFi

of the smartphone once it sensed that the user was in vehicle, so that the smartphone could

connect to other devices in the car and send and receive data. Participants in the research were

required to carry the smartphones in their pockets while travelling. Fast Fourier Transform (FFT)

12

components were calculated for each window, and energy and frequency domain entropy

features were extracted by using these FFT components. When the energy and entropy results are

plotted onto a scatter graph, the in-vehicle and pedestrian states form distinct clusters. The

proposed method is able to detect the states with high accuracy and low power consumption. The

authors do not indicate exactly which pocket the phone was carried in [30]. Also, they do not

give information about how they dealt with the three-axis data while obtaining the features.

The conventional methods of collecting information about how people go to work, go

shopping, or how much exercise they do per day include paper-based, phone-based, and internet-

based surveys. However, these methods are a burden, both on the surveyor and the surveyed, and

they might involve errors, or surveys might not be filled out in time or might be filled in a rush,

so results might be unreliable.

During the past years, GPS based technology has been used successfully in collecting

activity travel diary data. Professional organizations are now discussing the possible replacement

of traditional travel survey methods by GPS data collection, since this will have the added

benefit of reducing respondent and researcher burden. However, GPS-collected data is not exact

and may have errors in it. When traveling underground or in urban canyons, GPS signals may

not be received. Now, if you add the errors resulting from using these GPS traces in algorithms

to extract travel information, the outcome may not be very accurate.

GPS-based detection methods rely on speed and time information. Use of speed may be

misleading if the feasible range of different modes have similar speed distributions. For example,

fast walking and slow biking, bus or car on congested road, and light rail might be misclassified,

based solely on speed data. When speed is not sufficient enough to discriminate between

transportation modes, or when there are problems with the GPS signal, other relevant data would

13

be useful. Smartphone sensor data provide such an opportunity by introducing additional and

more reliable information. Accelerometers, gyroscopes, magnetometers, etc. provide additional

information that can be utilized to detect the mode of transportation. Accelerometer data is one

of the most used sensors, together with GPS, in the field of activity and mode recognition. The

advantage of accelerometer over GPS is that it is not susceptible to the problems of GPS

mentioned above. It can capture data independent of the exterior situation [31].

The studies in this field are partially successful in detecting the transportation modes. All

of these approaches rely basically on speed and time information, which are extracted from the

GPS traces. As stated above, GPS signals may not be received accurately and may sometimes be

lost. As a result, this will affect accuracy.

Feng et al. have used Bayesian Belief Network in order to detect different transportation

modes [31]. A Bayesian Belief Network is a graphical representation of the conditional

probability and causality relationships between variables. This is a dynamic structure that has the

ability of improving over time, as more samples are collected. The researchers have also used

location-based variables such as latitude and longitude obtained from the GPS to calculate the

speed and distance. They have developed an algorithm based on the Haversine formula, which is

used to calculate great circle distances between two points on a sphere. This is achieved by using

the latitude and longitude of the points and relating the sides and angles of spherical triangles.

The researchers have found that accelerometer-only detection rates were better than GPS-only

detection, and that the results were best when both accelerometer and GPS were used.

Statistical properties of acceleration such as mean, variation, energy, and correlation among three

axes may help to differentiate between different transport modes and activity types. When

different mode types or activities are analyzed, it is easy to see that they have different

14

fluctuations and different ranges for the acceleration values. However, relying only on

representative statistics is not very effective, as shown by different studies. Although these

statistics provide a good amount of information, more advanced techniques are needed to fully

differentiate between modes.

The CO2GO project involves the development of a smartphone application that can

detect the transport mode and estimate CO2 emissions based on the mode the passenger is in [32,

33]. The purpose of CO2 estimation is to create environmental awareness, i.e. the passenger will

be able to see his or her carbon footprint and then act accordingly. The acceleration sensor and

GPS are used. An algorithm uses a Decision Tree classification method to determine the user’s

transportation mode using the accelerometer. A second algorithm computes the distance

travelled, using the GPS and internet map services. The computations are made on the

smartphone, which is based on an android operating system. The output is presented to the user

in the amount of CO2 emissions, thus making it understandable and useful. The main novelty of

this project is that the orientation problem is overcome by using the square root of the sum of

each axis squared, which makes the orientation of the phone irrelevant. Automatic mode

recognition, no manual entry need from the user regarding position, orientation, or transport

mode make the application very useful. Accelerometer, GPS, and online maps are queried

sparsely, decreasing the amount of battery used.

Cooper et al. have used accelerometer and GPS data to investigate the level and location

of the physical activities of children walking to school [23]. The study found that the mean

accelerometer per minute before school was 43% higher for children walking to school than for

those coming to school by car. The study provided evidence that walking contributes to higher

total physical activity in children. The reasons behind the choice of a particular mode of

15

transportation are important for both city design and health of people, as walking is found to be a

significant contributor to daily physical activity.

Troped et al. have done a pilot study activity mode detection of walking, jogging/

running, bicycling, inline skating, and driving by the use of both GPS and accelerometer [24].

The experiments were carried out by ten adults who wore a GPS unit and accelerometer

simultaneously during the aforementioned activities. Discriminant function analysis was used to

identify a combination of variables derived from the accelerometer and GPS speed that best

classified the mode. Walking and bicycling minutes were correctly classified most frequently

(96%). The study has proven that the combination of GPS and accelerometer has improved the

detection rates.

In order to understand the activities and transportation modes that people prefer within a

built environment alongside GPS and sensor data such as accelerometer, geographic information

systems (GIS) can be very useful. Oliver et al. have studied the feasibility of the combination of

GPS, GIS, and accelerometer to understand the transport-related physical activity of adults in a

built environment [22]. The accelerometer and GPS data extracted from forty adults were

integrated into GIS database so that physical activity intensity, GPS speeds, and routes traveled

could be analyzed. The results show that integrating GPS and accelerometer data into a GIS

database can be very promising in understanding the transport-related physical activity of

individuals in built environments.

16

CHAPTER 3

MACHINE LEARNING METHODS

Machine learning (ML) is defined in various ways by different scholars. Arthur Samuel

gives one of the first definitions of ML as: “Machine learning is the field of study that gives

computers the ability to learn without being explicitly programmed.” This can be understood as

the automation of learning by computers. The key part missing in this definition would be data.

The way ML learns and improves on the predictions is through data. Tom Mitchell gives a nice

definition which summarizes the whole process of machine learning [34]. In his words, machine

learning is described in this way: “A computer program is said to learn from experience E with

respect to some task T and some performance measure P, if its performance on T, as measured

by P, improves with experience E.”

ML is a subfield of artificial intelligence that is concerned with the development of

algorithms which allow computer programs to learn from data or experience [35]. These

algorithms are useful in situations where analytic or explicit model development is not possible,

and where there are data available. These datasets are used to train a specific model using the

algorithm where it learns from the data to estimate the underlying true model. Once the training

is finished and the model is ready, new unused datasets are used to test the accuracy of the

model, also referred to as generalization error.

Classification is the process of learning from data and separating them into groups. A

dataset consists of rows (examples, observations) xi each with p dimensions (the columns,

variables, features), and the corresponding classes yi which are also called labels. Subscript i

stands for each example in the data set. A pair (xi, yi) is called a training example where i =

{1,2,...N} for a set with N observations. In the context of the movement of a vehicle, each yi

17

would represent whether the vehicle at instance i is at a standstill or is in motion. An instance

can represent a single time point at which a measurement is taken or a time interval over which a

feature is calculated. In the first case, the corresponding xi is an array of independent variables

such as the recording obtained from the sensors and the GPS at each instance. In the latter case,

however, each xi would be an array of the features calculated such as range, and standard

deviation over a window that spans several neighboring points. What the classification algorithm

is trying to do, is to learn a function or hypothesis hw(x) by using the training set, such that this

hypothesis is able to predict y of new input data with highest accuracy possible. The w represents

the parameters or weights that are found by the algorithm.

There are different methods to come up with a hypothesis. If both features (input) and

labels (output) are used during the learning process, it is called supervised learning. If only the

features are used and the labels are unknown, it is called unsupervised learning. In unsupervised

learning, the algorithm tries to group data into clusters. The algorithms used in this research are

all supervised learning methods since the ground truth of the outcome states are known with the

help of the GPS speed.

Classifiers such as logistic regression, discriminant analysis, classification trees, support

vector machines, neural networks, hidden Markov models, and more have been tested. Most of

these algorithms did not perform well. The three best performing algorithms were found to be

support vector machines, recurrent neural networks, and hidden Markov models. These three

techniques have been used in detecting the change points during a trip of a vehicle, and are

explained in the remainder of this chapter.

18

3.1 Support Vector Machines

Developed from statistical learning theory of Vapnik and Chervonenkis, the support

vector machine is a generalization to the Generalized Portrait Algorithm developed in Russia in

the 1960s [36]. Support vector machines have been based upon the Vapnik Chervonenkis (VC)

theory, which is a framework that characterizes the properties of learning machines that enables

them to generalize well to unseen data [37]. The generalization of SVM is achieved through

controlling the sum of the training data error rate and the capacity or complexity of the learning

machine, which is measured by its VC dimension. Details about the VC dimension can be found

in Vapnik's book [36].A smaller VC dimension leads to a smaller confidence interval, but causes

the training error to increase. The Structural Risk Minimization principle is proposed to solve

this trade-off, in which the sum of the right hand side of Eq. (2) is being minimized. The trade-

off between the complexity of the decision rule and the generalization error can be controlled by

changing the parameter C. A large value of C will allow for larger weights, a more complex

learning machine, and a low error training error. But the system will likely overfit the training

data, hence causing a large testing error. A lower value of C will force the network to have

smaller weights and will increase the training error, but will generalize well to unseen data.

 𝑇𝑒𝑠𝑡 𝐸𝑟𝑟𝑜𝑟 ≤ 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝐸𝑟𝑟𝑜𝑟 + 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑜𝑓 𝑀𝑜𝑑𝑒𝑙 (2)

Support vector machines have a strong ability to approximate linear and nonlinear

relationships. SVMs work by mapping the input vectors into some high dimensional feature

space using nonlinear functions. The linear separation between two classes is done in this high

dimensional space. The properties of the linear decision surface ensure that the network is highly

generalizable. One very important idea behind SVMs is that not all of the data points influence

19

optimality as in linear regression, or Naive Bayes, but the points close to decision boundary.

These points are referred to as Support Vectors; hence the name Support Vector Machine.

SVMs behave similarly to multilayer feedforward neural network models. One difference

is that SVMs are based on structural risk minimization. VC depends on the chosen class of

functions, whereas the empirical risk and actual risk depend on the one particular function

chosen by the training procedure. Structural Risk Minimization (SRM) consists of finding this

subset of functions which minimizes the bound on the actual risk. SRM enables the support

vector machine to better generalize, compared to neural networks. Another important difference

is that SVMs can always guarantee a globally optimum solution [38]. This is because the

objective function given in Eq. (3) of SVM is strictly convex, which means that the Hessian of

the objective function is positive definite, which leads to a single global solution.

 𝐿𝐷 = ∑ 𝛼𝑖 −
1

2
𝑖

∑ 𝛼𝑖

𝑖,𝑗

𝛼𝑗𝑦𝑖𝑦𝑗𝒙𝑖 · 𝒙𝑗 (3)

SVMs have applications both in classification and regression. C-SVM variant is the one

used for classification which is also used as one of the methods in the motion detection algorithm

in this dissertation. The C-SVM will be referred to as SVM from now on for brevity, and will be

explained next with a two category linearly separable classification problem. This two variable

problem can be generalized to more variables. The training data consists of pairs {xi, yi}, where i

= {1, 2, ..., N}, yi ∈ {−1, 1}, xi ∈ R2.

We want to separate these two categories by a decision boundary, as shown in Fig. 2.

While doing this, we want to maximize the margin to the closest positive and negative training

examples (shown as m/2 in the figure) which gives two parallel separating boundaries, shown as

dashed lines.

20

Fig. 2. SVMs for two-category linearly separable classification [39].

These boundaries are in the shape of a line for two-dimensional data, plane for three-

dimensional data, and a hyperplane for data with dimensions more than three. In this example,

since the data is two dimensional, it will be a line. The separating hyperplane that is at

equidistance to the two boundaries is defined as:

 𝒘𝑇𝒙 + 𝑏 = 0 (4)

Where,

w is the weights vector

x is the p dimensional input vector

b is a constant

The SVM tries to establish this hyperplane such that the closest points in both categories

are separated as much as possible. This is pictured by dashed lines in Fig. 2 and is formulized as

follows:

 𝒘𝑻𝒙 + 𝑏 ≥ +1 for 𝑦 = +1 (𝐻1) (5)

21

 𝒘𝑻𝒙 + 𝑏 ≤ −1 for 𝑦 = −1 (𝐻2) (6)

These formulas can be combined into:

 𝑦𝑖(𝒘𝑻𝒙𝒊 + 𝑏) ≥ 1 for 𝑖 = 1,2, … , 𝑁 (7)

The minimum distance between two parallel lines is the distance of a line drawn from a

point on one line to the point on the other line that is perpendicular to both. Let the lines be:

𝐴𝑥 + 𝐵𝑦 + 𝐶1 = 0

𝐴𝑥 + 𝐵𝑦 + 𝐶2 = 0

(8)

 Then, the distance between them can be expressed as:

 𝑑 =
|𝐶2 − 𝐶1|

√(𝐴2 + 𝐵2)
 (9)

To find the maximum perpendicular distance between the parallel hyperplanes shown as

the lines from Eq. (5) and Eq. (6) are converted to the form in Eq. (10):

𝒘𝑻𝒙 + (𝑏 − 1) = 0

𝒘𝑻𝒙 + (𝑏 + 1) = 0

(10)

Thus, the distance between H1 and H2 is:

 𝑑 =
|𝑏 + 1 − (𝑏 − 1)|

√(𝒘𝑻𝒘)
=

2

‖𝒘‖
 (11)

In order to achieve the largest margin between the boundaries, SVM tries to maximize

this distance. Maximizing this distance is equivalent to minimizing ‖𝒘‖2 which can also be

written wTw in matrix notation form. Thus, the objective of SVM can be formulated as:

Minimize:

1

2
𝒘𝑻𝒘 (12)

Subject to:

22

 𝑦𝑖(𝒘𝑻𝒙𝒊 + 𝑏) ≥ 1 for 𝑖 = 1,2, … , 𝑚 (13)

Eq. (12) and (13) form a constrained optimization problem. It is found that, instead of the

above optimization problem, Lagrangian formulation of the problem is more convenient to solve.

Lagrangian identity can be written as dot products. This feature will come in very handy when

generalizing to nonlinear cases [38].

By applying Lagrangian formulation, we get:

 𝐿𝑃 =
1

2
𝒘𝑻𝒘 − ∑ 𝛼𝑖

𝑁

𝑖=1

𝑦𝑖(𝒘𝑻𝒙𝒊 + 𝑏) + ∑ 𝛼𝑖

𝑁

𝑖=1

 (14)

The Lp stands for Lagrangian-Primal. Since this problem is a convex optimization

problem where both the objective function and the constraint set is convex, it allows us to solve

it in the dual form. The dual model used is called Wolfe dual and it will solve the problem to

yield the same results for w, b, and α as the primal function.

It is required that the gradient of the primal form LP w.r.t. to w and b vanish:

 𝒘 = ∑ 𝛼𝑖𝑦𝑖𝒙𝒊

𝑁

𝑖=1

 (15)

 ∑ 𝛼𝑖𝑦𝑖

𝑁

𝑖=1

= 0 (16)

Where,

αi are positive Lagrange multipliers one for each of the inequality constraint in Eq. (13)

i = {1,2, …, N}.

Because these are equality constraints in dual formulation, they can be substituted into

Eq. (14) which yields the dual form of the Lagrangian problem LD:

23

 𝐿𝐷 = ∑ 𝛼𝑖 −
1

2
𝑖

∑ 𝛼𝑖

𝑖,𝑗

𝛼𝑗𝑦𝑖𝑦𝑗𝒙𝑖 · 𝒙𝑗 (17)

We have two different Lagrangian problems that arise from the same objective function.

The solution can be found by minimizing the primal Lagrangian LP or by maximizing the dual

Lagrangian LD. The dual Lagrangian constraints are:

 ∑ 𝛼𝑖𝑦𝑖

𝑁

𝑖=1

= 0 (18)

 𝛼𝑖 ≥ 0 for 𝑖 = {1,2, … , 𝑁} (19)

The solution for w is obtained by Eq. (15). In the solution, those points for which αi > 0

are called support vectors and lie on one of the hyperplanes H1, H2. All other points have αi = 0

and lie on the side of hyperplanes H1, H2 such that the inequalities of Eq. (5) and (6) hold. Thus,

the support vectors play the critical role in forming the decision boundary and in classifying the

dataset. All other points do not have any influence on the classifier. Even if the other points were

moved around without crossing H1, H2 and if training would have been repeated, the same

boundaries would have been found [38].

Until now, we have solved the problem for linearly separable case. In many situations,

however, problems which are linearly nonseparable or nonlinear need to be solved. To address

linear nonseparable cases, slack variables are introduced. To address a nonlinear case, a

transformation function ϕ is introduced. Going back to Eq. (12), the nonlinear and nonseparable

problem is then formulated as:

Minimize:

1

2
𝒘𝑻𝒘 + 𝐶 ∑ 𝜉𝑖

𝑚

𝑖=1

 (20)

Subject to:

24

 𝑦𝑖(𝒘𝑻𝜑(𝒙𝒊) + 𝑏) ≥ 1-𝜉𝑖 ∀𝑖 ∈ 𝑚 (21)

 𝜉𝑖 ≥ 0 ∀𝑖 ∈ 𝑚 (22)

Where,

ξi is the slack variable, and

ϕ(xi) maps the input features to a new higher dimensional space.

Mapping of the input vector into high dimensional space will also change the dimension

of w. By doing this, the nonlinear problem is linearized in the new feature space, as can be seen

in Fig. 3. The exact form of this mapping function is not needed to be known explicitly, since

Kernel functions can be used instead. The slack variable ξi is defined as the distance to which

point i goes beyond the boundary of its category, as shown in Fig. 4. Slack variables allow some

variables not to be classified correctly, to some extent. This is again related to maximal margin

notion. By sacrificing some accuracy, the SVM achieves a large margin, which benefits the

overall problem. However, there is a tradeoff between achieving a large margin and accuracy,

and the balance is found by penalizing the tolerance to errors in the cost function (Eq. (20)).

Fig. 3. Linearization of nonlinear and nonseparable data in higher dimension space [39].

