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SUMMARY 
 
 
 
 

Reverse engineering (RE) is the process of creating a CAD model and 

manufacturing a part using an existing part or a prototype, which can be utilized to 

produce a copy of an object, extract the design concept of an existing model, or re-

engineer an existing part. In RE process, the shape of the part can be rapidly captured 

by utilizing the optical non-contact measuring techniques, e.g., laser scanner. This 

normally produces a large cloud data set that is usually arbitrarily scattered. Rapid 

prototyping (RP) is a material-addition fabrication method in which the physical part is 

generated layer-by-layer. In order to produce a physical part model of complex 

geometric shape rapidly, RP has been widely used. Therefore, modelling point cloud 

for RP fabrication is an essential step to integrate RE and RP so that reconstruction of 

a part can occur rapidly. 

In general, modelling point cloud for RP relies mostly on surface construction 

from cloud data and CAD model slicing using a commercial software. However, this 

process may inherently lead to three progressive shape errors among cloud data, CAD 

model, STL model and final RP model, which are difficult for the user to control. 

Moreover, surface construction is time-consuming and needs expert experience.  

In this thesis, an intuitive method of point cloud segmentation by using the 

shape-error to control the layer thickness so that the built part will be within a specified 

tolerance is presented. The thickness of each layer in the generated model will 
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therefore be different. In this respect, we assume that the RP machines used for 

fabrication accept arbitrary thickness. 

Two methods for adaptive slicing have been developed. One uses a correlation 

coefficient to determine the neighbourhood size of projected data points, so that a 

polygon can be constructed to approximate the profile of projected data points. It 

basically consists of the following steps:(1) the cloud data points are segmented into 

several layers along the RP building direction; (2) points within each layer are treated 

as co-planar and a polygon is constructed to best-fit the points; (3) the thickness of 

each layer is determined adaptively such that the surface error is kept to just within a 

given error bound.   

The other method uses wavelets to construct a polygon, and the general steps 

are similar to the first one. However, the most important step, which is the polygon 

construction, is different. This method has two main steps: Firstly, the nearly 

maximum allowable thickness for each layer is determined with the control of the 

band-width of projected points. Secondly, for each layer, the profile curve is generated 

with a wavelets method. In detail, the boundary points between two regions in one 

layer are extracted and sorted by a tangent-vector based method, which uses a fixed 

neighbourhood size to quicken the sorting process. Wavelets are then applied to the 

curve construction from the sorted data points from coarser to finer level under the 

control of the shape tolerance, such that the constructed curve has nearly minimal 

number of points while the shape error is within specified tolerance. 

Algorithms for the developed methods have been implemented using C/C++ on 

the OpenGL platform. Both methods can deal with complex surfaces with multiple 

loops. Simulation results and actual case studies demonstrate the efficacy of the 

algorithms.   
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Chapter 1 Introduction 
 

CHAPTER 1 INTRODUCTION 

 

1.1 Problem Statement 

Reverse engineering (RE) refers to creating a CAD or digital model from an existing 

physical object, which can be utilized to produce a copy of an object, extract the design 

concept of an existing model, or re-engineer an existing parts (Varady et at. 1997). 

There are various properties of a 3D physical object that one may be interested in 

recovering by reverse engineering, such as its shape, colour and material properties. 

This thesis addresses the problem of recovering 3D shape, for computer-aided 3D 

modelling.  

d eb ca 
a. Unknown digital model of 3D object, U 
b. Scanned data points, X 
c. Constructed surface model, S 
d. Constructed STL model, T 
e. Layer-based 3D RP model, R (wire form) 

 
Fig. 1.1: Example of direct RP model construction from cloud data 

 
Rapid prototyping (RP) is an emerging technology to fabricate physical parts 

quickly by building them layer-by-layer. This thesis mainly addresses an RE problem 

of layered-based RP model construction directly from cloud data captured from a 

physical object. 
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As shown in Fig 1.1, the goal of direct RP model construction can be stated as 

follows: Given a set of sample points X assumed to lie on or near an unknown 3D 

object U, create a layer-based 3D model R approximating U. The constructed model R 

should have the same topology as U, and can be every where close to U, i.e. the shape 

error which is estimated by the largest distance between X and R, meets the 

requirement of shape tolerance ε.  

In our application, the cloud data X is obtained by registering the scanned data 

from different view angles. We assume that X has no holes (or have been filled), and X 

lies on or near the unknown object, but X can be noisy and unstructured (not ordered). 

