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Abstract

In this research, the application of spaceborne Global Navigation Satellite System-

Reflectometry (GNSS-R) delay-Doppler maps (DDMs) for sea ice remote sensing is

investigated.

Firstly, a scheme is presented for detecting sea ice from TechDemoSat-1 (TDS-1)

DDMs. Less spreading along delay and Doppler axes is observed in the DDMs of sea

ice relative to those of seawater. This enables us to distinguish sea ice from seawater

through studying the values of various DDM observables, which describe the extent

of DDM spreading.

Secondly, three machine learning-based methods, specifically neural networks (NNs),

convolutional neural networks (CNNs) and support vector machine (SVM), are de-

veloped for detecting sea ice and retrieving sea ice concentration (SIC) from TDS-1

data. For these three methods, the architectures with different outputs (i.e. cate-

gory labels and SIC values) are separately devised for sea ice detection (classification

problem) and SIC retrieval (regression problem) purposes. In the training phase, dif-

ferent designs of input that include the cropped DDM (40-by-20), the full-size DDM

(128-by-20), and the feature selection (FS) (1-by-20) are tested. The SIC data ob-

tained by Nimbus-7 SMMR and DMSP SSM/I-SSMIS sensors are used as the target

data, which are also regarded as ground-truth data in this work. In the experimental

stage, CNN output resulted from inputting full-size DDM data shows better accuracy

than that of the NN-based method. Besides, performance of both CNNs and NNs is

enhanced with the cropped DDMs. It is found that when DDM data are adequately

preprocessed CNNs and NNs share similar accuracy. Further comparison is made be-
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tween NN and SVM with FS. The SVM algorithm demonstrates improved accuracy

compared with the NN method. In addition, the designed FS is proven to be effective

for both SVM- and NN-based approaches.

Lastly, a reflectivity (Γ)-based method for sea ice thickness (SIT) retrieval is

proposed. SIT is calculated from TDS-1 Γ data, and verified with two sets of reference

SIT data; one is from University of Hamburg and obtained by the Soil Moisture

Ocean Salinity (SMOS) satellite, and the other is the combined SMOS/Soil Moisture

Active Passive (SMAP) measurements from University of Bremen. This analysis is

performed on the data with sea ice thickness less than 1 m. Through comparison, a

good consistency between the derived TDS-1 SIT and the reference SIT was obtained,

with a correlation coefficient (r) of 0.84 and a root-mean-square difference (RMSD) of

9.39 cm with SMOS, and an r of 0.67 and an RMSD of 9.49 cm with SMOS/SMAP,

which demonstrates the applicability of the developed model and the utility of TDS-1

data for SIT estimation. In addition, this method is shown to be useful for improving

proposed sea ice detection methods.
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Chapter 1

Introduction

In this chapter, the significance of sea ice remote sensing using Global Navigation

Satellite System Reflectometry (GNSS-R) signals is demonstrated first. Then, the

literature relevant to GNSS-R sea ice sensing applications is summarized. Lastly, the

scope of this thesis is outlined.

1.1 Research Rationale

A strong decline of Arctic sea ice has been reported during the last decades [1]–

[3], and this phenomenon is coincident with global warming [4]. Sea ice plays an

important role in maintaining the high surface albedo, limiting air-sea interaction [5],

and modulating the distribution of freshwater and seawater [6]. Furthermore, sea

ice conditions have direct impacts on managing and securing human activities, such

as offshore oil and gas development and global shipping industries [7]. Due to its

significant influence on the global climate and human activities, a good knowledge of

sea ice information is critical. However, in situ sea ice measurement is cumbersome
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and limited in spatial coverage. Instead, remote sensing techniques present a more

efficient and cost effective alternative for acquiring sea ice data.

Large-scale sea ice remote sensing data from satellites have been used intensively

[8]. Sea ice conditions, such as extent, drift, growth stage, concentration and thickness

can be estimated from passive microwave sensors [9], [10], scatterometer [11], radar al-

timeter [3], [12], and synthetic aperture radar (SAR) [13], [14] data. However, passive

microwave and scatterometer data are generally characterized by coarse resolutions

(typically 25-50 km). On the other hand, SAR and radar altimeter are able to pro-

vide finer resolutions, but their demands in instruments (high power requirement and

complex circuit designs) as well as the expenses of deployment result in high cost. In

addition, interpretations of SAR images are typically time-consuming and subjective

[15] and the use of empirical retracking has no physical model for altimeters [16].

Since Hall and Cordey proposed the concept of GNSS-R in [17], it has been suc-

cessfully applied to various remote sensing tasks, e.g., sea surface wind and roughness

monitoring [18]–[25], sea surface height observation [26]–[29], snow depth estimation

[30]–[35] as well as soil moisture and vegetation sensing [36]–[40]. GNSS-R works

in a bistatic configuration, in which the transmitter (Tx) and the receiver (Rx) are

at different locations. Compared with monostatic radars, the bistatic technique has

its advantages in terms of increased resilience to electronic countermeasures and en-

hanced radar cross section of the target. Theoretically, the Tx can be any GNSS

satellites such as the Global Positioning System (GPS), GLONASS, Galileo, and Bei-

dou/COMPASS [41]–[43]. After the transmitted signals have been reflected by the

Earth’s surface, e.g., ocean, land, and ice (thus carrying information about the sur-

face conditions), they will be captured by one or more GNSS-R Rxs. In addition, a
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GNSS-R Rx is capable of collecting data from several different tracks simultaneously.

Furthermore, as a passive instrument, a GNSS-R Rx is typically low-cost, low-mass,

and low-power, which allows easy and flexible deployment. According to the platform

of Rxs, GNSS-R can be divided into three categories, i.e., spaceborne, airborne, and

ground-based. The first type mainly aims at large-scale or global monitoring while the

latter two are usually for regional and local observations [44]. Therefore, with multi-

ple GNSS-R Rxs deployed on various platforms, a temporally and spatially intensive

coverage at both global- and regional-scales can be achieved. Examples using differ-

ent platforms can be found in e.g., [45]–[49] for spaceborne, [21], [28], [38], [50] for

airborne, and [31], [51]–[54] for ground-based applications, respectively. A schematic

of spaceborne GNSS-R is shown in Fig. 1.1. For compactness, the transmitter is

not shown here. At present, the mostly used signals are from GPS Txs, which are

of L-band wavelength (19 cm). In terms of temporal and spatial resolutions, taking

the Cyclone GNSS (CYGNSS) system as an illustration, the achieved average revisit

time is 4 hours [55] and the spatial resolution can be about 10 km for cases of inco-

herent scattering and about 500 m for coherent cases [56]. The spatial resolution of

spaceborne GNSS-R is comparable to or better than that of radar altimeters (with

a nominal circular footprint of 2–10 km in diameter for Envisat or an along-track

footprint of 1.65 km × 0.30 km for CryoSat-2 [57]).

In the GNSS-R research area, the delay-Doppler map (DDM) is a well-known

tool, from which information about the observed surface (e.g. roughness) can be

interpreted. A GNSS-R DDM depicts the scattered power off an observed surface.

In forward scattering, the main contribution comes from the specular point (SP)

and the area around it, which is called the glistening zone. The received signal
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Figure 1.1: A schematic of spaceborne GNSS-R.

can be considered as a superposition of scattering components from different points

on the observed surface. Each component has its corresponding delay and Doppler

shifts (which are caused by different path lengths and the relative motions of the

transmitter, the receiver and the scattering point). Accordingly, each DDM pixel

is associated with the scattering strength off corresponding clusters in the spatial

domain and the relationship is shown in a concise form, as Fig. 1.2. In this thesis,

GNSS-R DDM data is employed for realizing sea ice remote sensing.

1.2 Literature Review

Sea ice remote sensing using GNSS-R was first demonstrated with an airborne GPS

Rx in [58]. Since then, several ground-based and airborne experiments have been
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accomplished with promising results [53], [54], [59]–[61]. The first spaceborne GNSS-

R measurement was carried out during the UK Disaster Monitoring Constellation

(UK-DMC) mission in 2004 showing its capability for use in sea ice remote sensing.

In this section, the techniques of sea ice remote sensing using GNSS-R are reviewed,

being divided into three categories based on the platform types, i.e., spaceborne,

airborne and ground-based.

1.2.1 Spaceborne Results in Sea Ice Sensing

The first acquisition of GNSS-R signal from space was performed by the UK-DMC

satellite, and its application for sea ice sensing was demonstrated in [62]–[64]. Two

sets of measurements were acquired, one on February 4, 2005 off the coast of Alaska

with a total of 7 s of data, and the other on June 23, 2005 near Antarctica in the

Southern Ocean with an additional 9 s of data. Referred to in situ sea ice validation

data, the first measurement was obtained from a region with 90% area covered by

first-year sea ice of 30 to 70 cm thickness. For the second collection, the in situ sea ice

concentration (SIC) was between 70% and 90%. Compared to the acquired GNSS-R

signals from June 23, the data collected on February 4 showed stronger peak and less

spreading in the DDM. The comparison illustrated that the rough seawater surface

could decrease the overall coherent specular reflection and lead to a larger glistening

zone, which corresponds to a DDM with more spreading along delay and Doppler

axes. Although the available GNSS-R data were limited, the analysis indicated the

viability of observing ice-covered regions using spaceborne GNSS-R. In addition, the

varying signal power and extent of spreading in delay and Doppler associated with
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different SIC values demonstrated the potential of GNSS-R for SIC estimation. It

was also mentioned in [63] that for a coherent signal off the ice surface, the carrier

phase information can be recovered for accurate altimetry measurement, indicating

the altimetric application of GNSS-R.

The analyses of space-detected GNSS-R signals reflected off sea ice in [63] were

promising, although, up to the publication time of [63] in 2006, their use had yet

to be explored due to lack of data. This situation was remedied with the launch of

TechDemoSat-1 (TDS-1) in 2014, which made millions of DDMs available.

Except the work accomplished by this research, which has been published in e.g.

[65]–[72], sea ice remote sensing using TDS-1 GNSS-R data has also been investigated

by other researchers at almost the same time. In [66], the first application of TDS-1

data for sea ice detection was performed through evaluating the proposed observables

extracted from DDMs. Later, [73]–[75] also investigated sea ice detection application

with different observables and achieved similar accuracy. As an extension of the work

done by Yan and Huang [66], Zhu et al. [76] derived a DDM observable, specifically

Pixel Number and Power Summation, based on the difference of two normalized

DDMs acquired consecutively. Through evaluating the value of obtained observables,

the method is able to determine the type of surface transition. By retrieving the

scattering coefficient (σ0) in the spatial domain from TDS-1 DDMs, [77], [78] offered

a new perspective on observing water/ice transitions and detecting sea ice. The

method in [77] is based on the 2-D truncated singular value decomposition (TSVD),

while that in [78] involves the spatial integration approach (SIA) [79] and multi-scan

technique.

A strong sensitivity of the GNSS-R signals to the surface roughness of several
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primary ice types, i.e., first-year ice (FYI), multi-year ice (MYI), and young ice was

investigated in [80]. The difference in the shape of DDMs for various ice types was

observed. Accordingly, several DDM observables were developed for sea ice type

classification. Firstly, only the DDMs of sea ice are selected by evaluating these ob-

servables similar to those will be described in Chapter 2. Next, data of each sea ice

type are randomly and equally divided into two groups for training and validation,

respectively. Since the classification of ice type cannot be accomplished by inspect-

ing these observables alone, the standard classification and regression tree (CART)

method (see [81]) is adopted for training. In [80], the CART was built with 181 nodes,

and the derived observables are the inputs to the CART. Each node can contain con-

ditional control statements that are based on the evaluation of input observables and

classification result. The complete algorithm in the form of pseudo-code can be found

in [80]. This algorithm produces an accuracy 54.5%, 94%, and 69.7% for classifying

FYI, MYI and Young Ice, respectively.

Another argument made in [63] was that the coherent reflection from ice surfaces

allows accurate altimetry measurements, which was later verified in [82] through

investigating delay waveforms and in [83] via processing phase measurements of raw

data. The estimated precision is about 1 m with a spatial resolution of 3.8 km for

phase-based method. The RMSD between the achieved GNSS-R altimetric results

and mean sea surface is 4.7 cm with an along-track sampling distance of about 140

m for waveform-based approach.

A summary of sea ice sensing studies using TDS-1 GNSS-R is presented in Table

1.1. It can be noticed that the detection accuracy appear to be similar for both DDM

observables-based methods and machine learning-based methods. The difference of
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these two kinds of methods lies in that the latter methods perform classification

through a learning process exclusively dependent on the data, while the former ones

are based on interpretations by researchers. The difference between DDMs of sea ice

and seawater is clear, which can be well represented by the derived observables, and

thus the accuracy is plausible. However, it is challenging to deal with complex prob-

lems such as SIC estimation and sea ice type classification by solely using observables,

and in such cases machine learning methods can be adopted. For sea ice altimetry, the

phase-based method shows better performance than the waveform-based one, which

is due to 1) an extra error mitigation processed by the former, 2) the restriction on

delay resolution of waveform by the latter, and 3) shorter integration time adopted

by the former that results in better spatial resolution.

1.2.2 Airborne Experiments

In addition to spaceborne applications, there have been several dedicated missions

based on airborne and ground-based GNSS-R receivers capable of providing regional

and local sea ice monitoring. However, these dedicated tests are of relatively limited

generality and access compared with spaceborne applications. Nonetheless, their

progress has been important for developing and validating new GNSS-R-based sea ice

sensing practices. In this subsection, the contributions of recent airborne experiments

are described and those for ground-based are reviewed in next subsection.

The first airborne sea ice measurement was performed in 1998 in the Beaufort Sea.