25

Fig. 4. Slack variables allow for not-perfect separation, provide some tolerance [39].

Given the slack variables, and by mapping the input vectors into higher space, we can

now use the dual form with these concepts.

Minimize:

 𝐿𝐷 = ∑ 𝛼𝑖 −
1

2

𝑚

𝑖

∑ 𝛼𝑖

𝑖,𝑗

𝛼𝑗𝑦𝑖𝑦𝑗𝐾(𝒙𝑖, 𝒙𝑗) − ∑ 𝛼𝑖

𝑚

𝑖=1

 (23)

Subject to:

 ∑ 𝛼𝑖𝑦𝑖

𝑚

𝑖=1

= 0 (24)

 0 ≤ 𝛼𝑖 ≤ 𝐶 𝑖 = 1, … , 𝑚 (25)

Where 𝐾(𝒙𝒊, 𝒙𝒋) = 𝜑(𝒙𝒊)𝜑(𝒙𝒋) is the kernel function.

26

The reason that the slack variables disappeared lies in the fact that we have chosen the

penalty function to be:

 𝐶 (∑ 𝜉𝑖

𝑚

𝑖=1

)

𝑘

 (26)

When k=1, neither the slack variable ξi, nor their Lagrange multipliers appear in the

Wolfe dual problem [38].

After solving for αi, w can be calculated by:

 𝒘 = ∑ 𝛼𝑖𝑦𝑖𝜑(𝒙𝒊)

𝑁

𝑖=1

 (27)

In the testing phase, to predict the output �̂� given new inputs x, Eq. (28) is applied:

 �̂� = 𝑠𝑔𝑛(𝒘𝑻𝜑(𝒙) + 𝑏) = 𝑠𝑔𝑛 (∑ 𝛼𝑖𝑦𝑖𝐾(𝒙𝒊, 𝒙)

𝑚

𝑖=1

+ 𝑏) (28)

As can be seen in Eq. (28), the mapping function is replaced by kernel function. Thus, the

explicit form of the mapping function is not needed. There are many different types of kernel

functions, some of which are:

 𝐾(𝑥, 𝑦) = (𝑥𝑇𝑦 + 1)𝑝 (29)

 𝐾(𝑥, 𝑦) = exp(−𝛾‖𝑥 − 𝑦‖2) (30)

 𝐾(𝑥, 𝑦) = tanh(𝜅𝑥𝑇𝑦 − 𝛿) (31)

Where polynomial, radial basis, and hyperbolic tangent kernel functions are given

respectively. In this dissertation the preferred kernel is the one most used in the literature, the

radial basis kernel function.

The model described above is for binary classification. This model can be extended for

multi-category cases by adopting a "one-against-one" approach [40]. In this method:

27

1. K SVM classifiers are trained to distinguish y = k from the rest, for k =1,2,…,K.

2. The weight vectors for each classifier is computed w1, w2, …, wk.

3. Point x is assigned to class k that yields the largest wk
Tx value.

3.2 Neural Networks

The Neural Network (NN) is a black box mathematical model which consists of artificial

neurons connected with each other to form a network. Nodes are grouped into layers and form a

directed graph where the transition goes from input layer to the output layer, as depicted in Fig.

5. A neuron is the basic element of NN, where computations take place. The term Artificial

Neural Network (ANN) is also used to distinguish the model from biological neural network

models.

Fig. 5. A feed forward neural network model with 2 hidden layers.

If there are only the input and output layers, this is called a perceptron, developed by

Rosenblatt, and it can be regarded as the simplest feed forward neural network. Here, the sum of

weighted inputs is transferred to a function which calculates the output. If there is another layer,

28

called the hidden layer, in the network, then our model becomes a multilayer perceptron neural

network.

The term NN generally refers to feed forward neural networks unless otherwise stated.

There are other NN models such as: Probabilistic Neural Networks, General Regression Neural

Networks, Radial Basis Function Networks, Cascade Correlation, Functional Link Networks,

Kohonen networks, Gram-Charlier networks, Learning Vector Quantization, Hebb networks,

Adaline networks, Heteroassociative networks, Recurrent Networks, and Hybrid Networks. The

Feedforward Back Propagation Neural Network (FFBPNN) will be analyzed further, as it is the

backbone of the overall NN literature. Also, the dynamic recurrent neural network used in this

dissertation for finding the change points during a trip is based on the feed forward neural

network.

3.2.1 Feed Forward Back Propagation Neural Network (FFBPNN)

FFBPNN is a neural network architecture which has an input layer, one or more hidden

layers, and an output layer. The input layer has as many neurons as the number of features of the

input vector x. The hidden layer can be a single layer or multiple layers, each with a single

neuron or with several neurons. The hidden layer neurons apply a nonlinear transfer function to

the sum of weighted input features. The result is multiplied by the weight of the connection

between the current layer and the next, and is transferred to the next layer. If the next layer is a

hidden layer, the same procedure is repeated. If it is the output layer, then the incoming weighted

outputs from hidden neurons are summed and the final output is found.

The more hidden layers, and the more hidden neurons in each hidden layer of a neural

network, the more complex the system gets. More complicated systems can fit more difficult

29

problems; however, special attention should be paid not to overfit the training data, which will

lower the generalization capability of the network.

The NN with feedforward and backward propagation algorithm can be summarized as

follows:

1. The parameters (weights) are initialized randomly.

2. For each xi
 ,

 {Implement forward propagation and get hw(xi)

 Compute cost J(w)

 Implement back propagation to compute partial derivatives}

3. Implement gradient descent, or Newton's method, or another advanced optimization

algorithm to minimize J(w) as a function of w.

First, the weights are initialized randomly. Then, for each input vector, first the FF

algorithm then the BP algorithm is applied. The FF algorithm takes the input and, by applying

the transfer functions in the hidden layer neurons, computes the output. The activation function

chosen is generally the sigmoid function:

 𝜎(𝒙𝒋) =
1

1 + 𝑒𝑥𝑝(−𝒙𝒋)
 (32)

Where

xj is one feature (dimension) of the input vector x

This value is passed on to all of the units in the next layer by multiplying it with the

corresponding weight in that connection. At the end, an estimated output is found for the input.

Then the current cost is computed. At this stage, forward propagation is completed and the back

propagation algorithm starts.

30

The back propagation computes the error starting from output node and, by going

backwards, computes all of the errors in each node until the input layer. There is no error

associated with input layer, so there, nothing is done.

The errors found are used to get the partial derivatives with respect to each weight.

Finally, these partial derivatives are used to update the weights. To do this, several methods are

possible. The most popular one is the Least Mean Squares (LMS) method also known as

Gradient Descent Algorithm. The name Widrow Hoff Algorithm is commonly used too, since it

was first introduced by these people. The Gradient Descent Algorithm makes corrections to the

weight vector in the direction of the negative of the gradient vector, which eventually leads to the

minimum mean square error. Once the weights are updated, the procedure restarts from

beginning. This is done until the algorithm converges. Convergence can be met by certain

number of iterations, or by checking the change in the error function in the validation set. If the

validation set error stops decreasing, and starts increasing for several iterations, the algorithm

can be stopped and the weights where the validation set error was lowest can be selected as the

model to be used for testing.

By adding feedback loops with tapped delay lines from the predicted output to the input

layer, the feedforward neural network architecture can be turned into a recurrent dynamic neural

network. Feedback loops provides memory to the NN, which allows for better results in time

series problems, where data points are related to each other. This model is explained more in the

Methodology chapter, and is used as one of the algorithms for change point detection.

31

3.3 Hidden Markov Models

Traditional statistical methods, and many machine learning models use restrictive

assumptions such as normality, linearity, and independence among predictor variables. The

models based on such assumption can be shown as in Fig. 6. For some applications, this

assumption will not be satisfactory. Sequential data, for example, is such an area, where treating

each point as an individual, independent member of the population will fail to accurately come

up with a classification because of the correlation between consecutive pairs of data points.

There will be much larger relation between near points in the sequence than between the farther

points. However, none of this is captured once the data is treated as i.i.d [41].

Fig. 6. The model for treating independent data points [41].

The main area where sequence is of concern is time series data. Weather data, the daily

values of stock exchange, currency exchange, and acoustic data in speech recognition are a few

examples to mention. The nucleotide base pairs in a DNA, and the character and word sequence

of a sentence in a particular language are some examples of sequential data where time series is

irrelevant [41].

3.3.1 Markov Models

An easy way to capture the effect of correlation between data in a probabilistic model is

Markov Chain Model. The beauty of the Markov model lies in its famous characteristic called

memory-less property. Basically, the current point is dependent only on the most recent point

32

and is independent of all previous points. This is called the first-order Markov Chain, and it is

depicted in Fig. 7. This model allows us to simplify Eq. (33) which is the product rule to express

joint probability distribution for a sequence of observations, and to obtain Eq. (34).

 𝑝(𝑥1, … , 𝑥𝑇) = ∏ 𝑝(𝑥𝑡|𝑥1, … , 𝑥𝑡−1)

𝑇

𝑡=1

 (33)

 𝑝(𝑥1, … , 𝑥𝑇) = 𝑝(𝑥1) ∏ 𝑝(𝑥𝑡|𝑥𝑡−1)

𝑇

𝑡=2

 (34)

Also, by using the above property and by applying d-separation, it can be found that the

conditional distribution of xt given all the previous points, is:

 𝑝(𝑥𝑡|𝑥1, … , 𝑥𝑡−1) = 𝑝(𝑥𝑡|𝑥𝑡−1) (35)

The first-order Markov chain can be further relaxed to include several previous points,

which yield the higher order Markov chains. For example, in a second order Markov chain, the

current point is dependent on the two previous points and is independent of all the rest.

Fig. 7. The model for first order Markov chain [41].

3.3.2 Hidden Markov Models

A richer and more useful model can be reached by introducing latent or hidden variables.

For each observation xt a hidden variable zt is introduced. The zt’s may or may not be of the same

type and dimensionality to the observed variable xt’s. Now, it is assumed that the hidden

variables compose the Markov chain, and that the observed variables serve as an output at each

point in the sequence, hinting at the underlying hidden variable, which cannot be observed

33

directly. This graphical structure is called the state space model, and is shown in Fig. 8. Speech

recognition, natural language modeling, online handwriting recognition, and protein and DNA

sequence modeling are some of fields where Hidden Markov models are predominantly used.

Fig. 8. Hidden Markov model, also known as state space model [41].

The Markov properties also hold for the hidden Markov model. For a hidden Markov

model, three parameters need to be found: The initial probability distribution (π), the transition

probabilities between latent variables (A), and the probabilities of observing certain outcomes at

certain hidden states (B). Thus, the set of parameters governing the model for HMM can be

defined by the set given in Eq. (36).

 𝜆 = (𝐴, 𝐵, 𝜋) (36)

S being the set of all possible states, and O being the set of all possible observations, we

have:

 𝑆 = {𝑠1, 𝑠2, … , 𝑠𝑁}, 𝑂 = {𝑜1, 𝑜2, … , 𝑜𝑀} (37)

For a fixed state sequence Z, and the corresponding observation sequence X, we will

have:

 𝑍 = {𝑧1, 𝑧2, … , 𝑧𝑇}, 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑇} (38)

The transition array A is a matrix that stores the probabilities of state j following state i,

independent of time:

34

 𝐴 = [𝑎𝑖𝑗], 𝑎𝑧𝑡−1,𝑧𝑡
= 𝑃(𝑧𝑡 = 𝑠𝑗|𝑧𝑡−1 = 𝑠𝑖) (39)

The observation array B is a matrix that stores the probability of observation k being

emitted at state i, independent of time:

 𝐵 = [𝑏𝑖𝑘], 𝑏𝑧𝑡,𝑥𝑡
= 𝑃(𝑥𝑡 = 𝑜𝑘|𝑧𝑡 = 𝑠𝑖) (40)

Π is the array for initial state probability distribution:

 𝜋 = [𝜋𝑖], 𝜋𝑖 = 𝑃(𝑧1 = 𝑠𝑖) (41)

Two assumptions are present in the HMM. The first property is the Markov property,

which says that the current state is dependent only on the previous state:

 𝑃(𝑧𝑡|𝑧1: 𝑧𝑡−1) = 𝑃(𝑧𝑡|𝑧𝑡−1) (42)

The second property states that the current observation is dependent only on the current

hidden state and is independent of the rest:

 𝑃(𝑥𝑡|𝑥1: 𝑥𝑡−1, 𝑧1: 𝑧𝑡) = 𝑃(𝑥𝑡|𝑧𝑡) (43)

The joint distribution of hidden Markov model is given in Eq. (44).

 𝑝(𝑥1, … , 𝑥𝑇 , 𝑧1, … , 𝑧𝑇) = 𝑝(𝑧1) ∏ 𝑝(𝑧𝑡|𝑧𝑡−1) ∏ 𝑝(𝑥𝑡|𝑧𝑡)

𝑇

𝑡=1

𝑇

𝑡=2

 (44)

There are three main fields that need to be addressed in a hidden Markov model. These

will be explained briefly.

 Evaluation

Given the model λ for HMM, and the observation sequence, the probability of the

observations given the model P(X|λ) is calculated. This can be viewed as the “evaluation” of the

model in how well it predicts the given sequence of observations.

The probability of observations for a specific state sequence Z is:

35

 𝑃(𝑋|𝑍, 𝜆) = ∏ 𝑃(𝑥𝑡|𝑧𝑡, 𝜆) = 𝑏𝑧1,𝑥1
𝑏𝑧2,𝑥2

… 𝑏𝑧𝑇,𝑥𝑇

𝑇

𝑡=1

 (45)

The probability of state sequence is:

 𝑃(𝑍|𝜆) = ∏ 𝑃(𝑥𝑡|𝑧𝑡, 𝜆) = 𝜋𝑧1
𝑎𝑧1,𝑧2

𝑎𝑧2,𝑧3
… 𝑎𝑧𝑇−1,𝑧𝑇

𝑇

𝑡=1

 (46)

Thus, the probability of the observations given the model parameters is:

 𝑃(𝑋|𝜆) = ∑ 𝑃(𝑋|𝑍, 𝜆)𝑃(𝑍|𝜆)

𝑍

= ∑ 𝜋𝑧1
𝑏𝑧1,𝑥1

𝑎𝑧1,𝑧2
𝑏𝑧2,𝑥2

… 𝑎𝑧𝑇−1,𝑧𝑇
𝑏𝑧𝑇,𝑥𝑇

𝑍

 (47)

An easier approach to find the probability of the observation sequence is defined by the

forward algorithm. The forward probability variable α which is the probability of the partial

observation sequence x1, x2,…, xt and state si at time t, defined as:

 𝛼𝑡(𝑖) = 𝑃(𝑥1𝑥2 … 𝑥𝑡 , 𝑧𝑡 = 𝑠𝑖|𝜆) (48)

Thus if the trellis diagram is filled from begin to end with α values obtained in each step,

the sum of α’s in the final column will be equal to the probability of the observation sequence.

The forward algorithm is as follows:

1. Initialization

 𝛼1(𝑖) = 𝜋𝑖𝑏𝑧𝑖,𝑥1
, 1 ≤ 𝑖 ≤ 𝑁 (49)

2. Induction

 𝛼𝑡+1(𝑗) = [∑ 𝛼𝑡(𝑖)𝑎𝑖𝑗

𝑁

𝑖=1

] 𝑏𝑧𝑗,𝑥𝑡+1
, 1 ≤ 𝑡 ≤ 𝑇, 1 ≤ 𝑗 ≤ 𝑁 (50)

3. Termination

 𝑃(𝑋|𝜆) = ∑ 𝛼𝑇(𝑖)

𝑁

𝑖=1

 (51)

36

The forward algorithm reduces the complexity of computing the probability of an

observation sequence given the model from 2TNT to N2T, which is huge.

 Decoding

Decoding is the process to get the hidden state sequence that was most likely responsible

for generating the observed sequence. The Viterbi Algorithm is used to get a single best state

sequence. The Viterbi Algorithm is very similar to the forward algorithm, but instead of

summing at each step at each state, the transition probabilities are maximized. The variable δ is

the probability of the most probable state path for the partial observation sequence.

 𝛿𝑡(𝑖) = max
𝑍

𝑃(𝑧1𝑧2 … 𝑧𝑡 = 𝑠𝑖, 𝑥1𝑥2 … 𝑥𝑡|𝜆) (52)

The Viterbi Algorithm is as follows:

1. Initialization

 𝛿1(𝑖) = 𝜋𝑖𝑏𝑧𝑖,𝑥1
, 1 ≤ 𝑖 ≤ 𝑁, 𝜓1(𝑖) = 0 (53)

2. Recursion

 𝛿𝑡(𝑗) = max
1≤𝑖≤𝑁

[𝛿𝑡−1(𝑖)𝑎𝑖𝑗] 𝑏𝑧𝑗,𝑥𝑡
, 2 ≤ 𝑡 ≤ 𝑇, 1 ≤ 𝑗 ≤ 𝑁 (54)

 𝜓𝑡(𝑗) = arg max
1≤𝑖≤𝑁

[𝛿𝑡−1(𝑖)𝑎𝑖𝑗] , 2 ≤ 𝑡 ≤ 𝑇, 1 ≤ 𝑗 ≤ 𝑁 (55)

3. Termination

 𝑃∗ = max
1≤𝑖≤𝑁

[𝛿𝑇(𝑖)] (56)

 𝑧𝑇
∗ = arg max

1≤𝑖≤𝑁
[𝛿𝑡(𝑖)] (57)

4. Optimal state sequence backtracking

 𝑧𝑡
∗ = 𝜓𝑡+1, (𝑧𝑡+1

∗), 𝑡 = 𝑇 − 1, 𝑇 − 2, … ,1 (58)

37

The variable ψ stores the state that maximizes the current partial probability and acts as a

backpointer in Step 4. After finalizing the algorithm by finding the maximum probability, the

state sequence is backtracked and the whole state sequence is revealed.

 Learning

This is the process for learning the model parameters: initial state probabilities array π,

state transition array A, and observation probability array B. Two basic approaches can be

applied to compute the parameters: the supervised and the unsupervised learning. If we know the

state sequence and the observation sequence, the state sequence can be used as labels to the

observation sequence, making it a supervised learning. The parameters can be found by

maximum likelihood estimation. If the state sequence is not known, or if it is not wanted to be

used, then all that is left is the observation sequence; thus, the unsupervised learning approach

should be taken. In this case, the Baum-Welch algorithm is a well-known algorithm to estimate

the model parameters.

