11 research outputs found

    Sea ice remote sensing using spaceborne global navigation satellite system reflectometry

    Get PDF
    In this research, the application of spaceborne Global Navigation Satellite System- Reflectometry (GNSS-R) delay-Doppler maps (DDMs) for sea ice remote sensing is investigated. Firstly, a scheme is presented for detecting sea ice from TechDemoSat-1 (TDS-1) DDMs. Less spreading along delay and Doppler axes is observed in the DDMs of sea ice relative to those of seawater. This enables us to distinguish sea ice from seawater through studying the values of various DDM observables, which describe the extent of DDM spreading. Secondly, three machine learning-based methods, specifically neural networks (NNs), convolutional neural networks (CNNs) and support vector machine (SVM), are developed for detecting sea ice and retrieving sea ice concentration (SIC) from TDS-1 data. For these three methods, the architectures with different outputs (i.e. category labels and SIC values) are separately devised for sea ice detection (classification problem) and SIC retrieval (regression problem) purposes. In the training phase, different designs of input that include the cropped DDM (40-by-20), the full-size DDM (128-by-20), and the feature selection (FS) (1-by-20) are tested. The SIC data obtained by Nimbus-7 SMMR and DMSP SSM/I-SSMIS sensors are used as the target data, which are also regarded as ground-truth data in this work. In the experimental stage, CNN output resulted from inputting full-size DDM data shows better accuracy than that of the NN-based method. Besides, performance of both CNNs and NNs is enhanced with the cropped DDMs. It is found that when DDM data are adequately preprocessed CNNs and NNs share similar accuracy. Further comparison is made between NN and SVM with FS. The SVM algorithm demonstrates improved accuracy compared with the NN method. In addition, the designed FS is proven to be effective for both SVM- and NN-based approaches. Lastly, a reflectivity

    Permanent water and flash flood detection using global navigation satellite system reflectometry

    Get PDF
    In this thesis, research for inland water extent and flash floods remote sensing using Global Navigation Satellite System Reflectometry (GNSS-R) data of the Cyclone Global Navigation Satellite System (CYGNSS) is presented. Firstly, a high-resolution Machine Learning (ML) method for detecting inland water extent using the CYGNSS data is implemented via the Random Under-Sampling Boosted (RUSBoost) algorithm. The CYGNSS data of the year 2018 over the Congo and Amazon basins are gridded into 0.01゚ × 0.01゚ cells. The RUSBoost-based classifier is trained and tested with the CYGNSS data over the Congo basin. The Amazon basin data that is unknown to the classifier is then used for further evaluation. Using only three observables extracted from the CYGNSS Delay-Doppler Maps (DDMs), the proposed technique is able to detect 95.4% and 93.3% of the water bodies over the Congo and Amazon basins, respectively. The performance of the RUSBoost-based classifier is also compared with an image processing based inland water detection method. For the Congo and Amazon basins, the RUSBoost-based classifier has a 3.9% and 14.2% higher water detection accuracies, respectively. Secondly, a flash flood detection method using the CYGNSS data is investigated. Considering Hurricane Harvey and Hurricane Irma as two case studies, six different Data Preparation Approaches (DPAs) for flood detection based on the CYGNSS data and the RUSBoost classification algorithm are investigated in this thesis. Taking flood and land as two classes, flash flood detection is tackled as a binary classification problem. Eleven observables are extracted from the DDMs for feature selection. These observables, alongside two features from ancillary data, are considered in feature selection. All the combinations of these observables with and without ancillary data are fed into the classifier with 5-fold cross-validation one-by-one. Based on the test results, five observables with the ancillary data are selected as a suitable feature vector for flood detection here. Using the selected feature vector, six different DPAs are investigated and compared to find the best one for flash flood detection. Then, the performance of the proposed method is compared with that of a Support Vector Machine (SVM) based classifier. For Hurricane Harvey and Hurricane Irma, the selected method is able to detect 89.00% and 85.00% of flooded points, respectively, with a resolution of 500m × 500m, and the detection accuracy for non-flooded land points is 97.20% and 71.00%, respectively

    Sea Ice Extraction via Remote Sensed Imagery: Algorithms, Datasets, Applications and Challenges