The results showed the sensitivity of reflected GPS signals to the presence of sea ice

and its conditions [58]. During the flight, the received signal shape had consistently
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Table 1.1: Applications of Sea Ice Sensing Using TDS-1 GNSS-R Data

Application Source Technique Accuracy

Detection [66] Observable-based 97.78%

Detection [73] Observable-based

Detection [76] Observable-based

Detection [77] TSVD-based σ0 retrieval

Detection [78] SIA-based σ0 retrieval

Detection [75] Observable-based

Detection [74] Observable-based

Detection [70] SVM 98.56%

Detection/SIC [67] NN 98.41%/0.93 (r)

Detection/SIC [68] CNN 98.73%/0.93 (r)

SIC [71] SVR 0.94 (r)

Type Classification [80] CART

Altimetry [82] Waveform-based 4.4 m (RMSD)

Altimetry [83] Phase-based 4.7 cm (RMSD)
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a sharp and narrow waveform, which indicates a trivial variation in the ice surface

roughness observed. However, the peak power of the waveform changed significantly,

which suggested the sensitivity to ice reflectivity. In addition, a correlation between

the power of received signals and collocated RADARSAT backscatter was observed.

The potential of reflected GPS signals for the retrieval of sea ice information,

specifically, permittivity and roughness, was further evaluated in [59]. These two de-

rived parameters are retrieved from obtained waveforms using the Zavorotny-Voronovich

(ZV) model [84]. It was shown in [59] that the received waveform can be modeled

as the product of the reflection coefficient and the GPS coarse/acquisition (C/A)

code autocorrelation function. For this reason, the power and shape of a waveform

are decoupled to derive the permittivity and roughness, separately. The surface per-

mittivity is mapped from the peak power via reflection coefficient, and the surface

roughness (parameterized by surface mean square slope) is based on a least squares

fitting between the modeled and measured waveforms.

1.2.3 Ground-based Tests

In addition to verifying the altimetric application, ground-based experiments con-

ducted in Greenland in 2008 [51], [53] also provided polarimetric analysis from which

a qualitative matching was found between the polarization ratio (a ratio between

the received right-handed and left-handed circular polarization (RHCP and LHCP)

signals) and SIC.

Signal-to-noise ratio (SNR) data of received reflected GNSS signals were collected

at the Onsala Space Observatory, Sweden in 2012 [61], [85]. The high-frequency part
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of the SNR data, referred to as δSNR, can be modeled as [85]

δSNR =

[

C1 cos

(

4πh

λ
sin θ

)

+ C2 cos

(

4πh

λ
cos θ

)]

× exp
(

−4k2ζ cos2 θ
)

(1.1)

where λ is the signal wavelength, h is the height of receiver above the reflecting

surface, θ is the incidence angle, C1 and C2 are the amplitudes of each component,

respectively, and ζ is referred to as the damping parameter i.e. the height variance

of the reflecting surface. C1, C2, m, and ζ can be determined through nonlinear least

squares fitting using Eq. (1.1). It was found in [61] that low values of ζ (significantly

lower than 1) were coincident with the presence of ice, and thus ζ can be used for ice

detection.

In 2013, tests were carried out at the Bohai Bay (China), and the ratio between

direct and reflected signals (ρ) was found to be sensitive to SIC [54].

The ratio ρ was further investigated for sea ice thickness (SIT) retrieval, and an

empirical relationship between these two parameters was obtained through a fitting

process based on data collected at the field demonstration at Liaodong Bay (China)

in 2016 [60]. Such an empirical formula was given as

SIT = 2.086ρ−0.021 − 2.697. (1.2)

This was verified in [60] for sea ice with a thickness of 10 to 20 cm.

The above-mentioned ground-based investigations are summarized in Table 1.2.

1.3 The Scope of the Thesis

The representative GNSS-R satellites include UK-DMC (2003), TDS-1 (2014), and

CYGNSS (2016), however, the first does not provide sufficient data and the last does
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Table 1.2: List of Ground-based GNSS-R Techniques for Sea Ice Sensing.

Application Source

Altimetry, SIC [51], [53]

Detection [61], [85]

SIC [54]

SIT [60]

not cover polar regions. Thus, this thesis research addresses sea ice remote sensing

using TDS-1 data. The thesis is organized as follows:

In Chapter 2, a scheme is presented for detecting sea ice by investigating DDM

observables. Furthermore, three machine learning-based methods, specifically, neural

networks (NNs), convolutional neural networks (CNNs), and support vector machines

(SVMs), for both sea ice detection and SIC estimation are described in Chapter

3, Chapter 4 and Chapter 5, respectively. Chapter 6 demonstrates and discusses

experimental results for these different methods. Chapter 7 presents an approach for

retrieving sea ice thickness from TDS-1 measurements. Chapter 8 concludes with an

overview and future improvements on this research, as well as discussion on some

related work.

The research presented in this thesis has been published or submitted for review

in six refereed journal papers as listed below:

1. Q. Yan and W. Huang,“Sea ice remote sensing using GNSS-R: A review”, Re-

mote Sens., vol. 11, no. 21, 2565, 2019.

This paper provides a review of the sea ice remote sensing using GNSS-R data
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(Chapter 1).

2. Q. Yan and W. Huang, “Spaceborne GNSS-R sea ice detection using delay-

Doppler maps: First results from the U.K. TechDemoSat-1 mission,” IEEE J.

Sel. Top. Appl. Earth Obs. Remote Sens., vol. 9, no. 10, pp. 4795–4801, Oct.

2016.

This paper presents the DDM observable-based methods for sea ice detection

(Chapter 2).

3. Q. Yan,W. Huang, and C.Moloney, “Neural networks based sea ice detection

and concentration retrieval from GNSS-R delay-Doppler maps,” IEEE J. Sel.

Top. Appl. Earth Obs. Remote Sens., vol. 10, no. 8, pp. 3789–3798, Aug.

2017.

This paper presents the NN-based method for sea ice detection and SIC esti-

mation using DDM data (Chapter 3).

4. Q. Yan and W. Huang, “Sea ice sensing from GNSS-R data using convolutional

neural networks,” IEEE Geosci. Remote Sens. Lett., vol. 15, no. 10, pp.

1510–1514, Oct. 2018.

This paper introduces CNN-based sea ice remote sensing from DDM data

(Chapter 4) and compares its performance with NN’s (Chapter 6).

5. Q. Yan and W. Huang, “Detecting sea ice from TechDemoSat-1 data using

support vector machines with feature selection,” IEEE J. Sel. Top. Appl.

Earth Obs. Remote Sens., vol. 12, no. 5, pp. 1409–1416, May 2019.
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This paper proposes the SVM-based sea ice detection method (Chapter 5) and

provides comparison of detection accuracy between the NN-, CNN-, and SVM-

based algorithms (Chapter 6)

6. Q. Yan andW. Huang, “Sea ice thickness measurement using spaceborne GNSS-

R: First results with TechDemoSat-1 data,” IEEE J. Sel. Top. Appl. Earth

Obs. Remote Sens., vol. 13, pp. 577-587, 2020.

This paper presents the reflectivity-based method for SIT retrieval from GNSS-

R data (Chapter 7).
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Chapter 2

Sea Ice Detection Using

Delay-Doppler Map (DDM)

Observables

In this chapter, for the first time, a scheme is developed for distinguishing the surface

area covered by sea ice from that of seawater by evaluating the degree of spreading

of a DDM which indicates the surface roughness.

Roughness of oceans can vary considerably, but can still be assumed to be rougher

than ice. Therefore, non-specular regions of the ocean at delay-Doppler offsets are

more likely to reflect a GNSS signal towards the receiver. Thus, typical DDMs of

ocean surfaces exhibit a clear horseshoe shape [22], [23]. In 2005, the UK-DMC

satellite collected two sets of reflected GNSS signals (16 s in total) off sea ice [63].

Through analysis, it was found that in contrast to signals scattered off the sea surface

without ice, signals reflected from ice have a significant coherent reflection component
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Figure 2.1: GNSS-R DDMs collected by TDS-1 on Feb. 20, 2015 over: (a) sea ice

and (b) seawater with 1-s incoherent summation.

[63]. Coincidentally, it has been reported in [86] that the vast majority of signal

returns (or waveforms) acquired by satellite altimeters exhibit many more specular

characteristics over sea ice than echoes from the open seawater, with higher peak

power value and narrower waveform width. In the DDM of sea ice, less spreading along

delay and Doppler axes and a higher maximum power value are observed compared

with the horseshoe-shaped DDM of seawater (see Fig. 2.1), and these differences

allow us to distinguish sea ice from seawater areas.

2.1 Descriptors for DDM Spreading

Several different descriptors that measure the DDM spreading caused by surface

roughness have been proposed in [20] and [21]. Moreover, based on previous results

in [63] and examples of Fig. 2.1, it is clear that the distinction between DDMs of sea

ice and seawater lies in the less spreading in the former over the latter. Hence, these

17



DDM observables are employed (with slight modification) in this research to classify

the corresponding area covered by sea ice or seawater through evaluating the observ-

able values. These observables are derived from the normalized DDM (DDM(τ, f))

above a preset threshold (DDMthres), where τ and f are delay and Doppler shift.

The observables are presented in the following subsections.

2.1.1 Number of DDM Pixels

In [20] an observable is defined as the area of the DDM with power greater than a

given DDMthres, as

Area =
∑∑

DDM(τ,f)>DDMthres

τδ · fδ, (2.1)

where τδ and fδ represent the resolutions of delay and Doppler shift. By simply

assuming the “area” of each DDM pixel is dimensionless and equal to one (i.e., τδ ·fδ =

1), this observable represents the number of DDM pixels with normalized power

greater than the pre-set DDMthres and, hereafter, is denoted as Pixel Number =

Area.

2.1.2 Summation of DDM Powers

A similar observable, DDM volume, was proposed in [20] and modified as weighted

area in [21], which is formulated as

Weighted Area =
∑∑

DDM(τ,f)>DDMthres

DDM(τ, f) · τδ fδ. (2.2)

By setting τδ · fδ = 1, this observable depicts the normalized power summation of

DDM(τ, f) with a value greater than the preset DDMthres (hereafter, Power Sum-

mation, I0 = Weighted Area).
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2.1.3 Center-of-Mass Distance Observable

This observable is calculated as the distance from the center of mass [CM, with a coor-

dinate of (CMτ , CMf)] to the peak power point [with a coordinate of (MAXτ ,MAXf )]

of each DDM (hereafter, CM Distance) as follows

CM Distance = τδfδ

√

(

MAXτ − CMτ

τδ

)2

+

(

MAXf − CMf

fδ

)2

, (2.3)

where CMτ and CMf are defined as [21]

CMτ = I−1
0

∑∑

DDM(τ,f)>DDMthres

τ ·DDM(τ, f) · τδ fδ (2.4)

CMf = I−1
0

∑∑

DDM(τ,f)>DDMthres

f ·DDM(τ, f) · τδ fδ. (2.5)

CM Distance and the subsequent two observables in subsection 2.1.4 and 2.1.5

were developed in [21].

2.1.4 Geometrical Center Distance Observable

This observable is determined as the distance from the geometrical center [GC, with a

coordinate of (GCτ , GCf)] to (MAXτ ,MAXf ) of the corresponding DDM (hereafter,

GC Distance), which is formulated as

GC Distance = τδfδ

√

(

MAXτ −GCτ

τδ

)2

+

(

MAXf −GCf

fδ

)2

, (2.6)

where GCτ and GCf are defined as [21]

GCτ =





∑

DDM(τ,f)>DDMthres

τ · τδ



 /





∑

DDM(τ,f)>DDMthres

τδ



 (2.7)

GCf =





∑

DDM(τ,f)>DDMthres

f · fδ



 /





∑

DDM(τ,f)>DDMthres

fδ



 . (2.8)
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2.1.5 Center-of-Mass Taxicab Distance Observable

This observable (hereafter, CM Taxicab Distance) is determined based on the taxicab

distance from the CM to (MAXτ ,MAXf ) of a DDM (which is defined as |MAXτ −

CMτ |+ |MAXf − CMf |), as follows

CM Taxicab Distance = τδfδ

(∣

∣

∣

∣

MAXτ − CMτ

τδ

∣

∣

∣

∣

+

∣

∣

∣

∣

MAXf − CMf

fδ

∣

∣

∣

∣

)

(2.9)

As mentioned above, DDMs of sea ice are less spread along delay and Doppler

axes relative to the horseshoe-shaped DDMs of seawater. As a result, for sea ice, the

number of pixels with intensity above a givenDDMthres in the DDMs is typically small

and those pixels are near the peak power point, while those for seawater are mainly

on the horseshoe-shape portion and are more spread. Consequently, the associated

center of mass and geometrical center points in DDMs over seawater are usually

farther from the peak power points. Thus, it is expected that the observables derived

from DDM of sea ice will be lower than those obtained from DDM of seawater as

demonstrated in Fig. 2.1.

2.2 DDM Data Processing

In order to obtain DDM(τ, f) for observable computation, each measured DDM is

processed with 1) noise floor subtraction, 2) incoherent summation, and 3) normaliza-

tion. To reduce the effect of noise fluctuation due to antenna and instrument system

noise variation, the noise floor is first subtracted from each DDM [21], [23], [63], which

can be calculated using the following expression

Noise =
1

N

τ2
∑

τ=τ1

f2
∑

f=f1

DDM(τ, f), (2.10)
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Figure 2.2: GNSS-R DDMs collected by TDS-1 on Feb. 20, 2015 over: (a) sea ice

and (b) seawater with 21-s incoherent summation.

where τ1, τ2, f1 and f2 are the pixel limits of a noise box in a signal-free DDM area,

and N is the number of pixels within the noise box. By following the manner in [24],

the noise box is chosen as the DDM area of the first four delay rows spanning all

Doppler bins (twenty).