38

CHAPTER 4

DATA COLLECTION

The field data are collected with two devices: a smartphone and an on-board diagnostics

(OBD) device. The on-board diagnostics second-generation (OBD II) device is connected to the

vehicle’s CAN bus. The OBD device used is capable of transmitting data via Bluetooth. The

smartphone and the OBD are paired via a Bluetooth connection. An Android application is

developed which records the data from the smartphone sensors, and also logs GPS readings and

the data transmitted from the OBD, such as speed. The overall schematic of the data collection

and processing can be seen in Fig. 9.

Each sensor has its own data sampling rate, and the app is set to log data from each

sensor at the highest rate allowed. From the field data collected, it is found that the sampling rate

for accelerometer sensor can be as low as 1 per second and as high as 238 per second, with the

majority at 15 per second. In general, the more the forces exerted on the phone, the higher the

sensor activity is. The GPS and OBD data collection rate is at 1 per second. These separate

datasets from acceleration, GPS, and OBD are first interpolated with a common start and end

time and then combined together, which yields the raw data. The OBD or GPS speed data are

used to create ground truth data of vehicle standstill and motion states which will be used in

model training and testing.

The data collection process involved normal driving on streets, arterials with signalized

intersections, and the highways in the Hampton Roads area in Virginia. The vehicle and device

combinations that were used to collect data are: Toyota Prius 2007 – Moto XT1063; Mazda 3

2007 – Samsung Galaxy S3; Toyota Camry 2012 – Lg G4. The summary of the trips taken by

39

the drivers are given in Table 1. Some of the trips of each driver are plotted on the map in Fig.

10, and their average speeds are shown in Fig. 11.

Fig. 9. The schema for data collection and processing.

Table 1. Aggregate summary of datasets used.

 Dataset
of

Trips

Total

Length(min)

Standstill

Duration(min)

% Stop

Duration

of

Stops

MaxSpeed

(mph)

AvgSpeed

(mph)

P
ri

u
s

Train 10 181 25 14 64 69 33

Val 10 241 56 23 125 68 24

Test 20 496 91 18 251 68 25

C
am

ry
 Train 10 204 34 17 74 74 30

Val 10 182 18 10 36 82 40

Test 20 488 77 16 137 78 33

M
az

d
a

Train 10 289 69 24 135 70 24

Val 10 207 50 24 74 72 31

Test 20 462 140 30 160 80 24

OBD II

GPS

OBD

GPS

Phone Sensors

Vehicle,
Driver,
Timestamps

40

Fig. 10. Map of Hampton Roads and trips by three different drivers.

41

Fig. 11. Map of Hampton Roads and the average speeds of the three drivers.

The application obtains data from the phone’s three-axis accelerometer which measures

the acceleration in three directions, its three-axis gyroscope which measures the angular velocity,

and its 3-axis magnetometer which measures the angle by which the device is rotated, relative to

the Earth’s magnetic north pole. Thus, we have, in total, nine independent measurements from

three low-energy sensors. These three axes, X, Y and Z, of a phone are shown in Fig. 12.

42

Fig. 12. The X, Y and Z axes of a phone.

The triaxial accelerometer data, together with the vehicle speed obtained from the OBD

or GPS, are used for model training and testing, where the purpose is to develop an algorithm

which can detect the state of the vehicle (i.e., whether it is in motion or stationary/stopping) by

only using the low-energy sensor data collected. Different combinations of sensor data were

experimented with, such as acceleration data alone or acceleration together with gyroscope data.

It was found that, in some phones, gyroscope data exhibits a significant drift which is

inconsistent with the state of the vehicle. Thus, only acceleration data, which is found to behave

reliably, and distinctly according to the state of the vehicle, are used for detecting vehicle

standstill or motion. The distinctive behavior of acceleration data can be seen when checked

together with the speed of the vehicle as shown in Fig. 13.

In this figure, the dashed blue line at the top is the OBD speed, yellow line is the GPS

speed, followed by the magnitude of the accelerometer data or the total acceleration as calculated

in Eq. (1). The next three subplots present the accelerometer data in X, Y, and Z axes which are

depicted in red, green, and blue solid lines, respectively. In this figure, the X, and Z are each

under the effect of gravity since the phone was not positioned correctly in a straight line in the

43

vehicle. The Y axis represents the motion direction (with the phone situated next to the driver

with its longitudinal direction towards the front of the vehicle). The changes in the speed of the

vehicle are reflected mostly in the changes of the acceleration value in the Y axis. It can be

observed that there exists a pattern between the accelerations as measured by the three directions

X, Y, and Z and the speed. It is this behavior of the sensors that will be exploited in order to

determine the state of the vehicle.

Fig. 13. Three-axis accelerometer data collected by the smartphone for a trip.

4.1 Data Analysis and Feature Creation

The raw accelerometer data consist of points of instantaneous measurements, i.e. the data

points are measurements taken at specific instants, for example every tenth of a second. The

phone is placed in the vehicle in a stationary position, but might be at an arbitrary orientation.

Since it is almost impossible for a phone to be perfectly set such that one direction will be

affected by gravity, the other direction by motion, and a third direction by lateral movements

44

alone, phone orientation correction methods need to be applied to mitigate the effect of gravity

on the axes. In order to eliminate this phase, and also to make the vehicle motion detection

simpler and applicable to any orientation, total acceleration values are used. The total

acceleration (accTot), or magnitude, is defined as the square root of the sum of squares of

accelerometer values measured in each direction (x, y, z), as shown in Eq. (59).

 𝑎𝑐𝑐𝑇𝑜𝑡 = √(𝑎𝑐𝑐𝑥
2 + 𝑎𝑐𝑐𝑦

2 + 𝑎𝑐𝑐𝑧
2) (59)

Having calculated the magnitude, a sliding window is used to extract features. The

sliding window overlaps all the points in the previous window except one, which is the

beginning point of the previous window. A new feature set is created in which the calculated

features are assigned to the middle point of the window. Thus, this newly created feature set will

have the same number of points as the original set. The aim of feature creation is to improve the

classification performance of the algorithms. As can be seen from the box plot in Fig. 14, the

distinguishing capability of the raw magnitude data is very low.

Based on Fig. 13, it is expected that when the vehicle is stationary, the variation of points

within a certain duration (window) will be small. On the other hand, when the vehicle is in

motion, the fluctuations will increase due to acceleration/deceleration and pavement

imperfections. Any feature that is based on the spread of the data should do a better job in

classifying than any raw data would do. On the other hand, it can be seen that, although the

motion segments show large fluctuations, the mean points of the motion segments do not differ

much from those of the standstill segments. Thus, center-based features such as mean are not

expected to do well. To validate this intuition, center-based, extreme-value-based, and variation-

based features are calculated for a certain window size, and are shown in box plots in Fig. 15,

Fig. 16, and Fig. 17. As expected, the center-based features overlap too much, and so the

45

classification will not be a good one. The percentiles, which measure the spread of the data will

also not do well in classification, because of the large overlap. The extreme-value statistics show

more promise than the center-based and the percentiles since they have less overlap between the

two states. Here, the maximum value has more predictive power than the minimum. The

variance-based features are shown in Fig. 17. As expected, these features have very high

predictive value, since they can differentiate between the two states very well.

The overall process of feature extraction is summarized in Fig. 18. The same process is

repeated for the creation of train, validation, and test sets.

Fig. 14. The boxplot of the magnitude of the raw data.

46

Fig. 15. Center-based features and percentiles extracted from the data with a sliding window.

Fig. 16. Extreme-value features extracted from the data with a sliding window.

47

Fig. 17. Variation-based features extracted from the data with a sliding window.

48

Fig. 18. Extracting features and preparing data for analysis.

Start Feature
Extraction

Train
Feature Set
Combined

Trips

Calculate
Magnitude of

Accelerometer

Extract Features
with Sliding

Window

Create New
Feature Set

Select
Window

Size

Validation
Feature Set
(Individual

Trips)

Test
Feature Set
(Individual

Trips)

End Feature
Extraction

DataBase

Download Data; Divide into
Train, Val, Test Sets; Keep data
from individual trips together

with unique tripID

Train
Raw

Sensor
Data

Val
Raw

Sensor
Data

Test
Raw

Sensor
Data

For each dataset do:

Is i = N?

No
i = i +1

Append Trip i
Features Set

to one of
Train, Var, or

Test Set

Select Trip i
Data

i = {1,2,…,N}

Yes

49

4.2 Feature Selection

 The usefulness of a feature affects the performance of machine learning algorithms

significantly. Having many features does not necessarily improve the learning of a model. On the

contrary, some features might even degrade the performance of the model. In order to select best

features some methods are developed in the literature. Feature selection is important, both to

speed up the process and to improve the accuracy of the classification. As shown before, some

features do have higher predictive power compared to the rest. Visualizing the features is one

method in assessing feature quality. There are also other methods for feature evaluation and

selection. Several of the feature evaluation and selection methods have been applied and the

results are presented next.

4.2.1 Ranking Features

One of the approaches for feature selection is ranking features. The rankfeatures function

in MATLAB is used to score each feature. It is based on class separability criteria and uses

independent evaluation criteria for binary classification. Methods such as t-test, entropy,

Bhattacharyya, ROC, and Wilcoxon are some criteria used to assess the significance of each

feature for separating two labeled groups. The t-test method uses the absolute value two sample

t-test with pooled variance. The entropy method calculates the relative entropy, also referred to

as Kullback-Leibler distance or divergence. The Bhattacharyya method seeks to find the

minimum attainable classification error or the Chernoff bound. The ROC method will give the

area between the empirical receiver operating characteristic (ROC) curve and the random

classifier slope. A larger area means the feature is performing better in terms of separation of

classes. The Mann Whitney Wilcoxon method is a statistical test of the null hypothesis that two

50

samples come from the same population against the alternative hypothesis that two samples

come from different populations. The Mann Whitney Wilcoxon method will yield the absolute

value of the standardized u-statistic of a two-sample unpaired Wilcoxon test, also known as

Mann-Whitney. 'ttest', 'entropy', and 'bhattacharyya' assume normal distributed classes while 'roc'

and 'wilcoxon' are nonparametric tests. Each feature is evaluated on its own, without any

combination with other features. Thus, all tests are feature independent.

Each feature is normalized independently across all observations. This process, also

known as cross-normalization, ensures comparability among different features. The standard

score normalization is used as shown in (60).

 𝑥𝑖𝑗,𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑥𝑖𝑗 − �̅�𝑗

𝑠𝑗
, 𝑓𝑜𝑟 𝑖 = {1,2,3, … , |𝑥|} (60)

Where,

i Element i in vector feature j,

𝑥𝑗 The feature vector j,

�̅�𝑗 The sample mean of the vector feature j,

𝑠𝑗 The sample standard deviation of the vector feature j

 The rankfeatures function present in the Bioinformatics Toolbox of MATLAB allows the

user to take into account the correlation. This is done by multiplying the test statistic value of the

next best candidate feature by a coefficient (1-α)*ρ. ρ is the average of the absolute values of the

cross correlation coefficients between the candidate feature and all previously selected features.

α is a weighting factor which is between 0 and 1 that determines the importance of the

correlation effect. When α is zero, the cross correlation between the features is not taken into

account. When α is set a large value, the statistic will get smaller. This means that the candidate

feature which is strongly correlated with previously selected features will be less likely to be

51

among the more highly ranked features. This approach will ensure less redundancy in the

features selected. As a matter of fact, using strongly correlated features might lead to

deterioration in classification performance in some machine learning techniques.

The results of ranking the features based on different statistical tests and alpha values are

presented in Fig. 19 through Fig. 21. Here, each vehicle and phone is analyzed separately.

Range, standard deviation, and interquartile range are the best features for the Toyota Camry –

LG G4 combination. For the Mazda3 – Samsung S3 range, standard deviation, and interquartile

range are again the most important. However, some features that weren’t as important with

Toyota Camry show more significance. The absolute difference of consecutive ranges (Diff), and

the norm2 features are such examples. The Toyota Prius – Motorola XT1063 presents quite a

different case where the minimum, 10th quartile, and interquartile range were the most

significant, followed by range, standard deviation, and norm2. At different levels of alpha, the

outcome of each test differs a bit. When making these comparisons, the case where alpha is equal

to 1 is used, since at this alpha level, the penalty for having correlated variables is the largest.

52

Fig. 19. Ranked feature scores w.r.t. alpha and the test for Toyota Camry, LG G4.

53

Fig. 20. Ranked feature scores w.r.t. alpha and the test for Mazda 3, Samsung Galaxy S3.

54

Fig. 21. Ranked feature scores w.r.t. alpha and the test for Toyota Prius, Moto X1063.

4.2.2 ReliefF Algorithm

 Relief is a feature selection algorithm proposed by Kira and Rendell [42]. The goal is to

find the values of the weight vector, where each element represents the relative importance of

each feature. The weight vector at each step is updated based on the one data point from the

positive and negative classes which are closest to the currently selected point. The weight vector

entries increase if the difference between current and closest point of the same class (near-hit) is

less than the difference between the current and the closest point of the different class (near-

miss), as calculated in Eq. (61). The algorithm can be run for each data point or on randomly

selected points.

55

 𝑊𝑖 = 𝑊𝑖 − (𝑑𝑖𝑓𝑓(𝑥𝑖, 𝑛𝑒𝑎𝑟𝐻𝑖𝑡𝑖))
2

+ (𝑑𝑖𝑓𝑓(𝑥𝑖, 𝑛𝑒𝑎𝑟𝑀𝑖𝑠𝑠𝑖))
2
 (61)

Where,

𝑊𝑖 ith attribute value of the weight vector

𝑥𝑖 ith attribute value of the currently selected data point

diff Normalized difference between current point and the closest neighbor

𝑛𝑒𝑎𝑟𝐻𝑖𝑡𝑖 Closest neighbor that is of the same class

𝑛𝑒𝑎𝑟𝑀𝑖𝑠𝑠𝑖 Closest neighbor that is of the other class

Eq. (61) essentially allows the weight vector to decrease if the feature of the selected

point differs more with its own class than the other class, and increase otherwise. Thus, the

features that are within close proximity to other features within the same class cause the weight

vector to become larger. At the end, the features with largest relative weights will be the most

important ones for classification.

The ReliefF algorithm is an improvement to the relief algorithm. ReliefF uses K nearest

neighbors instead of a single nearest hit and miss point. This, in theory, should lead ReliefF to be

less noisy and more robust. Another change is the use of L1 Norm in ReliefF instead of the L2

norm. The attribute weights range from -1 to 1, with important attributes being assigned large

positive values.

Since ReliefF essentially performs the K Nearest Neighbor algorithm at each selected

data point, the value of K can drastically affect the performance of the algorithm. If K is set too

small, noise will have a great impact, and the result will be unreliable. If K is set too large, it will

be too slow to respond to changes in the decision surface and will fail to find important

attributes. Selecting the right K value can be achieved by an exhaustive search.

56

Feature selection results based on the ReliefF method is presented in Fig. 23 through Fig.

22. As before, each vehicle and phone are analyzed separately. Range, standard deviation, and

interquartile range were the best features for the Toyota Camry – LG G4. For the Mazda3 –

Samsung S3, norm2, range, standard deviation, and interquartile range were again the most

important. The main difference is that the feature norm2 was the most significant for the

Mazda3. For the Toyota Prius – Motorola XT1063, range and standard deviation were the most

significant, followed by interquartile range. The feature minimum was not as strong as was the

case in ranking features.

Fig. 22. ReliefF feature weights for each K nearest neighbor for Toyota Prius.

57

Fig. 23. ReliefF feature weights for each K nearest neighbor for Toyota Camry.

Fig. 24. ReliefF feature weights for each K nearest neighbor for Mazda3.

58

The feature scoring methods show that some features, such as range and standard

deviation, have strong separation capability, while some features, such as mean and median,

would not perform well in classiying the states of the vehicle. This outcome is in line with the

intuition pointed out before: the features that are based on variation should do better, and the

ones that are based on centre of the data should not, as it is evident from Fig. 13.

59

CHAPTER 5

METHODOLOGY

Machine learning techniques are utilized to detect the stopping and moving events.

Supervised learning techniques in which labeled data are used for training and testing phases

have proven to be successful in many applications. Techniques such as static neural networks,

Bayes classifiers, logistic regression, etc., perform well when the data are generated by

independent processes. However, the sensor data collected here are sequential and correlated.

The data points are not individual points of independent measurements, but are, rather, a

sequence of points collected at a certain frequency. Since the data are sequential, the data points

are correlated with each other, violating the independence assumption. Thus, using the

classification techniques may prove not to be sufficient, since they cannot exploit the sequential

patterns in the data, such as correlations between observations that are close to each other in the

sequence.

Support vector machines, Hidden Markov models, and dynamic neural networks are

chosen to be candidates to find the best technique that can most accurately and precisely find the

vehicle motion and stop points. Although SVM does not take into account time information,

because of its special characteristics such as the kernel trick, it was found to perform better than

the other static methods, hence is included in the dissertation.

Before going into the application details and the results of the various algorithms, a novel

error quantification method will be presented. One of the significant contributions of this

research to the state of the art will be the quantification of performance when only a few points

of interest are of concern within a time series data.

60

5.1 Assessing Model Accuracy

The most common method to measure the error of a classification algorithm is done by

comparing the actual class with the estimated class. If the two agree, then the error is zero;

otherwise, it is one. The sum of non-agreeing cases is divided by the total number of points to

obtain an average error. Taking the average allows one to assess different models on the same

dataset, or to compare the performance of the same model on different datasets.

 𝑒𝑟𝑟𝑜𝑟 =
1

𝑁
∑ 𝛿𝑖

𝑁

𝑖=1

 (62)

Where;

𝛿𝑖 is equal to 0 if 𝑦𝑖 = 𝑡𝑖 ; 𝛿𝑖 = 1 if 𝑦𝑖 ≠ 𝑡𝑖 , for 𝑖 = {1,2, … , 𝑁}

𝑦𝑖 The estimated class of ith input

𝑡𝑖 The observed (true) class of ith input

 In a time series estimation, several error quantification methods are all based on one basic

measure, which is the difference between the actual value and the estimated value at a specific

instant signified as 𝑒𝑛. Some common time series error measures are listed in Eq. (63) through

Eq. (66).