    Full text link
    The deep learning, which is a dominating technique in artificial intelligence, has completely changed the image understanding over the past decade. As a consequence, the sea ice extraction (SIE) problem has reached a new era. We present a comprehensive review of four important aspects of SIE, including algorithms, datasets, applications, and the future trends. Our review focuses on researches published from 2016 to the present, with a specific focus on deep learning-based approaches in the last five years. We divided all relegated algorithms into 3 categories, including classical image segmentation approach, machine learning-based approach and deep learning-based methods. We reviewed the accessible ice datasets including SAR-based datasets, the optical-based datasets and others. The applications are presented in 4 aspects including climate research, navigation, geographic information systems (GIS) production and others. It also provides insightful observations and inspiring future research directions.Comment: 24 pages, 6 figure

    Spaceborne GNSS-R for Sea Ice Classification Using Machine Learning Classifiers

    Get PDF
    The knowledge of Arctic Sea ice coverage is of particular importance in studies of climate change. This study develops a new sea ice classification approach based on machine learning (ML) classifiers through analyzing spaceborne GNSS-R features derived from the TechDemoSat-1 (TDS-1) data collected over open water (OW), first-year ice (FYI), and multi-year ice (MYI). A total of eight features extracted from GNSS-R observables collected in five months are applied to classify OW, FYI, and MYI using the ML classifiers of random forest (RF) and support vector machine (SVM) in a two-step strategy. Firstly, randomly selected 30% of samples of the whole dataset are used as a training set to build classifiers for discriminating OW from sea ice. The performance is evaluated using the remaining 70% of samples through validating with the sea ice type from the Special Sensor Microwave Imager Sounder (SSMIS) data provided by the Ocean and Sea Ice Satellite Application Facility (OSISAF). The overall accuracy of RF and SVM classifiers are 98.83% and 98.60% respectively for distinguishing OW from sea ice. Then, samples of sea ice, including FYI and MYI, are randomly split into training and test dataset. The features of the training set are used as input variables to train the FYI-MYI classifiers, which achieve an overall accuracy of 84.82% and 71.71% respectively by RF and SVM classifiers. Finally, the features in every month are used as training and testing set in turn to cross-validate the performance of the proposed classifier. The results indicate the strong sensitivity of GNSS signals to sea ice types and the great potential of ML classifiers for GNSS-R applications

    Modeling and Theoretical Analysis of GNSS-R Soil Moisture Retrieval Based on the Random Forest and Support Vector Machine Learning Approach

    Get PDF
    Global Navigation Satellite System-Reflectometry (GNSS-R) as a microwave remote sensing technique can retrieve the Earth’s surface parameters using the GNSS reflected signal from the surface. These reflected signals convey the surface features and therefore can be utilized to detect certain physical properties of the reflecting surface such as soil moisture content (SMC). Up to now, a serial of electromagnetic models (e.g., bistatic radar and Fresnel equations, etc.) are employed and solved for SMC retrieval. However, due to the uncertainty of the physical characteristics of the sites, complexity, and nonlinearity of the inversion process, etc., it is still challenging to accurately retrieve the soil moisture. The popular machine learning (ML) methods are flexible and able to handle nonlinear problems. It can dig out and model the complex interactions between input and output and ultimately make good predictions. In this paper, two typical ML methods, specifically, random forest (RF) and support vector machine (SVM), are employed for SMC retrieval from GNSS-R data of self-designed experiments (in situ and airborne). A comprehensive simulated dataset involving different types of soil is constructed firstly to represent the complex interactions between the variables (reflectivity, elevation angle, dielectric constant, and SMC) for the requirement of training ML regression models. Correspondingly, the main task of soil moisture retrieval (regression) is addressed. Specifically, the post-processed data (reflectivity and elevation angle) from sensor acquisitions are used to make predictions by these two adopted ML methods and compared with the commonly used GNSS-R retrieval method (electromagnetic models). The results show that the RF outperforms the SVM method, and it is more suitable for handling the inversion problem. Moreover, the RF regression model built by the comprehensive dataset demonstrates satisfactory accuracy and strong universality, especially when the soil type is not uniform or unknown. Furthermore, the typical task of detecting water/soil (classification) is discussed. The ML algorithms demonstrate a high potential and efficiency in SMC retrieval from GNSS-R data

