45 research outputs found

    Robust statistical approaches for local planar surface fitting in 3D laser scanning data

    Get PDF
    This paper proposes robust methods for local planar surface fitting in 3D laser scanning data. Searching through the literature revealed that many authors frequently used Least Squares (LS) and Principal Component Analysis (PCA) for point cloud processing without any treatment of outliers. It is known that LS and PCA are sensitive to outliers and can give inconsistent and misleading estimates. RANdom SAmple Consensus (RANSAC) is one of the most well-known robust methods used for model fitting when noise and/or outliers are present. We concentrate on the recently introduced Deterministic Minimum Covariance Determinant estimator and robust PCA, and propose two variants of statistically robust algorithms for fitting planar surfaces to 3D laser scanning point cloud data. The performance of the proposed robust methods is demonstrated by qualitative and quantitative analysis through several synthetic and mobile laser scanning 3D data sets for different applications. Using simulated data, and comparisons with LS, PCA, RANSAC, variants of RANSAC and other robust statistical methods, we demonstrate that the new algorithms are significantly more efficient, faster, and produce more accurate fits and robust local statistics (e.g. surface normals), necessary for many point cloud processing tasks.Consider one example data set used consisting of 100 points with 20% outliers representing a plane. The proposed methods called DetRD-PCA and DetRPCA, produce bias angles (angle between the fitted planes with and without outliers) of 0.20° and 0.24° respectively, whereas LS, PCA and RANSAC produce worse bias angles of 52.49°, 39.55° and 0.79° respectively. In terms of speed, DetRD-PCA takes 0.033 s on average for fitting a plane, which is approximately 6.5, 25.4 and 25.8 times faster than RANSAC, and two other robust statistical methods, respectively. The estimated robust surface normals and curvatures from the new methods have been used for plane fitting, sharp feature preservation and segmentation in 3D point clouds obtained from laser scanners. The results are significantly better and more efficiently computed than those obtained by existing methods

    Reconstruction of industrial piping installations from laser point clouds using profiling techniques

    Get PDF
    Includes abstract.Includes bibliographical references (leaves 143-152).As-built models of industrial piping installations are essential for planning applications in industry. Laser scanning has emerged as the preferred data acquisition method of as built information for creating these three dimensional (3D) models. The product of the scanning process is a cloud of points representing scanned surfaces. From this point cloud, 3D models of the surfaces are reconstructed. Most surfaces are of piping elements e.g. straight pipes, t-junctions, elbows, spheres. The automatic detection of these piping elements in point clouds has the greatest impact on the reconstructed model. Various algorithms have been proposed for detecting piping elements in point clouds. However, most algorithms detect cylinders (straight pipes) and planes which make up a small percentage of piping elements found in industrial installations. In addition, these algorithms do not allow for deformation detection in pipes. Therefore, the work in this research is aimed at the detection of piping elements (straight pipes, elbows, t-junctions and flange) in point clouds including deformation detection