Mean Absolute Deviation (MAD):

 𝑀𝐴𝐷 =
1

𝑁
∑|𝑒𝑛|

𝑁

𝑛=1

 (63)

Mean Absolute Percent Error (MAPE):

 𝑀𝐴𝑃𝐸 =
1

𝑁
∑

|𝑒𝑛|
𝑡𝑛

⁄

𝑁

𝑛=1

 (64)

61

Mean Squared Error (MSE):

 𝑀𝑆𝐸 =
1

𝑁
∑ 𝑒𝑛

2

𝑁

𝑛=1

 (65)

Root Mean Squared Error (MSE):

 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ 𝑒𝑛

2

𝑁

𝑛=1

 (66)

In this research, the goal is to identify the stop and start instances during a trip. In order to

find these points, accelerometer data is used. Identifying these points is a type of classification,

while the data used is a time series data. The aim is not to predict or forecast the accelerometer

values, but rather to classify each instance as standstill or motion, and then to find the change

points. The measures given above are suitable when the predictions are continuous valued time

series. Thus, time series error metrics are not adequate to assess the performance of the

classification of vehicle states.

The goal in classification of independent data is to get as many data points correct.

However, in estimating the state of the vehicle, although correctly classifying each instance is

important, it is more important to be able to detect points of change with high accuracy. High

accuracy of a model depends mainly on three criteria:

 Whether it is able to find each stop and start point (events);

 How precise it is in estimating the events, i.e. how close the estimation is to the observed

points;

 Whether it is introducing any false stop or start points.

In the case of classification error, since a typical trip of 30 minutes or more will have

thousands of points, depending on the sampling frequency, misclassifying a few of them which

62

corresponds to a few seconds, will not increase the error significantly. This might lead the model

to predict many false standstill or motion sections without any significant increase in error, due

to their short durations. Also, the true stop and start points might be missed or might be

estimated with an unacceptable distance. None of these anomalies can be detected with regular

classification error, since classification error makes comparison on a point-by-point basis. To

address these shortcomings of the regular classification accuracy metric, a novel performance

quantification method is introduced, which will be used to evaluate the performance of the state

predictions.

The essence of the performance metric will be explained by examples. Fictitious trips of

100 seconds will be used to depict the observed and predicted states. The intervals correspond to

a duration of 1 second. Each point corresponds to a state of the vehicle where 1 denotes motion,

and 0 denotes standstill. The change points where a transition happens from state 1 to 0

corresponds to a stop point, while a change from 0 to 1 corresponds to a start point. A stop and

start point pair will be referred to as an “event.” The top (blue) line is the observed trip, whereas

the next two lines are the estimations 1 (red color) and 2 (gold color), which were predicted by

models 1 and 2, respectively. For brevity, the models and their corresponding predictions will be

referred to as model1 and model2 and prediction1 and prediction2, respectively.

As a first example, consider the case in Fig. 25. Prediction1 detects the first stop two

seconds earlier and the second start point two seconds later. So, in total, there is a difference of

four seconds between actual and predicted states. Both events are detected with close proximity,

and there are no false alarms. Prediction2, on the other hand, detects both events with perfect

accuracy, but introduces a single false event which lasts four seconds. The classification error

63

metric will yield the same error for both estimations. However, it is clear that model1 is the

preferable model in this case. The values obtained by the two approaches are presented in

Table 2. The classification error metric fails to identify the better model. However, the

change point detection performance metric does a good job in distinguishing between the two

models. The algorithm of the change point detection performance metric will be explained in the

next section.

Fig. 25. Example 1: Importance of using the right performance metric for model selection.

Table 2. Classification Error and Change Point Detection Performance Metric Results

Classification

Error
CPDPM

Prediction1 0.04 0.22

Prediction2 0.04 2.00

64

As a second example, as shown in Fig. 26, model1 predicts first and second events

perfectly, but has a two second delay in detecting the third start point. Model2, on the other hand

detects all three events with perfect accuracy, while having a false event at the beginning, which

lasts for two seconds. Since the total difference between the observed and predicted cases are

each two seconds in each model, the classification error metric will yield the same result for

both. However, it is clear that model1 performs better, as it has no false event. The change point

detection performance metric is able to distinguish between the two, as presented in Table 3.

Fig. 26. Example 2: Importance of using the right performance metric for model selection.

Table 3. Classification Error and Change Point Detection Performance Metric Results

Classification

Error
CPDPM

Prediction1 0.02 0.11

Prediction2 0.02 2.00

65

A third and final example to illustrate the benefit of the change point detection

performance metric is shown in Fig. 27. Model1 is able to detect all three events, albeit with

some time difference. Model2, however, is only able to detect the first two events, and misses the

last one. Since, the total time difference is the same in both models, the classification error

metric cannot differentiate between the two models. However, the change point detection

performance metric duly penalizes model2 for missing an event, as shown in Table 4.

Fig. 27. Example 3: Importance of using the right performance metric for model selection.

Table 4. Classification Error and Change Point Detection Performance Metric Results

Classification

Error
CPDPM

Prediction1 0.04 0.23

Prediction2 0.04 2.11

66

5.1.1 Error Function

In order to mitigate the inefficiency of the classification error and to tailor the measure of

accuracy to the needs of this research, a novel performance evaluation is applied which makes

use of the so called “error function.” The error function is a special function of sigmoid shape

whose output increases as the input is increased. The method proposed will only quantify the

accuracy regarding the change points, i.e. the error function will be applied to the time

differences between observed and corresponding predicted points. This way, the proximity of the

predicted point to the observed one will be assessed. The closer the estimation to the actual case,

the smaller the error function will be; also, any missing observed points, and false alarms (either

being a stop or start) will be penalized heavily.

Fig. 28. The error function values corresponding to time differences.

67

The function value increases with a decreasing slope and flattens out at value 2, yielding

an output of 0.9953. For larger values than 2, the curve becomes asymptotic to 1. In the context

of the research being conducted, this would mean that an error value of 1 (largest value) is

obtained when the estimated point is two seconds or further apart. The absolute value of the time

difference between observed and the estimated points is taken, meaning that predicting a stop or

start point either t seconds before or after the actual point will yield the same error. Hence, only

the positive quadrant of the error function is used. The error function is defined in (67).

 erf(𝑥) =
2

√𝜋
∫ 𝑒−𝑡2

𝑥

0

𝑑𝑡 (67)

Table 5. Error function values of time differences up to 20s when the values are divided by 20

Time

Difference (sec)

Error Value

erf(Δt/20)

Time

Difference (sec)

Error Value

erf(Δt /20)

0 0
1 0.06 11 0.56

2 0.11 12 0.60

3 0.17 13 0.64

4 0.22 14 0.68

5 0.28 15 0.71

6 0.33 16 0.74

7 0.38 17 0.77

8 0.43 18 0.80

9 0.48 19 0.82

10 0.52 20 0.84

Due to the features having a large overlap between the two states, it is almost impossible

to detect the stop and start points perfectly. The goal is to be able to find the models which can

closely predict change points, with the least number of missing true points, and the least number

of false positives. Thus, in order to add some tolerance for estimations, and to provide some

68

space of variance, the time difference between the estimated and true points is divided by 20.

The time differences and their corresponding error function values between 0s and 20s are shown

in Table 5 and in Fig. 28. Dividing by 20 will lead to more variation between the different

models, which will enable one to have a better assessment over the performance of models. The

error increases rapidly at the beginning and slows down as the time difference increases. This

serves the purpose of differentiating between models based on the time difference between the

predicted and the observed points very well. Any missing observed points and any false alarms

are penalized with the largest error function value of one.

5.1.2 The Algorithm for Change Point Detection Performance Metric

In this section, the algorithm for the novel performance evaluation method is presented.

The evaluation method is named “change point detection performance metric” (CPDPM). In the

following calculations, the actual set will be denoted by 𝑄 and the estimated set will be denoted

by �̂�. Observed and Estimated states of a trip will be denoted as sets containing values of ones

and zeros:

𝑄 = {1,0,0, … ,1,1,1,1, … ,1}

�̂� = {1,0,1, … ,1,1,0,0, … ,1}

(68)

The zeros (0) denote vehicle standstill at each instance, and the ones (1) denote vehicle

being in motion. When a vehicle stops or starts moving, it stays in that state for a while. To

detect the change points (stop and start points of a vehicle), the algorithm shown in (69) is

applied:

 𝑄𝑖 − 𝑄𝑖−1 ∈ {0,1, −1} (69)

69

The difference between point i and point i-1 can only have three distinct values. “0”

denotes no change in the state of the vehicle. “1” denotes that the vehicle was in standstill and

started moving. The index of this point will be stored in the Motion Start (M) set. A value of “-1”

denotes that the vehicle was in motion and has stopped at this instance. The index of this point

will be stored in the Stop (S) set.

𝑀 = {𝑖|𝑄𝑖 − 𝑄𝑖−1 = 1}

𝑆 = {𝑖|𝑄𝑖 − 𝑄𝑖−1 = −1}

|𝑆| = |𝑀| = 𝑁

(70)

Where 𝑖 = 1,2,3, … , |𝑄|.

Thus, M is the set of indices when vehicle starts to move from a standstill, and S is the set

of indices when the vehicle stops from being in motion. The sizes of the S and M are equal,

where N denotes the number of elements in the sets of indices of stop and start points. The same

sets are created for the estimated points as well.

�̂� = {𝑗|�̂�𝑗 − �̂�𝑗−1 = 1 }

�̂� = {𝑗|�̂�𝑗 − �̂�𝑗−1 = −1}

|�̂�| = |�̂�| = �̂�

(71)

Where 𝑗 = 1,2,3, … , |�̂�|.

Without loss of generality, the number of points in the observed set will be assumed to be

less than or equal to those in the estimated set.

 𝑁 ≤ �̂� (72)

The Hungarian Method is used to match each observed pair of stop and start points to the

closest estimated pair. Let 𝑃 be the pair of stop and start points that defines an event. Then P is

defined as:

70

 𝑃 = {𝑃1, 𝑃2, … , 𝑃𝑁} (73)

Where each element Pn of P is a pair of consecutive stop and start points:

 𝑃𝑛 = (𝑆𝑛, 𝑀𝑛) (74)

Where 𝑛 = 1,2,3, … , 𝑁.

The same is also defined for the estimated set:

 �̂� = {�̂�1, �̂�2, … , �̂��̂�}

�̂��̂� = (�̂��̂�, �̂��̂�)

(75)

Where �̂� = 1,2,3, … , �̂�.

The cost 𝐶 for each assignment between an observed and estimated pair is calculated to

be the sum of the error functions of the time differences between corresponding stop and start

points. For simplicity, the cost value will be abbreviated as 𝐶𝑛�̂�.

 𝐶(𝑃𝑛 , �̂��̂�) = 𝐶𝑛�̂� = 𝑒𝑟𝑓(|𝑆𝑛 − �̂��̂�|) + 𝑒𝑟𝑓(|𝑀𝑛 − �̂��̂�|) (76)

The Hungarian Algorithm will need to assign exactly one observed pair to exactly one

estimated pair. Thus, if the sets do not have equal number of points, dummy pairs will be added

to the lesser set (according to assumption this is the observed set). The cost for these pairs will be

assigned a large penalty value Cmax. δ is an indicator assignment which takes the value of one

when two values are paired, and zero otherwise.

Let 𝑁 <= �̂�

 𝑃′ = 𝑃 ∪ {𝑃𝑁+1, 𝑃𝑁+2, … , 𝑃�̂�} (77)

Objective:

min ∑ ∑ 𝐶𝑛�̂�𝛿𝑛�̂�

𝑁

𝑛

�̂�

�̂�

 (78)

71

Subject

to:

∑ 𝛿𝑛�̂� = 1

𝑁

𝑛

∑ 𝛿𝑛�̂� = 1

�̂�

�̂�

𝛿𝑛�̂� ∈ {0,1}

(79)

𝐶𝑛�̂� = {

𝑒𝑟𝑓(|𝑆𝑛 − �̂��̂�|) + 𝑒𝑟𝑓(|𝑀𝑛 − �̂��̂�|), 𝑛 ≤ 𝑁

𝐶𝑚𝑎𝑥, 𝑛 > 𝑁
 (80)

The assignment of pairs is done such that, for each observed pair, there is a single match

in the estimated set. The larger the time difference between the change points of the matched

pairs, the larger the error will be. Any false stop or start points are assigned the largest penalty,

which is 1. The best model is the one that yields the lowest total error.

A performance table can be established at this stage. The performance table is a modified

confusion matrix and is constituted of number of observed points, a number of estimated points,

a number of estimations that correctly predict observed points within reasonable time period, a

number of false alarms, and a number of missed true points.

The way the above variables are calculated is done by making use of the observed and

predicted pairs obtained earlier, and the time difference between these pairs. The following

calculations can be done for both the stop and start points separately, and, for simplicity, they

will be referred to as point. If the time difference for a point in the pair is below a threshold, the

matching is assumed to be correct and the number of “True” points is increased by one. If it is

further than the threshold, or if a predicted point has no matching in the observed set, then it is

assumed to be a false positive, and the “False” number of points is increased by one. At the end,

the number of “Missing” is the number of observed points that are not matched to any point in

the predicted set. The number of total points in the observed set is recorded in the “Obs”

72

variable, while the total number of predicted points is shown in the “Pred” variable. In the

experimental results, the performance matrix only for the stop points is presented.

After computing the performance matrix variables, the F1 score can also be computed.

The F1 score is calculated from the precision and recall metrics. Recall, also called sensitivity,

measures the true positive rate, meaning the ratio of true predictions divided by the total number

of observations. Normally, recall is calculated as the True Positives divided by the sum of True

Positives and False Negatives. Here, instead of using the False Negatives, the “Miss” variable is

used. The precision measures the positive predictive value, meaning the ratio of True Positives

divided by the total number of predictions (True Positive plus False Positive). The calculations in

Eq. (81) are carried out to reach the F1 score. The F1 score provides an overall metric that can be

used to compare the performance of the classification error metric with the CPDPM methods.

 𝑀𝑖𝑠𝑠 = 𝑂𝑏𝑠 − 𝑇𝑟𝑢𝑒

𝐹𝑎𝑙𝑠𝑒 = 𝑃𝑟𝑒𝑑 − 𝑇𝑟𝑢𝑒

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑟𝑢𝑒/(𝑇𝑟𝑢𝑒 + 𝐹𝑎𝑙𝑠𝑒)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑟𝑢𝑒/(𝑇𝑟𝑢𝑒 + 𝑀𝑖𝑠𝑠)

𝐹1𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(81)

Given the purposes of this research, the noisiness involved with the data, and the fact that

the GPS and OBD data collection rate is one second, which can lead to a possible lag of one

second between the actual stopping of the vehicle and the logging of the data from GPS or OBD,

ten seconds of duration was identified as the upper bound for an estimated point to be accepted

as a true match to the observed point. This is a threshold that can be changed, and can be made

smaller to increase the strictness of the evaluation. As is shown in the Analysis of the Results

section, the majority of the predicted correct matches were found within five seconds of the

73

observed point. Also, based on the CPDPM, any time difference between the observed and

predicted points is duly penalized. The reason for determining a time period is purely to establish

the number of correctly predicted points, the false alarms, and the missed points in the

performance matrix.

5.2 Experiments and Results

In the following sections, the implementation details and the experimental results of the

support vector machines, the recurrent neural networks, and the hidden Markov models are

presented. In the experiments, an ML method is first trained on the training data, and the trained

model is applied to the trips in the validation data. The classification error and the CPDPM are

calculated for each of the ten trips in the validation set. Finally, the average classification error

and the average CPDPM are calculated. Average CPDPM is calculated as the sum of all CPDPM

values from each validation trip, divided by the total number of stops. The mean classification

error is computed as the total number of points misclassified, divided by the total number of

points in all of the individual trips in the validation set. The CPDPM values presented in the

tables are, in a sense, the average CPDPM value that each stop point endures. The lower the

value in each metric, the better the model is. The best model selected according to a metric is

shown under “Metric” column. The top half shows the best results according to the classification

error metric, and the bottom half shows the best results according to the CPDPM. At the end, the

best model according to each metric is selected and is applied to the testing trips. Once testing is

done, the same performance metrics are calculated for each of the twenty trips in the testing set,

and the average classification error and the average CPDPM values are calculated the same way

as before, and are shown in the tables. The aims are to find the best performing model and to test

74

whether the CPDPM does a better job than the classification error in terms of finding the better

model.

The tables also show the total number of observed stop points (Obs), the total number of

predicted stop points (Pred), the true estimations (True), the missed stop points (Miss), and the

false positives (False). The F1 score of the stop points are shown in F1Stop column. Some

model-specific parameters are also shown, such as the C and sigma value for SVM, the number

of delays for NN, and the binning thresholds used for HMM.

Other than the parameters of the specific machine learning models, the features used and

the length of the window size also play important roles in the success of finding the change

points. For this, several window sizes are tried. After individual tests with different features, and

the knowledge from the feature selection presented earlier, two main features are decided upon.

First is the range, and the results using only this feature are shown with number “1” under the

Feature column in the results tables. The second feature is the absolute difference between

consecutive range values, used in the Hidden Markov models. For SVM and neural networks,

four features are selected: the range, the absolute difference of consecutive ranges, the

interquartile range, and the standard deviation. The second feature set is shown with number “2”

under the Feature column in the tables.

The schema for model development and testing is given in Fig. 29. This schema provides

an overall summary on how the model training, validation, and testing is done. The model

parameters are specific to each model such as the sigma, and box constraint values for RBF

SVM. The optimum model is the one that yields the lowest validation error. At the end, state

prediction is done on the testing data using the optimum model, and the testing error is found.

75

Fig. 29. The schema for model development and testing.

Train model (ϴi)

Calculate Average
Val Error of Model ϴi

εi

ϴ={ϴ1 ,ϴ2 ,…,ϴN}
ϴi ={Model

parameters}

i = N ?

No
i = i+1

Yes

ϴ*=argmin(εi)
Best Model ϴi

Train
Feature Set
Combined

Trips

Predicted
Val States

Validation
Feature Set
(Individual

Trips)

Validate Model
(ϴi)

Test the Single
Best Model ϴ*

Calculate Average
Test Error

ε*

Test Set
Target
States

Predicted
Test

States

End Model
Development and

Testing

Test Feature
Set (Individual

Trips)

Begin Model
Development

Val Set
Target
States

76

5.2.1 Support Vector Machines

Three different support vector machines were tested: Linear, Polynomial, and Radial

Basis Function Kernel. The linear SVM is the most basic one, where the kernel function used to

compute the Gram matrix is the dot product, as shown in Eq. (82). No transformation is done on

the data, and the resulting boundary between classes will be a linear line. The only parameter to

be optimized is the box constraint.

 𝐺(𝑥1, 𝑥2) = 𝑥1′𝑥2 (82)

The Gram matrix of a set of n vectors is an n-by-n matrix with element (j,k) defined as in

Eq. (83).

