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Abstract: Global Navigation Satellite System-Reflectometry (GNSS-R) as a microwave remote sensing
technique can retrieve the Earth’s surface parameters using the GNSS reflected signal from the surface.
These reflected signals convey the surface features and therefore can be utilized to detect certain
physical properties of the reflecting surface such as soil moisture content (SMC). Up to now, a serial of
electromagnetic models (e.g., bistatic radar and Fresnel equations, etc.) are employed and solved for
SMC retrieval. However, due to the uncertainty of the physical characteristics of the sites, complexity,
and nonlinearity of the inversion process, etc., it is still challenging to accurately retrieve the soil
moisture. The popular machine learning (ML) methods are flexible and able to handle nonlinear
problems. It can dig out and model the complex interactions between input and output and ultimately
make good predictions. In this paper, two typical ML methods, specifically, random forest (RF) and
support vector machine (SVM), are employed for SMC retrieval from GNSS-R data of self-designed
experiments (in situ and airborne). A comprehensive simulated dataset involving different types
of soil is constructed firstly to represent the complex interactions between the variables (reflectivity,
elevation angle, dielectric constant, and SMC) for the requirement of training ML regression models.
Correspondingly, the main task of soil moisture retrieval (regression) is addressed. Specifically,
the post-processed data (reflectivity and elevation angle) from sensor acquisitions are used to make
predictions by these two adopted ML methods and compared with the commonly used GNSS-R
retrieval method (electromagnetic models). The results show that the RF outperforms the SVM
method, and it is more suitable for handling the inversion problem. Moreover, the RF regression
model built by the comprehensive dataset demonstrates satisfactory accuracy and strong universality,
especially when the soil type is not uniform or unknown. Furthermore, the typical task of detecting
water/soil (classification) is discussed. The ML algorithms demonstrate a high potential and efficiency
in SMC retrieval from GNSS-R data.

Keywords: Global Navigation Satellite System-Reflectometry (GNSS-R); soil moisture retrieval;
signal-to-noise ratio (SNR); random forest (RF); support vector machine (SVM)

1. Introduction

Soil moisture content (SMC) is an important determinant parameter of surface energy balance
and plays an important role in the global water cycle. Existing ground-based experiments and satellite
missions dedicated to SMC estimation commonly employ heavy and bulk passive or active sensors,
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which limits partly the flexibility and mobility of SMC estimation [1]. With the development of the
Global Navigation Satellite System (GNSS) [2], the GNSS reflected signals from objects were received
and utilized. Its advantages—low cost, wide global coverage, a large amount of data storage and no
need for a special radar transmitter—have made the GNSS-Reflectometry technique predominant.
Moreover, it is also a powerful supplement to other traditional measurement methods, thus opening
up a new field of research in microwave remote sensing.

The European Space Agency (ESA) proposed that the GPS L-band signal could be used as an ocean
scatterometer in 1988. Then, the Passive Reflectometry and Interferometry System (PARIS) concept was
first proposed in 1993 [3], using passive reflection and interference technology to carry out GPS L-band
ocean remote sensing [4–8]. GNSS-R research work was further extended to the land surface [9–14].
In 2000, the GPS signal was reported for soil moisture retrieval by simulating GNSS-R signals as a
function of soil moisture, including the use of tower-based GPS bistatic radar for sensing the seasonal
polarization measurements [15]. NASA and the University of Colorado conducted the well-known
Soil Moisture Experiment in 2002 (SMEX02) [16,17]. Later, many researchers carried out a large
amount of research on GNSS-R soil moisture estimation models and methods [18,19]. Remote sensing
laboratory of the Polytechnic University of Catalonia (UPC) utilized the Interference Pattern Technique
(IPT) of GNSS direct and reflected signals to quantify the relationship between reflected signals and
the SMC [20]. A SMIGOL reflectometer was specifically designed and developed with vertically
polarized antennas, which can be used for soil moisture sensing [21]. Additionally, some ground-based
and airborne polarimetric experiments were conducted to investigate the sensitivity of polarized
components to SMC [22,23]. The soil moisture retrieval using GNSS-R signals was extended from cases
of the bare surface [16–19] to the scenarios of ground covered by vegetation. For the latter scenarios,
their applications have been expanded to measurements of vegetation height [20,22,24], moisture [25],
and biomass [22,23,26].

In 2003, the UK Disaster Monitoring Constellation (UK-DMC) satellite with carrying GNSS-R
equipment successfully obtained the data over varied land surfaces and observed the signal power
fluctuations concerning different terrains [27]. After that, the TechDemoSat-1 (TDS-1) satellite was
launched in 2014 and provided Delay–Doppler Map (DDM) data products, which opened a window
for the GNSS-R onboard measurements [28,29] on soil moisture [30,31]. NASA has also launched the
Cyclone GNSS (CYGNSS) constellation in December 2016 [32,33]. Some significant results have been
found utilizing space-borne data for the soil moisture content (SMC) application [34–39]. It was also
reported that the apparent reflectivity, the reflected signal-to-noise-ratio (SNR), and the polarimetric
ratio (PR) were correlated with soil moisture well [40].

At present, the SMC retrieval using GNSS-R signals has not been established with an accurate
analytical model to reveal the inherent rules and properties of SMC retrieval. Most of the efforts have
been focused on quantifying the correlation between SMC and the amplitude of GNSS-R signals, which
allow the estimation and monitoring of soil moisture trends. For example, the lately space-borne
data-based SMC estimation can achieve accurate results, but it highly relies on the prior knowledge
of SMC or the heavy-loaded ancillary data. More work is needed concerning the inversion process
to improve GNSS-R SMC retrieval accuracy and usability. It should be noted that the main factors
affecting the SMC analytical computation accuracy include the uncertainty physical characteristics
of the soil, high complexity, and nonlinearity SMC retrieval process (e.g., electromagnetic and soil
dielectric models), etc. Nonetheless, little evidence is available for how to resolve the interactions
among these complex factors.

Machine learning (ML) algorithms have been growing in popularity in the applications of remote
sensing, since they attempt to construct intrinsically nonlinear relationships between the input and
output from data [41–44]. They can serve as a tool to uncover a function, especially when this function
is too complicated to be formally expressed. As such, it is hypothesized here that ML methods could
be used for the complex GNSS-R retrieval modeling and improving the estimation. Among the
machine learning methods, support vector machines (SVMs) became popular in the last few years
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for obtaining geo-/bio-physical parameters, such as soil moisture [45], wheat leaf rust [46], and sea
ice [47]. SVMs have shown excellent capability in generalization and the resistance to noise with limited
data [41]. A bagging ensemble algorithm, random forest (RF), has been widely used in remote sensing
applications to obtain the land cover type [48], the boreal forest attributes [49], precipitation [50],
vegetation water content [51], and metal concentration [52], since it is good at capturing nonlinear and
complex relationships between inputs and predictors with good estimation results [50,51]. These two
typical machine learning methods have great potential for interpreting remote sensing data in the fields
of land and sea applications, because they are faster and require fewer training samples while exhibiting
better prediction performance, compared to other learning methods [46–48,51]. Although SVMs and
RF have been used in the past studies for soil moisture estimation, neither of them has been adopted
for modeling and comparing with the GNSS-R SMC retrieval models.