    Learning to extract features for 2D – 3D multimodal registration

    Get PDF
    The ability to capture depth information form an scene has greatly increased in the recent years. 3D sensors, traditionally high cost and low resolution sensors, are being democratized and 3D scans of indoor and outdoor scenes are becoming more and more common. However, there is still a great data gap between the amount of captures being performed with 2D and 3D sensors. Although the 3D sensors provide more information about the scene, 2D sensors are still more accessible and widely used. This trade-off between availability and information between sensors brings us to a multimodal scenario of mixed 2D and 3D data. This thesis explores the fundamental block of this multimodal scenario: the registration between a single 2D image and a single unorganized point cloud. An unorganized 3D point cloud is the basic representation of a 3D capture. In this representation the surveyed points are represented only by their real word coordinates and, optionally, by their colour information. This simplistic representation brings multiple challenges to the registration, since most of the state of the art works leverage the existence of metadata about the scene or prior knowledges. Two different techniques are explored to perform the registration: a keypoint-based technique and an edge-based technique. The keypoint-based technique estimates the transformation by means of correspondences detected using Deep Learning, whilst the edge-based technique refines a transformation using a multimodal edge detection to establish anchor points to perform the estimation. An extensive evaluation of the proposed methodologies is performed. Albeit further research is needed to achieve adequate performances, the obtained results show the potential of the usage of deep learning techniques to learn 2D and 3D similarities. The results also show the good performance of the proposed 2D-3D iterative refinement, up to the state of the art on 3D-3D registration.La capacitat de captar informació de profunditat d’una escena ha augmentat molt els darrers anys. Els sensors 3D, tradicionalment d’alt cost i baixa resolució, s’estan democratitzant i escànners 3D d’escents interiors i exteriors són cada vegada més comuns. Tot i això, encara hi ha una gran bretxa entre la quantitat de captures que s’estan realitzant amb sensors 2D i 3D. Tot i que els sensors 3D proporcionen més informació sobre l’escena, els sensors 2D encara són més accessibles i àmpliament utilitzats. Aquesta diferència entre la disponibilitat i la informació entre els sensors ens porta a un escenari multimodal de dades mixtes 2D i 3D. Aquesta tesi explora el bloc fonamental d’aquest escenari multimodal: el registre entre una sola imatge 2D i un sol núvol de punts no organitzat. Un núvol de punts 3D no organitzat és la representació bàsica d’una captura en 3D. En aquesta representació, els punts mesurats es representen només per les seves coordenades i, opcionalment, per la informació de color. Aquesta representació simplista aporta múltiples reptes al registre, ja que la majoria dels algoritmes aprofiten l’existència de metadades sobre l’escena o coneixements previs. Per realitzar el registre s’exploren dues tècniques diferents: una tècnica basada en punts clau i una tècnica basada en contorns. La tècnica basada en punts clau estima la transformació mitjançant correspondències detectades mitjançant Deep Learning, mentre que la tècnica basada en contorns refina una transformació mitjançant una detecció multimodal de la vora per establir punts d’ancoratge per realitzar l’estimació. Es fa una avaluació àmplia de les metodologies proposades. Tot i que es necessita més investigació per obtenir un rendiment adequat, els resultats obtinguts mostren el potencial de l’ús de tècniques d’aprenentatge profund per aprendre similituds 2D i 3D. Els resultats també mostren l’excel·lent rendiment del perfeccionament iteratiu 2D-3D proposat, similar al dels algoritmes de registre 3D-3D.La capacidad de captar información de profundidad de una escena ha aumentado mucho en los últimos años. Los sensores 3D, tradicionalmente de alto costo y baja resolución, se están democratizando y escáneres 3D de escents interiores y exteriores son cada vez más comunes. Sin embargo, todavía hay una gran brecha entre la cantidad de capturas que se están realizando con sensores 2D y 3D. Aunque los sensores 3D proporcionan más información sobre la escena, los sensores 2D todavía son más accesibles y ampliamente utilizados. Esta diferencia entre la disponibilidad y la información entre los sensores nos lleva a un escenario multimodal de datos mixtos 2D y 3D. Esta tesis explora el bloque fundamental de este escenario multimodal: el registro entre una sola imagen 2D y una sola nube de puntos no organizado. Una nube de puntos 3D no organizado es la representación básica de una captura en 3D. En esta representación, los puntos medidos se representan sólo por sus coordenadas y, opcionalmente, por la información de color. Esta representación simplista aporta múltiples retos en el registro, ya que la mayoría de los algoritmos aprovechan la existencia de metadatos sobre la escena o conocimientos previos. Para realizar el registro se exploran dos técnicas diferentes: una técnica basada en puntos clave y una técnica basada en contornos. La técnica basada en puntos clave estima la transformación mediante correspondencias detectadas mediante Deep Learning, mientras que la técnica basada en contornos refina una transformación mediante una detección multimodal del borde para establecer puntos de anclaje para realizar la estimación. Se hace una evaluación amplia de las metodologías propuestas. Aunque se necesita más investigación para obtener un rendimiento adecuado, los resultados obtenidos muestran el potencial del uso de técnicas de aprendizaje profundo para aprender similitudes 2D y 3D. Los resultados también muestran el excelente rendimiento del perfeccionamiento iterativo 2D-3D propuesto, similar al de los algoritmos de registro 3D-3D