 𝐺(𝑥𝑗 , 𝑥𝑘) = < 𝜙(𝑥𝑗), 𝜙(𝑥𝑘) > {𝑥1, . . , 𝑥𝑛; 𝑥𝑗 ∊ 𝑅𝑝} (83)

Where,

<a,b> Inner product between a and b

ϕ Kernel function used

p Number of dimensions of a vector

Thus, the Gram matrix is the inner product matrix of the kernel ϕ transformed vectors.

Polynomial SVM uses the polynomial kernel that transforms the data, as shown in

Eq.(84). The polynomial order p determines how complex the polynomial terms will get. Using a

big value in p might cause the computations to take too long, and overfit the training data.

Values for p that are tested are 1, 2, and 3. The other parameter to be optimized is, again, the box

constraint.

 𝐺(𝑥1, 𝑥2) = (1 + 𝑥1′𝑥2)𝑝 (84)

 The radial basis function (RBF) kernel SVM is one of the most well-known SVM

methods, as it transforms the data into a higher space, which enables classification of nonlinear

77

data. The kernel computation shown in Eq. (85) allows for the so-called “kernel trick”, which

allows SVM to operate in the transformed predictor space to find a separating hyperplane. The

parameters to be optimized involve the box constraint and the kernel scale.

𝐺(𝑥1, 𝑥2) = exp (−

‖𝑥1 − 𝑥2‖2

𝜎2
) (85)

An exhaustive search is done to find the optimum parameters of the RBF SVM. The box

constraint values and the sigma values used by RBF SVM are presented in Table 6. In the

following subsections, only the RBF SVM results are presented, as the other methods did not do

any better than the RBF SVM. MATLAB fitcsvm function was utilized for training and testing

SVM models.

Table 6. Parameters that were used in the exhaustive search of RBF SVM.

Parameter Values

Window Size 0.2, 0.6, 1.0, 2.0, 3.0

Box Constraint 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 200

Sigma 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100

78

 Dataset 1: Driver 1 - Toyota Prius 2007 - Motorola XT 1063

Table 7. Validation of RBF SVM for Driver 1 - Toyota Prius 2007 - Motorola XT 1063

Metric Feature Win C Sigma ClassErr CPDPM F1Stop Obs Pred True Miss False

Classif

1 2.0 0.01 50 0.034 2.26 0.618 125 244 114 11 130

2 3.0 10 5 0.028 2.11 0.647 125 240 118 7 122

CPDPM

1 3.0 0.01 0.05 0.041 1.11 0.741 125 161 106 19 55

2 3.0 50 100 0.031 2.05 0.648 125 233 116 9 117

Table 8. Testing of RBF SVM for Driver 1 - Toyota Prius 2007 - Motorola XT 1063

Metric Feature Win C Sigma ClassErr CPDPM F1Stop Obs Pred True Miss False

Classif

1 2.0 0.01 50 0.028 2.46 0.593 251 525 230 21 295

2 3.0 10 5 0.025 2.77 0.548 251 559 222 29 337

CPDPM

1 3.0 0.01 0.05 0.033 0.92 0.750 251 298 206 45 92

2 3.0 50 100 0.026 2.95 0.543 251 581 226 25 355

 Dataset 2: Driver 2 - Toyota Camry 2012 - LG G4

Table 9. Validation of RBF SVM for Driver 2 - Toyota Camry 2012 - Lg G4

Metric Feature Win C Sigma ClassErr CPDPM F1Stop Obs Pred True Miss False

Classif

1 3.0 0.01 0.1 0.031 3.12 0.562 36 85 34 2 51

2 3.0 0.5 0.5 0.028 14.12 0.219 36 283 35 1 248

CPDPM

1 3.0 0.05 0.5 0.031 3.01 0.571 36 83 34 2 49

2 0.2 5 0.001 0.087 2.25 0.268 36 46 11 25 35

79

Table 10. Testing of RBF SVM for Driver 2 - Toyota Camry 2012 - Lg G4

Metric Feature Win C Sigma ClassErr CPDPM F1Stop Obs Pred True Miss False

Classif

1 3.0 0.01 0.1 0.070 3.77 0.429 137 348 104 33 244

2 3.0 0.5 0.5 0.055 15.35 0.197 137 1152 127 10 1025

CPDPM

1 3.0 0.05 0.5 0.070 4.00 0.417 137 367 105 32 262

2 0.2 5 0.001 0.134 2.54 0.194 137 172 30 107 142

 Dataset 3: Driver 3 - Mazda 3 - Samsung Galaxy S3

Table 11. Validation of RBF SVM Driver 3 - Mazda 3 - Samsung Galaxy S3

Metric Feature Win C Sigma ClassErr CPDPM F1Stop Obs Pred True Miss False

Classif

1 3.0 0.01 0.1 0.031 3.12 0.272 36 85 34 2 51

2 3.0 0.5 0.5 0.028 14.12 0.265 36 283 35 1 248

CPDPM

1 3.0 0.05 0.5 0.031 3.01 0.436 36 83 34 2 49

2 0.2 5 0.001 0.087 2.25 0.179 36 46 11 25 35

Table 12. Testing of RBF SVM Driver 3 - Mazda 3 - Samsung Galaxy S3

Metric Feature Win C Sigma ClassErr CPDPM F1Stop Obs Pred True Miss False

Classif

1 3.0 0.01 0.1 0.070 3.77 0.300 137 348 104 33 244

2 3.0 0.5 0.5 0.055 15.35 0.267 137 1152 127 10 1025

CPDPM

1 3.0 0.05 0.5 0.070 4.00 0.373 137 367 105 32 262

2 0.2 5 0.001 0.134 2.54 0.154 137 172 30 107 142

80

5.2.2 Recurrent Neural Networks

The time series data has specific characteristics that cannot be utilized well with static

methods such as SVM. For example, the interdependence and correlation between the

consecutive data points is lost when they are treated as individual entities. Also, the regular

feedforward neural network is not capable of capturing the time information. On the other hand,

dynamic recurrent neural networks have proven to be good estimators in time series predictions.

There are many different versions of such networks. The type of neural network used in this

dissertation is called the Nonlinear Autoregressive Network with Exogenous Inputs (NARX).

The defining function of NARX is given in Eq. (86) where the dependent variable y(t) is

regressed on previous predictions of the output and the previous values of the independent

(exogenous) inputs. A NARX model representation is given in Fig. 30 [43].

 𝑦(𝑡) = 𝑓(𝑦(𝑡 − 1), … , 𝑦(𝑡 − 𝑛𝑦), 𝑢(𝑡), 𝑢(𝑡 − 1), … , 𝑢(𝑡 − 𝑛𝑢)) (86)

Where,

y(t) Current prediction

y(t-ny) Previous predictions

u(t) Current input

u(t-nu) Previous inputs

81

Fig. 30. NARX model representation with delayed feedback loops and delayed inputs [43].

There are two main training procedures in the NARX model. One is where the true

outputs are used; this is also referred to as series-parallel or open loop architecture. The other

approach is called parallel or closed loop architecture. It uses the predicted outcomes as

feedback loops to the input layer. These two approaches are depicted in Fig. 31. In this

dissertation, closed loop architecture is used, since it is assumed that the target variables will not

be available during testing, and it was important not to overfit the training data.

Fig. 31. Closed and open loop architectures, respectively [43].

Both the input and the targets were delayed by same number of points, if there was any

delay desired. The parameters and their values, which were used in the experiments, are shown

82

in Table 13. The delay allowed the system to have memory of the past and thus to take advantage

of the time series data characteristics. MATLAB Neural Networks Toolbox was utilized. The

network was updated by making use of the backpropagation and Levenberg Marquardt

algorithms.

A sample NARX model application is shown in Fig. 32. Here, a model with five tapped

delay lines is shown with an input of four components. The hidden layer has ten nodes, and the

sigmoid transition function is utilized. The output has one component, which is the state

prediction for the current input u(t). The results of applying NN to data from different vehicles

are presented next.

Fig. 32. Closed loop NARX with 5 tapped delay lines (MATLAB NN Toolbox).

Table 13. The window sizes, and number of delays used in NARX exhaustive search.

 Values

Window 0.2, 0.6, 1.0, 1.5, 3.0

Delays 1, 3, 5, 10

Hidden Nodes 10

Hidden Layers 1

83

 Dataset 1: Driver 1 - Toyota Prius 2007 - Motorola XT 1063

Table 14. Validation of NN for Driver 1 - Toyota Prius 2007 - Motorola XT 1063.

Metric Feature Window Delays ClassErr CPDPM F1Stop Obs Pred True Miss False

Classif

1 1.0 1 0.030 1.10 0.730 125 168 107 18 61

2 2.0 1 0.025 0.49 0.891 125 131 114 11 17

CPDPM

1 3.0 1 0.037 0.88 0.768 125 146 104 21 42

2 3.0 3 0.026 0.42 0.911 125 123 113 12 10

Table 15. Testing of NN for Driver 1 - Toyota Prius 2007 - Motorola XT 1063.

Metric Feature Window Delays ClassErr CPDPM F1Stop Obs Pred True Miss False

Classif

1 1.0 1 0.026 0.85 0.759 251 297 208 43 89

2 2.0 1 0.024 0.63 0.827 251 276 218 33 58

CPDPM

1 3.0 1 0.030 0.77 0.767 251 255 194 57 61

2 3.0 3 0.026 0.65 0.799 251 247 199 52 48

 Dataset 2: Driver 2 - Toyota Camry 2012 - LG G4

Table 16. Validation of NN for Driver 2 - Toyota Camry 2012 - Lg G4.

Metric Feature Window Delays ClassErr CPDPM F1Stop Obs Pred True Miss False

Classif

1 1.0 5 0.021 5.90 0.372 36 136 32 4 104

2 2.0 5 0.018 1.15 0.729 36 49 31 5 18

CPDPM

1 3.0 3 0.024 0.74 0.776 36 31 26 10 5

2 1.0 3 0.018 0.55 0.838 36 38 31 5 7

84

Table 17. Testing of NN for Driver 2 - Toyota Camry 2012 - Lg G4.

Metric Feature Window Delays ClassErr CPDPM F1Stop Obs Pred True Miss False

Classif

1 1.0 5 0.056 7.34 0.281 137 602 104 33 498

2 2.0 5 0.037 1.33 0.622 137 178 98 39 80

CPDPM

1 3.0 3 0.062 1.19 0.612 137 95 71 66 24

2 1.0 3 0.053 1.04 0.683 137 144 96 41 48

 Dataset 3: Driver 3 - Mazda 3 - Samsung Galaxy S3

Table 18. Validation of NN Driver 3 - Mazda 3 - Samsung Galaxy S3.

Metric Feature Window Delays ClassErr CPDPM F1Stop Obs Pred True Miss False

Classif

1 1.0 3 0.048 1.73 0.612 74 109 56 18 53

2 3.0 10 0.040 14.66 0.196 74 599 66 8 533

CPDPM

1 0.6 3 0.049 1.20 0.727 74 91 60 14 31

2 0.2 5 0.052 1.05 0.748 74 81 58 16 23

Table 19. Testing of NN Driver 3 - Mazda 3 - Samsung Galaxy S3.

Metric Feature Window Delays ClassErr CPDPM F1Stop Obs Pred True Miss False

Classif

1 1.0 3 0.063 1.98 0.544 160 248 111 49 137

2 3.0 10 0.075 13.54 0.161 160 1178 108 52 1070

CPDPM

1 0.6 3 0.076 1.45 0.541 160 173 90 70 83

2 0.2 5 0.073 1.34 0.556 160 160 89 71 71

85

5.2.3 Hidden Markov Models

Hidden Markov Models (HMM) have proven to be effective in capturing the time related

information such as correlation between sequential data points. In HMMs, each data point is a

state which is hidden (latent). The measurement that can be seen is called an observation or an

emission. Each hidden state produces one observation. The observations are dependent on the

current state directly, and dependent on the previous states indirectly via the hidden states. The

Hidden Markov Model representation of a trip’s data is given in Fig. 33. Here, the Z vector

contains the hidden states representing either being in motion or being stationary. The

observations are the acceleration data that are measured by the smartphone, expressed as the

vector X.

Fig. 33. HMM Representation. Z is the hidden states, X is the observations vector [41].

The application of Hidden Markov Models was done by taking a single feature and

slicing this feature into bins. This transformed the continuous features into discrete values. Three

different binning models with different thresholds were used. The features used were the range

of each window and the absolute value of the difference between consecutive range values. The

thresholds used for binning are shown in Table 20. The reason for using the last bin with upper

bound of 100 is to capture any outliers.

86

Table 20. Binning the continuous features into discrete values

Bin Type The Thresholds

Bins 1 0-0.5, 0.5-1, 1-2, 2-3, 3-100

Bins 2 0-0.05, 0.05-0.1, 0.1-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-1, 1-2, 2-3, 3-100

Bins 3

0-0.05, 0.05-0.1, 0.1-0.15, 0.15-0.2, 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7, 0.7-

0.8, 0.8-0.9, 0.9-1, 1-2, 2-3, 3-100

After binning is complete, the transition and emission probability matrices are found by

using the maximum likelihood method in which the labels of each data point (being in standstill

or motion state) are used to train the model. Since some stops are very short (1 or 2 seconds),

choosing the right window size plays an important role in assuring the accuracy of the detection

model. A large window might have missed these small stops, and a very small window might

introduce many false stops. Thus, an exhaustive search is performed to find the optimum window

size and the optimum thresholds for binning. The window sizes vary from 0.2 to 10 seconds with

0.2 second increments. In the validation step the optimum combination of window size and

binning thresholds are determined. Finally, in the testing phase, the optimum model is applied to

the testing trips and the accuracy of the model is found.

Fig. 34 to Fig. 36 show the state predictions of the best HMM models, where the best

models are selected based on the CPDPM. In the plots, green lines represent the observed true

states of the vehicle, and the red lines represent the predicted states. Each of the first 15 trips in

the testing sets are drawn separately in their respective subplots, enumerated 1 to 15. Since there

are two states, the upper segments of the lines show vehicle motion periods, while the lower

segments of the lines show the standstill periods. The vertical lines represent the change points.

87

The x axis shows the time in Min:Sec format. Since some trips were much longer than the rest, to

keep it consistent, each trip is truncated at 20 minutes.

The developed models and the testing results for the three datasets are presented in the

following subsections.

 Dataset 1: Driver 1 - Toyota Prius 2007 - Motorola XT 1063

Table 21. Validation of HMM for Driver 1 - Toyota Prius 2007 - Motorola XT 1063.

Metric Feature Window Bin ClassErr CPDPM F1Stop Obs Pred True Miss False

Classif

1 0.6 2 0.028 1.57 0.695 125 203 114 11 89

2 0.4 2 0.027 0.46 0.896 125 134 116 9 18

CPDPM

1 7.6 1 0.054 0.79 0.803 125 114 96 29 18

2 0.4 3 0.027 0.45 0.899 125 133 116 9 17

Table 22. Testing of HMM for Driver 1 - Toyota Prius 2007 - Motorola XT 1063.

Metric Feature Window Bin ClassErr CPDPM F1Stop Obs Pred True Miss False

Classif

1 0.6 2 0.024 1.53 0.683 251 408 225 26 183

2 0.4 2 0.023 0.48 0.858 251 257 218 33 39

CPDPM

1 7.6 1 0.044 0.85 0.760 251 207 174 77 33

2 0.4 3 0.023 0.48 0.857 251 258 218 33 40

88

Fig. 34. Prius state estimation of test trips. Red: Prediction, Green: Observed.

89

 Dataset 2: Driver 2 - Toyota Camry 2012 - LG G4

Table 23. Validation of HMM for Driver 2 - Toyota Camry 2012 - Lg G4.

Metric Feature Window Bin ClassErr CPDPM F1Stop Obs Pred True Miss False

Classif

1 10 2 0.039 1.21 0.667 36 42 26 10 16

2 1.6 2 0.032 0.99 0.630 36 37 23 13 14

CPDPM

1 8.8 3 0.048 1.04 0.718 36 42 28 8 14

2 1.4 2 0.034 0.91 0.640 36 39 24 12 15

Table 24. Testing of HMM for Driver 2 - Toyota Camry 2012 - Lg G4.

Metric Feature Window Bin ClassErr CPDPM F1Stop Obs Pred True Miss False

Classif

1 10 2 0.054 1.25 0.669 137 174 104 33 70

2 1.6 2 0.051 0.95 0.654 137 132 88 49 44

CPDPM

1 8.8 3 0.061 1.19 0.645 137 167 98 39 69

2 1.4 2 0.050 0.92 0.674 137 136 92 45 44

90

Fig. 35. Camry state estimation of test trips. Red: Prediction, Green: Observed.

91

 Dataset 3: Driver 3 - Mazda 3 - Samsung Galaxy S3

Table 25. Validation of HMM Driver 3 - Mazda 3 - Samsung Galaxy S3.

Metric Feature Window Bin ClassErr CPDPM F1Stop Obs Pred True Miss False

Classif

1 1.6 3 0.042 2.16 0.592 74 132 61 13 71

2 0.8 2 0.040 1.02 0.747 74 76 56 18 20

CPDPM

1 4.4 2 0.046 1.11 0.688 74 86 55 19 31

2 1.0 3 0.041 0.98 0.709 74 67 50 24 17

Table 26. Testing of HMM Driver 3 - Mazda 3 - Samsung Galaxy S3.

Metric Feature Window Bin ClassErr CPDPM F1Stop Obs Pred True Miss False

Classif

1 1.6 3 0.054 2.10 0.530 160 270 114 46 156

2 0.8 2 0.051 1.05 0.605 160 134 89 71 45

CPDPM

1 4.4 2 0.047 0.94 0.736 160 166 120 40 46

2 1.0 3 0.055 1.10 0.599 160 117 83 77 34

92

Fig. 36. Mazda state estimation of test trips. Red: Prediction, Green: Observed.

93

5.3 Analysis of the Results

The validation and testing results’ F1 scores are combined and presented in Table 27 and

Table 28, respectively.