Therefore, this study aims to investigate the feasibility of GNSS-R estimation (regression and
classification) by using two typical ML algorithms with self-designed experiments (in situ and airborne)
and establishes an optimization method for SMC retrieval. A simulated dataset involving different
types of soil is constructed for training ML regression models. The performance of the two adopted
ML methods and the GNSS-R retrieval method for SMC estimation are evaluated and compared.
Additionally, the classifications of water and soils are discussed, and the predicted properties of the
surfaces are presented by the classification function. This paper is organized as follows: Section 2
presents the theoretical background of the GNSS-R SMC retrieval and ML algorithms. Section 3
describes the methodology for training and modeling the GNSS-R inversion process. The experimental
setup and the employed datasets are detailed in Section 4. Section 5 shows the regression results
performed by ML and GNSS-R models with self-designed experimental data as well as some discussions.
Finally, conclusions are given in Section 6.

2. Theoretical Background

2.1. Soil Moisture Retrieval Process from Bistatic GNSS-R

The GNSS-R system can be regarded as a bistatic radar system as shown in Figure 1, in which the
satellite is the transmitter, and the receiver can be placed near the ground (in situ measurement) or on
an aircraft for airborne experiments.
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Figure 1. Bistatic GNSS-R receiving configuration.

GNSS-R aims to obtain the characteristics of the reflecting surface by analyzing the reflected
signals or their difference from the direct signal. GNSS-R utilizes the L-band microwave signals that
are immune to atmospheric attenuation and normally have a good penetration through vegetation [52].
As seen in Figure 1, the RHCP antenna receives the direct signal, and the LHCP antenna receives the
reflected signal. The SNR peak power of the RHCP antenna is:

SNRdirect
peak =

PtGt

4πR2
3

Grλ2GD

4πPN
(1)
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where Pt represents the satellite transmit power, Gt stands for the satellite gain, Gr and PN are the
antenna gain and noise power for the RHCP and the LHCP link, respectively. GD is the processing
gain due to the de-spread of the GPS C/A code, R3 denotes the distance between the satellite and the
receiver, and λ is the wavelength of the L1 band signal.

In this study, the reflected signal received by the antenna is considered to be dominated by the
coherent reflections [16]. Thus, the reflected signal power of the LHCP antenna is:

SNRre f lect
peak =

PtGt

4π(R1 + R2)
2

Grλ2GD

4πPN
Γ. (2)

In (2), R1 is the distance between the satellite and the reflection point, and R2 represents the
distance between the reflection point and the receiver. The ratio of SNRdirect

peak to SNRre f lect
peak can be

written as:
SNRre f lect

peak

SNRdirect
peak

=
R2

3

(R1 + R2)
2 Γ·C (3)

where C is a calibration parameter summarizing the uncertainties of Gr and PN. Γ is the power
reflectivity that depends on the surface roughness [53,54]:

Γ =
∣∣∣ρ(γ)∣∣∣2χ(z) (4)

where ρ(γ) represents the Fresnel reflection coefficient of the reflecting surface, and γ denotes the
elevation angle of the satellite. χ(z) is the probability density function for the surface height z.
Under the assumption of a flat surface, the χ(z) = 1.

The reflection coefficient ρ(γ) is given by a linear combination of vertically and horizontally
polarized components; therefore [55]:

ρ(γ) = ρLR =
1
2

∣∣∣ρVV − ρHH
∣∣∣ (5)

where ρVV is the horizontal polarization reflection coefficient and ρHH is the vertical polarization
reflection coefficient. More specifically [5]:

ρVV =
ε· sin(γ) −

√
ε− (cos(γ))2

ε· sin(γ) +
√
ε− (cos(γ))2

(6)

ρHH =
sin(γ) −

√
ε− (cos(γ))2

sin(γ) +
√
ε− (cos(γ))2

(7)

where ε is the complex permittivity of the reflecting surface. In the case of dry terrain or almost dry,
the imaginary part of the permittivity can be neglected [56,57].

When the LH reflected signal and the RH direct signal are known, the real part of permittivity can
be obtained from the combination of (3)–(7) with nearby water calibration [16]. Since the relationship
between the dielectric constant of soil and soil moisture is given by the soil dielectric models [53,58],
the SMC can be retrieved from the dielectric constant.

2.2. Support Vector Machines

The support vector machine (SVM) was established by Vapnik [59] on the basis of statistical
learning theory. It is a typical machine learning algorithm, which was originally used for classification.
Assuming the data sample set is denoted as T =

{
(xi, yi)

∣∣∣i = 1, 2, . . . , l
}
, xi ∈ <

n, yi ∈ ±1, where xi ∈ <
n
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is the input vector and its components are features or attributes; yi ∈ ±1 is the output value of
corresponding xi; l is the number of samples. SVM aims to find a classification hyperplane that
maximizes the margin between different classes. The hyperplane is constructed as follows [59]:

w·x + b = 0 (8)

w is a weighting vector, x is an input vector, and b is the bias. A hyperplane that allows two dashed
lines ω·x+ b = 1 and ω·x+ b = −1 to distinguish positive and negative samples was perfectly satisfied,
and the maximum value of the distance between them is 2

‖ω‖ [59].
The optimization function can be expressed as follows [59]:{

min 1
2 ||w||

2

yi(w·xi + b) ≥ 1, i = 1, 2, . . . . . . , l
(9)

SVM is quite efficient and requires fewer samples [60]. Especially, SVM features have a kernel
function that takes data as input and transforms it into the desired form [59]. These functions can
be different types, for example, linear, nonlinear, polynomial, or radial basis function (RBF). Here,
we adopted the RBF kernel function, since it has good generalization ability and demonstrated
excellent performance [59]. Moreover, SVM is also a typical solution regarding the regression problem,
maintaining all the main features that characterize the algorithm (maximal margin), which is known as
the support vector regression (SVR). Similar to SVM, SVR can also estimate the nonlinear relationship
between input vectors and corresponding predictors [61]. The core of the SVR is the iterative process
of the sequential minimal optimization (SMO) algorithm [62].