    Learning to extract features for 2D – 3D multimodal registration

    Get PDF
    The ability to capture depth information form an scene has greatly increased in the recent years. 3D sensors, traditionally high cost and low resolution sensors, are being democratized and 3D scans of indoor and outdoor scenes are becoming more and more common. However, there is still a great data gap between the amount of captures being performed with 2D and 3D sensors. Although the 3D sensors provide more information about the scene, 2D sensors are still more accessible and widely used. This trade-off between availability and information between sensors brings us to a multimodal scenario of mixed 2D and 3D data. This thesis explores the fundamental block of this multimodal scenario: the registration between a single 2D image and a single unorganized point cloud. An unorganized 3D point cloud is the basic representation of a 3D capture. In this representation the surveyed points are represented only by their real word coordinates and, optionally, by their colour information. This simplistic representation brings multiple challenges to the registration, since most of the state of the art works leverage the existence of metadata about the scene or prior knowledges. Two different techniques are explored to perform the registration: a keypoint-based technique and an edge-based technique. The keypoint-based technique estimates the transformation by means of correspondences detected using Deep Learning, whilst the edge-based technique refines a transformation using a multimodal edge detection to establish anchor points to perform the estimation. An extensive evaluation of the proposed methodologies is performed. Albeit further research is needed to achieve adequate performances, the obtained results show the potential of the usage of deep learning techniques to learn 2D and 3D similarities. The results also show the good performance of the proposed 2D-3D iterative refinement, up to the state of the art on 3D-3D registration.La capacitat de captar informació de profunditat d’una escena ha augmentat molt els darrers anys. Els sensors 3D, tradicionalment d’alt cost i baixa resolució, s’estan democratitzant i escànners 3D d’escents interiors i exteriors són cada vegada més comuns. Tot i això, encara hi ha una gran bretxa entre la quantitat de captures que s’estan realitzant amb sensors 2D i 3D. Tot i que els sensors 3D proporcionen més informació sobre l’escena, els sensors 2D encara són més accessibles i àmpliament utilitzats. Aquesta diferència entre la disponibilitat i la informació entre els sensors ens porta a un escenari multimodal de dades mixtes 2D i 3D. Aquesta tesi explora el bloc fonamental d’aquest escenari multimodal: el registre entre una sola imatge 2D i un sol núvol de punts no organitzat. Un núvol de punts 3D no organitzat és la representació bàsica d’una captura en 3D. En aquesta representació, els punts mesurats es representen només per les seves coordenades i, opcionalment, per la informació de color. Aquesta representació simplista aporta múltiples reptes al registre, ja que la majoria dels algoritmes aprofiten l’existència de metadades sobre l’escena o coneixements previs. Per realitzar el registre s’exploren dues tècniques diferents: una tècnica basada en punts clau i una tècnica basada en contorns. La tècnica basada en punts clau estima la transformació mitjançant correspondències detectades mitjançant Deep Learning, mentre que la tècnica basada en contorns refina una transformació mitjançant una detecció multimodal de la vora per establir punts d’ancoratge per realitzar l’estimació. Es fa una avaluació àmplia de les metodologies proposades. Tot i que es necessita més investigació per obtenir un rendiment adequat, els resultats obtinguts mostren el potencial de l’ús de tècniques d’aprenentatge profund per aprendre similituds 2D i 3D. Els resultats també mostren l’excel·lent rendiment del perfeccionament iteratiu 2D-3D proposat, similar al dels algoritmes de registre 3D-3D.La capacidad de captar información de profundidad de una escena ha aumentado mucho en los últimos años. Los sensores 3D, tradicionalmente de alto costo y baja resolución, se están democratizando y escáneres 3D de escents interiores y exteriores son cada vez más comunes. Sin embargo, todavía hay una gran brecha entre la cantidad de capturas que se están realizando con sensores 2D y 3D. Aunque los sensores 3D proporcionan más información sobre la escena, los sensores 2D todavía son más accesibles y ampliamente utilizados. Esta diferencia entre la disponibilidad y la información entre los sensores nos lleva a un escenario multimodal de datos mixtos 2D y 3D. Esta tesis explora el bloque fundamental de este escenario multimodal: el registro entre una sola imagen 2D y una sola nube de puntos no organizado. Una nube de puntos 3D no organizado es la representación básica de una captura en 3D. En esta representación, los puntos medidos se representan sólo por sus coordenadas y, opcionalmente, por la información de color. Esta representación simplista aporta múltiples retos en el registro, ya que la mayoría de los algoritmos aprovechan la existencia de metadatos sobre la escena o conocimientos previos. Para realizar el registro se exploran dos técnicas diferentes: una técnica basada en puntos clave y una técnica basada en contornos. La técnica basada en puntos clave estima la transformación mediante correspondencias detectadas mediante Deep Learning, mientras que la técnica basada en contornos refina una transformación mediante una detección multimodal del borde para establecer puntos de anclaje para realizar la estimación. Se hace una evaluación amplia de las metodologías propuestas. Aunque se necesita más investigación para obtener un rendimiento adecuado, los resultados obtenidos muestran el potencial del uso de técnicas de aprendizaje profundo para aprender similitudes 2D y 3D. Los resultados también muestran el excelente rendimiento del perfeccionamiento iterativo 2D-3D propuesto, similar al de los algoritmos de registro 3D-3D.Postprint (published version