Table 27. F1 scores of the validation trips

 RBF SVM NARX NN HMM

Metric Feature Prius Camry Mazda Prius Camry Mazda Prius Camry Mazda

Classif
1 0.618 0.562 0.272 0.730 0.372 0.612 0.695 0.667 0.592

2 0.647 0.219 0.265 0.891 0.729 0.196 0.896 0.630 0.747

CPDPM
1 0.741 0.571 0.436 0.768 0.776 0.727 0.803 0.718 0.688

2 0.648 0.268 0.179 0.911 0.838 0.748 0.899 0.640 0.709

Table 28. F1 scores of the testing trips

 RBF SVM NARX NN HMM

Metric Feature Prius Camry Mazda Prius Camry Mazda Prius Camry Mazda

Classif
1 0.593 0.429 0.300 0.759 0.281 0.544 0.683 0.669 0.530

2 0.548 0.197 0.267 0.827 0.622 0.161 0.858 0.654 0.605

CPDPM
1 0.750 0.417 0.373 0.767 0.612 0.541 0.760 0.645 0.736

2 0.543 0.194 0.154 0.799 0.683 0.556 0.857 0.674 0.599

Table 29. Window sizes of the best models, as found in different ML techniques.

 RBF SVM NARX NN HMM

Metric Feature Prius Camry Mazda Prius Camry Mazda Prius Camry Mazda

Classif
1 2.0 3.0 1.0 1.0 1.0 1.0 0.6 10.0 1.6

2 3.0 3.0 3.0 2.0 2.0 3.0 0.4 1.6 0.8

CPDPM
1 3.0 3.0 3.0 3.0 3.0 0.6 7.6 8.8 4.4

2 3.0 0.2 0.2 3.0 1.0 0.2 0.4 1.4 1.0

94

Some of the important outcomes can be summarized as follows:

1. Overall, the best performing vehicle was the Toyota Prius, and the worst performing was

the Mazda3. This might be due to the mechanical differences in the vehicles, and also due

to the driver. Toyota Prius engines go into sleep mode after they have been stopped,

while Mazda engines don’t. The driver behavior is also important, since some drivers

tend to do more rolling stops, rather than full stops, which can definitely affect the

accelerometer, making it harder to detect the stop points.

2. The HMM outperformed the other methodologies, followed by NN. The SVM performed

the worst. Considering how fast the training of HMM was, and the simplicity of the

feature used, which was either the range (Feature 1), or the absolute difference of

consecutive ranges (Feature 2), HMM became the model of choice for stop detection.

The SVM and NN training times were too long, and were deemed to be not feasible,

considering their outcomes.

3. Regarding the quality of features in change point detection, Feature 2 performed the best

in HMM and in NN. Feature 2 used in NN consisted of a combination of features which

were range, absolute difference of consecutive ranges, interquartile range, and standard

deviation. In the RBF SVM method, Feature 1, which is range only, performed better.

4. In the majority of the cases, the introduced CPDPM was more capable of identifying the

models that showed better performance. Since the best model selection is done during

validation, based on classification error or the introduced Change Point Detection

Performance metrics, the difference was more obvious in the validation results. Five out

of the six times, using the HMM method, CPDPM was able to find the better models.

However, in some cases during testing, a model selected by CPDPM performed worse

95

than the one selected by classification error, such as the NN for Prius. This might be due

to some differences in the validation and testing trips, including random error.

5. When the window sizes of the best models were checked, as shown in Table 29, it can be

seen that no pattern exists in the window size, i.e. sometimes large, and sometimes small

windows performed better. Larger windows contain more information on the time series,

while they are slow to react to changes. As the window size is increased, it gets harder to

classify the small stops correctly, since the effect of the stop gets lost within the large

window. Small windows tend to yield many stop predictions and have many false

positives, while large windows tend to yield less stop predictions and have many missed

observations.

6. The number of true estimates were determined by their proximity to the observed points.

A threshold of 10 seconds was chosen as the boundary condition for being accepted as

true estimate. This choice of threshold did not affect the calculation of the CPDPM

method at all. The further away the points, the more they became penalized by using this

method. The threshold was established purely to prepare the performance table, and to

compute the F1 score. In order to test the effect of the threshold on the number of true

estimates, threshold values ranging from 1 to 10 seconds were applied on the best

performing HMM models of the three datasets. The results are shown in Table 30

through Table 32. It can be seen that for lower thresholds, it was hard to achieve high

True numbers. As the threshold increased, there were more stop points that were

classified as correct. In Fig. 37, the percentage of True, False, and Miss values were

calculated by dividing these values with the corresponding number of observed stops.

96

Here, it is clear that, for the Prius and the Mazda after 5 seconds, there was not much gain

in increasing the threshold.

Table 30. Prius HMM best model testing output for different threshold values.

Threshold (s) Obs Pred True Miss False

1 251 258 123 128 135

2 251 258 188 63 70

3 251 258 198 53 60

4 251 258 209 42 49

5 251 258 215 36 43

6 251 258 216 35 42

7 251 258 218 33 40

8 251 258 218 33 40

9 251 258 218 33 40

10 251 258 218 33 40

Table 31. Camry HMM best model testing output for different threshold values.

Threshold (s) Obs Pred True Miss False

1 137 136 5 132 131

2 137 136 9 128 127

3 137 136 20 117 116

4 137 136 44 93 92

5 137 136 54 83 82

6 137 136 63 74 73

7 137 136 77 60 59

8 137 136 83 54 53

9 137 136 87 50 49

10 137 136 92 45 44

97

Table 32. Mazda HMM best model testing output for different threshold values.

Threshold (s) Obs Pred True Miss False

1 160 166 28 132 138

2 160 166 67 93 99

3 160 166 95 65 71

4 160 166 99 61 67

5 160 166 104 56 62

6 160 166 110 50 56

7 160 166 113 47 53

8 160 166 114 46 52

9 160 166 118 42 48

10 160 166 120 40 46

Fig. 37. Percentage True, False, and Miss values w.r.t. the threshold and the vehicle type.

98

CHAPTER 6

SPEED ESTIMATION

The kinetic theory tells that the integration of acceleration gives the speed of a vehicle.

Thus, the integration of the acceleration values collected with the smartphone in the direction of

motion would theoretically yield the speed. However, speed estimation directly by integration of

accelerometer data is not possible, since the accelerometer data in the direction of motion is not

pure acceleration, but involves white noise, phone sensor bias, vibration, gravity component, and

other effects. These get integrated together with the motion data and produce inaccurate results.

A calibration method that can adjust the speed at certain points is needed. The stop and start

point detection algorithm provides the necessary calibration points.

6.1 Algorithm for Estimating Speed

In this section, the process for estimating speed will be explained. One of the trips will be

used to illustrate the case. The route taken during the trip and the vehicle’s speed are shown in

Fig. 38. The trip was approximately 14 miles long, and took about 22 minutes. The

accelerometer sensor has three axes. In order to be able to estimate speed, the accelerometer

measurements taken in the direction of motion is needed. In practice, the true orientation of the

phone with respect to the vehicle will not be known. However, here it is assumed the y-axis of

the phone is oriented along the direction of the movement of the vehicle. If the phone is

positioned in the vehicle in a random orientation, orientation correction methods are needed. The

raw accelerometer values in the three axes logged from the smartphone, the magnitude of the

acceleration 3D vector, and the GPS and OBD speeds of the vehicle are shown in Fig. 39.

First, the kinematic equation shown in Eq. (87) is used to estimate speed.

99

 𝑉𝑓 = 𝑉𝑖 + 𝑎∆𝑡 (87)

Here,

𝑉𝑓 Final velocity,

𝑉𝑖 Initial velocity,

𝑎 Acceleration,

∆𝑡 Time interval.

The frequency of measurement is 10Hz. Thus, the time interval will be 0.1 seconds.

Initial velocity is taken as the first speed value of the GPS, and then the vehicle speed at each

instance is estimated recursively, based on Eq. (87).

Fig. 38. The route and speed of a Toyota Camry driven from Norfolk to Virginia Beach.

100

Fig. 39. Raw accelerometer, magnitude of acceleration, and speed of GPS and OBD.

 Normally, once this step is completed, one would expect that the speed estimate would be

more or less correct, based on the kinematic equation above. However, as mentioned before,

because the phone is not oriented perfectly in the direction of motion, and other noise factors get

accumulated as well during the integration process, the result is an upwardly (or downwardly)

sloped monotonically increasing curve, as can be seen in Fig. 40. As is evident, the monotonic

increase can be identified by a slope within each motion and standstill segment. A segment is

defined as the region between a stop and start point (standstill), or between a start and stop point

(motion), which are shown in Fig. 41. Here, the red vertical line signifies the stopping of the

vehicle, while the green vertical line represents the start point. These points are referred to as

change points. The state of each point i of a trip is denoted as a set Q containing values of ones

and zeroes:

 𝑄 = {1,0,0, … ,1,1,1,1, … ,1} (88)

101

The zeros (0) denote vehicle standstill at each instance, and the ones (1) denote the

vehicle being in motion. To detect the change points (the stop and start points of a vehicle), the

algorithm shown below is applied:

 𝑄𝑖 − 𝑄𝑖−1 ∈ {0,1, −1} (89)

The difference between point i and point i-1 can only have three distinct values. “0”

denotes no change in the state of the vehicle. “1” denotes that the vehicle was in standstill and

started moving. The index of this point is stored in the Motion Start (M) set. A value of “-1”

denotes that the vehicle was in motion and has stopped at this instance. The index of this point is

stored in the Stop (S) set.

𝑀 = {𝑖|𝑄𝑖 − 𝑄𝑖−1 = 1}

𝑆 = {𝑖|𝑄𝑖 − 𝑄𝑖−1 = −1}

𝐶 = 𝑆 ∪ 𝑀

(90)

Where 𝑖 = 1,2,3, … , |𝑄|.

Thus, M is the set of indices when vehicle starts to move from a standstill, and S is the set

of indices when the vehicle stops from being in motion. C is the sorted union of the stop and start

change points in the trip, where Ck would represent one of the change points’ index. There are K

+ 1 change points, including the very first and end points of a trip, and there are K segments.

102

Fig. 40. Speed estimations for each axis using the kinematic equation of 𝑉𝑓 = 𝑉𝑖 + 𝑎∆𝑡.

 Once the state detection phase is complete and the stop and start points are detected, the

slope of each segment is computed, except for the first and last segments, unless these segments

are a standstill. This is because, if the first and last segments start with motion, the calculated

slope will be wrong, as is evident in Fig. 41. The slope for each segment is calculated as the

difference in speed between the last and first points of a segment, divided by the number of

points in the segment. Since the change points represent the first point of each segment, the index

of the last point of a segment is one less than the index of the next change point.

 𝑚𝑘 = (𝑉(𝐶𝑘+1 − 1) − 𝑉(𝐶𝑘))/(𝐶𝑘+1 − 𝐶𝑘) (91)

Where,

𝑚𝑘 Slope of segment k

𝑉(𝐶𝑘) Speed at the index of the state change point Ck

𝐶𝑘 The index of the change point k in the set C

103

 Once the slope within each region is computed, the median is taken and the median �̃� is

used in the rest of the computations. If so desired, the individual slope values can be used in each

segment as well. However, this might be a little noisy. The stop and start points are used to

calibrate the speed estimation at standstill segments, where the speed is set to zero.

 𝑉 = {0|𝑄𝑖 = 0, 𝑓𝑜𝑟 𝑖 = 1,2,3, … , |𝑄|} (92)

The speed at the beginning of each motion segment and the slope will be used to calibrate

the estimated speed in the motion segments. The speed of each point is subtracted by the speed

of the segment’s first point and the product of the slope and the number of points from the

beginning of the segment. The remainder is the calibrated speed estimation, which is the top part

of the black vertical line shown in Fig. 41. Here, by getting rid of the VInitial and VSlope portions

from Vi, the actual speed is left, which is denoted by VCalibrated. In a sense, each point in the

motion segment is pulled down to the expected speed level.

 𝑉 = {𝑉𝑖 − �̃�(𝑖 − 𝐶𝑘) − 𝑉(𝐶𝑘)│𝑄𝑖 = 1, 𝑘 > 1}

𝑉 = {𝑉𝑖 − �̃�(𝑖 − 𝐶𝑘)│𝑄1 = 1, 𝑘 = 1 }

(93)

Where 𝑖 = 1,2,3, … , |𝑄|.

The calibration phase finalizes the speed estimation process. The calibrated speed

estimation for each axis is shown in Fig. 42. Here, it becomes obvious that the motion direction

of the vehicle aligns mostly with the Y axis of the phone, as the speed estimation obtained on

this axis is the best among the three. It can be seen that the performance of the speed estimation

is quite good and that it mimicked the actual speed very closely.

104

Fig. 41. Calculating the slope, and finding the beginning and ending speeds of segments.

Fig. 42. Calibrated speed estimation on each axis using the observed change points.

V(Ck)

V(Ck+1)

Standstill nij

Vi

Ck Ck+1

VInitial

VSlope

VCalibrated

mk

mk2

105

Fig. 43. Calibrated speed estimation on each axis using the predicted change points.

An important issue that needs to be mentioned is that, until now, the change points from

observed set are used for calibration. The high accuracy of speed estimation using observed

points proves that the process of calibration is a feasible method. However, the real performance

of the overall change point detection and speed estimation can be obtained by testing with

predicted change points. The estimated speed obtained by using the predicted change points is

shown in Fig. 43. Visually, it can be deduced that the method still performs very well, with

some overestimation between the minutes 6 and 14. Here, the vehicle is travelling on the

highway. Some other dynamics might be causing this overestimation. The RMSE of estimated

speed with respect to GPS speed using the observed and predicted points are shown in Table 33.

As can be seen, both achieve good accuracy, with approx. 6 RMSE. Using the predicted points is

not very different than using the observed ones, and only degrades the accuracy by 1.2 RMSE.

The speed estimation algorithm is applied to all the trips in the testing set. The mean

RMSE of these trips is provided on the right of Table 33. The speed estimation using the

106

predicted points performed very well, with slightly more error than using the observed points.

The model could be further improved by heuristic methods, such as increasing or decreasing the

estimated speed by a certain amount if it under or overestimates consistently in certain type of

segments. One such approach could be defined for segments over highways, which have higher

speeds for longer durations.

Table 33. The RMSE of estimated speed w.r.t. GPS speed.

 Single Trip RMSE Testing Set Mean RMSE

Observed Change Points 5.49 9.78

Predicted Change Points 6.68 11.16

107

CHAPTER 7

CONCLUSIONS

This dissertation presents a potential approach to detect whether a vehicle (with an

onboard smartphone) is in motion or stationary, based on the data collected by the accelerometer

within the smartphone. Due to the inherent noise in the accelerometer data and the variation in

driving behavior, detecting vehicle stops was found to be nontrivial. Despite these complexities,

this dissertation demonstrates that detecting the stops is feasible, although further enhancements

are needed to improve on accuracy and on minimizing the missing true points and the number of

false alarms. Based on the testing results presented, on average, 80% of the stops made by the

vehicles were detected by the models. The best average was 90% with Toyota Prius, and the

worst average was 75% with Mazda. It should be noted that some trips had many stop-go cases

where the vehicle did not come to an exact halt, but rather to a rolling stop. These cases were

hard to classify. Another issue is very small stops of one or two seconds. These might occur at

red lights, where it just turns green as the car is about to come to a halt, and the car starts

accelerating again. Still, many of these cases were correctly identified as a stop, as can be seen in

Fig. 34-Fig. 36. When the vehicle came to a total halt for more than a few seconds, it was

identified correctly. The False Positives and Misses could potentially be eliminated with further

fine-tuning of the model parameters through an optimization framework.

The data collection was done by students and faculty who used an in-house developed

Android phone app. Later, the data was uploaded to a database, which was used for model

development and testing. The data collection was done in a real environment which involved

streets, arterials, and highways. The results presented in this dissertation focused on three

different drivers who had three different vehicles, and three different phones. This way, the

108

robustness of the change point detection model was tested. The results show that the model is

robust and is able to detect change points with high accuracy, provided that some changes were

made to the parameters. That’s why vehicle-phone specific models were developed, since each

vehicle and each phone had its own unique attributes. For example, there were significant

differences between a Toyota Prius, which goes to silent mode when the vehicle is stopped for

some duration, and another car which doesn’t have this property. Phones also differed in

collecting data, since some were more sensitive and precise. Based on these facts, a sort of

distributed machine learning approach was taken, in which vehicle-phone specific models were

developed and tested.

A lot of different machine learning models, features, and window sizes were

experimented with to find the best model with right parameters. Logistic regression, linear

discriminant analysis, K nearest neighbors, classification trees, support vector machines, static

neural networks, recurrent neural networks, hidden Markov models are a few. There were several

parameters to be optimized in all the models, and finding the optimum combination was

nontrivial. Based on the experiment results, the SVM, recurrent NN, and the HMM were found

to be the best, and the testing results using these models were presented. HMM was shown to

outperform all of the methods in terms of its higher accuracy detecting the change points, its

fewer false positives, and its higher precision. Although the other machine learning models were

fed with several different features, HMM excelled at detecting the change points in the time

series data, by using a feature as simple as the range or the absolute difference of consecutive

ranges.

The Change Point Detection Performance Metric (CPDPM) proved to be very useful in

assessing the models where the goal was to find the change points in a time series data with high

109

accuracy and precision. Both theoretically and empirically, CPDPM was proven to be a better

performance metric compared to the regular classification error, which is the common method

used in classification tasks. For the classification error metric, what matters is that the predicted

points are classified correctly. There is no notion of change point, which entails time

information, such as the closeness of predicted points to the actual observed points. By

incorporating these, and by making use of the so-called “error function”, a novel performance

metric was developed. As far as the author’s knowledge goes, there is no such performance

metric currently in the literature, and it is believed that the proposed method will be of great

benefit in similar cases, where the goal is to find change points or specific instances within time

series data.

Speed estimation directly by integration of accelerometer data was not possible with data

collected from a smartphone, since the accelerometer data was not pure acceleration in motion

direction, but involved white noise, phone sensor bias, vibration, gravity component, and other

effects. These got integrated together with the actual data and produced inaccurate results. A

calibration method that can adjust the speed at certain points was needed. The predicted stop and

start points, and the slope obtained by integrating acceleration data, were used to calibrate the

estimated speed. The proposed method for estimating speed proved to be very successful, and

can be used as an alternative to or as improvement to GPS based systems, which sometimes

cannot receive signal due to urban canyon and other effects.

110

7.1 Potential Applications of Vehicle Motion Detection

The proposed methods of vehicle movement detection and estimating speed have the

potential to be used in several fields. Some of the possible applications are defined in the

following sections.