2.3. Random Forest

Random forest (RF) is an integrated machine learning method proposed by Breiman [63],
which uses bagging (bootstrap aggregation) and random split selection techniques to construct
multiple decision trees and obtain final classification results by voting. Random forests can also be used
for regression. An RF can analyze the complex interaction and even highly correlated variables. It has
a fast learning speed and it is quite resistant to noisy data and the data with missing values [46–48,51].

The random forest is an integrated classifier consisting of a set of tree-structured classifiers{
h(X,ϑk), k = 1, 2, 3 . . . , K

}
, simplified as hi(x), where {ϑk} is a random vector obeying independent and

identical distribution, and K is the number of decision trees in the random forest. Under the given
independent variable X, the optimal classification results will be determined by the majority vote from
decision trees [63].

Building a random forest requires three steps: generating a training set (bootstrap sampling) for
each decision tree, constructing each decision tree, and repeating the above two steps to generate a
random forest. In order to construct k trees, we need to generate k random vectors ϑ1, ϑ2, ϑ3 . . . ϑk.
These random vectors ϑi are independent of each other and are equally distributed. The random
vector ϑi is used to construct a collection of decision trees h(x,ϑi), and it is simplified as hi(x).
When constructing a tree, a feature is selected from a subset of features and is used to grow each
tree [63].

The prediction of the model is the average of the regression results for the k decision trees [63]:

H(x) =
1
k

∑k

i=1
hi(x). (10)

When using bootstrap sampling, the unselected data is called out-of-bag (OOB) data. This part
of the unselected OOB can be used to estimate the generalization error, classification strength,
and correlation coefficient (CC) for the model of the ensembled decision trees; for each decision
tree, OOB can be used to obtain an error estimate. The estimates of OOB error for all decision trees
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in a random forest are averaged to evaluate the generalization error of the random forest model.
More details about the implementation of RF can be found in e.g., [63].

3. Methodology

3.1. RF and SVMs Models for GNSS-R Soil Moisture Retrieval

In general, as demonstrated in Figures 1 and 2, the GNSS-R signals coming from direct and
reflected links are received, and the collected raw data were post-processed respectively to obtain the
correlation power and relevant navigation messages. Therefore, the soil reflectivity can be obtained by
calculating the SNR of the received data collected from the reflected and direct signals. After that, as we
have introduced in Section 2.1, the soil reflectivity is used to obtain the dielectric constants through the
bistatic radar equations. Since the dielectric constants are strongly related to SMC, the relationship
between soil dielectric constants and soil moisture is given by the soil dielectric models [53,58].

Remote Sens. 2020, 12, x FOR PEER REVIEW 6 of 23 

 

relationship between soil dielectric constants and soil moisture is given by the soil dielectric models 
[53,58]. 

 
Figure 2. The flowchart of machine learning (ML) applied in Global Navigation Satellite System-
Reflectometry (GNSS-R) soil moisture retrieval. 

In fact, it has to be noted that the commonly used semi-empirical soil dielectric models [53,58] 
need the texture information (e.g., clay, sand, and silt proportions) of the soil. As shown in Figure 3, 
the SMC increases generally with dielectric constants. However, different soil types (identified with 
n ) show an evident impact on SMC retrieval, which increases the difficulty and uncertainty in SMC 
retrieval when the texture of the soil is unknown or nonuniform. Moreover, operating field 
measurements for acquiring the soil texture in all test sites are practically impossible; therefore, most 
GNSS-R SMC measurements are conducted without knowing the information of the test site. On the 
other hand, the inversion process is quite complex and unable to be solved analytically. Thus, it is 
difficult to establish an accurate GNSS-R soil moisture model analytically due to the complex 
interaction of these parameters. 

 
Figure 3. The dielectric constant versus volume of water content for five typical types of soil. 

Hence, facing the above-mentioned challenges, here, the GNSS-R SMC retrieval is considered as 
a nonlinear regression problem and modeled by ML techniques (RF and SVMs), as shown in Figure 2. 
Input vectors are ,Γ  γ , and the SMC is the output to be predicted by ML methods. It is worth 
mentioning that during the GNSS-R experiment, the instability of the receiving equipment or other 
unexpected situations may cause missing data. ML methods are effective, flexible, and can maintain 
high accuracy prediction, even when a portion of data is lost [51], which is quite valuable for GNSS-
R soil moisture retrieval. In this study, two ML algorithms of RF and SVM were applied for training 
the regression model and testing the performance of the proposed GNSS-R ML retrieval method. 

3.2. Simulated GNSS-R Dataset for Training Regression Models 

As noted previously, the regression problem is a typical task solved by ML methods. As such, 
in this study, we will use SVR and RF models to perform the SMC retrieval (regression) with data 
collected during self-designed in situ and airborne experiments. In principle, such learning 

Dielectric
constants

Soil 
moisture

Processed 
data

Reflectivity, elevation 
angle

Bistatic 
Equations

Output 
Dielectric 

models

Input 

Random Forest/SVR

Figure 2. The flowchart of machine learning (ML) applied in Global Navigation Satellite
System-Reflectometry (GNSS-R) soil moisture retrieval.

In fact, it has to be noted that the commonly used semi-empirical soil dielectric models [53,58] need
the texture information (e.g., clay, sand, and silt proportions) of the soil. As shown in Figure 3, the SMC
increases generally with dielectric constants. However, different soil types (identified with n) show
an evident impact on SMC retrieval, which increases the difficulty and uncertainty in SMC retrieval
when the texture of the soil is unknown or nonuniform. Moreover, operating field measurements
for acquiring the soil texture in all test sites are practically impossible; therefore, most GNSS-R SMC
measurements are conducted without knowing the information of the test site. On the other hand,
the inversion process is quite complex and unable to be solved analytically. Thus, it is difficult to
establish an accurate GNSS-R soil moisture model analytically due to the complex interaction of
these parameters.
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Hence, facing the above-mentioned challenges, here, the GNSS-R SMC retrieval is considered as a
nonlinear regression problem and modeled by ML techniques (RF and SVMs), as shown in Figure 2.
Input vectors are Γ, γ, and the SMC is the output to be predicted by ML methods. It is worth mentioning
that during the GNSS-R experiment, the instability of the receiving equipment or other unexpected
situations may cause missing data. ML methods are effective, flexible, and can maintain high accuracy
prediction, even when a portion of data is lost [51], which is quite valuable for GNSS-R soil moisture
retrieval. In this study, two ML algorithms of RF and SVM were applied for training the regression
model and testing the performance of the proposed GNSS-R ML retrieval method.