After the noise level subtraction, an incoherent summation can be applied to each

DDM so that the speckle noise can be mitigated [23], [87]. For example, Fig. 2.2 il-

lustrates DDMs of sea ice and seawater after a 21-s incoherent summation. Instead of

using a fixed duration (e.g., 18 s utilized in [23]), an adaptive incoherent summation is

applied here (see detailed description below), where the length of summation depends

on surface types. As the GNSS-R SP ground track traverses oceans and continents,

DDMs can be collected across transition areas with different surface types, such as

land and ocean. For this reason, DDMs that were collected close to surface transi-

tions will be assigned with relative shorter incoherent summation lengths to avoid
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the averaging between those acquired over different surfaces. Therefore, an adap-

tive incoherent averaging interval is employed to ensure the incoherent summation

is processed over consecutive coherent correlations. It should be noted that an ideal

method would incoherently sum any number of consecutive coherent looks but there

exists a lower limit of 1000 looks (or 1-s incoherent summation) due to the TDS-1

DDM generation parameters.

Specifically, for an ocean-land transition, the DDM with an SP near the intersec-

tion of ground track and coastline will be assigned with a short incoherent time that

is based on the distance from its SP to the intersection. Coastline distribution can

be obtained using geographic information. Details regarding the calculation of SP

position can be found in [64].

Similar practices should also be operated for DDMs acquired over possible tran-

sitions between seawater and sea ice. As mentioned earlier, the maximum power

value in a DDM (obtained after the noise subtraction) offers another indicator for

the presence or absence of sea ice and, subsequently, abrupt changes in DDM peak

powers along the track are assumed to be potential transitions between sea ice and

seawater. In application, based on the distance from its SP to a potential transition

area (land-ocean and sea ice-seawater), a DDM may be averaged with its adjacent

DDMs (up to 20), and, correspondingly, the interval of adaptive incoherent summa-

tion ranges from 1 s to 21 s (each DDM from TDS-1 datasets has been processed 1-s

incoherent integration). A 2017 study [88] showed that TDS-1 reflections over ice are

mostly coherent, which makes the along-track resolution of approximately 1 × 7 km2

(the motion of the footprint during an incoherent summation interval of 1 s is 7 km).

Thus, for the case of purely coherent ice reflections, the method proposed here will
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provide a resolution of up-to 1 × 7L km2, where L is the applied adaptive incoherent

summation length (from 1 to 21 s).

After the incoherent summation, the averaged DDM is normalized with respect

to its peak power and the normalized result has a range of [0,1]. Meanwhile, its peak

power averaged by its associated incoherent summation length is recorded.

2.3 Sea Ice Detection Scheme

With DDM(τ, f), the DDM observables presented in Section 2.1 can be obtained

with a given DDMthres. It has also been illustrated in Section 2.1 that these DDM

observables represent the spreading in a DDM and the more spreading in a DDM the

greater the observable values, and therefore, observables usually have higher values for

DDMs of seawater than those for sea ice. Hence, sea ice detection can be accomplished

through evaluating the value of the DDM observable and the area associated with a

DDM that results in an observable below a pre-set threshold will be interpreted as

covered by sea ice.

It is worth mentioning that by applying the adaptive incoherent summation,

DDMs with a longer incoherent summation interval will gain a higher SNR that

is proportional to the square of the number of incoherent summation [63]. Thus,

it can be expected that the value of a DDM observable depends on the incoherent

summation length applied to the corresponding DDM(τ, f). Accordingly, an adap-

tive threshold is utilized for each observable to detect sea ice, which is based on the

individual incoherent summation interval applied to each DDM. As is introduced in

subsection 6.3.1, values of thresholds for detection can be determined from a training
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dataset.

It should also be noted that it may not be appropriate to directly employ the

value of DDM peak power as a descriptor for sea ice detection for universal purposes,

since the value may vary significantly from each observation even over the same sea

ice area due to variations in system noise levels and atmospheric conditions [24]. On

the other hand, the analysis of the changing trend in the peak power may offer an

opportunity to recognize sea ice surfaces [58]. Consequently, the detection results

will be inspected with the variation tendency of the updated peak powers, and the

anomaly in ice detection will be corrected if the associated DDM peak power has

similar value (within 50% to 200%) of adjacent ones. Based on the above discussions,

sea ice detection from DDMs has been investigated and the corresponding process

flowchart is displayed in Fig. 2.3.

The accuracy of sea ice detection based on the above-mentioned DDM observables

is assessed in Chapter 6.
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Figure 2.3: Flowchart of sea ice detection from GNSS-R DDMs.
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Chapter 3

DDM-Based Sea Ice Sensing Using

Neural Networks (NNs)

The technique of neural networks (NNs) has been identified as a robust candidate

for improving existing sea ice remote sensing applications [89] because the NN is able

to approximate large varieties of functions without a prior assumption about their

distribution, and to develop decision surfaces of any configuration using a learning

process [90]. The NN-based sea ice remote sensing has already shown great potential

with many different types of data (e.g., SAR images [91] and passive microwave data

[89]). However, to the author’s knowledge, there is no previous research addressing

NN-based sea ice remote sensing using GNSS-R DDMs. In this chapter, the technique

of neural networks is applied to DDMs, for the first time, for the purposes of detecting

sea ice and estimating sea ice concentration. The NN for sea ice detection is devised

with a classification layer, whereas a regression layer is used for SIC estimation.
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3.1 Association between NN and DDM

A neural network devises a structure for complex data processing using information-

processing units, also known as neurons. Typically, a network consists of the input

layer, one or more hidden layers and an output layer. The adjacent layers are con-

nected by activation functions parameterized by weights. The activation functions

are usually pre-defined and the weights are determined through a training process.

Consequently, a trained network can be regarded as an input-output mapping [92].

As noted in Section 1.1, the surface scattering properties (for example, roughness)

can be interpreted based on a DDM. In remote sensing area, it is well known that the

scattering characteristics of sea ice and seawater differ from each other. Correspond-

ingly, the DDMs of seawater and sea ice surfaces will be distinct. In addition, it is

believed that the ratio of sea ice to seawater (i.e., SIC) within the region of interest

will affect the DDMs (see Fig. 3.1). As such, the sea ice remote sensing from DDMs is

feasible and investigated using the NN technique here. Sea ice detection using DDM

observables (presented in Chapter 2) is based on empirical interpretation, instead,

NNs proceeds sea ice sensing exclusively from the data.

The general NN procedure for the application here consists of three steps: prepro-

cessing of the input (DDM, in this study) data, training of the NN, and estimation

of ice information from another set of data using the trained NN. A corresponding

flowchart is presented in Fig. 3.2.
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Figure 3.1: GNSS-R DDMs collected by TDS-1 over regions with different SICs: (a)

0%, (b) 50%, and (c) 92%, respectively. The SIC values are obtained from collo-

cated reference data, which are described in subsection 6.1.2. All DDMs have been

normalized with power values from 0 to 1.
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Pre-processed

Figure 3.2: Flowchart of general processes for machine learning-based sea ice sensing

techniques.
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3.2 DDM Data Preprocessing

Each measured DDM is processed with 1) noise floor subtraction, 2) normalization,

3) signal box determination, and 4) data stretching. The first two steps follow the

procedure in Section 2.2 and the remaining steps are described in the following section.

3.2.1 Signal Box Determination

The signal box is chosen based on the delay bin of the peak power point MAXτ .

Here, 40 bins along the delay axis (from MAXτ - 4 to MAXτ + 35) and all 20 bins

along the Doppler axis are retained. Note that the original size of the TDS-1 DDM

is 128 along the delay and 20 along the Doppler axis, respectively. It should be noted

that the size of the signal box corresponds to a spatial coverage between 100 and 150

km (median value 125 km) depending on the elevation angle at the SP.

3.2.2 Data Stretching

The input layer of a neural network is in the form of a 1-D vector. Thus, the 2-D

DDM needs to be reshaped. For each signal box, the DDM is sliced along the delay-

axis, forming a 1-D vector with 800 elements. It is worth mentioning that the DDM

can be sliced along either the delay- or the Doppler-axis. However, once one manner

is chosen, all other DDMs should be treated in the same fashion so that all the DDM

pixels can be presented to the network in the same form.

30









Input

layer

Hidden

layer

Output

layer

(2)( )(1)( )

(1)( )

(1)( )

(0)

(0)

(0)


(0)


(1)

(1)

(1)


(2)

Output

(1)


(2)(1)


(1)

(1)

(1)


(1)


(2)


(1)


(1)


(1)


(1)


(2)


(2)


(2)

Figure 3.3: Diagram of a three-layer MLP.

3.3 NN Design

3.3.1 NN Structure

As pointed out in [93], a multilayer perceptron (MLP) NN with a single hidden layer

is capable of approximating any continuous multivariate function to desired accuracy.

Thus, an MLP was employed here (see Fig. 3.3) and was constructed with 800 inputs,

1 hidden layer consisting of 3 neurons, and 1 output. With reference to Fig. 3.3,

M = 2 (the number of layers is M +1), the number of inputs S0 = 800 = 40×20, the

number of hidden neurons S1 = 3 and the number of output SM = S2 = 1. Through

trial and error it was found that the accuracy was insensitive to the increase in S1

while the computational time increased significantly. Hence, S1 = 3 was selected by

considering plausible performance in both accuracy and computational cost.
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The DDM pixels from each DDM image will be presented to the input layer,

as a
(0)
l , l ∈ [1, 800] and the output will be SIC value (or, 0 or 1 for ice detection

application), as a
(2)
1 . More generally, the net input to neuron j in layer k + 1 can be

described by n
(k+1)
j and the corresponding output will be a

(k+1)
j . In Fig. 3.3, Sk is

the number of neurons in layer k, w
(k+1)
ji represents the synaptic weights connecting

neuron j in layer k + 1 and neuron i in layer k, and ϕ(k+1)(·) and b
(k+1)
j denote the

activation function and bias for neuron j in layer k + 1, respectively. To be concise,

not all weights are presented for the designed three-layer network in Fig. 3.3.

The relationship within the network can be given in the following concise matrix

form:

a(0) = p, (3.1)

a(k+1) = ϕ(k+1)(W(k+1)a(k) + b(k+1)), k ∈ [0, 1], (3.2)

where p is the input DDM pixels vector and a(k+1), b(k+1) and W(k+1) represent the

input vector, the bias vector, and the weight matrix, respectively.

The activation function in the hidden was given by the widely used sigmoid func-

tion ϕ(1)(x) = 1/(1 + e−x).

In the output layer, the activation function was assigned by the linear function

ϕ(2)(x) = x for SIC estimation and by the softmax function for sea ice detection

(that calculates the probability of presence of sea ice).

3.3.2 Back-propagation Learning

The back-propagation learning [94] is a computationally efficient method for deter-

mining the synaptic weights [92]. This learning method consists of a forward pass

32



and a backward pass through the different layers of the network. The forward pass

can be summarized by (3.1) and (3.2), during which the weights in the network are

all fixed. During the backward pass, on the other hand, the weights are all adjusted

based on the sum of the squared error, which is defined as

ε =
1

2

Q
∑

q=1

e(q)Te(q), (3.3)

where e(q) = t(q)−a(2)(q) is the error for the qth input and Q is the number of input

patterns, and a(2)(q) and t(q) are respectively the actual and the desired output SIC

values (or ice labelling values) when the qth input p(q) is presented. More details

about the reference SIC and label data are described in Section 6.2. The aim of back-

propagation learning is to minimize ε through adjusting weights. Among different

algorithms for back-propagation learning, the Levenberg-Marquardt (LM) algorithm

[95] is regarded as one of the most efficient, allowing for fast and stable convergence

for networks with a few hundred weights [96]. The LM algorithm was employed to

optimize ε by iteratively updating the weight vector m as

new m = m− (JTJ+ µI)
−1
JTe, (3.4)

wherem= [w
(1)
11 w

(1)
12 · · · w(1)

S1S0
b
(1)
1 · · · b(1)S1

w
(2)
11 · · · b(M)

SM
]T (that consists of all the weights

and biases in each layer), µ is the combination coefficient, I is the identity matrix. e

contains the error for all Q input patterns, and J = ∂e/∂m is the Jacobian matrix

(see more details in [92], [96]).

In summary, the LM algorithm-based back-propagation learning is implemented

as follows

1. Initialize m (or equivalently, W and b) with random numbers, µ = 0.01 and the
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multiplication factor β = 10 (according to [96]) and present all input patterns

to the network.

2. Proceed with the forward pass and compute the sum square error using (3.1)–

(3.3).

3. Derive the Jacobian matrix J.

4. Update m using (3.4). Recompute the sum square error with new m. If the

new ε is smaller than the previous one, retain the updated m, decrease µ by β

and go to step 2. Otherwise, keep the previous m, increase µ by β and repeat

this step.

5. This learning process stops when any of the following occurs (numbers in brack-

ets were empirically employed for this work):

• The preset maximum number (100) of epochs is reached.

• µ exceeds the preset threshold (1010).

• The change in ε is below 0.001 among 10 adjacent epochs.

The training and testing are implemented in Chapter 6. In this chapter, the

application of NN-based sea ice remote sensing (sea ice detection and SIC estimation)

from spaceborne GNSS-R data is illustrated for the first time. In particular, it is the

first application of SIC estimation from DDMs. This present chapter also opens a

window for other machine learning methods for sea ice sensing, which are described

in the following two chapters.

34



Chapter 4

Sea Ice Sensing Using

Convolutional Neural Networks

(CNNs)

Although good accuracy can be achieved for sea ice remote sensing from GNSS-R

DDM using NNs (e.g. with an overall accuracy of 98.67% for sea ice detection; for

more results see Chapter 6), it was hypothesized that CNNs might perform even better

as they take advantage of the original data format (2-D) instead of the 1-D nature

of the input to an NN. CNN has been successfully applied to sea ice remote sensing

using, for example, synthetic aperture radar [14] and altimeter [97] data. However,

to the author’s best knowledge, the application of CNN in the area of GNSS-R has

not yet been conducted. In this chapter, the CNN technique is applied to TDS-1

DDMs for the first time, dedicated to detecting sea ice and estimating SIC. Similar

to the NN investigated in the previous chapter, the CNN for sea ice detection and
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SIC estimation are designed with the classification and regression layers, respectively.