7.1.1 GPS Speed and Localization Correction

Having a GPS sensor in the smartphones is of great benefit, both to the consumer and to

the researchers who make use of it doing research. The GPS sensor will provide both speed and

location information. However, GPS signals can be highly misleading at times such as in urban

canyons, tunnels, and adverse weather conditions. The speed estimation obtained from using the

accelerometer data can be used to correct the GPS speed by means of methods such as Kalman

filters. Also, when the vehicle stops, the GPS is almost never able to pinpoint the location

exactly, but rather lingers around sometimes in rather large radii. This sometimes causes the

speed to never show as 0 mph but rather a hanging speed of around as high as 10 mph. Some of

these problems are shown in Appendix B. Detecting that the vehicle has stopped will help correct

the GPS unit to show 0 mph correctly, and will also improve on localization.

7.1.2 Fuel consumption, emission estimation

The model developed will provide the fuel consumption estimation method with two key

inputs: one is speed and the other is vehicle idle and motion states. Assuming that the vehicle

type, model, and year are known, estimating the fuel consumption and the gas emission is a

matter of plugging in the variables, since the formulas and coefficients related to fuel

consumption and gas emissions have already been published, over many years of research.

111

7.1.3 Transportation mode recognition

Each vehicle behaves differently and has a unique footprint while moving. Sensors such

as accelerometer and gyroscopes have certain characteristics for each transportation type, as is

evident in Fig. 44. By exploiting these characteristics, and by developing a model that can learn

the patterns hidden in the sensor data, the transportation mode used can be detected. Instead of

using GPS speed, as is done in the literature, the speed estimated from sensors can serve as an

input into the mode recognition model.

Fig. 44. Acceleration data collected by a smartphone for each transportation type.

7.1.4 Queue length, Average speed, Travel time estimation

Several properties related to traffic, such as queue length, average speed, average travel

time are called “measures of effectiveness.” According to the information provided by FHWA,

speed and travel time measuring can be achieved by various techniques and can be grouped into

three categories:

1- Spot speed measurement techniques, which measure vehicle speeds only for a given point

of geography or a given point in time.

2- Vehicle tracing techniques, which measure vehicle travel times only for a select portion

of all trips.

112

3- Trip maker tracking techniques, which are similar to vehicle tracing techniques but

measure traveler trip times rather than vehicle trip times.

However, as can be understood, these techniques are limited both in scope and in time,

and they also require special equipment, personnel, and other means in order to achieve a certain

level of accuracy, which might be even questionable in conditions such as adverse weather, not

proper materials, and the probability of missing information. It goes without saying that all of

these efforts involve expenditure and budget.

The signal controllers that are already present at almost all the intersections could be

equipped with transponders that could send info to and receive info from smartphones via

Bluetooth or some other technology. These systems are referred to as Vehicle to Infrastructure

(V2I) technology in the industry. The main difference here is the use of the smartphone, instead

of the vehicle, as the source. Establishing such a technology would allow the transmission of

information from smartphones to the infrastructure. For example, vehicle stop and start times,

standstill duration at an intersection, distance to controller (queue length), or in case the signal is

green, vehicle estimated speed, could all be transmitted to the transponder. Queue length, the

travel time between two points, the number of stops on a corridor, the delays at a certain

intersection, the total delay over a certain segment, the average vehicle speed, and more could all

be obtained by a simple and cost efficient system. These data have huge importance in designing

intersections, optimizing green times, directing traffic to alternative routes, and the like. In the

long term, they can serve as input for infrastructure investments such as building new roads,

building on and off ramps on highways, introducing roundabouts, adding new lanes to existing

roads, etc. The ubiquitous use of smartphones could be utilized to develop smart cities.

113

Fig. 45. Ubiquitous use of smartphones could be utilized improve traffic.

114

REFERENCES

[1] W. Ballantyne, G. B. Turetzky, G. Slimak, and J. Shewfelt, "Achieving low energy-per-

fix in cell phone," GPS World, vol. 17, pp. 24-32, 2006.

[2] D. Raskovic and D. Giessel, "Battery-aware embedded GPS receiver node," in 4th

Annual International Conference on Mobile and Ubiquitous Systems: Computing,

Networking and Services, MobiQuitous 2007, August 6, 2007 - August 10, 2007,

Philadelphia, PA, United states, 2007.

[3] F. Simjee and P. H. Chou, "Accurate battery lifetime estimation using high-frequency

power profile emulation," in ISLPED '05. Proceedings of the 2005 International

Symposium on Low Power Electronics and Design, 8-10 Aug. 2005, Piscataway, NJ,

USA, 2005, pp. 307-10.

[4] B. W. Parkinson, "GPS error analysis," in Global Positioning System: Theory and

applications. vol. I, ed, 1996, pp. 469-483.

[5] N. M. Drawil, H. M. Amar, and O. A. Basir, "GPS Localization Accuracy Classification:

A Context-Based Approach," IEEE Transactions on Intelligent Transportation Systems,

vol. 14, pp. 262-273, 2013.

[6] N. R. Center. (2012, Jan 15, 2014). New mobile majority: a look at smartphone owners in

the U.S. Available: http://blog.nielsen.com/nielsenwire/online_mobile/who-owns-

smartphones-in-the-us/

[7] N. R. Center. (2012, Jan 15, 2014). Two Thirds of New Mobile Buyers Now Opting for

Smartphones. Available: http://www.nielsen.com/us/en/newswire/2012/two-thirds-of-

new-mobile-buyers-now-opting-for-smartphones.html

[8] C. S. Consulting. (2013, Jan 15, 2014). US Wireless Market Update Q1 2013. Available:

http://www.chetansharma.com/blog/2013/06/20/us-wireless-market-update-q1-2013/

[9] N. R. Center. (2013, Jan 15, 2014). Consumer Electronics Ownership Blasts Off in 2013.

Available: http://www.nielsen.com/us/en/newswire/2013/consumer-electronics-

ownership-blasts-off-in-2013.html

[10] P. R. Center. (2013, Jan 15, 2014). Smartphone Ownership 2013. Available:

http://pewinternet.org/Reports/2013/Smartphone-Ownership-2013.aspx

[11] P. R. Center. (2012, Jan 15, 2014). Smartphone Ownership Update. Available:

http://www.pewinternet.org/Reports/2012/Smartphone-Update-Sept-2012/Findings.aspx

[12] eMarketer. (2014, March 05, 2013). Forecast: number of smartphone users in the U.S.

2010-2016.

http://blog.nielsen.com/nielsenwire/online_mobile/who-owns-smartphones-in-the-us/
http://blog.nielsen.com/nielsenwire/online_mobile/who-owns-smartphones-in-the-us/
http://www.nielsen.com/us/en/newswire/2012/two-thirds-of-new-mobile-buyers-now-opting-for-smartphones.html
http://www.nielsen.com/us/en/newswire/2012/two-thirds-of-new-mobile-buyers-now-opting-for-smartphones.html
http://www.chetansharma.com/blog/2013/06/20/us-wireless-market-update-q1-2013/
http://www.nielsen.com/us/en/newswire/2013/consumer-electronics-ownership-blasts-off-in-2013.html
http://www.nielsen.com/us/en/newswire/2013/consumer-electronics-ownership-blasts-off-in-2013.html
http://pewinternet.org/Reports/2013/Smartphone-Ownership-2013.aspx
http://www.pewinternet.org/Reports/2012/Smartphone-Update-Sept-2012/Findings.aspx

115

[13] P. R. Center. (2013, Jan 31, 2014). Who's winning the U.S. smartphone market?

Available: http://www.nielsen.com/us/en/newswire/2013/whos-winning-the-u-s-

smartphone-market-.html

[14] P. Mohan, V. N. Padmanabhan, and R. Ramjee, "Nericell: Rich monitoring of road and

traffic conditions using mobile smartphones," in 6th ACM Conference on Embedded

Networked Sensor Systems, SenSys 2008, November 5, 2008 - November 7, 2008,

Raleigh, NC, United states, 2008, pp. 323-336.

[15] T. Klosowski. (2013, August 2016). The Best Apps that Use Your Phone's Boring

Features in Clever Ways. Available: http://lifehacker.com/the-best-apps-that-use-your-

phones-boring-features-in-710672640

[16] (2016, August 18, 2016). 10 Free Accelerometer Apps for iPhone and iPod Touch.

Available: https://turbofuture.com/cell-phones/10-Best-Accelerometer-Apps

[17] M. J. Mathie, A. C. F. Coster, N. H. Lovell, and B. G. Celler, "Accelerometry: providing

an integrated, practical method for long-term, ambulatory monitoring of human

movement," Physiological Measurement, vol. 25, pp. 1-20, 04/ 2004.

[18] G. Hansson, P. Asterland, N. G. Holmer, and S. Skerfving, "Validity and reliability of

triaxial accelerometers for inclinometry in posture analysis," Medical and Biological

Engineering and Computing, vol. 39, pp. 405-413, 2001.

[19] J. R. Kwapisz, G. M. Weiss, and S. A. Moore, "Activity recognition using cell phone

accelerometers," SIGKDD Explor. Newsl., vol. 12, pp. 74-82, 2011.

[20] L. Bao and S. Intille, "Activity Recognition from User-Annotated Acceleration Data," in

Pervasive Computing. vol. 3001, A. Ferscha and F. Mattern, Eds., ed: Springer Berlin

Heidelberg, 2004, pp. 1-17.

[21] N. Ravi, N. Dandekar, P. Mysore, and M. L. Littman, "Activity recognition from

accelerometer data," in 20th National Conference on Artificial Intelligence and the 17th

Innovative Applications of Artificial Intelligence Conference, AAAI-05/IAAI-05, July 9,

2005 - July 13, 2005, Pittsburgh, PA, United states, 2005, pp. 1541-1546.

[22] M. Oliver, H. Badland, S. Mavoa, M. J. Duncan, and S. Duncan, "Combining GPS, GIS,

and Accelerometry: Methodological Issues in the Assessment of Location and Intensity

of Travel Behaviors. ," Journal of Physical Activity & Health vol. 7, pp. 102-108, 2010.

[23] A. R. Cooper, A. S. Page, B. W. Wheeler, P. Griew, L. Davis, M. Hillsdon, et al.,

"Mapping the Walk to School Using Accelerometry Combined with a Global Positioning

System," American Journal of Preventive Medicine, vol. 38, pp. 178-183, 2// 2010.

[24] P. J. Troped, M. S. Oliveira, C. E. Matthews, E. K. Cromley, S. J. Melly, and B. A. Craig,

"Prediction of Activity Mode with Global Positioning System and Accelerometer Data,"

Prediction of Activity Mode with Global Positioning System and Accelerometer Data,

vol. 40, p. 7, 2008.

http://www.nielsen.com/us/en/newswire/2013/whos-winning-the-u-s-smartphone-market-.html
http://www.nielsen.com/us/en/newswire/2013/whos-winning-the-u-s-smartphone-market-.html
http://lifehacker.com/the-best-apps-that-use-your-phones-boring-features-in-710672640
http://lifehacker.com/the-best-apps-that-use-your-phones-boring-features-in-710672640

116

[25] J. L. Wolf, M. G. S. Oliveira, P. Troped, C. E. Mathews, E. K. Cromley, and S. J. Melly,

"Mode and Activity Identification Using GPS and Accelerometer Data," in

Transportation Research Board 85th Annual Meeting, Washington DC, United States,

2006.

[26] J. Wang, R. Chen, X. Sun, M. F. H. She, and Y. Wu, "Recognizing Human Daily

Activities From Accelerometer Signal," Procedia Engineering, vol. 15, pp. 1780-1786, //

2011.

[27] M. Ermes, J. Parkka, J. Mantyjarvi, and I. Korhonen, "Detection of Daily Activities and

Sports With Wearable Sensors in Controlled and Uncontrolled Conditions," Information

Technology in Biomedicine, IEEE Transactions on, vol. 12, pp. 20-26, 2008.

[28] J. Lester, P. Hurvitz, R. Chaudhri, C. Hartung, G. Borriello, and "MobileSense - Sensing

Modes of Transportation in Studies of the Built Environment," presented at the

International Workshop on Urban, Community, and Social Applications of Networked

Sensing Systems - UrbanSense08, 2008.

[29] WISDM (Wireless Sensor Data Mining) Available: http://www.cis.fordham.edu/wisdm/ ;

http://storm.cis.fordham.edu/~gweiss/wisdm/android.html

[30] C. Syuan-Yi, H. Chung-Ming, L. Shih Yang, and T. Lai, "Activity recognition for

triggering cooperative networking among on-vehicle smart devices," in ITS

Telecommunications (ITST), 2013 13th International Conference on, 2013, pp. 80-84.

[31] T. Feng and H. J. P. Timmermans, "Transportation mode recognition using GPS and

accelerometer data," Transportation Research Part C: Emerging Technologies, vol. 37,

pp. 118-130, 12// 2013.

[32] V. Manzoni, D. Manilo, K. Kloeckl, and C. Ratti, "Transportation mode identification

and real-time CO2 emission estimation using smartphones."

[33] C. F. Ratti and K. Kloeckl, "CO2GO: Transportation Mode Identification and Real-Time

CO2 Emissions Estimation Using Mobile Phone Sensors," USA Patent, 2011.

[34] T. M. Mitchell, Machine Learning, 1 ed. ed.: McGraw-Hill, Mar. 1997.

[35] P. Langley, Elements of Machine Learning. San Francisco, 1996.

[36] V. Vapnik, Estimation of Dependences Based on Empirical Data [in Russian]. Nauka,

Moscow, 1979.

[37] C. Cortes and V. Vapnik, "Support-vector networks," Machine Learning, vol. 20, pp.

273-297, 1995/09/01 1995.

[38] C. J. C. BURGES, "A Tutorial on Support Vector Machines for Pattern Recognition,"

Data Mining and Knowledge Discovery, vol. 2, pp. 121-167, 1998.

http://www.cis.fordham.edu/wisdm/
http://storm.cis.fordham.edu/~gweiss/wisdm/android.html

117

[39] Y. Zhang and Y. Xie, "Travel mode choice modeling with support vector machines,"

Transportation Research Record: Journal of the Transportation Research Board, pp. 141-

150, 2008.

[40] H. Chih-Wei and L. Chih-Jen, "A comparison of methods for multiclass support vector

machines," Neural Networks, IEEE Transactions on, vol. 13, pp. 415-425, 2002.

[41] C. M. Bishop, "Pattern recognition," Machine Learning, vol. 128, 2006.

[42] K. Kira and L. A. Rendell, "The feature selection problem: Traditional methods and a

new algorithm," in AAAI, 1992, pp. 129-134.

[43] MathWorks. (August 2016). Design Time Series NARX Feedback Neural Networks.

Available: http://www.mathworks.com/help/nnet/ug/design-time-series-narx-feedback-

neural-networks.html

http://www.mathworks.com/help/nnet/ug/design-time-series-narx-feedback-neural-networks.html
http://www.mathworks.com/help/nnet/ug/design-time-series-narx-feedback-neural-networks.html

118

APPENDICES

APPENDIX A: PREVIOUS METHODOLOGY

In this section, some of the research which involved a hybrid model of SVM-HMM and

dynamic neural networks is presented. The hybrid model was abandoned later on, since it was

found that HMM alone performed much better and was more reliable over a large variety of

trips. The success of SVM-HMM in this section lies in the fact of having rather clean data, which

is not that common in the real world.

Table 34. Saturn Ion 2007 Trip Info.

Training Data Testing Data

Duration

(m)

Stops

Max

Speed

Trip

Distance

Motion

%

Duration

(m)

Stops

Max

Speed

Trip

Distance

Motion

%

2.31 1 45.8 1.27 97.6 5.36 4 49.6 2.01 67.6

3.1 1 40.8 1.3 82.8 2.06 1 47.9 0.47 43.5

4.9 3 45.2 1.98 74.9 4.9 3 48.3 1.74 72.4

5.98 4 43.4 2.02 65.2 5 3 42.1 1.2 61.4

6.55 6 48.3 1.98 68.5 4.01 1 45.2 1.8 83.1

4.95 3 45.2 1.64 77 5.8 3 45.2 1.79 66.9

5.7 4 44.0 1.68 63.7 5.03 3 44.6 1.77 70.7

The summary of training and testing trips that are used in this section are provided in

Table 34, which includes the trip duration in minutes, the number of times the vehicle stopped in

each trip, the max speed in mph, the trip distance in miles, and the percentage of time the vehicle

was in motion. These trips were from driving a Saturn Ion 2007 on arterials and city streets in

Norfolk VA, as shown in Fig. 46. The device used to collect data was a Samsung Galaxy S3.

119

Fig. 46. Geographic boundaries of the trip data collected in Norfolk, VA

Linear Support Vector Machines

 Linear SVMs try to find a linear boundary between the classes without any

transformation of the input data. It is the simplest form of SVM, and the only parameter to find

the optimum value is the box constraint. Soft margin SVM with a slack variable ξi, and a penalty

parameter C need to be optimized. The C value acts not only as a penalty on misclassified points,

but also as the boundary value for the Lagrange multipliers. Thus, neither too small nor too large

a C value will work well. An optimum value of C can be found through experimentation.

 The first experiments were carried out with C = 1 using different features. The MATLAB

built-in function “fitcsvm” was utilized with default values for the parameters, and the C value

was set to 1. To solve the quadratic constrained optimization problem, the Sequential Minimal

Optimization (SMO) algorithm was used.

The classification error is calculated as:

120

 ∑ (𝛿𝑖|𝑦𝑖, �̂�𝑖)𝑁
𝑖=1

𝑁
∗ 100

(94)

Where,

δ is an indicator function which equals to 1 if yi = ŷi, 0 otherwise.

N is the total number of points of all 7 test trips.

The CPDPM columns were calculated by summing CPDPM values of the seven test trips

and then dividing by the corresponding number of points. For example, the CPDPM stop points

were obtained by summing the CPDPM values of stop points and then dividing by total number

of estimated stop points of the seven test trips.

The total trip time of the test trips was 32.3 minutes, with standstill totaling 10.4 minutes,

and motion totaling 21.9 minutes. Features were extracted from the magnitude of accelerometer

data, and were calculated over non-overlapping sliding windows of one second. The features

experimented with were as follows:

Table 35. Features used and their explanation.

Feature Explanation

Mean The mean of the points in the window.

StDev The standard deviation of the points in the window.

Range The range of the points in the window.

Max The maximum value in the window.

Median The median value in the window.

P.25.75 The 25th and 75th percentiles in the window.

P.10.90 The 10th and 90th percentiles in the window.

P.25.50.75 The 25th, 50th and 75th percentiles in the window.

P.10.50.90 The 10th, 50th and 90th percentiles in the window.

P.10.25.50.75.90 The 10th, 25th, 50th, 75th and 90th percentiles in the window.

IQR The interquartile range in the window.

121

Feature Explanation

Norm1 The L1 Norm of points in the window.