3.2. Simulated GNSS-R Dataset for Training Regression Models

As noted previously, the regression problem is a typical task solved by ML methods. As such, in this
study, we will use SVR and RF models to perform the SMC retrieval (regression) with data collected
during self-designed in situ and airborne experiments. In principle, such learning techniques are based
on building a regression model between the known SM values from a reference dataset (such as Soil
Moisture Active Passive, SMAP, or ground-truth SMC networks) and the experiment observations,
and then exploiting this model to perform future SMC estimations. However, as mentioned earlier,
constructing an ML model may highly lie on the prior knowledge of SM or the heavy-loaded ancillary
data. For particular regions with a self-designed experiment (airborne or in situ measurement), it is
extremely difficult to obtain sufficient reference ground-truth data, satisfying numbers of samples
for preferable ML models training. Therefore, in this paper, a comprehensive simulation dataset
involving five types of soil was built firstly for training ML models. Next, selected real GNSS-R data
from airborne and in situ measurements were processed and further tested to validate the prediction
performance of the ML models.

The comprehensive simulation dataset was built and used for training and regression tests.
This dataset is featured concerning five types of soils that correspond to the dielectric model as
mentioned in Figure 3. The input vector consists of Γ (reflectivity) and γ (elevation angle). The output
vector is SMC. The simulated dataset is built by the following input vectors concerning different soil
types (n):

1. Γ, Reflectivity (from 0–0.8)
2. γ, Elevation angle (from 35 degrees to 85 degrees)

The designed range [55] of the input data for training aimed at covering the range of our
acquired measured data. With the simulated input vectors and Equations (4)–(7) of GNSS-R, the SMC
including different soil types can be calculated from the dielectric constant by using semi-empirical
soil models [58], as illustrated in Section 2.1. Particularly, since the ML methods can build and reveal
the nonlinear relationship between the input and output vectors, the regression model composed
of different soil types is trained and used, which can increase the prediction accuracy when the soil
type is unknown or uncertain. The overall simulated dataset having five different typical soil types is
composed of 2000 points (Γ, γ, SMC), as shown in Figure 4.

3.3. Simulated GNSS-R Dataset for Training Classification Models

We further investigate the performance of solving both the classification and regression problems
for the airborne data. Hence, the experimental airborne GNSS-R data used for the soil moisture
content predictions are also tested for the classification task, and the satellites PRN4 and PRN32 are
also considered. Similar to the procedure for our proposed SMC regression scheme, the simulation
dataset is devised for training and building the RF and SVM prediction models, since the simulated
data can provide sufficient samples and show a more accurate relationship between the input and
output. For the classification task, we considered the dielectric constant and elevation angle as the
input of the dataset, and the reflectivity (Γ) is the output that can be generated by considering the
bistatic Equations (4)–(6) of GNSS-R, under the assumption of a flat surface. Generally, the dielectric
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constant of soils does not exceed 25, so the simulated dataset was constructed by varying two input
variables in the range:

1. ε, Dielectric constant, soils (from 1 to 25, with a step size of 1), water (78)
2. γ, Elevation angle (from 0 degrees to 90 degrees, with a step size of 3)

With the GNSS-R bistatic equations described in Section 2.1, the reflectivity (Γ) was obtained
and the simulated 900 training samples were labeled with −1 (soils) and +1 (water), as presented in
Figure 5. The label of soil/water is assigned based on the corresponding value of dielectric constant;
specifically, that for water is 78, and for soil, it varies from 1 to 25. The simulated dataset is composed
of (Γ, γ, labels).
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4. Experiments and Data

4.1. Airborne Experimental Data

To validate this work, we firstly consider data obtained from a low-altitude airborne experiment
that was carried out by a P92 Digisky airplane over the Avigliana lake (45.099◦N, 7.369◦E) in Italy on
the 11th of December 2014. The flight route and corresponding reflection points for different PRN
satellites (PRN4 and PRN32) are shown in Figure 6, including an image of the experimental area from
Google Earth.
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Figure 6. Flight route and corresponding reflection points (PRN4 and PRN32) on Avigliana lakes
Piemonte, Italy, on Google Maps [64]. The presence of two lakes within the white box is illustrated on
the right-bottom corner of the figure.

This flight experiment was mainly dedicated to investigating soil moisture retrieval from a large
area. The type of terrain ranged from open water to terrain with small bushes to built-up areas [64].
It includes two lakes: the size of the northern lake (bigger) is approximately 1 km × 1.3 km, and the
southern lake (smaller) is 700 m × 1.1 km. The area was selected for several reasons. First of all,
in this area, the presence of two lakes can provide the reflections and the known dielectric constant for
calibration. Second, the terrain slope variation can be neglected, and the terrain can be considered
smooth [65]. Basically, the reflected signal power is composed of two parts: coherent and non-coherent
power. The phase distribution of the coherent part is constant, while in the incoherent part, the phase
is random and uniformly distributed over an interval of 2π [66]. If the surface can be considered
smooth, the non-coherent component assumes very low values that can be ignored, and the total power
received by the antenna can be approximated with the coherent part only [16,65,67].

Data are collected with a receiver working in a bistatic mode, as shown in Figure 1. The up-looking
patch antenna is a traditional hemispherical GNSS L1 patch antenna mounted on top of the aircraft
fuselage, and the down-looking antenna is a GNSS L1 antenna with LHCP polarization mounted
on the bottom fuselage of the aircraft [65]. The antenna was enclosed in a 2-inch square radome
(53 mm × 53 mm) and equipped by an Low Noise Amplifier (LNA) to provide 33 dB gain. The GNSS-R
receiver [68] is fixed on a small aircraft, as shown in Figure 7 [65].
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Figure 7. The receiver prototype [68] equipped on an aircraft.

The prototype used for the acquisition of the received power can measure both the direct and
reflected GPS signals through two synchronized channels: one for the direct signal and the other
for the reflected signal (see Figure 8). Two antennas are connected with two front ends, respectively.
Each front-end is connected to the ODROID-X2 microprocessor board in the prototype, and two data
streams are stored in the onboard memory for post-processing [64,65].
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Figure 8. The scheme of the receiver prototype.