4.1 Design of CNN-based Sea Ice Remote Sensing

A CNN is able to establish the intrinsic connection between input-target pairs when

they are well associated [98]. Typically, a CNN consists of a block of optional convo-

lution layers, pooling layers, nonlinear layers, and fully connected layers, followed by

an output layer. A convolution layer consists of a certain number of filters of specific

sizes. Each filter is convolved with the input image and can be regarded as a feature

extractor. The convolved images are then processed by an activation function (non-

linear layer) to produce feature maps which are the output of the convolution layer.

A pooling layer subsamples the feature map to reduce its redundancy and the output

of the last pooling layer is converted to a vector, which is followed by one or more

fully connected layers (as in a traditional NN). The fully connected layer combines all

of the features learned through previous layers to identify the desired patterns. Fig.

4.1 illustrates an example of a CNN. The filter parameters in the convolution layer

and weights in the fully connected layer are learned through a training process.

As noted previously, a DDM describes the scattering strength of the GNSS-R

signal off the observed surface. Each DDM pixel corresponds to its associated spatial

clusters and this allows the fusion of a pixel with other data [99], e.g. SIC in this

work. For this reason, a CNN is applied for sea ice detection and SIC estimation from

DDM data. CNN applications generally include the following stages: 1) Data (DDM

in this work) preprocessing, 2) training of the CNN, and 3) testing of the CNN using

DDMs that are separate from training data.
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Figure 4.1: Employed CNN structure in this work. Set A parameters are associated

with a full DDM input, set B for a cropped DDM input.

4.2 Preprocessing of DDM Images

The preprocessing of DDM data follows the procedures in Section 3.2. Specifically,

it consists of noise floor subtraction, normalization, and (optional) signal box deter-

mination (see more details in subsection 3.2.1). It should be noted that the positions

of DDM specular points are not aligned in all images (see Fig. 4.2 for illustration)

due to variation in path length [24]. The last step is thus necessary for a NN so that

the input is presented to the network in alignment. However, it is hypothesized that

a CNN is able to extract the features independent of a DDM’s position. Therefore,

to demonstrate this, two different CNN structures, which employ full (128-by-20 pix-

els) and cropped (40-by-20 pixels, the adopted signal box in subsection 3.2.1) DDM

images as input, respectively, were devised.
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Figure 4.2: DDM samples in their original data format (128 × 20)- note that their

specular points are not aligned. Red boxes indicate the cropped inputs (40×20) with

box positions aligned frame to frame, and the box is selected following the fashion in

subsection 3.2.1. Delay axes are vertical and Doppler axes horizontal.
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4.3 Structure of CNN

The framework of the employed CNN for sea ice detection is presented in Fig. 4.1

(parameters of set A are for a full DDM and set B for cropped data). In order to

reduce the size of network, only one convolution layer followed by one pooling layer

and two fully connected layers are employed. The convolution layer is made of five 7×7

filters. Take the case of the CNN with full-size (128×20) input for example. Without

padding along all edges, the convolved images are of size (128− 7 + 1, 20− 7 + 1, 5),

i.e., (122, 14, 5), the corresponding feature maps resulting from the kth (k = 1, ..., 5)

filter, Wk, can be described by

hk
ij = ϕ((Wk ∗X)ij + b),

i = 1, ..., 122, j = 1, ..., 14,

(4.1)

where X and b are the input image and the bias. The convolution operation is

denoted by ∗ and the activation function by ϕ. The widely adopted rectified linear

unit (ReLU) is chosen for ϕ i.e.

ϕ(z) = max(0, z). (4.2)

The max pooling layer is of pooling size (2, 2) and stride (step size) 2 [14]. This

layer preserves the maximum value of every non-overlapped 2×2 block in the feature

map to generate a sub-sampled one of size (122/2, 14/2, 5), that is, (61, 7, 5). The

first fully connected layer is thus of dimension 2315 (i.e. 61×7×5). The second fully

connected layer is equipped with 3 units, and this value is taken according to the

previously designed NN (in Chapter 3) for later comparison of complexity between

CNN and NN. The structure and functionality of fully connected layers are quite
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similar to those of the hidden layers in NNs, and for conciseness, detailed formulations

are in Section 3.3.

For sea ice detection (classification model), the output layer is designed with 2

units a1 and a2, and the activation function is the softmax function, which gives the

probability of occurrence of sea ice or seawater,

pr =
exp(ar)
2
∑

s=1

exp(as)

, where r = 1, 2. (4.3)

The detection result is based on the one with the higher value.

For SIC estimation purposes (regression model), the output layer shown in Fig.

4.1 is modified to have 1 unit (i.e., the concentration value), and a linear activation

function,

f(z) = z, (4.4)

is adopted.

It should also be noted that the overall layout of CNNs remains the same when a

cropped DDM is used as input, only the size of each layer needs to be adjusted accord-

ingly and this can be readily deduced following the procedure previously described

as indicated in Fig. 4.1 by set B values.

4.4 CNN Training

Back-propagation learning [94] and mini-batch stochastic gradient descendant with

momentum (SGDM) algorithm [100] are adopted for training. The learning method

includes a forward propagation and a backward propagation. The forward propaga-

tion hereafter is denoted by F , during which the parameters are all fixed. During the
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backward propagation, SGDM updates the parameters by slowly progressing in the

direction of the negative gradient of the cost function to minimize the cost. The cost

function over a mini-batch (whose size is arbitrarily chosen as 100 in this work) is

given by

ε(F (X;W),y) =
1

100

100
∑

n=1

(F (Xn;W)− yn)
2, (4.5)

where the nth input and output within the mini-batch are denoted by Xn and yn.

The parameters are updated over every mini-batch of the training data iteratively,

through [100]

Vq+1 = m ·Vq − η ·
〈

∂ε
∂W

∣

∣

Wq

〉

Wq+1 = Wq +Vq+1

, (4.6)

where q is the iteration index, V is the momentum variable,
〈

(∂ε/∂W)|
Wq

〉

is the

average over the qth batch of the derivative evaluated at Wq, the learning rate η is

set as 0.001 and the momentum m as 0.95. Here, a scheme of epoch training [100] is

selected, where an epoch means a full pass over all mini-batches.

In summary, mini-batch SGDM-based back-propagation learning for filter param-

eters is conducted as follows.

1. Initialize W with random numbers (Gaussian distributed with mean 0 and

standard deviation 0.01) and present all training data (input and target) to the

network.

2. Proceed with forward propagation F and compute the cost function using (4.5).

3. Update W using (4.6).

4. This training process stops when:
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• The preset maximum number (50) of epochs is reached; or,

• the changes in the cost function are less than 0.001 among 10 consecutive

epochs.

Experimental results of CNN-based sea ice sensing as well as the performance

comparison between CNN and NN are presented in Chapter 6.
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Chapter 5

Sea Ice Sensing Using Support

Vector Machines (SVMs)

First proposed by Cortes and Vapnik in 1995 [101], the support vector machine is now

a widely-adopted machine learning algorithm that can solve classification problems

and regression problems (with support vector regression, SVR). Among the machine

learning approaches, SVMs are fast and effective algorithms with solid theoretical

foundations that have exhibited good performance for various remote sensing appli-

cations (e.g. sea ice classification, land surface evapotranspiration estimation, and

forest mapping) using different platforms [102]–[107]. It has been shown in [103] that

SVMs are able to produce better accuracy than other widely used pattern recognition

models (such as maximum likelihood and NN classifiers). In addition, SVMs are be-

lieved to be robust even when the number of training data is limited [102]. However,

unlike deep learning algorithms, SVM cannot automatically learn what features are

useful. Furthermore, there is a lack of information about how SVM algorithm can be
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applied to sea ice detection using DDMs. Therefore, the objective of this chapter is

to develop the methodology of detecting sea ice using SVM classification algorithms

and for estimating SIC using SVR from the TDS-1 DDM data.

5.1 Feature Selection From DDMs

In spite of the effectiveness of SVMs at classification, they cannot extract features

from data [102]. However, feature selection (FS) helps reduce data dimensions so that

SVMs can focus on the variables of significance [108]. As such, FS is integrated into

the application of SVM here.

Before implementing feature selection from DDMs, each DDM frame is subtracted

by its noise floor and normalized with respect to its maximum (more detailed proce-

dures can be found in Section 2.2). Subsequently, the sample mean value along the

delay-axis at each Doppler bin (20 in total) is computed, for which each element indi-

cates the scattering power received from its corresponding spatial cluster (see Fig. 5.1

for demonstration). Afterwards, any negative values (which are due to pixels below

the noise floor) are regarded as noise, and for this reason, are set to 0. Next, this

array is normalized by its maximum and is adopted as the feature of a DDM for this

work. See Fig. 5.2 for the features for DDMs of sea ice (with non-zero SICs) and

seawater (with SIC of zero). All extracted features show strong scattering around the

11th bin, which corresponds to the specular point reflection. However, the one for the

DDM of seawater exhibits more spreading over all the Doppler bins than those for

DDMs of sea ice. This is due to different roughness of sea ice and seawater surfaces

[66], [73], [77]. Thereby, the selected feature of each DDM will be regarded as the
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Figure 5.1: The association between the spatial coverage and the Doppler bin.

input to the SVM, and its associated category (seawater/sea ice) determined through

ground-truth data will be retained as output.

5.2 SVM for Sea Ice Detection

As a powerful learning method, support vector machines are designed for classification

tasks by finding the hyperplane that maximizes the margin (separation) between

different classes. Since the selected features for DDMs of seawater differ from those

for DDMs of sea ice, the SVM is thus applied here for classifying those two types of

DDM data.
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Figure 5.2: Examples of extracted features: (a) Normalized DDMs collected over

regions of different SICs (100%, 44%, and 0%, respectively), and (b) the corresponding

selected feature from DDMs as function of Doppler bin.

46



Given the training set {(x1, y1) , ..., (xn, yn)}, where n is the number of DDM

samples for training, xj is input sample (selected features from DDMs), for j = 1, ..., n,

and class labels (seawater/sea ice) for DDMs yj ∈ {−1, 1}, the SVM method aims at

solving the following optimization problem:

min
w,b,ξ

(

1

2
‖w‖2 + C

∑

j

ξj

)

(5.1)

subject to










yj [wϕ(xj) + b] ≥ 1− ξj

ξj ≥ 0

(5.2)

where ϕ is a mapping function, w is the weight of ϕ(xj), C is the penalty param-

eter (that is determined by the user), ξj is the slack variable, which indicates the

allowance for permitted errors, and b is the bias term. The aforementioned prob-

lem can be solved by considering its dual form and introducing Lagrange multipliers

α = {α1, ..., αn} [107]

max
α

(

∑

j

αj −
1

2

∑

j

∑

k

αjαkyjykϕ(xj)
Tϕ(xk)

)

(5.3)

s.t.

0 ≤ αj ≤ C, and
∑

j

αjyj = 0. (5.4)

The term ϕ(xj)
Tϕ(xk) in Eq. (5.3) is the so-called kernel function K

K = ϕ(xj)
Tϕ(xk), (5.5)

which has some optional forms [109] e.g. linear kernel, polynomial kernel, radial ba-

sis function (RBF), and sigmoid kernel. Through trial and error, the linear kernel
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demonstrated excellent performance (with the best accuracy and the least complex-

ity/tuning parameters), and thus is adopted here, which is given by

K(xj ,xk) = xT
j xk. (5.6)

After solving α and b from Eq. (5.3), the classifier can be expressed as

f(x) = sgn

(

∑

j

αjyjx
Txj + b

)

. (5.7)

5.3 SVR for SIC Estimation

Sticking to the structural risk minimization framework [110], SVR has excellent gen-

eralization capability. From Fig. 5.2, the features of DDMs vary corresponding to

different SICs; the SVR is thus applied here to obtain a relationship between DDM

features and the SIC ground-truth.

Similarly, given the training set {(x1, y1) , ..., (xn, yn)} with n DDM samples, with

xj as feature vectors, for j = 1, ..., n, and associated SIC values for DDMs yj ∈ [0, 1],

the SVR method aims at solving the following optimization problem:

min
w,b,ξ

(

1

2
‖w‖2 + C

∑

j

(ξj + ξ∗j )

)

(5.8)

subject to


























yj − [wϕ(xj) + b] ≤ ǫ+ ξj

[wϕ(xj) + b]− yj ≤ ǫ+ ξ∗j

ξj, ξ
∗

j ≥ 0

, (5.9)

where ϕ is a mapping function, w is the weight of ϕ(xj), C is the regularization

parameter, ξj and ξ∗j represent the SIC estimation errors that exceed the value of ǫ
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(allowance for errors), and b is the bias term. The aforementioned problem can be

solved by introducing Lagrange multipliers α = {α1, ..., αn} and α
∗ = {α∗

1, ..., α
∗

n}

and considering its dual form [111]

max
α,b











−1
2

∑

j

∑

k

(αj − α∗

j )(αk − α∗

k)ϕ(xj)
Tϕ(xk)

+
∑

j

yj(αj − α∗

j )− ǫ
∑

j

(αj + α∗

j )











(5.10)

s.t. 0 ≤ αj, α
∗

j ≤ C, and
∑

j

(αj − α∗

j ) = 0. (5.11)

Through experiments, the RBF demonstrated excellent accuracy, and thus is

adopted here, which is given by

K(xj ,xk) = exp(−γ||xj − xk||2), (5.12)

where γ is the kernel width.

After solving α, α∗ and b from Eq. (5.10), the formulation for SIC estimation can

be given as

f(x) =
∑

j

(αj − α∗

j )K(xj ,x) + b. (5.13)

The training and test results along with performance evaluation are presented in

the following chapter, where the effectiveness of the proposed FS is also illustrated.
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Chapter 6

Sea Ice Detection and Sea Ice

Concentration (SIC) Estimation

Results and Comparison

In this chapter, results of sea ice detection and SIC estimation obtained using the

methods described in Chapters 2–5 are evaluated and compared.