    Space-based Global Maritime Surveillance. Part I: Satellite Technologies

    Full text link
    Maritime surveillance (MS) is crucial for search and rescue operations, fishery monitoring, pollution control, law enforcement, migration monitoring, and national security policies. Since the early days of seafaring, MS has been a critical task for providing security in human coexistence. Several generations of sensors providing detailed maritime information have become available for large offshore areas in real time: maritime radar sensors in the 1950s and the automatic identification system (AIS) in the 1990s among them. However, ground-based maritime radars and AIS data do not always provide a comprehensive and seamless coverage of the entire maritime space. Therefore, the exploitation of space-based sensor technologies installed on satellites orbiting around the Earth, such as satellite AIS data, synthetic aperture radar, optical sensors, and global navigation satellite systems reflectometry, becomes crucial for MS and to complement the existing terrestrial technologies. In the first part of this work, we provide an overview of the main available space-based sensors technologies and present the advantages and limitations of each technology in the scope of MS. The second part, related to artificial intelligence, signal processing and data fusion techniques, is provided in a companion paper, titled: "Space-based Global Maritime Surveillance. Part II: Artificial Intelligence and Data Fusion Techniques" [1].Comment: This paper has been submitted to IEEE Aerospace and Electronic Systems Magazin

    Engineering Calibration and Physical Principles of GNSS-Reflectometry for Earth Remote Sensing

    Full text link
    The Cyclone Global Navigation Satellite System (CYGNSS) is a NASA mission that uses 32 Global Positioning System (GPS) satellites as active sources and 8 CYGNSS satellites as passive receivers to measure ocean surface roughness and wind speed, as well as soil moisture and flood inundation over land. This dissertation addresses two major aspects of engineering calibration: (1) characterization of the GPS effective isotropic radiated power (EIRP) for calibration of normalized bistatic radar cross section (NBRCS) observables; and (2) development of an end-to-end calibration approach using modeling and measurements of ocean surface mean square slope (MSS). To estimate the GPS transmit power, a ground-based GPS constellation power monitor (GCPM) system has been built to accurately and precisely measure the direct GPS signals. The transmit power of the L1 coarse/acquisition (C/A) code of the full GPS constellation is estimated using an optimal search algorithm. Updated values for transmit power have been successfully applied to CYGNSS L1B calibration and found to significantly reduce the PRN dependence of CYGNSS L1 and L2 data products. The gain pattern of each GPS satellite’s transmit antenna for the L1 C/A signal is determined from measurements of signal strength received by the 8-satellite CYGNSS constellation. Determination of GPS patterns requires knowledge of CYGNSS patterns and vice versa, so a procedure is developed to solve for both of them iteratively. The new GPS and CYGNSS patterns have been incorporated into the science data processing algorithm used by the CYGNSS mission and result in improved calibration performance. Variable transmit power by numerous Block IIF and IIR-M GPS space vehicles has been observed due to their flex power mode. Non-uniformity in the GPS antenna gain patterns further complicates EIRP estimation. A dynamic calibration approach is developed to further address GPS EIRP variability. It uses measurements by the direct received GPS signal to estimate GPS EIRP in the specular reflected direction and then incorporates them into the calibration of NBRCS. Dynamic EIRP calibration instantaneously detects and corrects for power fluctuations in the GPS transmitters and significantly reduces errors due to GPS antenna gain azimuthal asymmetry. It allows observations with the most variable Block IIF transmitters (approximately 37% of the GPS constellation) to be included in the standard data products and further improves the calibration quality of the NBRCS. A physics-based approach is then proposed to examine potential calibration errors and to further improve the Level 1 calibration. The mean square slope (mss) is a key physical parameter that relates the ocean surface properties (wave spectra) to the CYGNSS measurement of NBRCS. An approach to model the mss for validation with CYGNSS mss data is developed by adding the contribution of a high frequency tail to the WAVEWATCH III (WW3) mss. It is demonstrated that the ratio of CYGNSS mss to modified WW3 mss can be used to diagnose potential calibration errors that exist in the Level 1 calibration algorithm. This approach can help to improve CYGNSS data quality, including the Level 1 NBRCS and Level 2 ocean surface wind speed and roughness. The engineering calibration methods presented in this dissertation make significant contributions to the spatial coverage, calibration quality of the measured NBRCS and the geophysical data products produced by the NASA CYGNSS mission. The research is also useful to the system design, science investigation and engineering calibration of future GNSS-reflectometry missions.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/168052/1/wangtl_1.pd