As shown in Figure 8, the received raw data are stored in an ODROID-X2 eMMC memory of the
receiver prototype in order to be post-processed by an open-loop approach to obtain DDMs and the
corresponding delay waveforms. Since a large amount of memory (GB/min) is required for storing the
raw data, i.e., 1 s ≈ 1.6 GB data, the duration of the data collection is limited in the embedded Multi
Media Card (eMMC) memory (64 GB) and external storage devices. To free more space for data storage,
some of the data can be processed on board. Raw data are processed with software SOPRANO [69]
and stored as much as hardware capability allowed. Especially, since the reflected GNSS signal is
very weak, a combination of coherent and non-coherent integration algorithm was adopted in order
to distinguish between the reflection peak and the noise [65]. The coherent integration (also known
as signal correlation process) time we used is 1 ms depending on the length of GPS C/A code (1 ms).
Several summations or averaging (called non-coherent integration) revealed the real signal shape and
eliminated the fading noise effects. Comparing the delay waveforms (DW) performances, including
average noise power and standard deviation of the noise, a final 500 ms non-coherent integration time
is chosen to meet both the needs of system resolution and reliability to detect real signals [65,68].

4.2. In Situ Experimental Data

In this subsection, data obtained from several in situ measurements are introduced. The in
situ data were collected from a serial of ground-based experiments in two bare and smooth sites
with different SMC conditions (wet/dry) and terrain compositions. As shown in Figure 9, the first
site is located in Grugliasco, Torino (45◦03′58.5′′N, 7◦35′33.8′′E), in the Dipartimento Inter-ateneo
di Scienze Progetto e Politiche del Territorio (DIST) of Polito. The second site is located in Agliano
(44◦47′29.1′′N, 8◦15′19.8′′E), which is an area of smooth hills mainly devoted to wine production.
The in situ experiment campaign is summarized in Table 1.
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Table 1. Summary of the experimental campaign.

Date Soil Condition Location

Before
rain

27 January 2016 dry Grugliasco
4 February 2016 dry Agliano

After rain
3 March 2016 wet Grugliasco
7 March 2016 wet Agliano

The GNSS-R system used for in situ measurements was performed also in a bistatic GNSS-R
configuration, as shown in Figure 1. It consists of two commercial front-ends connected to two
antennas and PCs for data acquisition [64]. The raw data processing and calibration procedure were
done the same way as for the airborne experiment. Therefore, the reflectivity and corresponding
elevation angle can be collected also and would be tested by the proposed ML methods. Moreover,
the reference ground-truth SMC was measured and recorded based on the time-domain reflectometry
(TDR) technique [70]. A three-rod sensor Tektronix Metallic Cable Tester 1502 manufactured by
Tektronix Inc., Beaverton, OR, USA was used in the measurements.

The measurements in dry conditions were done after a long drought, and the wet condition was
determined after several rainfalls. The GNSS-R system and ground-truth rod sensor were both used to
make measurements before and after rain in bare and smooth fields (Gruliasco/Agliano), as introduced
before. The major axis of the first Fresnel zone for satellites in our geometrical condition (high elevation
angle and a height of tripod of 1.5 m) is around 1 m. It was estimated for providing the coverage of
the GNSS-R data for comparing the results with other kinds of measurements. In this measurement,
this information is useful for indicating the location of the instrument probe to precisely evaluate the
SMC. In both places (Grugliasco and Agliano), the portable sensor setup moved around in parallel
to cover each estimated first Fresnel zones for obtaining the corresponding ground-truth SMC to the
GNSS-R system.

5. Results and Analysis

5.1. In Situ Experiments

As we introduced before, the collected ground-based GNSS-R data are processed to obtain the
calibrated reflectivity and the elevation angles. Each SNR time series (5 min) is averaged for obtaining
the reflectivity. In each site, we obtained twelve groups of GNSS-R measurement data and the
corresponding SMC measured by the portable rod sensor. It has to be noted that the measurements
are intentionally selected before and after rain in bare and relatively smooth fields (the roughness of
Agliano is slightly higher than Grugliasco). Moreover, the data with elevation angles that are smaller
than 35 degrees were excluded for good signal reception. The obtained calibrated reflectivity (Γ) and
the corresponding elevation angle are shown in Figure 10.

It is shown that in each site, the reflectivity obtained after rain (wet condition) is higher than before
rain (dry condition), which corresponds to the theoretical knowledge that the GNSS-R reflectivity
increases with SMC [1–3]. The standard deviations (SD) of reflectivity from each site are also
shown in Figure 10. It indicates that the SD of reflectivity in Grugliasco is lower than the values
obtained in Agliano, which is consistent with the fact that the roughness of Agliano is slightly higher
than Grugliasco.

The ground-based GNSS-R data are considered as the testing set to demonstrate and validate
the previously established model built by ML algorithms in the preceding section. With the data of
reflectivity and elevation angles as an input, in Figure 11, the performance of predictions obtained
from RF and SVR models is shown, which is accompanied by the derived GNSS-R SMC on one of the
soil types (e.g., n = 1) that corresponds to the semi-empirical dielectric model [58] and the measured
reference ground-truth SMC.



Remote Sens. 2020, 12, 3679 12 of 24

Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 24 

 

the coverage of the GNSS-R data for comparing the results with other kinds of measurements. In this 

measurement, this information is useful for indicating the location of the instrument probe to 

precisely evaluate the SMC. In both places (Grugliasco and Agliano), the portable sensor setup 

moved around in parallel to cover each estimated first Fresnel zones for obtaining the corresponding 

ground-truth SMC to the GNSS-R system. 

5. Results and Analysis 

5.1. In Situ Experiments 

As we introduced before, the collected ground-based GNSS-R data are processed to obtain the 

calibrated reflectivity and the elevation angles. Each SNR time series (5 min) is averaged for obtaining 

the reflectivity. In each site, we obtained twelve groups of GNSS-R measurement data and the 

corresponding SMC measured by the portable rod sensor. It has to be noted that the measurements 

are intentionally selected before and after rain in bare and relatively smooth fields (the roughness of 

Agliano is slightly higher than Grugliasco). Moreover, the data with elevation angles that are smaller 

than 35 degrees were excluded for good signal reception. The obtained calibrated reflectivity (  ) and 

the corresponding elevation angle are shown in Figure 10. 

It is shown that in each site, the reflectivity obtained after rain (wet condition) is higher than 

before rain (dry condition), which corresponds to the theoretical knowledge that the GNSS-R 

reflectivity increases with SMC [1–3]. The standard deviations (SD) of reflectivity from each site are 

also shown in Figure 10. It indicates that the SD of reflectivity in Grugliasco is lower than the values 

obtained in Agliano, which is consistent with the fact that the roughness of Agliano is slightly higher 

than Grugliasco. 

 

Figure 10. Power reflectivity and elevation angle for in situ measurements. 