6.1 Data Description

6.1.1 Spaceborne GNSS-R DDM Data

DDM data collected in five periods 03-05 (RD 17), 11-13 (RD 18) and 19-21 (RD 19)

in February, 15-17 (RD 23) in March and 16-18 (RD 27) in April, 2015 around the

Arctic regions by the UK TDS-1 (available on www.merrbys.co.uk) are employed in

this study. The employed DDM data are listed in Table 6.1. Details of the TDS-1
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DDM data can be found in [24] and [29]. The DDM metadata also provides the

specular point position for each DDM. Here, the SP is regarded as the location of

a DDM. Such information can be utilized to extract the collocated SIC from the

reference data that is described in the next subsection. In addition, the SNR at the

peak power point is also available and employed for data quality control.

Examples of the GNSS-R DDMs collected by TDS-1 over the regions with different

SIC values (0%, 50% and 92%, respectively) are shown in Fig. 3.1. The SIC values

were obtained from the reference data for the corresponding SP position of each

DDM. From Fig. 3.1, the differences among DDMs over varying surface conditions

are obvious. As the SIC values increase, the associated DDMs become less spread.

It should be noted that the resolutions for delay and Doppler bins are 250 ns and

500 Hz, respectively. The process of noise floor subtraction mentioned in Section 2.2

is a typical technique to deal with thermal noise. Speckle noise can be mitigated

through incoherent processing of GNSS-R signals. It is worth mentioning that TDS-1

DDMs have already been processed with 1-s (1000 looks) incoherent summation. The

speckle noise can be further reduced by the proposed adaptive incoherent summation

of the DDMs described in Section 2.2. However, the incoherent summation process

will reduce the spatial resolution. In order to preserve the maximal achievable spatial

resolution of TDS-1 DDM, no further incoherent summation is applied in this work.

6.1.2 Ground-truth Data

The reference sea ice concentration data employed in this thesis are derived from

that collected by multiple sensors: the Scanning Multichannel Microwave Radiometer
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Table 6.1: Data Employed in this Work.
Training Testing

ID RD 17 RD 18 RD 19 RD 23 RD 27

Period (in 2015) Feb. 03 to 05 Feb. 11 to 13 Feb. 19 to 21 Mar. 15 to 17 Apr. 16 to 18

Track ID 0014 0021 0024 0000 0007 0021 0036 0020 0043 0053

0026 0027 0051 0008 0012 0096 0098 0025 0109 0193

0062 0064 0108 0016 0051 0135 0137 0074 0194 0198

0113 0119 0158 0060 0062 0142 0147 0076 0293 0294

0159 0163 0167 0128 0134 0179 0212 0118 0297 0300

0169 0194 0202 0164 0169 0217 0221 0119 0340 0343

0203 0213 0256 0170 0180 0263 0268 0153 0387 0397

0260 0261 0301 0245 0288 0269 0270 0156 0399 0440

0305 0341 0344 0290 0296 0302 0315 0162 0444 0445

0345 0370 0372 0297 0339 0316 0317 0237 0479 0484

0385 0389 0435 0346 0350 0353 0497 0241 0488 0543

0444 0478 0480 0355 0389 0571 0578 0244 0546 0576

0482 0517 0521 0395 0405 0584 0586 0285 0580 0581

0528 0603 0606 0406 0455 0622 0625 0293 0585 0619

0612 0615 0616 0457 0460 0659 0661 0326 0628 0630

0617 0618 0653 0505 0506 0666 0710 0337 0662 0666

0654 0655 0695 0551 0552 0745 0747 0338 0668 0731

0700 0725 0732 0555 0615 0750 0751 0339 0736 0741

0736 0766 0767 0646 0651 0754 0789 0378 0892 0940

0773 0830 0873 0652 0657 0793 0832 0423 0993 0996

0885 0931 0934 0659 0681 0839 0888 0427 0998 1001

0935 0966 0974 0682 0691 0891 0897 0428 1003 1040

0986 0988 1035 0692 0730 0932 0933 0457 1049 1086

1038 1039 1040 0770 0771 0945 0975 0462 1090 1092

1073 1077 1078 0774 0805 0981 0993 0463 1131 1226

1081 1116 1121 0806 0815 1044 1120 0467 1230 1269

1125 1126 1127 0863 0865 1129 1211 0547 1276 1314

1130 1168 1173 0869 0871 1240 1245 0548 1317 1320

1178 1179 1217 0873 0904 1246 1250 0555 1358 1361

1222 0911 0912 1252 0684 1364 1367
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(SMMR, carried aboard Nimbus-7), the Special Sensor Microwave/Imagers (SSM/Is)

on the Defense Meteorological Satellite Program (DMSP) -F8, -F11 and -F13 satel-

lites, and the Special Sensor Microwave Imager/Sounder (SSMIS) on the DMSP-F17

satellite [112]. The reference data provide daily and monthly averaged SIC for both

the northern and southern hemispheres with different spatial coverage and have been

valuable sources for global sea ice studies. The work here focuses on SIC analysis in

the northern hemisphere. The corresponding data are stored as images each with a

size of 448 rows × 304 columns. In addition, the resolution for each grid is about 25

× 25 km2. The data values range from 0 to 255, in which [0, 250] represent valid SIC

values and the rest indicates land information or missing data. For better illustra-

tions, the SIC value is multiplied by 0.4 (which thus falls in [0, 100] in percentage)

and the original data with value greater than 250 are set as -40. An example of the

rescaled data on February 04, 2015 for the north hemisphere is shown in Fig. 6.1.

6.2 Data Quality Control and Modification

In this work, DDM samples with SNR (at the peak power point) lower than 0 dB

(which means the peak power value is even below the noise level) were rejected. To

minimize the effect of scattering off land, the DDMs with SPs over land and near

coastal lines (within 50 km) were manually filtered out as well.

It should be noted that the coverage area corresponding to the DDM signal box

is about 125 × 125 km2 while the grid size is of 25 × 25 km2 for the original SIC

reference data. In order to match the coverage area of the DDM signal box, every

SIC value in the original reference data was averaged by its surrounding 5 × 5 grid
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Figure 6.1: An example of the daily SIC on February 04, 2015 for the north hemi-

sphere modified from [112]. The SIC value is from 0 to 100 (%). The land and the

region without data is marked by dark blue (with a value of -40) for illustration pur-

poses. White circles and black straight lines represent the latitudes and longitudes

(in degree), respectively. The black circular areas (with a radius of about 100 km)

indicate the approximate glistening zones of the DDMs.
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values. Specifically, each grid with a valid SIC value (from 0 to 100) was averaged by

those (also valid) within its surrounding 5 × 5 grids.

After the averaging, the associated SIC value was automatically extracted by

matching the latitude and longitude of DDM SP with the coordinate grid of the

reference data, and normalized to 1. For ice detection application, a threshold of 0.15

used in [113] is applied to the extracted SIC data. A data grid with a SIC value

greater than 0.15 will be regarded as “ice-covered” and assigned with 1, otherwise, 0.

6.3 Training Data

The training for the proposed methods was implemented using the TDS-1 data col-

lected from February 03 to 05, 2015, which were labeled as RD 17. The processed

DDM data were regarded as inputs and associated ice data from SMMR and DMSP

SSM/I-SSMIS Passive Microwave sensors were treated as desired output. The number

of training patterns was 8377.

6.3.1 Observable-based Sea Ice Detection

The training data are employed to derive the thresholds for DDM observables to

detect sea ice. For this dataset, DDMs associated with sea ice were sorted according

to ground-truth ice distribution data. First, an empirical value of DDMthres needs

to be determined. It was found that a DDMthres ranging from 0.19 to 0.57 produced

similar accuracy [114]. Thus, the DDMthres was arbitrarily selected within this scope,

as 0.40. As discussed in Section 2.1, observables derived from the DDMs of sea ice

are expected to be smaller than those for seawater, which is also demonstrated by the
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differences between sample probability density functions (PDFs) of the observables

for sea ice and seawater (see Fig. 6.2). For each observable, the threshold can be

determined as the intersection of its corresponding PDF. Through experiments, it

was found that the performance of the proposed observables are quite similar [66].

Without loss of generality, the Pixel Number Observable is hereafter employed as a

representative for observable-based methods.

6.3.2 NN-based Sea Ice Sensing

Three input schemes, i.e., cropped DDM, full DDM, and FS, are tested. The training

set containing the inputs and the corresponding target outputs of surface type and

SIC value is presented in Fig. 6.3. It should be mentioned that each vertical slice (with

2560, 800, and 20 elements for full DDM, cropped DDM, and FS, respectively) in Fig.

6.3(a)–(c) is one input vector and the horizontal axis denotes the sample sequence.

The corresponding target ice detection outcome and SIC value are presented as Fig.

6.3(d) and (e). As shown in Fig. 6.3(a)–(c), some of the vertical slices are more spread

and they usually correspond to low values in reference SIC data. Typically, such

slices are extracted from DDMs of seawater as these DDMs are usually more spread

compared with the DDMs of sea ice (also see Fig. 3.1). A DDM collected over a fully

(or almost fully) ice-covered region is usually associated with a mirror-like reflection

from a nearly flat surface. As a result, only the region immediately around the SP is

able to redirect the incoming signals towards the receiver. Correspondingly, the DDM

(see Fig. 3.1(c)) appears similar to the clean Woodward Ambiguity Function (WAF).

As has been found in [73], the more the DDM resembles a WAF, the more coherent
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Figure 6.2: Sample PDF of observables: (a) Pixel Number, (b) Power Summation,

(c) Center-of-Mass, (d) Geometrical Center, and (e) Center-of-Mass Taxicab for sea

ice and seawater.
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the scattering is, and the possibility of a flat ice surface being involved is higher.

Instead, roughness of open oceans can vary considerably, but can still be assumed to

be rougher than ice [66]. Therefore, non-specular regions of the ocean corresponding

to delay-Doppler offsets are more likely to reflect a GNSS signal towards the receiver,

causing a DDM of open ocean (refer to Fig. 3.1(a)) to be more spread than the DDM

of sea ice. Furthermore, in the marginal ice zone air-sea interaction is suppressed

compared with open ocean conditions [115]. Consequently, the ice-covered surface

will still appear smoother than open oceans given the same wind condition. Thus,

the DDM over a partially ice-covered area looks more spread than that of a fully

ice-covered area but less spread than that of the open ocean. In summary, a spread

DDM will be associated with low SIC, and vice versa. It is obvious that the proposed

method relies on the extent of spread in DDMs, which mainly varies with surface

roughness that is dependent on SIC. By presenting the input DDM data along with

desired SIC output, the NN for SIC retrieval was developed accordingly.

The impact of the number of neurons on the detection accuracy is evaluated with

a range of [1, 10]. As noted in subsection 3.3.1, the number of neurons was set as 3

in the hidden layer, which generated satisfactory results. This is illustrated by the

accuracy presented in Fig. 6.4 resulting from full DDM inputs.

6.3.3 CNN-based Sea Ice Sensing

Two input schemes that employ a full DDM and a cropped DDM, respectively, are

investigated for CNNs. Instead of reshaping a DDM into an 1-D vector format used

as input to an NN, the original 2-D format is retained. Some examples of input DDMs
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Figure 6.3: Training set for NNs: (a) Full DDM input, (b) cropped input, (c) FS

input, (d) target labels, and (e) target SICs.
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Figure 6.4: Detection accuracy of NN in terms of different numbers of neurons.

can be found in Fig. 4.2, and the sizes of each input are 128-by-20 and 40-by-20 pixels

for full and cropped DDMs, respectively. A complete set of target data for training

are displayed in Fig. 6.3(d)–(e).

The impact of selection of structural parameters, specifically, the size and number

of filters in the convolutional layer and the mini-batch size, for the devised CNN

architecture is assessed. The search range for both the size and number of filters is

from 1 to 9 with a step size of 1, and that of mini-batch size is set by {32, 64, 96, 128}.

The sea ice detection accuracy of the training set with different combinations of

structural parameters is shown in Fig. 6.5. It is evident that the selection of structural

parameters has negligible effect on the accuracy (the difference is less than 0.002),

and thus it can be arbitrary.
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Figure 6.5: The accuracy of CNN-based sea ice detection using scanning parameters.

6.3.4 SVM-based Sea Ice Sensing

The FS is adopted as input for the SVM application. The training samples are

presented in Fig. 6.3(c)–(e). Note that the size of FS input is 20.

The penalty parameter C of a SVM model (see Eqs. 5.1 and 5.2) determines the

generalization capability of the classifier [109], and it needs to be properly tuned (the

only parameter that needs specification in the sea ice detection task). Accordingly,

the search for C was conducted at an incremental factor of 10 for C ∈
[

10−5, 102
]

.

The accuracy (number of correct results over total sample length) of this proposed

method using varying C for each data set is displayed in Fig. 6.6. The improvement of

average accuracy became negligible when C ≥ 10−3, hence C was arbitrarily selected

within this range, as 1.

Similarly, SVR also requires a tuning of parameters, specifically, the regularization

parameter C, error allowance ǫ, and the kernel width γ, whose searching ranges

were set as C ∈ {10−5, 10−4, ..., 102}, ǫ ∈ {10−5, 10−4, ..., 100}, and γ ∈ {1, 2, ..., 5},

respectively. The correlation coefficients (r) obtained between the estimated and

ground-truth SICs with scanning parameters are shown in Fig. 6.7. With C = 1,

ǫ = 0.01, and γ = 3, r reached its maximum, and thus, this set was retained for SIC
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Figure 6.6: Accuracy of the proposed SVM using various C. The zoomed in picture

(i.e. black box) is for the range of C ∈
[

10−3, 102
]

. RD 17 is the training set and

RDs 18, 19, 23, and 27 are test sets.

estimation. It is evident that when the allowed error ǫ reached 1 (the same as the

highest SIC value), the SVR could not provide any reliable prediction because the

values of r were around 0.