Reconstruction methods typically first reconstruct a 3D model and then slice 

this 3D model to achieve a layer-based 3D model. In this thesis, an approach is 

presented that directly slices the sample points X, and constructs a layer-based 3D 

model. 

Moreover, the layer-based 3D model construction problem is first examined in 

its general form that makes few assumptions about the sample X and the unknown 3D 

object U. The cloud points X may be noisy, and no structure or other information is 

assumed within them. The 3D object may have arbitrary topology, including sharp 

features such as the creases and corners. The constructed model S should have the 

same topology as U, and is close to U within a specified tolerance. 

 

1.2 Reverse Engineering and Rapid Prototyping 

We were led to consider the general layer-based 3D model construction problem stated 

above by the demands of reducing product development time, that is to integrate RE 

and RP technology for rapid product development. 
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1.2.1 Reverse engineering 

In RE, a part model designed by the stylist, usually in the form of wood or clay mock-

up, is firstly sampled and then the sampled data are transformed to a CAD 

representation for further fabrication. The shape of the stylist’s model can be rapidly 

captured by utilizing optical non-contact measuring techniques, e.g., laser scanner. 

There are several application areas of reverse engineering such as to produce a 

copy of a part when no original drawings or documentation are available, to re-

engineer an existing part when analysis and modifications are required to construct a 

new improved product, and to generate a custom fit to human surfaces, for mating 

parts such as helmets, space suits or prostheses. 

The process of reverse engineering can usually be subdivided into three stages 

(Varady et al., 1997, Li et al., 2002), i.e., data capturing (aimed at acquiring sample 

point coordinates), data segmentation (aimed at clustering points into groups, 

representing curves or surfaces of the same type) and CAD modelling and/or updating 

(aimed at constructing bounded surface regions from segmented data groups and 

combining the surface regions into complete geometric models).  We will introduce 

these three steps of reverse engineering in the following sections. 

 

1.2.1.1. Data capturing 

Data capturing is a crucial step in RE, and there are many different methods for 

acquiring shape data. Table 1.1 shows the most commonly used methods in data 

acquisition and their main advantages and disadvantages. Essentially, each method 

uses some mechanism or phenomenon for interacting with the surface or volume of the 

object of interest. There are non-contact methods, where light, sound or magnetic 

fields are used, while in others the surface is touched by using mechanical probes at 
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the end of an arm, such as a CMM, which can usually produce accurate results up to 

10um or better. Non-contact methods usually give a fast and high resolution result but 

with noise and dense data points, while contact methods give a more precise result but 

with a slow speed, especially for objects of complex shape. 

Table 1.1 Data acquisition methods 

Methods Principle Usages Advantages Disadvantages
Optical Light 

triangulation 
CAD Fast ; 

High resolution 
Affected by 
the surface 
quality of 
reflecting 
light; 
Dense 

Acoustic Speed of 
sound 

Medical;
Sea 
depth 
detection

Special cases noisy 

Magnetic Hall effect Medical 
Oil tube 
detection

Special cases noisy 

CMM  
Contact 

Car 
design 
CAD 

Fast to regular shapes 
such as circle, cone, 
sphere etc. ; 
High precision; 
Easier for curve or 
surface 
reconstruction 

Slow to 
complex 
shapes 

 

The contacted measurement with a CMM is fast and highly repeatable when 

measured geometric elements are line, plane, cylinder, sphere and cone etc., because 

the process requires only a limited number of probing points and the probe radius 

compensation is quite straightforward. The machine can be programmed to follow 

paths along a surface and collect very accurate, nearly noise-free data. However, in the 

case of complex surfaces involving numerous measurement points, the measurement 

motion becomes difficult (Yan and Gu 1996). Also, contact methods are not good for 

soft materials.  
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Compared to the contact measurement techniques, non-contact means have a 

higher resolution of surface digitization and more rapid measurement speed, e.g., the 

VIVID 900 Laser scanner can capture over 300,000 points in 2.5 seconds or 75,000 

points in 0.5 seconds with a fast mode scan. In addition, the corresponding 

dimensional accuracy is usually in the range from several hundredths to several tenths 

of a millimeter for RE applications. However, there are also some problems for the 

non-contact measurement methods (Varady et al., 1997, Lee and Woo 2000): The 

methods tend to pick up redundant points and the distributed density of points 

measured in the digitization steps often do not meet the surface geometric trend. 

Moreover, the bright and shiny objects are difficult to be measured by optical methods. 