The ground-based GNSS-R data are considered as the testing set to demonstrate and validate 

the previously established model built by ML algorithms in the preceding section. With the data of 

reflectivity and elevation angles as an input, in Figure 11, the performance of predictions obtained 

from RF and SVR models is shown, which is accompanied by the derived GNSS-R SMC on one of the 

soil types (e.g., 1n  ) that corresponds to the semi-empirical dielectric model [58] and the measured 

reference ground-truth SMC. 

Figure 10. Power reflectivity and elevation angle for in situ measurements.
Remote Sens. 2020, 12, x FOR PEER REVIEW 12 of 23 

 

 
Figure 11. The soil moisture content (SMC) results are obtained from ML and GNSS-R models, 
compared with ground-truth measurements. 

In Figure 11, the overall good estimations can be seen in these four campaigns. The SMC derived 
from the GNSS-R model (e.g., n = 1) is close to the reference ground-truth SMC. Meanwhile, the 
prediction results of RF and SVR are also all close to the GNSS-R model and reference ground-truth 
SMC, which show the good prediction ability of SMC by using ML models. 

The results of SMC predictions in each campaign are summarized in Table 2, as well as the SMC 
obtained by using GNSS-R models under different soil types. Particularly, it demonstrates that the 
root mean square error (RMSE) obtained is higher in Aliagno than Grugliasco. This phenomenon can 
be explained by the fact that the GNSS-R models did not take into account the roughness effects; 
therefore, the higher roughness in Aliano leads to higher RMSE in SMC estimation. Moreover, 
compared to the two ML models, the SMC obtained from the RF model is much closer to that of the 
ground-truth and GNSS-R model. RF has a better prediction performance than SVR in GNSS-R SMC 
estimation, which will be validated also by the airborne experiment in the next subsection. 

Compared to the SMC obtained from regression models, RF, SVR, and GNSS-R with different 
soil types ( n ), the RF model exhibits the best performance that is the most stable and accurate in all 
four campaigns. GNSS-R models show some good results, which can be observed only from certain 
campaigns or soil types ( n ). It is worth noting that the GNSS-R model relies on knowledge of soil 
type, while the RF model does not. Hence, when there is no available information about soil type, 
simply choosing one particular type of soil in the GNSS-R model to predict SMC is not a good choice. 
Thus, the RF regression model is quite significant, especially when the soil type is unknown or 
nonuniform. As such, the flexible, efficient RF model with strong data mining ability becomes more 
undeniable. 

Table 2. The performance matrix of soil moisture prediction by using ML and GNSS-R models with 
different soil types ( n ) for in situ measurement. 

SMC  
(m3/m3) 

Dry,  
Grugliasco 

Dry,  
Agliano 

Wet, 
Grugliasco 

Wet,  
Agliano 

Ground-truth 0.11 0.28 0.16 0.36 
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Figure 11. The soil moisture content (SMC) results are obtained from ML and GNSS-R models,
compared with ground-truth measurements.

In Figure 11, the overall good estimations can be seen in these four campaigns. The SMC
derived from the GNSS-R model (e.g., n = 1) is close to the reference ground-truth SMC. Meanwhile,
the prediction results of RF and SVR are also all close to the GNSS-R model and reference ground-truth
SMC, which show the good prediction ability of SMC by using ML models.

The results of SMC predictions in each campaign are summarized in Table 2, as well as the SMC
obtained by using GNSS-R models under different soil types. Particularly, it demonstrates that the root
mean square error (RMSE) obtained is higher in Aliagno than Grugliasco. This phenomenon can be
explained by the fact that the GNSS-R models did not take into account the roughness effects; therefore,
the higher roughness in Aliano leads to higher RMSE in SMC estimation. Moreover, compared to
the two ML models, the SMC obtained from the RF model is much closer to that of the ground-truth
and GNSS-R model. RF has a better prediction performance than SVR in GNSS-R SMC estimation,
which will be validated also by the airborne experiment in the next subsection.

Compared to the SMC obtained from regression models, RF, SVR, and GNSS-R with different
soil types (n), the RF model exhibits the best performance that is the most stable and accurate in
all four campaigns. GNSS-R models show some good results, which can be observed only from
certain campaigns or soil types (n). It is worth noting that the GNSS-R model relies on knowledge
of soil type, while the RF model does not. Hence, when there is no available information about soil
type, simply choosing one particular type of soil in the GNSS-R model to predict SMC is not a good
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choice. Thus, the RF regression model is quite significant, especially when the soil type is unknown
or nonuniform. As such, the flexible, efficient RF model with strong data mining ability becomes
more undeniable.

Table 2. The performance matrix of soil moisture prediction by using ML and GNSS-R models with
different soil types (n) for in situ measurement.

SMC
(m3/m3)

Dry,
Grugliasco

Dry,
Agliano

Wet,
Grugliasco

Wet,
Agliano

Ground-Truth
0.11 0.28 0.16 0.36

mean rmse mean rmse mean rmse mean rmse

RF model 0.10 0.02 0.27 0.03 0.16 0.02 0.39 0.05
SVR model 0.07 0.05 0.32 0.06 0.16 0.03 0.45 0.10
GNSS-R (n = 1) 0.08 0.04 0.25 0.04 0.13 0.03 0.37 0.04
GNSS-R (n = 2) 0.08 0.04 0.26 0.04 0.13 0.03 0.38 0.04
GNSS-R (n = 3) 0.09 0.03 0.27 0.03 0.15 0.02 0.39 0.05
GNSS-R (n = 4) 0.10 0.02 0.29 0.03 0.16 0.01 0.40 0.06
GNSS-R (n = 5) 0.14 0.03 0.31 0.04 0.20 0.04 0.42 0.07
Average (GNSS-R) 0.10 0.02 0.27 0.03 0.15 0.01 0.39 0.05

To compare further the behavior of the regression models, Figure 12 illustrates the scatter plot,
which compares the overall predicted and the ground-truth SMC. The results of the GNSS-R model
shown in Figure 12 are the averages values (see Table 2) obtained from five soil types of GNSS-R
models. From Figure 12, the consistency between predicted data (provided by RF, SVR ML models,
and the GNSS-R model, respectively) and ground-truth data is observed.
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reference line.

The performance matrix of SMC predictions acquired by using ML and also the GNSS-R models
has been summarized in Table 3. Compared to the two ML models, the performance of RF is better
than that of SVR. A correlation coefficient (CC) of r = 0.92 and an RMSE of 0.02 m3/m3 are obtained for
RF. For the SVR algorithm, the correlation coefficient is r = 0.82 and the RMSE is 0.04 m3/m3. The SMC
obtained from the average of the GNSS-R shows a correlation coefficient of r = 0.80 and an RMSE of
0.03 m3/m3. The RF ML prediction performed best and is slightly even better than the average of the
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GNSS-R. The reason could be due to the sufficient training sample and the strong data mining ability
of ML, which shows also the high potential of ML predictions in SMC estimations.