    Plane Segmentation and Registration of Sparse and Heterogeneous Mobile Laser Scanning Point Clouds

    Get PDF
    This research discussed and analysed the limitations of different state of the art methods for point cloud processing tasks due to the sparseness and the heterogeneousness of the MLS point clouds. A novel plane detection and segmentation method for sparse MLS point clouds is proposed. Finally, the most suitable techniques for automatic registration of MLS sparse point clouds were determined based on a new error metric for evaluation

    Reconstructing triangulated surfaces from unorganized points through local skeletal stars

    Get PDF
    Surface reconstruction from unorganized points arises in a variety of practical situations such as range scanning an object from multiple view points, recovery of biological shapes from twodimensional slices, and interactive surface sketching. [...]Reconstrução da superfície de pontos desorganizados surge em uma variedade de situações práticas, tais como rastreamento de um objeto a partir de vários pontos de vista, a recuperação de formas biológicas de fatias bi-dimensionais, e esboçar superfícies interativas. [...

    Adaptive slicing of cloud data for reverse engineering and direct rapid prototyping model construction

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Calculating the curvature shape characteristics of the human body from 3D scanner data.

    Get PDF
    In the recent years, there have been significant advances in the development and manufacturing of 3D scanners capable of capturing detailed (external) images of whole human bodies. Such hardware offers the opportunity to collect information that could be used to describe, interpret and analyse the shape of the human body for a variety of applications where shape information plays a vital role (e.g. apparel sizing and customisation; medical research in fields such as nutrition, obesity/anorexia and perceptive psychology; ergonomics for vehicle and furniture design). However, the representations delivered by such hardware typically consist of unstructured or partially structured point clouds, whereas it would be desirable to have models that allow shape-related information to be more immediately accessible. This thesis describes a method of extracting the differential geometry properties of the body surface from unorganized point cloud datasets. In effect, this is a way of constructing curvature maps that allows the detection on the surface of features that are deformable (such as ridges) rather than reformable under certain transformations. Such features could subsequently be used to interpret the topology of a human body and to enable classification according to its shape, rather than its size (as is currently the standard practice for many of the applications concemed). The background, motivation and significance of this research are presented in chapter one. Chapter two is a literature review describing the previous and current attempts to model 3D objects in general and human bodies in particular, as well as the mathematical and technical issues associated with the modelling. Chapter three presents an overview of: the methodology employed throughout the research; the assumptions regarding the data to be processed; and the strategy for evaluating the results for each stage of the methodology. Chapter four describes an algorithm (and some variations) for approximating the local surface geometry around a given point of the input data set by means of a least-squares minimization. The output of such an algorithm is a surface patch described in an analytic (implicit) form. This is necessary for the next step described below. The case is made for using implicit surfaces rather than more popular 3D surface representations such as parametric forms or height functions. Chapter five describes the processing needed for calculating curvature-related characteristics for each point of the input surface. This utilises the implicit surface patches generated by the algorithm described in the previous chapter, and enables the construction of a "curvature map" of the original