6.4 Test Results and Comparison

The proposed methods for ice detection and concentration estimation are assessed

with data during another four collection periods (February 11-13 and 19-21, March

15-17 and April 16-18, 2015 and they were denoted as RD 18, RD 19, RD 23, and

RD 27, respectively). Specifically, for sea ice detection application, results of the

observable-based, the NN-based with FS, full, and cropped DDMs, the CNN-based

with full and cropped inputs, and the SVM-based with FS are evaluated and compared
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Table 6.2: Accuracy of Ice Detection

ID Observable

Full-size input Cropped input FS

CNN NN CNN NN NN SVM

RD 17 (training) 97.96% 99.15% 99.60% 99.03% 99.13% 98.95% 98.81%

RD 18 (test) 98.17% 98.12% 97.94% 98.94% 99.01% 98.63% 99.06%

RD 19 (test) 96.58% 97.97% 97.29% 98.77% 98.54% 98.21% 98.33%

RD 23 (test) 97.67% 96.42% 93.98% 98.41% 98.04% 97.00% 97.58%

RD 27 (test) 98.10% 97.04% 95.97% 98.43% 98.41% 97.78% 98.64%

Average 97.78% 97.83% 97.17% 98.73% 98.67% 98.18% 98.56%

using the same datasets. Except for the observable-based approach, the other methods

are also employed for SIC estimation.

The sea ice detection accuracy results are tabulated in Table 6.2. The overall

prediction of surface type along with the ground truth are presented in Fig. 6.8.

Good accuracy ranging from 97.17% to 98.73% is obtained for sea ice detection using

the proposed methods.

To assess the SIC estimation, taking NN-based SIC results (SICnn) as an example,

SICnn is compared with the same-day reference SIC data (SICref). The standard

deviation error Estd and the correlation coefficient r between SICnn and SICref are

employed for evaluation purposes and are defined as

Estd= std(SICnn − SICref)

r=
cov(SICnn,SICref )

std(SICnn)std(SICref )

. (6.1)

The (normalized) error statistics for SIC estimation are also shown in Table 6.3, from

which low discrepancy between estimated SIC and SICref may be observed for these
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Figure 6.8: Outcomes of sea ice detection using proposed methods. Training and test

sets are separated by a solid line. The target data represents the ground-truth data.
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Table 6.3: Error Statistics for SIC Estimation Using Different Input Sizes

ID

Full-size input Cropped input FS

Estd r Estd r Estd r

CNN NN CNN NN CNN NN CNN NN NN SVR NN SVR

RD 17

(training)
0.15 0.11 0.95 0.97 0.15 0.11 0.95 0.97 0.13 0.12 0.96 0.97

RD 18

(test)
0.17 0.20 0.91 0.88 0.16 0.17 0.92 0.91 0.17 0.16 0.91 0.92

RD 19

(test)
0.15 0.17 0.93 0.92 0.15 0.16 0.94 0.93 0.16 0.15 0.93 0.94

RD 23

(test)
0.16 0.19 0.93 0.91 0.15 0.13 0.94 0.95 0.15 0.15 0.94 0.95

RD 27

(test)
0.18 0.20 0.89 0.86 0.17 0.18 0.89 0.90 0.17 0.16 0.90 0.90

Average 0.16 0.17 0.92 0.91 0.16 0.15 0.93 0.93 0.1535 0.1467 0.93 0.94

methods. Negligible degradation in test accuracy relative to the training set proves

the generalizability of these proposed methods. Furthermore, the estimated SIC is

generally in accordance with the reference SIC. The SIC predicted by the proposed

methods along with the reference are presented in Fig. 6.9. For illustration, the

averaged SIC estimates from the proposed NNs-, CNNs-, and SVMs-based methods

are shown in a geographic frame for regions with latitudes higher than 45◦N as Fig.

6.10. In addition, the locations without DDM estimates are in white and land areas

are in gray.
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Figure 6.9: SIC estimation using proposed methods. In target (ground-truth) data,

DDMs associated with patterns marked by arrows and tagged by cross symbols result

in overestimation and underestimation, respectively.
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Figure 6.10: Averaged SIC estimation. The locations without DDM estimates are in

white and land areas are in gray.
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6.4.1 Effect of Low Sea State

Overall good agreement can be observed between the DDM-based SIC estimates and

the ground-truth data (see Fig. 6.10). Despite this, some discrepancy can be noted

around e.g., (70◦N,160◦W) and (75◦N,30◦E), where both sea ice and seawater ex-

ist. Such ice-like reflections may be due to very calm water with low wind [66]. In

order to further investigate this, the in situ measurement data of significant wave

height (SWH) and wind speed (WS) from the National Data Buoy Center (NDBC)

[116] were used for reference. Due to limited sea state data in the region under in-

vestigation, the DDMs collected on July 22, 2015 near (within the distance of 200

km) the NDBC Stations 48012 (70.025◦N,166.071◦W), 48214 (70.872◦N,165.248◦W),

48213 (71.502◦N,164.133◦W) and 48216 (71.502◦N, 164.133◦W) within the same pe-

riod were analyzed. The SWH and WS data from the buoy station closest to each

selected DDM and at the most immediate instant to the DDM collection time were

used. The locations of the buoy stations and the selected DDMs are shown in Fig.

6.11. Furthermore, the SPs with overestimated SIC (15% higher than the reference

SIC of value about 0) are indicated by black dots, and those with precise results

are depicted by magenta triangles. For concision, this analysis is based on the NN-

cropped results. Even so, this effect is observed for all methods. It can be noticed

that overestimates mainly appear near the ice edge and this may account for the

above-mentioned discrepancy in Fig. 6.10. The estimated and reference SICs as well

as the corresponding SWH and WS are shown in Fig. 6.12 in terms of the distance

from the associated DDM location to the closest ice edge. A slight sea state can be

noticed for all the data analyzed in Fig. 6.12. Moreover, an average overestimation of
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66% mainly occurred at the SP locations within 150 km from the ice edge. Otherwise,

accurate results with an overall discrepancy of 1% can be obtained. Therefore, it may

be inferred that the SIC tend to be overestimated at the regions near ice edges or

in partially ice-covered regions when the sea state and wind speed are low (even if it

is not low, air-sea interaction is still suppressed). The corresponding overestimated

patterns are marked by arrows in Fig. 6.9.

On the other hand, underestimation also existed when the actual SIC was 100%.

This might be caused by sea surfaces with ice of thickness exceeding the penetra-

tion depth. In this case, the scattering would be dominated by the uppermost sea

ice, which could be rougher than the ice-water interface. In addition, if a DDM is

contaminated by speckle noise at the non-specular delay-Doppler bins, the SIC could

also be underestimated. The cases of underestimation can be observed in Fig. 6.9 as

patterns tagged by cross symbols.

6.4.2 NN v.s. CNN

As can be seen from Tables 6.3 and 6.2, the proposed CNN-based sea ice remote

sensing shows overall improved accuracy over the proposed NN-based one, especially

when using the original input size. It can be noticed that the differences between the

results of these methods are quite small. Thus, the standard error (which is the ratio

between the standard derivation and the square root of sample size) in the estimates

of the statistics is calculated. The standard errors of Estd were found to be from

0.0016 to 0.0022 and those for r were of the order of 10−4. Thus the CNN-based

method outperforms the NN-based.
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Figure 6.11: Locations of NDBC stations and the SPs of the DDMs used for analyzing

the effect of low sea state on SIC estimation. Land areas are indicated by negative

values.

71



50 100 150 200 250 300 350 400 450
0

0.5

1

(a)

N
or

m
al

iz
ed

 S
IC

 

 
Estimated SIC
Ground−truth SIC

50 100 150 200 250 300 350 400 450
0

2

4

6

8

10

W
in

d 
sp

ee
d 

(m
/s

)

Distance from ice edge (km)
(b)

 

 

50 100 150 200 250 300 350 400 450
0

0.4

0.8

1.2

1.6

2

Si
gn

ifi
ca

nt
 w

av
e 

he
ig

ht
 (m

)

Wind speed
Significant wave height

Figure 6.12: Results under low sea state: (a) estimated and reference SICs and (b)

significant wave height and wind speed data.

72



An advantage of the CNN lies in the usage of filters in the convolution layer, which

appear to be able to reduce the noise in the DDM. The deployment of the convolution

and pooling layers makes a CNN less sensitive to misalignment of DDM specular point

within a frame. Note that a pooling layer of size (2, 2) and stride 2 is able to resolve

a 1-pixel fluctuation in DDM frames. The resistance to the misalignment of a signal

box relies on the depth and size of the convolution and pooling layers. Since only

one layer of each was adopted in this work, the ability of the designed CNN to be

completely independent from the data locations is quite limited. This also accounts

for the varied precision among different datasets since the degree of fluctuation differs

(see Fig. 6.13 for the sample probability density distribution of the delay pixel index

of DDM SPs in the datasets). In Fig. 6.13, obvious discrepancies can be found

between the training set RD 17 and test sets RDs 23 and 27, and this could result

in the drop of sea ice sensing accuracy from using cropped data to full-size ones (for

both CNN and NN). However, the CNN still outperforms the NN with original DDM

format as discussed above and its performance may be further enhanced with more

layers. When the data are adequately processed by cropping the DDM for alignment,

both CNN and NN can produce good results.

In addition to the advancement in accuracy, the designed CNNs have fewer pa-

rameters than NNs for the same task, which makes the training easier [14]. For illus-

tration, the sea ice detection-orientated CNN has 6666 (= (7×7+1)×5+(2315+1)×

3+(3+1)×2) parameters, while the NN has 7691 (= (128×20+1)×3+(3+1)×2)

for full-size input; and those for cropped images are 2046 and 2411, respectively.

In summary, the devised CNN scheme manifests the following advantages over

NN: 1) overall improved accuracy, 2) fewer parameters in the network (easier to
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Figure 6.13: Sample probability density distribution of the delay pixel index for DDM

specular point for each dataset.

train), and 3) increased tolerance to changes in input data structure (requires less

data preprocessing, without need for registering the delay coordinate of the specular

point).

6.4.3 NN v.s. SVM

The proposed SVM-FS-based sea ice detection scheme shows better accuracy than

the NN- and CNN-based (with full DDM frame as input) methods. Note that the FS

is derived from full DDMs rather than cropped ones. By applying the devised FS,
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the input size is notably decreased compared with previous methods (from 128×20

to 20). In addition to that, the selected features are less sensitive to noise (owing to

an averaging process) than directly inputting DD pixels. As the use of the designed

FS seems to be advantageous, it is mandatory to further test FS with the NN-based

method for the purposes of 1) verifying the utility and superiority of FS and 2)

making an impartial performance comparison between SVM and NN (note that the

CNN employs 2-dimensional input, and therefore, it was not examined). The accuracy

of the NN-FS method is also given in Table 6.2. The achieved outcome indeed proved

both the advantage of FS, since NN-FS outperformed NN, and the improvement of

SVM-FS against NN-FS. In addition, the SVM-FS results show that the probabilities

of detection and false alarm for sea ice are higher than those for seawater in general

(see Table 6.4).

Among NN-full, CNN-full, and NN-FS, NN-FS showed the best performance and it

is the closest to that of SVM-FS. Thus, further comparison in terms of false detection

was made only between NN-FS and SVM-FS. The analysis of false detection of ice

under different sea conditions in terms of wind speed was performed (see Figs. 6.14-

6.15). Here, the wind speed data from ERA-Interim [117] were employed as the

reference. From Fig. 6.14, it can be seen that the number of false detections using

SVM-FS was lower than NN-FS under all sea conditions. Through trial and error, it

was found that SVM-FS produced fewer false alarms (25, 22, 47, 44, and 71 for RDs

17, 18, 19, 23, and 27, respectively) than NN-FS (43, 56, 68, 99, and 142 for RDs

17, 18, 19, 23, and 27, respectively). In addition, it should be noted that no false

alarms appeared in the SVM-FS method when wind speed was above 10 m/s. From

Fig. 6.15, it can be observed that the false alarm rate decreased with increasing wind
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Table 6.4: Probabilities of Detection and False Alarm for SVM-FS

Ice Seawater 

Probability 

Of Detection 

Probability  

Of False 

Alarm 

Probability 

Of Detection 

Probability  

Of False 

Alarm 

RD 17 98.70% 0.96% 99.04% 1.30% 

RD 18 99.25% 1.59% 98.41% 0.75% 

RD 19 99.01% 3.43% 96.57% 0.99% 

RD 23 97.85% 3.04% 96.96% 2.15% 

RD 27 99.35% 4.44% 95.56% 0.65% 

Overall 98.95% 2.66% 97.34% 1.05% 
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speed in general. Although the false alarm rate is the highest under calm seas, its

value is only around 1.6%.

The SVM-FS approach shows improved sea ice detection performance with respect

to the NN-based algorithms in terms of 1) enhanced accuracy and improved robustness

with respect to false alarm, 2) reduced DDM data storage requirements, and 3) fewer

tuning parameters (which allows achieving the optimal performance). Generally, the

false alarm rate of this method decreases with increasing wind speed. The designed

FS reduces the input size, minimizes the noise effect, and helps improve the accuracy

of machine learning-based methods, which may open a new window for more FS-

based applications. With the use of FS, the processing on GNSS-R raw data may

also be simplified for certain real practices in the future, since the data only need

to be directly processed into the Doppler-axis instead of into the 2-D delay-Doppler

domain (as DDMs).
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Figure 6.14: Number of false alarms for ice detection under different wind speeds:

SVM-FS vs. NN-FS.