Table 3. The performance matrix of predicted SMC by ML and GNSS-R models.

In-Situ Meas. RMSE (m3/m3) CC

RF 0.02 0.92
SVR 0.04 0.82
GNSS-R (average) 0.03 0.80

5.2. Airborne Experiments

5.2.1. SMC Regression Predictions

In this subsection, the prediction performance of ML and GNSS-R models are also tested and
validated by airborne experiments. Those that employed measured airborne GNSS-R data were
received along some significant routes (PRN4 and PRN32), in which the elevation angles (see Table 4)
were high enough for good signal reception. The specular points corresponding to these satellites fell
on the lakes’ surfaces, which enables us to calibrate the system.

Table 4. Azimuth, elevation angles for PRN32 and PRN4, at the 1st second of the route
(11th December 2014).

PRN Number Azimuth (◦) Elevation Angle (◦)

4 49 76.6
32 222 80.1

Both direct and reflected signals were processed to obtain the signal-to-noise ratio, and a calibration
process was performed through the over-water condition to determine the calibration constant c in
(3). After obtaining the calibrated reflectivity as shown in Figure 13, the SMC was retrieved using
the bistatic GNSS-R method, as described in Section 2.1, by combing (3)–(7) with a soil dielectric
model [58]. Additionally, both the RF and SVMs methods were applied for the comparison of soil
moisture retrieval.
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After training and testing the proposed SVR- and RF-based regression models with the simulation
data, predictions were made by inputting the measured GNSS-R data. The airborne experiment
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results retrieved from GNSS-R are represented by the average of the model under different soil types,
since the average values have been tested having a preferable result in the previous subsection. Here,
the training data were randomly split into two subsets: a training set and a testing set in order to obtain
two “unseen” datasets. The training set is a set of samples (1200) used for learning to create a model.
The testing set is a set of examples (800) used only to assess the performance of the trained model.
The performance of the test set of simulated data is shown in Figure 14,a and the prediction using the
tested SVR model for measured data of route PRN32 and PRN4 is shown in Figure 14b.Remote Sens. 2020, 12, x FOR PEER REVIEW 15 of 24 
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Figure 14. The SVR regression result of test data (a) and predictions (b) for the route of PRN32
and PRN4.

Figure 14a shows that the SVR regression model could obtain similar results with the target.
The performance of regression is also observed in Figure 14b with inputting measured airborne data.
The predicted SMC by using the SVR model is highly correlated with the results predicted by the
GNSS-R model. In the first and the second periods of time for flying over the lake, the results are better
than the others.

The density plot showing the comparison between SM predicted by ML and GNSS-R models for
measured data is presented in Figure 15. From Figure 15, good consistency between SM predicted by
the SVR model and SM retrieved by GNSS-R can be seen, especially for the densest data. Specifically,
a correlation coefficient (CC) of r = 0.98 and an RMSE of 0.08 cm3/cm3 are obtained for PRN32
and PRN4. A similar performance achieved for both PRNs indicates the generalizability of the
proposed method.

As was mentioned before, the RF prediction model was also built after the training and testing
steps with the simulation data. Then, the GNSS-R acquisition data from the flight were used to
perform the SMC predictions. In Figure 16, the performance of testing (Figure 16a) and the prediction
(Figure 16b) of regression using RF for route PRN32 and PRN4 are shown.

Figure 16a shows that the built RF model has enhanced regression ability as compared with the
SVR model shown in Figure 14a. The good regression performance can be seen also in the prediction
for airborne measured data in Figure 16b. The prediction results are nearly the same as the target
predicted by the GNSS-R model.
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Figure 16. The random forest (RF) regression result of test data (a) and predictions (b) for the route of
PRN32 and PRN4.

The density plot is shown for comparing the predicted SMC by using RF and GNSS-R models as in
Figure 17. From Figure 17, good consistency between SM predicted by the RF model and SM estimates
by GNSS-R can be seen for the whole dataset. The performance is better than the result obtained from
SVR (Figure 15). A correlation coefficient of r = 0.99 and an RMSE of 0.02 cm3/cm3 are obtained for
PRN32 and PRN4. It is observed obviously that the prediction accuracy of RF outperformed SVR and
with good generalizability.

The performance matrix of SMC predictions by using RF and SVR with measured PRN4 and
PRN32 is summarized in Table 5. We concluded that compared with the SVR algorithm, the prediction
performance of RF is better. It is evidenced by its higher correlation coefficient and lower root mean
square error, which are also observed in the previous in situ measurement.
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Table 5. The performance matrix of SMC by using RF and SVR for PRN32 and PRN4.

PRN32 and 4 RMSE (cm3/cm3) CC

RF 0.02 0.99
SVR 0.08 0.98

5.2.2. Open Water Classification

The objective of SVM is to find a plane that has the maximum margin to separate the two classes
of data points. Many possible hyperplanes could be chosen. With the simulated training set, we built
the SVM learning model. In Figure 5, we show the adopted optimal hyperplane (RBF kernel function)
that distinctly classifies the data point to achieve the water/soil classification. Then, the processed
measured data (Γ, γ) were taken to do the classification. As shown in Figure 18, the results obtained
from the data of two satellites (PRN4 and PRN32) are classified into water and soil.
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In this figure, some data points with high reflectivity (oranges and pink points) stand for the
presence of lakes in the measurement. Based on the obtained results, the spatial resolution is found to
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be about 20 m. In an ideal case, the reflectivity of water should be 0.63. Due to some random factors,
e.g., the wave of the water surface, floating plants and microorganisms, etc., the reflectivity is not
constant. The measured reflectivity of the water surface ranged between 0.53 and 0.76.

Considering the characteristics of the SVM method, it is anticipated that the trained SVM model
would find a hyperplane between the maximum of the soils and the minimal of the water samples.
When the elevation angle is around 80◦ , the maximum of the soil reflectivity is 0.44, and the minimal
of the water samples is 0.63 in the training samples, as shown in Figure 5 (here, the reflectivity is
an average, and slight variation was made depending on the satellite elevation angle). In Figure 18,
the optimal hyperplane (red line) in prediction results shows that the reflectivity higher than 0.54 is
judged as water; otherwise, it is considered to be soil. This is consistent with the trained SVM model
and the theoretical background of [1–3].