Norm2 The L2 Norm of points in the window.

Diff The consecutive differences between points in the window.

SignDiff The signs of the differences in the window.

SumSignDiff The sum of the signs of the differences in the window.

RangeNormalized Standardized range value in the window.

RangePrevN Previous N window range values.

RangeNDiffBetween Previous N range values, and the differences between these ranges.

RangeNDiffFirstRest
Previous N range values, and the differences between the most recent

range and the previous ranges.

Table 36. The consolidated testing error values of 7 trips.

Feature
Classification

Error (%)

CPDPM

Stop Points

CPDPM

Start Points

CPDPM

Combined

Mean 32 5 5 5

StDev 7.46 2.93 2.9 2.92

Range 7.61 2.84 2.83 2.83

Max 12.27 4.58 4.31 4.45

Median 32 5 5 5

P.25.75 9.58 4.39 4.19 4.29

P.10.90 9.68 3.29 3.17 3.23

P.25.50.75 9.94 4.47 4.31 4.39

P.10.50.90 10.51 3.86 3.53 3.7

P.10.25.50.75.90 10.67 3.98 3.66 3.82

IQR 8.23 3.48 3.53 3.5

Norm1 32 5 5 5

Norm2 32 5 5 5

Diff 32 5 5 5

SignDiff 32 5 5 5

SumSignDiff 32 5 5 5

122

Feature
Classification

Error (%)

CPDPM

Stop Points

CPDPM

Start Points

CPDPM

Combined

RangeNormalized 7.46 3.69 4.03 3.86

RangePrev2 7.09 1.4 1.35 1.37

RangePrev3 7.97 1.11 0.98 1.04

RangePrev4 8.44 1.17 0.97 1.07

RangePrev5 8.6 1.51 1.15 1.33

Range2DiffBetween 7.09 1.4 1.35 1.37

Range3DiffBetween 7.92 1.11 0.98 1.04

Range4DiffBetween 8.44 1.17 0.97 1.07

Range5DiffBetween 8.54 1.51 1.15 1.33

Range3DiffFirstRest 7.92 1.11 0.98 1.04

Range4DiffFirstRest 8.44 1.17 0.97 1.07

Range5DiffFirstRest 8.44 1.5 1.15 1.33

In Table 36, to make distinguishing easier between the experiments, the error values are

color coded. The classification error largest value is red, and the lowest values are colored blue.

The CPDPM values are coded separately, since error calculation is different from classification

error. Here the largest value is red, and the smallest is green. As can be seen in Table 36, some of

the features performed extremely badly. These features are the Mean, Median, Norm1, Norm2,

Diff, SignDiff, and SumSignDiff. On the other hand, features that measured the variation in the

data were more effective.

The first test trip in the Saturn Ion car test set was analyzed closely in order to see how

the different features affected the state estimation using the same method with same parameters,

and also to check whether the change point detection performance metric was of any benefit. Fig.

47 shows the state prediction results of linear SVM using different features and a C value (box

constraint) of 1. The bottommost line with a lime green color depicts the observed states of this

trip. In each line, the upper segment is the state of being in motion, and the lower segment shows

123

the standstills. The performance values of this specific trip for each case are provided in Table

37. For example, the classification error is the same for the features Q.25.75 and Q.10.90,

however their corresponding CPDPM values are different. By checking Fig. 47, it can be seen

that the state estimation using feature Q.25.75 was worse than Q.10.90, as it had two more false

standstill estimations at times around 3:00 and 4:40. This was captured using the change point

detection performance metric, but not with the regular classification error, because point by point

comparison of predictions with observed states produces the same total number of misclassified

points, hence the same classification error. The best features were shown as Q.25.50.75 and

Q.10.50.90 by the classification error, while the CPDPM determined the best features to be

RangePrev3, Range3DiffBetween, and Range3DiffFirstRest. The features selected to be the best

by CPDPM were all very similar in state estimation, with only one false standstill around 3:50.

However, the Q.10.50.90 feature state estimation had four false alarms, and the Q.25.50.75 was

even worse, with five false alarms. It is also worth noting that the models with the best features,

as determined by CPDPM, had larger classification error values (4.35%) than the ones

determined by using the regular classification error (4.04%). This is a further testament that the

CPDPM did a better job in identifying the models with regard to quantifying the performance

related to change point detection.

Fig. 48 shows the results of applying linear SVM to each of the seven test trips. The best

model, as identified by the classification error, suffered a lot from false alarms. CPDPM was

more reliable in selecting the better performing model.

124

Fig. 47. The SVM predictions of the same test trip of Saturn Ion using different features.

Table 37. The SVM error results for each feature of test trip 1.

Feature
Classification

Error (%)

CPDPM

Stop Points

CPDPM

Start Points

CPDPM

Combined

Mean 31.99 5 5 5

StDev 6.21 2.08 2.51 2.29

Range 5.9 1.66 2.09 1.87

Max 7.76 3.59 3.14 3.36

Median 31.99 5 5 5

Q.25.75 4.35 1.59 1.23 1.41

Q.10.90 4.35 1.09 0.97 1.03

Q.25.50.75 4.04 1.31 1.16 1.23

Q.10.50.90 4.04 1.09 0.97 1.03

Q.10.25.50.75.90 4.35 1.32 1.22 1.27

IQR 5.59 2.06 2.48 2.27

Norm1 31.99 5 5 5

Norm2 31.99 5 5 5

Diff 31.99 5 5 5

SignDiff 31.99 5 5 5

125

Feature
Classification

Error (%)

CPDPM

Stop Points

CPDPM

Start Points

CPDPM

Combined

SumSignDiff 31.99 5 5 5

RangeNormalized 4.35 0.89 1.34 1.11

RangePrev2 4.66 0.44 0.81 0.62

RangePrev3 4.35 0.36 0.59 0.47

RangePrev4 4.97 0.41 0.59 0.5

RangePrev5 4.97 0.39 0.64 0.51

Range2DiffBetween 4.66 0.44 0.81 0.62

Range3DiffBetween 4.35 0.36 0.59 0.47

Range4DiffBetween 4.97 0.41 0.59 0.5

Range5DiffBetween 4.97 0.39 0.64 0.51

Range3DiffFirstRest 4.35 0.36 0.59 0.47

Range4DiffFirstRest 4.97 0.41 0.59 0.5

Range5DiffFirstRest 4.97 0.39 0.64 0.51

Fig. 48. Lin. SVM, C=1, best models based on classif. error (green), and CPDPM (red).

126

Hidden Markov Models

A hybrid model of SVM, followed by HMM, was applied for predicting the change

points in a trip. The observations or emissions were the accelerometer data, and the latent

variables were the states of the vehicle, either being in motion or standing still. Although the

observations were the acceleration data, using acceleration directly in the HMM model was not

possible. A method that mapped the acceleration data to the binary values of 0 for being

stationary, and 1 for being in motion, was used. For this purpose, the SVM output of state

estimation was used as an input observation vector to the HMM. The summary of the whole

process, from data collection to prediction, is depicted in Fig. 49. The transition and emission

probability matrices are presented in Table 38. These matrices were optimized by using a simple

threshold cutoff method. Windows of one second were taken and the range features were

calculated using the accelerometer magnitude. The threshold used was 0.3. Any point whose

range value was above this threshold was classified as motion, and below was as standstill. This

was the first step. The output from this step was used as an input to the second step, which was

the training of HMM. The knowledge of ground truth observed states (based on GPS or OBD

speed) was used to construct the transition probability matrix. The emission vector which was

the vector of 0s and 1s obtained from threshold method, and the observed state vector, were used

to construct the emission probability matrix. After obtaining the trained matrices, the values were

rounded, and were used in the rest of HMM applications without any re-training.

127

Fig. 49. The summary of the classification process from start to end.

Table 38. The transition and emission probability matrices

Application of the SVM-HMM hybrid model results is presented in Table 39. Here, it can

be seen that HMM improved on the results of SVM. This is because HMM smoothed out many

false alarms, since the transition from dominant motion state to standstill state was rather low.

This is evident in Fig. 50, in which state estimation was done on the same test trip as in the

SVM. Here, each line represents a model with a different feature(s) as input to the SVM. The

output of SVM was used as an emission vector input to HMM. With the application of SVM

followed by HMM, nearly all models behaved in the same way, in which they all missed the very

first standstill. Except for two models, there were no false alarms. This results hint that SVM-

HMM model might not be very good at detecting small stops, because of the low probability

associated with them after the Viterbi hidden state prediction process.

Data
collection

•Obtain phone
sensor and OBD
data

•Speed

•Accelerometer

Feature
extraction

•Compute range
for 1 second of
accelerometer
magnitude data

Observation
vector

creation

•Use a method to
map
acceleration to
binary values:

•Linear SVM

•Kernel SVM

Applying
HMM

•Use the binary
observation
vector as input
and predict
state of the
vehicle

Output
Analysis

•Are all the
events
detected?

•How precise are
the predicted
events?

•How precise are
the standstill
durations?

Statet
Statet+1

Standstill Motion
Actual\

Observation
0 1

Standstill 0.90 0.10 Standstill 0.85 0.15

Motion 0.10 0.90 Motion 0.15 0.85

128

Table 39. The average errors of the 7 test trips using HMM for state estimation

Feature
Classification

Error (%)

CPDPM

Stop Points

CPDPM

Start Points

CPDPM

Combined P

Mean 32 5 5 5

StDev 5.95 0.69 0.58 0.64

Range 6.06 0.7 0.58 0.64

Max 8.96 1.4 1.3 1.35

Median 32 5 5 5

P.25.75 8.13 0.73 0.65 0.69

P.10.90 8.65 0.65 0.51 0.58

P.25.50.75 8.18 0.68 0.62 0.65

P.10.50.90 8.86 0.86 0.73 0.8

P.10.25.50.75.90 9.01 0.92 0.79 0.86

IQR 6.27 0.64 0.57 0.6

Norm1 32 5 5 5

Norm2 32 5 5 5

Diff 32 5 5 5

SignDiff 32 5 5 5

SumSignDiff 32 5 5 5

RangeNormalized 4.45 0.53 0.53 0.53

RangePrev2 6.63 0.72 0.52 0.62

RangePrev3 7.82 0.95 0.78 0.87

RangePrev4 8.39 0.88 0.65 0.76

RangePrev5 8.39 0.79 0.57 0.68

Range2DiffBetween 6.63 0.72 0.52 0.62

Range3DiffBetween 7.77 0.95 0.78 0.87

Range4DiffBetween 8.39 0.88 0.65 0.76

Range5DiffBetween 8.34 0.78 0.57 0.68

Range3DiffFirstRest 7.77 0.95 0.78 0.87

Range4DiffFirstRest 8.39 0.88 0.65 0.76

Range5DiffFirstRest 8.23 0.77 0.57 0.67

129

Fig. 50. The state estimation of the first test trip from Saturn Ion using different features.

The error values for the single test trip are provided in Table 40. Here, both the

classification error and the CPDPM agreed on the same model as being the best. However, a

problem arose when two models had the same number of false alarms. The features of Max and

Q.10.90 each had a false standstill towards the end, with the model using Max as feature having

a longer duration. The CPDPM gave the same result for both, but the classification error had a

larger value for the model using Max. In this case, the classification error did better in

identifying the better model. The CPDPM treated all false alarms in the same way, by assigning

them the maximum penalty of two in total. Thus, it could not distinguish between their duration.

This can be addressed by taking into consideration the duration of a false alarm.

130

Table 40. The HMM error results for each feature of test trip 1.

Feature
Classification

Error (%)

CPDPM

Stop

CPDPM

Start

CPDPM

Combined

Mean 31.99 5 5 5

StDev 3.42 0.41 0.31 0.36

Range 3.42 0.41 0.31 0.36

Max 5.28 0.34 0.31 0.32

Median 31.99 5 5 5

P.25.75 2.17 0.34 0.28 0.31

P.10.90 3.42 0.34 0.31 0.32

P.25.50.75 2.17 0.31 0.31 0.31

P.10.50.90 2.48 0.34 0.31 0.32

P.10.25.50.75.90 2.48 0.34 0.31 0.32

IQR 3.42 0.44 0.28 0.36

Norm1 31.99 5 5 5

Norm2 31.99 5 5 5

Diff 31.99 5 5 5

SignDiff 31.99 5 5 5

SumSignDiff 31.99 5 5 5

RangeNormalized 3.11 0.39 0.31 0.35

RangePrev2 3.42 0.44 0.28 0.36

RangePrev3 3.11 0.42 0.28 0.35

RangePrev4 3.73 0.44 0.31 0.38

RangePrev5 4.04 0.42 0.36 0.39

Range2DiffBetween 3.42 0.44 0.28 0.36

Range3DiffBetween 3.11 0.42 0.28 0.35

Range4DiffBetween 3.73 0.44 0.31 0.38

Range5DiffBetween 4.04 0.42 0.36 0.39

Range3DiffFirstRest 3.11 0.42 0.28 0.35

Range4DiffFirstRest 3.73 0.44 0.31 0.38

Range5DiffFirstRest 4.04 0.42 0.36 0.39

131

Fig. 51 shows the application of linear SVM followed by HMM to each of the seven test

trips. The best feature was selected based on the two error metrics. The green line is the model

selected by classification error, and the red line is the model selected by CPDPM. Both of the

error metrics agreed on the same feature to select the best model. That’s why both the green and

the red lines are on top of each other. It is clear that SVM-HMM hybrid model had many fewer

false alarms, but also missed some true change points.

Fig. 51. The best HMMs. Classif. error (green), CPDPM (red) agree on the same feature.

 Linear SVM can be improved by experimenting with different C values. C values in a

large range from 0.0001 to 50 were analyzed. The following table shows the best models using

the two error metric criteria, the best feature, and the best box constraint parameter values.

Using the best SVM model in each case, the state estimations were drawn and are shown in Fig.

52 and Fig. 53. The SVM performed better than the one in Fig. 50, and so did the HMM. Both

methods were smoother and had fewer false alarms.

132

Table 41. The best linear SVM by using grid search over several C values.

Method Error Metric Feature Box Constraint

SVM
ClassError P.10.25.50.75.90 0.01

CPDPM RangePrev5 0.008

SVM-

HMM

ClassError P.10.25.50.75.90 0.01

CPDPM P.10.25.50.75.90 0.008

Fig. 52. The best SVMs based on Classification error (green), CPDPM (red).

133

Fig. 53. Best HMM results. Class. error (green), CPDPM (red) agree on the same feature.

The RBF SVM is another method that is more suitable for linearly non separable data.

The following figure shows the RBF SVM and HMM results.

Fig. 54. RBF SVM state estimation.

134

APPENDIX B: PROBLEMS RELATED TO SENSORS

During data collection and processing many problems have been encountered with. The

most common problem was the loss of GPS signal. Another problem related to GPS was the fact

that it did not show 0 mph, even when the car was at full stop. Sometimes it lingered steadily

around 3, or 10 mph, and sometimes it just behaved erratically going up and down when the

vehicle was at stop. The weird behavior of accelerometer data was also seen in the data.

Although very seldom, the loss of OBD signal was also encountered, possibly due to an

interference with the Bluetooth signal between the OBD and the phone. Some of these problems

are shown in the figures below. In Fig. 60, change of phone orientation can be seen at around 8

min mark. It is also interesting that the GPS was not able to receive the correct signal until before

this point.

Due to the anomalies that were found in the data, the threshold for creating ground truth

data in which it is determined when a car is moving and when it is at standstill is set to 3 mph

when using the GPS speed, and to 1 mph when using the OBD speed.

135

Fig. 55. Loss of GPS signal several times, not reaching zero when the vehicle has stopped.

Fig. 56. Loss of OBD signal, and the erratic behavior of the accelerometer data.

136

Fig. 57. Some large variation in accelerometer data when the vehicle is stopping.

Fig. 58. GPS signal not going below 10 mph even when the car is stopping.

137

Fig. 59. GPS signal hanging around 3 mph while the car is in total standstill.

Fig. 60. Change of orientation around 8 min mark, and lack of GPS at the beginning.

138

APPENDIX C: HMM VALIDATION

In this appendix, the transition matrices of the HMM models, and the plots of the

validations results of the best models presented in Section 5.2.3 are given. Fig. 61 to Fig. 63

show the state predictions of the best HMM models, where the best models are selected based on

the CPDPM. In the plots, green lines represent the observed true states of the vehicle, and the red

lines represent the predicted states. Each of the ten trips in the validation sets are drawn

separately in their respective subplots, enumerated 1 to 10. Since there are two states, the upper

segments of the lines show vehicle motion periods, while the lower segments of the lines show

the standstill periods. The vertical lines represent the change points. The x axis shows the time in

Min:Sec format. Since some trips were much longer than the rest, to keep it consistent, each trip

was truncated at 20 minutes.

The trained transition probability matrices for the best performing models of the three

vehicles are shown in Table 42. It can be seen that the transition probabilities between different

states are very low.

Table 42. HMM Trained State Transition Matrices

 Prius Camry Mazda

State 0 1 0 1 0 1

0 0.99563 0.00437 0.99611 0.00389 0.99646 0.00354

1 0.00065 0.99935 0.00070 0.99930 0.00097 0.99903

139

Fig. 61. Prius state estimation of validation trips. Red: Prediction, Green: Observed.

140

Fig. 62. Camry state estimation of validation trips. Red: Prediction, Green: Observed.

141

Fig. 63. Mazda state estimation of validation trips. Red: Prediction, Green: Observed.

142

VITA

Ilyas Ustun earned his B.S. degree with summa cum laude from Fatih University in

Istanbul in 2008. After working a year at Fatih University as a graduate research assistant, he

was admitted to the PhD program in the department of Modeling, Simulation, and Visualization

Engineering at Old Dominion University. Later, he became a graduate research assistant at the

Transportation Research Institute. He served as the President of the International Student

Advisory Board at Old Dominion University in 2015. He was the founding president of the

Transportation Engineering Students Organization in 2015. His research interests include data

mining, data analysis, machine learning techniques, descriptive and predictive analytics,

modeling and simulation of transportation systems, and working with data collected from various

sources such as probe vehicles, weigh-in-motion scales, and smartphone sensors. He is very

enthusiastic about data science, and publishes some of his work on his blog site

datacademy.wordpress.com. For more information about Ilyas, please check his LinkedIn page:

linkedin.com/in/ilyasustun.

https://datacademy.wordpress.com/
https://www.linkedin.com/in/ilyasustun

	Robust Algorithms for Estimating Vehicle Movement from Motion Sensors Within Smartphones
	Recommended Citation

	tmp.1480522614.pdf.A8209