78



Figure 6.15: Wind speed histogram and false alarm rate for ice detection at different

wind speeds.
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Chapter 7

Sea Ice Thickness (SIT) Retrieval

Chapters 2–5 mainly deal with sea ice detection and SIC estimation. The goal of this

chapter is to estimate sea ice thickness, which is another important sea ice parameter.

A preliminary experiment in [83] found that the main reflection was from the ice-

seawater interface (see Fig. 7.1 for illustration) and showed the potential of TDS-1

GNSS-R signals for estimating SIT based on the fact that the difference between

the retrieved surface elevation and the mean sea surface is highly correlated with

collocated SIT (with a correlation coefficient of 0.71). However, that method relies

on an ad hoc orbit discrepancy correction and employs limited satellite raw data,

which reduces its general applicability. The achieved altimetric accuracy with a root-

mean-square difference (RMSD) of 4.7 cm compared with the mean sea surface should

be highlighted.

At present, large-scale SIT data can be derived from 1) sea ice elevation above

seawater surfaces (freeboard) measurement by satellite altimeters, e.g., European Re-

mote Sensing (ERS) [12], ENVISAT [118], and CryoSat-2 [3], based on the conversion

80



Receiver (TDS-1)

Transmitter signal

Sea ice

Seawater

R2: reflection coefficient

at ice-seawater interface

d: thickness

Air

 

i 

Figure 7.1: Schematic of GNSS-R signal reflected from a three-layer model of air, sea

ice, and seawater.
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between SIT and freeboard; or 2) microwave radiometry, e.g., Soil Moisture Ocean

Salinity (SMOS) [119] and Soil Moisture Active Passive (SMAP) [120], according to

the model of brightness temperature measurement and SIT [10]. For GNSS-R, the al-

timetry technique can be applied for SIT estimates, but the error obtained in previous

research is severe with a RMSD of 4.4 m [82], which will lead to a high discrepancy

in SIT estimation. In addition, Mayers and Ruf [121] confirmed the possibility of

measuring SIT with GNSS-R based on simulated data. This method, however, can-

not be implemented currently due to lack of raw data. Therefore, a new scheme for

estimating SIT needs to be devised for GNSS-R. As such, in this study, a model is

developed for retrieving sea ice thickness from a TDS-1 reflectivity (Γ). The SIT

estimates are validated with good consistency with two different reference data: 1)

the Soil Moisture Ocean Salinity (SMOS) results from University of Hamburg and

2) the combined SMOS/Soil Moisture Active Passive (SMAP) measurements from

University of Bremen. The remainder of the chapter is organized as follows. Section

7.1 introduces the experimental and reference data. The proposed Γ-based SIT esti-

mation scheme is described in Section 7.2. Results and discussions are presented in

Section 7.3.

7.1 Data Description

7.1.1 TDS-1 Remote Sensing Data

In this subsection, the remote sensing data used for SIT retrieval are from the TDS-

1 satellite, which provides a good coverage over northern high-latitude ice-covered
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regions in seas above 80◦N. The dataset used in this work spans a period from De-

cember 2016 to December 2018. The data employed for deriving Γ at SP include

1) the DDM files (depicting scattering power over surfaces), 2) the metadata files

(providing locations of the transmitter and receiver, the incidence angle, the antenna

gain, and the acquisition time), and 3) the direct signal power files (measuring the

direct signal power from transmitter). The total amount of data for TDS-1 measure-

ments examined in this work is more than 4.8 million samples, which are collected

from 42714 separate tracks.

7.1.2 Reference Data

7.1.2.1 Γ Reference–Cyclone GNSS (CYGNSS)

CYGNSS was launched in 2016, and has provided measurements since March 2017.

The achievable average revisit time is 4 hours [55] and the spatial resolution can be

about 10 km for cases of incoherent scattering and about 500 m for coherent cases

[56]. It only covers low-latitude regions between 40◦S and 40◦N, thus it is of limited

application for sea ice sensing. However, it allows reflectivity estimation, which is

employed here to validate the derived TDS-1 Γ for subsequent SIT estimation. Data

with an SNR over 3 dB at SP and with an incidence angle less than 30◦ at SP are

retained here to match with the data quality control strategy adopted for TDS-1 (see

subsection 7.3.1).
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7.1.2.2 SIT Reference–SMOS and Combined SMOS/SMAP

SMOS [119] produced daily sea ice thickness data in the northern hemisphere during

intervals from October 15 to April 15 of 2010–2019. An example of SMOS SIT data is

shown in Fig. 7.2. The uncertainty in such SIT data is available and is necessary for

quality control purposes according to the data product manual (available on https:

//icdc.cen.uni-hamburg.de/1/daten/cryosphere/l3c-smos-sit.html). In this

work, SIT data with uncertainties over 0.5 m are discarded. Consequently, the maxi-

mum sea ice thickness of selected reference data is about 0.8 m since uncertainties for

thicker sea ice are higher. Because of the low uncertainty of the data, the SMOS SIT

is regarded as ground-truth in this study. In addition, the dataset also includes sea ice

salinity and temperature information, which will be treated as a priori information

here. Since these two parameters can be dependent on the associated SIT, another

sea ice thickness product that combines SMOS and SMAP measurements [120] is also

employed for validation.

7.2 Retrieval of Sea Ice Thickness From Reflectiv-

ity

7.2.1 Derivation of Reflectivity

It has been demonstrated that the GNSS-R received signal over sea ice is usually a

coherent reflection due to its smooth surface [66], [73]. For coherent reflection, Γ at
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Figure 7.2: An example of reference SMOS SIT data for 3 February, 2018. Regions

without data are colored in white.
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SP can be obtained with the corresponding received power [122], [123] through

Γ =
16π2

λ2

Pr

Pt

(Rt +Rr)
2

GtGr

, (7.1)

where λ = 19 cm is the GNSS-R signal wavelength, and Pt and Pr denote the trans-

mitted and received power, respectively. Gt and Gr represent the antenna gains of

the transmitter and receiver, and Rt and Rr are the distances from the transmitter

and receiver to the specular point.

Gr at SP can be obtained from the metadata file. Rt and Rr can be easily derived

given the positions of the transmitter, receiver and SP, which are also provided in the

metadata. For each DDM, the column with zero-Doppler shift (also known as the

delay waveform) is extracted. Pr at SP is determined as the power value of the bin

with the maximum first-order derivative of the waveform (with respect to delay), as

described in [124]. The availability of direct signal power files (that record the direct

signal from the transmitter at zenith) improves the estimate of the transmitted signal

power, which can be derived through

PtGt = 4πR2
dGdPd, (7.2)

where Rd is the distance from transmitter to receiver, Pd is the direct power, and Gd

is the zenith antenna gain. Lacking precise knowledge of Gd, it is set as 3 in this

study, using the gain at 90◦ provided in [125].

As Pr is taken from a region immediately surrounding the SP, the value of Γ and

above-mentioned parameters are assumed to be constant over this region [45]. In the

case of coherent reflection, the area of this region can be determined as the size of the

first Fresnel zone, which is about several hundred meters depending on the geometry

[43], and it is regarded as the spatial resolution of this method.
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7.2.2 Relationship Between SIT and Γ

For coherent reflection, Γ can be modeled as [126],

Γ = |R|2 · exp
[

−
(

4π

λ
σrms cos θ

)2
]

, (7.3)

where R is the Fresnel reflection coefficient, σrms is the surface RMS height, and θ

is the incidence angle. The second term in this equation depicts the roughness; it is

clear that this term is approximately 1 for smooth surfaces with a very small σrms,

and thus, the following approximation can be made,

Γ = |R|2. (7.4)

Henceforth, in this chapter only the TDS-1 measurement of coherent reflection will

be considered for SIT retrieval based on Eq. (7.4).

Considering a three-layer air-ice-seawater model (see Fig. 7.1 for illustration), R

can be expressed as [127],

R =
R1 +R2e

−2ikzid

1 +R1R2e−2ikzid
, (7.5)

where R1 and R2 denote the reflection coefficients at the upper (air-sea ice) and

lower (sea ice-seawater) interfaces, respectively, d is sea ice thickness, and kzi is the z-

component of the signal propagation vector in the sea ice. The formula of kzi contains

a real part, which is referred to as the phase constant β, and an imaginary part, which

is called the attenuation coefficient, α; and is given as

kzi = β − iα. (7.6)

As pointed out in [83], due to a lower dielectric difference between the air and

sea ice layer than that between the sea ice and water layer, R1 is less than R2, and
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accordingly, the signals are mainly reflected by the ice-water interface for the case of

first-year sea ice with a thickness of 20 to 60 cm. This is supported by the finding in

[83] that the gap between the estimated surface elevation and the mean sea surface

is highly correlated with local SIT. A similar phenomenon of strong reflection from

the ice-water layer is also noted in [128], [129]. For this reason, the factor R1 in Eq.

(7.5) can be neglected here, which gives

R ≈ R2e
−2ikzid, (7.7)

and by combining Eqs. (7.4), (7.6) and (7.7), we have

Γ = |R2|2e−4αd. (7.8)

The expression for α is (see e.g. [10]),

α =
2π

λ
cos θ |Im {√εi}| , (7.9)

with εi, λ, and θ being the relative permittivity of sea ice (relative to air), the GNSS-R

signal wavelength, and the incidence angle, respectively.

In summary, in this study the reflectivity Γ of an ice-covered sea surface is modeled

as the product of the propagation loss within the ice layer and the reflection coefficient

at the ice-seawater interface. Thus, sea ice thickness d can be estimated as

d =
−1

4α
ln

Γ

|R2|2
, (7.10)

with Γ and the values of R2 and α. For R2 and α, their derivations will be described

in the following subsection.
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7.2.3 Dielectric Models

From Eq. (7.9), it can be seen that α is dependent on εi. The model of [130] is

adopted here for obtaining εi based on the relative brine volume (Vb, in h, or per

thousand),

εi = 3.1 + 0.0084Vb + i(a1 + a2Vb), (7.11)

with a1 = 0.037, a2 = 0.00445 for first-year ice, or a1 = 0.003, a2 = 0.00435 for

multi-year ice. To derive Vb, the following empirical formula is presented in [131]

Vb = 10−3S

(

−49.185

T
+ 0.532

)

, (7.12)

where S and T are sea ice salinity (in h) and temperature (in degrees Celsius),

respectively.

R2 can be expressed by the combination of horizontally and vertically polarized

reflection coefficients (i.e., Rhh and Rvv) [132], as

R2 =
1

2
(Rvv −Rhh) , (7.13)

and

Rvv =
εr cos θi −

√

εr − sin2θi

εr cos θi +
√

εr − sin2θi
, (7.14)

Rhh =
cos θi −

√

εr − sin2θi

cos θi +
√

εr − sin2θi
, (7.15)

θi = arcsin
sin θ√
εi
, (7.16)

εr = εw/εi, (7.17)

and θi is the incidence angle within the sea ice, and εw is the relative permittivity of

seawater, which can be calculated using the model in [133].
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Therefore, the estimated SIT from the TDS-1 Γ can be obtained based on Eq.

(7.10) and Eqs. (7.1)-(7.2) for Γ, Eqs. (7.12)-(7.16) for R2 and Eqs (7.8), (7.10)-

(7.11) for α.

7.3 Results

7.3.1 Data Quality Control

In this work, only DDMs of coherent reflection are employed. This data selection

process is based on the Pixel Number observable proposed in Chapter 2. It is worth

mentioning that a spreading of the DDM has also been observed in some cases over

sea ice, suggesting that the scattering might contain a relevant incoherent component

superimposed on the coherent one [73]. However, we attempt to omit such data by

discarding them according to the Pixel Number observable. In addition, following

[134], data with high incidence angles are also excluded to avoid antenna side lobes.

In addition, noisy data are rejected according to the SNR at SP. In summary the

TDS-1 dataset used here meets the following specific empirical requirements [135]:

• The incidence angle at SP is less than 30◦;

• The SNR at SP is greater than 3 dB; and

• The number of pixels with over 10% peak power is less than 20.

After applying this data quality control strategy, 18511 measurements are retained

for SIT estimation, and 11401 for Γ verification. The difference in the amount of data

used for these two applications lies in the spatial and temporal variations.
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7.3.2 Γ: CYGNSS and TDS-1

In this study, Γ is generated from TDS-1 data. Firstly, the TDS-1 data are calibrated

based on gain measurement following the steps described in [136]. The same cali-

bration process was also used in [80]. After calibration, the unit of received power

has been changed from counts to watts, and the gain and range variables are used to

determine Γ as stated by Eqs. (7.1 and 7.2) in subsection 7.2.1.

In order to verify the produced TDS-1 Γ result, it is compared with the collocated

Γ provided by another available GNSS-R system (i.e., CYGNSS), since these two sys-

tems had some overlapping of their operation periods from March 2017 to December

2018. Comparison is made between these two results only over ocean surfaces, with a

distance less than 10 km and a time gap of less than 30 min. Despite small temporal

and spatial discrepancies, both sets of results agree very well with each other, offering

a correlation coefficient (r) of 0.83 and a RMSD of 0.01. These results are plotted

in a 2◦ × 2◦ (latitude/longitude) grid over the region from 40◦S to 40◦N, as shown in

Fig. 7.3.

7.3.3 SIT estimate: SMOS and TDS-1

This subsection demonstrates the validation of TDS-1 sea ice thickness against the

SMOS and SMOS/SMAP references. In order to ensure the quality of the reference

data, only those with low uncertainties (less than 0.5 m) are retained. For the data

studied, it turned out that the SIT under investigation is generally below 1 m, which

falls in the category of first-year ice. Thus, the parameters for first-year ice are applied

to Eq. (7.11). The associated SMOS sea ice temperature and salinity data are treated
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Figure 7.3: Comparison between the CYGNSS and TDS-1 Γ. A correlation coefficient of r = 0.83 and a RMSD of 0.01

are obtained.
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as known factors in this work, and as such, SIT is estimated based on the proposed

method.