In this case, it can be observed that a majority of data points could be clearly distinguished to be
water and soil. Notably, the transitions between soil and water including the soil contents between the
two lakes are also distinct, except for three outliers (green circles). The prediction accuracy of both
PRN4 and PRN32 is 99.5% and 99.75% respectively, as shown in Figure 18. The support vector machine
algorithm can determine the water/soil regions in the figure. Furthermore, the performance of the
prediction results is also dependent on the set of training samples. It means that in the training step,
the range of the dielectric constant and elevation angles for training samples would be estimated and
selected as close as possible to the area of interest, which has similar behavior with the testing samples,
in order to train a model with better prediction performance.

The RF algorithm was applied in the simulated dataset to make a comparison with the SVM
method. The processed airborne experimental dataset is also used for testing the performance of the
classification task. As it has been mentioned in the SVM method, the measured data points and the
classification results are shown in Figure 19. Four periods of flight over lakes were distinguished with
a spatial resolution of around 20 m. The prediction accuracy of PRN4 and PRN32 is both with 99.75%
as illustrated in Figure 19. In this case, the two reflection routes (PRN4 and PRN32) show different
classification accuracy, as compared to the 99.5% and 99.75% obtained by applying SVM. The RF shows
a similar performance with the SVM algorithm.
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6. Discussions

The major focus on GNSS-R soil moisture currently is to build ML models with ongoing knowledge
of SMC. However, the comparison of ML models and GNSS-R SMC retrieval using physically-based
models is rarely presented. The motivation and the aim of this paper are to build SMC prediction
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models using ML, replacing traditional GNSS-R forwarding modeling methods to predict soil moisture
from GNSS-R observations, especially in the most of the cases, where the distribution of soil texture is
nonuniform or unknown. The study demonstrated that the RF is stable and performs well in all fields
with different soil textures. Notably, the ML model does not rely on soil type, while the GNSS-R model
does. This distinct advantage is quite useful and significant. The proposed RF model can be used as an
alternative to GNSS-R SMC retrieval, which could be applied in various fields and applications in an
easy and practical way.

The in situ and airborne GNSS-R experiments are investigated in detail. The technical approaches
and the observational data of the experiments are rarely presented in the state of the art, which is
regrettable, since field data experiments are very significant and can be a good tool for discovering and
studying the inherent GNSS-R problems. Moreover, many researchers are considering assembling
their equipment and will be interested in conducting GNSS-R experiments, especially for the airborne
platform. In this study, we would like to generalize the finding from the ground to the airborne
platform. Despite the lack of the reference ground-truth data for the airborne experiments, the data of
input vectors are collected from the real surface and participate in the testing stage in order to show
and test the availability of these established ML models and traditional GNSS-R.

In principle, such ML techniques are based on building a regression model between the known
SM values from a reference dataset (such as SMAP, or ground-truth SM networks) and the experiment
observations, then exploiting this model to perform future SMC estimations. As many samples as
possible are needed to achieve the accuracy and stability of a model. In this study, as mentioned
earlier, to obtain a batch of reference ground-truth data at every single observational point is almost
impossible. So, we built a machine learning algorithm model through the simulation dataset to
satisfy the requirement for training the ML models. In future work, it will conduct the proposed
ML methods for a larger area with sufficient ground-based reference SMC to generalize the findings
(e.g., International Soil Moisture Network or the others).

Another possible future work could be investigating the proposed ML and GNSS-R models with
representative soil. The acquisition of knowledge about the site is complex. The GNSS-R model
may achieve good results, since the GNSS-R model contains the details of the parameters that better
represent the physical components of the site. While, in this case, apart from the accuracy of the
GNSS-R, it will give rise to an issue of the significance of existence for building ML models, since the
soil composition is already known. Moreover, as we have mentioned, it is not practical, since the soil
texture is unknown in most of the GNSS-R experiments, where the ML has demonstrated its efficiency
and simplicity in this case.

The distinct advantage of the machine learning algorithms is that they can dig out intrinsically
the rules from the dataset. The SM retrieval process itself possesses high complexity and nonlinearity.
Here, the ML and traditional SM retrievals are compared. The ML models captured the nonlinear
dependencies of the GNSS-R observables (e.g., reflectivity) and the output SMC values directly without
intermediate variables. The highly efficient modeling ability and strong data mining capability make
it perform well in SM retrieval. Especially for the GNSS-R experiment, the soil texture is commonly
not available or nonuniform. The results obtained from this study show the significant advantages
of ML methods. The RF model does not rely on knowledge of soil type, while the GNSS-R does.
Hence, the RF model could be a very stable and efficient solution employed in different fields even
with different scales data of GNSS-R. Moreover, from the perspective of ML algorithms, different ML
algorithms are good at handling different data relationships. This paper also shows that the RF has
better prediction ability than SVM in solving the SMC estimation problems, which is also one of the
significance achievements of our paper.

7. Conclusions

In this study, two ML methods, i.e., SVMs and RF, are adopted for GNSS-R SMC retrieval.
Regression results obtained from airborne and in situ data are presented and compared with the
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traditional GNSS-R retrieval method. Furthermore, the results obtained from the in situ experiments of
two sites using ML models are also validated by the reference ground-truth SMC sensor, respectively.
Overall, good predictions are obtained, and the parameters of the performance metrics of applied
SVMs and RF with different experiments are analyzed. Particularly, the RF shows the best prediction
performance, compared with the SVR model and GNSS-R model under different soil types, which
exhibits its high data mining and efficient ability, especially when the soil type is unknown or
nonuniform. It is worth noting that the GNSS-R model relies on knowledge of soil type, while the
RF model does not. Its good performance with a higher correlation coefficient and a smaller root
mean square error is quite noticeable both in the airborne and in situ experiments. In addition, it is
also apparent that GNSS-R observations are well suited for open water classification. It is feasible
to judge the nature of the reflective surface such as water or soil from the two dependent input
variables—reflectivity and elevation angles, which indicates the high potential of ML models.

The study shows the prospects of using ML to represent a complex process that is difficult to
model using analytical approaches. The ML methods can help reveal the complex interactions and also
make a good prediction, especially since in most of the cases the soil type is unknown or nonuniform.
Therefore, regarding the GNSS-R SMC retrieval complexities and challenges, the regression techniques
by ML can be practical for the GNSS-R SMC retrieval problem instead of a pure explicit solution of
the physical model. This study shows its feasibility by the fact that it can minimize unpredictable
influences and help improve the accuracy of soil moisture retrieval. New experiments would be
deployed, and the proposed ML techniques will be further validated. Despite a flat surface, validation
with SM experiments under a scattering dominated scene is meaningful and will be carried out in the
future. They can be used as an alternative to the complex and data-intensive retrieval process and
could be applicable in various situations.
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