surface, which incorporates rich information such as the principal curvatures, shape indices and curvature directions. Chapter six describes a family of algorithms for calculating features such as ridges and umbilic points on the surface from the curvature map, in a manner that bypasses the problem of separating a vector field (i.e. the principal curvature directions) across the entire surface of an object. An alternative approach, using the focal surface information, is also considered briefly in comparison. The concluding chapter summarises the results from all steps of the processing and evaluates them in relation to the requirements set in chapter one. Directions for further research are also proposed

    Robust statistical approaches for feature extraction in laser scanning 3D point cloud data

    Get PDF
    Three dimensional point cloud data acquired from mobile laser scanning system commonly contain outliers and/or noise. The presence of outliers and noise means most of the frequently used methods for feature extraction produce inaccurate and non-robust results. We investigate the problems of outliers and how to accommodate them for automatic robust feature extraction. This thesis develops algorithms for outlier detection, point cloud denoising, robust feature extraction, segmentation and ground surface extraction

    Marine Vessel Inspection as a Novel Field for Service Robotics: A Contribution to Systems, Control Methods and Semantic Perception Algorithms.

    Get PDF
    This cumulative thesis introduces a novel field for service robotics: the inspection of marine vessels using mobile inspection robots. In this thesis, three scientific contributions are provided and experimentally verified in the field of marine inspection, but are not limited to this type of application. The inspection scenario is merely a golden thread to combine the cumulative scientific results presented in this thesis. The first contribution is an adaptive, proprioceptive control approach for hybrid leg-wheel robots, such as the robot ASGUARD described in this thesis. The robot is able to deal with rough terrain and stairs, due to the control concept introduced in this thesis. The proposed system is a suitable platform to move inside the cargo holds of bulk carriers and to deliver visual data from inside the hold. Additionally, the proposed system also has stair climbing abilities, allowing the system to move between different decks. The robot adapts its gait pattern dynamically based on proprioceptive data received from the joint motors and based on the pitch and tilt angle of the robot's body during locomotion. The second major contribution of the thesis is an independent ship inspection system, consisting of a magnetic wall climbing robot for bulkhead inspection, a particle filter based localization method, and a spatial content management system (SCMS) for spatial inspection data representation and organization. The system described in this work was evaluated in several laboratory experiments and field trials on two different marine vessels in close collaboration with ship surveyors. The third scientific contribution of the thesis is a novel approach to structural classification using semantic perception approaches. By these methods, a structured environment can be semantically annotated, based on the spatial relationships between spatial entities and spatial features. This method was verified in the domain of indoor perception (logistics and household environment), for soil sample classification, and for the classification of the structural parts of a marine vessel. The proposed method allows the description of the structural parts of a cargo hold in order to localize the inspection robot or any detected damage. The algorithms proposed in this thesis are based on unorganized 3D point clouds, generated by a LIDAR within a ship's cargo hold. Two different semantic perception methods are proposed in this thesis. One approach is based on probabilistic constraint networks; the second approach is based on Fuzzy Description Logic and spatial reasoning using a spatial ontology about the environment
    corecore