The available results are grouped by month and displayed in Fig. 7.4. Note that

monthly data absences are observed in both the TDS-1 and SMOS data, and the

amount of qualified TDS-1 data varies among months. Nonetheless, the proposed

method still shows its generality and effectiveness over different periods since no

obvious discrepancy is seen in the monthly results. The overall results are plotted in

the form of a density plot (Fig. 7.5), which indicates a good agreement (specifically,

an r of 0.84 and a RMSD of 9.39 cm) between the TDS-1 and SMOS results, especially

for the most dense data. The data densities are calculated relative to the maximum

of their distribution. Due to the constraint of the SMOS data in spatial coverage,

comparison is only performed for the northern hemisphere. Here, the region with a

latitude above 45◦N is divided into 1◦ × 1◦ grids. The overall TDS-1 and SMOS SIT

results are separately plotted into these grids based on their latitudes and longitudes,

and averaged (see Fig. 7.6). Over this region, the difference between the averages is

found to be trivial. This further validated the robustness of the developed method

for different locations. Good performance in terms of both spatial and temporal

variability suggests the feasibility of the proposed model with TDS-1 data for SIT

estimation. The histograms of Γ, α, and |R2|2 are displayed in Fig. 7.7.

It is worth mentioning that the GNSS-R measuring geometry and power config-

urations of different operational tracks can vary significantly. Accordingly, the error

level of the Γ retrieval and the subsequent SIT results can change notably. However,

it is found here that the variation of system configurations within the same track is

negligible. Thus, it is meaningful to inspect the changing trends of both TDS-1 and
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SMOS SITs within each track. Taking the results of January 2017 as an example (see

Fig. 7.4), regardless of offset between these two SITs, they generally follow the same

tendency within each track (that is divided by vertical lines).

It should be pointed out that the retrieved SIT result is also sensitive to sea ice

concentration. The absolute value of the relative difference between the retrieved

SIT and SMOS reference for varying SICs has been depicted in Fig. 7.8. It can be

found in general that the higher the SIC is, the more accurate the retrieved result

will be. On the other hand, the reference SMOS data requires assumptions of 100%

SIC, which may lead to errors when the actual SIC is low. This may account for the

high discrepancy between the TDS-1 and SMOS SITs when SIC is low due to the

limitation of SMOS data for low SIC scenarios.

The SMOS sea ice thickness data used above were provided by the University of

Hamburg. Their corresponding S and T data are employed for sea ice thickness esti-

mation in this study to compare with the SMOS results. It may be better to use the

SMOS S and T and compare the sea ice thickness estimation result with a different

data source. In order to further validate the retrieval results, comparison with the

combined SMOS/SMAP data from the University of Bremen [120] is also conducted,

and the corresponding RMSD and correlation coefficient are 9.49 cm and 0.67, re-

spectively. Similarly, the monthly comparison, density plot and spatial distribution

results are displayed in Figs. 7.9–7.11, respectively.

It should be noted that both GNSS-R and SMOS/SMAS adopt L-band sig-

nals, and their frequencies, specifically, 1.57 GHz for GNSS-R and 1.41 GHz for

SMOS/SMAP, are close to each other. Thus, their sensitivity to SIT with respect to

signal frequencies is similar.
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Figure 7.4: Comparison of SIT estimation results by month: TDS-1 and SMOS. As an example (January 2017), the

results obtained within the same track are grouped together by blocks separated by vertical dashed lines.
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Figure 7.5: Density plot comparing SIT from TDS-1 retrieval and collocated SMOS

data with the 1:1 reference line (magenta): (a) All results and (b) SMOS SIT below

0.2 m.

7.3.4 Case Study

It should be noted that the results associated with the data whose ratio between Γ

and |R2|2 (or equivalently, e−4αd) is greater than 1 are assigned a SIT estimate of

0; there are 180 such measurements (out of 18511) found in the data examined in

the thesis. A ratio greater than 1 indicates there is no attenuation caused by sea

ice. This offers a new perspective of the proposed scheme for improving existing sea

ice detection methods, in which false alarms may be made for the cases of coherent

reflection from calm ocean surfaces [66], [137], and the power strength is not taken

into account. Here, the following cases are studied as a proof of concept.

The specific region under investigation is illustrated in Fig. 7.12, and the date is

14 April, 2018. TDS-1 measurements from two different tracks (no. 37 that is in cyan

dots and no. 42 in red) are employed. The absence of sea ice is further confirmed

based on SIC reference data (from [112]) of 0 over these tracks. Moreover, the sea
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Figure 7.6: SIT values: (a) SMOS data, (b) TDS-1 results, and (c) the difference

between the SMOS and TDS-1 SIT. Regions without data are in white.
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(c)

Figure 7.7: Histograms of: (a) Γ, (b) α, and (c) |R2|2.
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Figure 7.8: The impact of SIC on the accuracy of SIT retrieval. Higher SIC generally

results in less discrepancy.
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Figure 7.9: Monthly SIT result comparison between: TDS-1 and the combined

SMOS/SMAP.

state is found to be low, with a WS of about 4 m/s during this period, according to

the ERA-Interim data [117]. In the ice-free scenario, |R2|2 is calculated by setting εi

as 1 (the relative permittivity of air). In general, the derived Γ is higher than |R2|2

(see Fig. 7.13), which demonstrates the absence of sea ice. However, by using existing

sea ice detection methods (in which the value of signal power at SP is ignored), these

measurements would produce false alarms of sea ice.

7.3.5 Error Source Analysis

This subsection lists several sources that can be responsible for the difference between

the TDS-1 and SMOS SITs. These include from 1) the reference data uncertainty,

2) the error introduced by using a simplified model, and 3) drawbacks of TDS-1 in

measuring Γ.
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Figure 7.10: Density plot comparing SIT from TDS-1 retrieval and collocated com-

bined SMOS/SMAP data with the 1:1 reference line (magenta).
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Figure 7.11: SIT values: (a) combined SMOS/SMAP data, (b) TDS-1 results, and

(c) difference between the combined SMOS/SMAP and TDS-1 SIT. Regions without

data are in white.
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Figure 7.12: The collocated reference: (a) SIT and (b) SIC data. They confirm the

absence of sea ice during the TDS-1 measurement over tracks of no. 37 (cyan dots)

and no. 42 (red dots).
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Figure 7.13: The values of Γ and |R2|2 for calm sea conditions. Data are from tracks

no. 37 and no. 42 that were measured on 14 April, 2018.
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Figure 7.14: The impact of the value for loss term on the accuracy of the proposed

model. Low loss term (below 0.2) introduced noticeable differences.

Firstly, the uncertainty of the SMOS SIT data employed can be up to 0.5 m. In

addition, the SMOS sea ice temperature and salinity data are used as inputs, whose

accuracy is also critical for the SIT estimation. It is found that R2 ranges from 0.57 to

0.70 based on all the T and S values considered. Taking this result as the maximum

uncertainty, the maximum bias of SIT estimation is only 0.04 m.

Secondly, it should be noted that Eq. (7.7) was developed from ignoring R1 in

Eq. (7.5). In fact, this process can introduce errors for the cases of high sea ice

attenuation or thick ice (resulting in a low-valued propagation loss term), in which

R1 and R2e
−2ikzid are comparable. In such cases, an interference between the signal

components from two interfaces can be expected, and the power of overall echo should

be properly evaluated. The absolute SIT difference between the TDS-1 and SMOS

results (that are calculated as |SMOS SIT - TDS-1 SIT|/ SMOS SIT) was found to

be noticeable with low values (below 0.2) of loss term in sea ice, as presented in Fig.

7.14. This demonstrates the limitation of the proposed model when attenuation in

the ice layer is high and the contribution of R1 is significant.

Thirdly, according to Eq. (7.10), SIT is dependent on Γ, and therefore, the accu-

racy of Γ is critical. The estimation of Γ may be affected by the following factors:
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• Transmitted signal estimation: Although efforts have been made to approximate

the actual transmitted signal by using Eq. (7.2), a constant value of Gd is

employed here. This simplification may have caused errors.

• Receiver antenna gain: The uncertainty of TDS-1 attitude and orbit was noted

in e.g. [134], which consequently resulted in the uncertainty in Gr.

• Atmospheric effects: As shown in [24], such effects may introduce variations in

Pr; however, they are neglected in this work.

The error for Gd can be up to 0.8 dB [125]. The median values of the errors in

Gr are found to be 0.7 dB through processing TDS-1 data. By only considering such

error in the antenna gains, the uncertainty of SIT retrieval can be up to about 30%.

7.4 Conclusions

An effective scheme is developed for estimating sea ice thickness from the reflectivity

produced with TDS-1 data. Good consistency between the derived TDS-1 SIT and

the reference SIT demonstrates the applicability of the developed model and the

utility of TDS-1 data for SIT estimation.
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Chapter 8

Conclusions

8.1 Summary

The objectives of this thesis have been to propose new methods to promote sea ice

remote sensing applications, specifically, 1) sea ice detection, 2) SIC estimation, and

3) SIT retrieval using spaceborne GNSS-R data acquired by the TDS-1 satellite. To

fulfill this goal, several different methods have been proposed. For the sea ice detec-

tion task, four methods i.e. the observable-, NN-, CNN- and SVM-based approaches

are developed. For SIC estimation, the algorithms of NN, CNN and SVR are inves-

tigated, respectively. For SIT retrieval, a model based on reflectivity Γ is proposed.

Comparisons with ground-truth data confirm the good performance of the proposed

schemes. Experimental evaluation shows high accuracy has been obtained in these

applications. For sea ice detection and SIC estimation, different methods using vari-

ous input designs are also tested and compared, with the overall detection accuracy

and the correlation coefficient between predicted and reference SICs being above 97%
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and 0.91, respectively. For SIT retrieval, the reflectivity Γ is modelled as a function

of the propagation loss in the sea ice layer and the reflection coefficient of the un-

derneath seawater. By comparing the TDS-1 SIT with the reference data, a good

consistency was obtained with an r of 0.84 and an RMSD of 9.39 cm for SMOS and

an r of 0.67 and an RMSD of 9.49 cm for SMOS/SMAP. Furthermore, another as-

pect of this method for improving sea ice detection was studied by comparing Γ with

local reflection coefficient. In particular, the scheme for retrieving SIT is helpful in

reducing false alarms of sea ice for low sea state. The proposed methods can provide

measurement for high-latitude regions, which may be difficult to obtain using in situ

techniques.

Hence, the feasibility of spaceborne GNSS-R DDM for sea ice remote sensing is

illustrated for the first time using the TDS-1 data.

8.2 Discussion and Future Work

While these methods hold great potential, further testing with more DDM data is

necessary, and this may increase the robustness for real-world applications. In ad-

dition, it was found that the performance of sea ice detection and SIC estimation

dropped for partially ice-covered areas, for which DDMs also depends on sea sur-

face wind conditions. Therefore, it is worth investigating the scattering properties of

GNSS-R signals for such regions. In particular, the DDMs collected near ice edges

with calm seas and low wind speeds appear to give rise to overestimates of the SIC

and increased false alarms. However, a further quantification analysis of the effect of

low sea state on SIC estimation should be conducted in the future using more in situ
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sea state data and DDM data. Although the adopted resolution matching scheme can

provide reasonable comparisons between DDMs and SIC data, it cannot provide the

details about spatial coverage and its distribution of a DDM. The dry/wet ice condi-

tions may affect the performance of SIC estimation. It has been reported in [138] that

melt water can lead to multiple contrast reversals on sea ice microwave signatures for

different ice stages and seasons. However, due to lack of the dry/wet ice condition

data, its effect on the detection performance could not be evaluated in this work.

This problem should be investigated once such data become available. Dependence

of SIC estimation on ice thickness will also be studied. This work may open a window

for more DDM-based remote sensing applications with machine learning methods in

the future. In order to maintain good spatial resolution of TDS-1 DDM, no extra

non-coherent summation over DDM is applied in this work, but this process could be

investigated further to mitigate speckle noise and enhance performance. The devised

FS scheme has also been shown to be useful in this thesis, which may lead to more

FS-based applications. In addition, with the use of FS the processing of GNSS-R raw

data may also be simplified for certain real practices.

Although the results obtained show the applicability of the proposed method, the

performance of this method for sea ice thicker than 1 m is not examined due to a

lack of reliable SIT reference data. Further validation of this method for thick sea ice

should be conducted when accurate SIT reference data are available. In addition, as

the SMOS/SMAP SIT estimation is also derived with the L-band microwave signal

and based on similar methodology (propagation attenuation of sea ice), so they can

be expected to be correlated with the GNSS-R SIT measurements. It is worth com-

paring the GNSS-R results with measurements from other sources, such as CryoSat-2
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and airborne SIT data once more appropriate data are available. Moreover, when the

attenuation in sea ice is significant the proposed model produces noticeable errors.

This can be corrected in the future by considering a more comprehensive model. It

should be mentioned that the data containing incoherent components due to inco-

herent reflection from sea ice covered area are not considered in this work. However,

their effect on SIT estimation accuracy should be studied. It also should be noted

that the input of sea ice temperature and salinity are from SMOS data, the accuracy

of which is unknown, and this may be responsible, to some degree, for errors. The ac-

curacy of SIT estimation using GNSS-R can be enhanced in the future when GNSS-R

instruments can provide better data or when the effect of error sources (described in

subsection 7.3.5) can be mitigated. Furthermore, although an empirical geophysical

model function method needs a calibration procedure which is not required in the

proposed method, it is worth investigating SIT estimation using an empirical GMF

method in the future. More importantly, an enhanced SIT estimation scheme that

does not rely on S and T from other sources should be developed in the future so

that GNSS-R can produce SIT data independently.

A comprehensive comparison between our proposed sea ice detection, SIC and SIT

estimation methods and those newly developed by other researchers is also necessary

in the future. A machine learning based algorithm for sea ice classification can also

be designed and compared with that in [80].
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126
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