    Earth Observations for Addressing Global Challenges

    Get PDF
    "Earth Observations for Addressing Global Challenges" presents the results of cutting-edge research related to innovative techniques and approaches based on satellite remote sensing data, the acquisition of earth observations, and their applications in the contemporary practice of sustainable development. Addressing the urgent tasks of adaptation to climate change is one of the biggest global challenges for humanity. As His Excellency António Guterres, Secretary-General of the United Nations, said, "Climate change is the defining issue of our time—and we are at a defining moment. We face a direct existential threat." For many years, scientists from around the world have been conducting research on earth observations collecting vital data about the state of the earth environment. Evidence of the rapidly changing climate is alarming: according to the World Meteorological Organization, the past two decades included 18 of the warmest years since 1850, when records began. Thus, Group on Earth Observations (GEO) has launched initiatives across multiple societal benefit areas (agriculture, biodiversity, climate, disasters, ecosystems, energy, health, water, and weather), such as the Global Forest Observations Initiative, the GEO Carbon and GHG Initiative, the GEO Biodiversity Observation Network, and the GEO Blue Planet, among others. The results of research that addressed strategic priorities of these important initiatives are presented in the monograph

    Scattering from stratified media with a rough surface: application to sea ice ridges

    Get PDF
    Sea ice ridging is the dominant factor contributing to sea ice thickness, which has impacts on climate change and transportation. It is important to know the age of sea ice ridges, since ice age affects the strength of the ice and its ability to persist through the summer melt season. However, information on the age of sea ice ridges is not commonly available. The goal of this thesis is to develop a method to distinguish between first year and multi-year sea ice ridges using simulations of scattering signatures in the range 100-500 MHz. This goal is achieved by modifying existing scattering models, developing a sea ice model and comparing simulation results. The research is based on Walsh’s scattering approach, which was originally developed to model high frequency (HF) radar propagation across a rough surface or through stratified media and three updates to the scattering model are made. In the first update, Walsh’s method is modified from assuming the surface is a good conductor to be applicable to scattering from general dielectrics. Secondly, Walsh used a simplified scattering geometry, which implicitly assumed small surface slopes. By using the correct scattering geometry the method is extended to general surface slopes. The vertical component of the electric field is the most important for propagation across the surface, but the horizontal components of the field are relevant for penetration through the surface. The third update to the model is the derivation of the x-component of the electric field. Sea ice ridges are modeled as having a rough surface over stratified media. The total scatter is the sum of the surface and subsurface scatter. The subsurface scatter is a function of the field transmitted through the surface, the scatter from the layers and the transmission up through the underside of the rough surface. The subsurface scatter is found by considering all the scattering events in terms of scattering coefficients. The field transmitted down through the rough surface is found using a novel application of the boundary conditions at the surface. Due to the overlying rough surface, the scatter from the layers may be simplified to have the same structure as the Fresnel reflection coefficients for parallel and perpendicular radiation. Determining the field transmitted up through the underside of the surface may be found in a similar way as the first transmitted field, except that the underside of the surface has an inverted shape requiring that the rough surface scattering equations be rederived. To this point in the research sea ice ridges have been described in a general manner as having a rough surface over stratified media. To justify this approach and provide sufficient details for comparing scattering behaviour, a model describing the structure and internal characteristics of sea ice ridges is developed. The objective is not to fully describe sea ice ridges, but to include the factors that contribute to scattering in the frequency range from 100−500 MHz. Both first year and multi-year ridges have three layers consisting of the top of sail, remainder of sail and consolidated layer. Due to the lossy nature of sea ice, the salinity in the top layer of the ice dominates the scattering behaviour, but changes in the density, porosity and temperature of the ice also impact the scattered field. Since the ridge surface is assumed to have a sinusoidal profile with a long correlation length with respect to the radar wavelength, the surface and subsurface scatter may be separated spatially. However, simulations based on the characteristics of first year and multi-year ridges indicate that the total scatter is greater for multi-year ridges due to the subsurface contribution. This suggests that it should be possible to discriminate between first year and multi-year ridges for realistic surface geometries

    Detecting Sea Ice From TechDemoSat-1 Data Using Support Vector Machines With Feature Selection

    No full text
    corecore