 

1.2.1.2. Data segmentation 

Data segmentation is a process to divide the original sampling data point set into 

subsets, one for each natural surface, so that each subset contains just those points 

sampled from particular natural surfaces. There are generally three different methods 

for data segmentation: edge-based, face-based and feature based (Milroy et al., 1997, 

Yang and Lee 1999, Jun et al., 2001). 

The edge-based method (Milroy et al., 1997) is one popular approach of a two-

stage process, edge detection and linking. This works by trying to find boundaries in 

the point data representing edges between surfaces. In the edge detection process, the 

local surface curvature properties are used to identify boundary present in the 

measured data. Curvature is selected as the mathematical basis for edge detection. 

Hamann (1993) presented a method for curvature estimation from 3D meshes, and 

Kobbelt (2000) extracted curvature from a locally fitted quadratic polynomial 

approximant.  If edges are being sought, an edge-linking process follows, in which 
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disjoint edge points are connected to form continuous edges. This technique thus infers 

the surface from the implicit segmentation provided by the edge curves. Yang and Lee 

(1999) extended the edge-based method by using parametric quadric surface 

approximation to identify the edge points. 

In the face-based segmentation (Chen and Schmitt 1994, Peng and Loftus 1998, 

Jun et al., 2001), a group of points is connected into a distinctive region with similar 

geometrical properties, such as normal vectors or curvatures, and each region is then 

transformed into appropriate surfaces using a region-growing algorithm. The exact 

boundary edges can be derived by intersection or other computations from surfaces. 

Triangles are firstly generated from input scanned points and the cost values for each 

edge from these triangles are computed as reference values. The cost value of each 

polygonal mesh is defined by the area and the normal. The basic concept of detecting 

boundary meshes is to select all the meshes whose cost value is higher than a certain 

level. Then, a region-growing process was imposed to aggregate a polygonal mesh into 

subregion until the area of the subregion reaches the user-defined area criterion. 

Feature-based segmentation method (Jun et al., 2001) extracts or reconstructs 

geometric features directly from scanned point set using intelligent algorithms such as 

an artificial neural network or  genetic algorithm. 

 

1.2.1.3. Surface modelling 

Segmentation process outputs labeled points belonging to particular regions. For these 

regions, techniques are given for surface modelling by many researchers. Surface 

fitting is a technique of representing large amount of data into a concise form which is 

useful for later manipulations. A surface fitting problem can be posed as follows: let D 

be a domain in the (x, y) plane, and suppose F is a real valued function defined on D. 
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Suppose we know the values F(xi, yi) (i=1, 2,…,N) located in D. Find a function f 

defined on D which reasonably approximates F. In geometric modeling, surfaces are 

presented by either polyhedral or curved surface approximation. Polyhedral 

approximation is described in (Reqicha 1990, Eck and Hoppe 1996). Curve surface 

approximation methods may be divided into three types: algebraic, parametric, and 

dual. Algebraic surfaces are the ones where the surfaces are approximated using 

polynomial equation, and there are two approaches for algebraic surface fitting (Menq 

and Chen 1996). In general the algebraic surfaces have infinite domain while parametric 

surfaces are bounded. Dual representation of surfaces included both algebraic and 

parametric surfaces. Many surface fitting algorithms, such as quadratic surface fitting, 

B-spline surface fitting, rotational surface fitting and lofted surface fitting etc., have 

been reported (Ueng et al.,1998). 

 

1.2.2 Rapid prototyping  

To generate physical objects from CAD models directly, Rapid prototyping can 

produce the physical part by adding layer by layer. Rapid Prototyping (RP) is an 

emerging, non-traditional fabrication method and has been recognized as a valid tool to 

shorten the lead-time from design to manufacture effectively. A variety of RP 

technologies have emerged (Yan and Gu 1996). They include stereolithography (SLA), 

selective laser sintering (SLS), fused deposition manufacturing (FEM), laminated 

object manufacturing (LOM), and three-dimensional printing (3D printing). Among 

these technologies, the advantages and disadvantages were discussed by Chua and 

Leong (1996).  
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In RP, the STL file format (Jacobs 1992) has become the de facto standard. An 

STL file consists of a list of triangular facet data. Each facet is uniquely identified by a 

unit normal and three vertices. 

 

1.3 Previous Work 

In general, modelling point cloud for RP can be realised in three different approaches 

(Lee and Woo 2000). As shown in Fig. 1.2, in the first approach, a surface model is 

reconstructed from the point cloud and is closed up as a solid. Then, this solid can be 

sliced based on its geometry information or can be converted to a RP file format, such 

as STL, which will be sliced by commercial software. The second approach creates an 

STL-format file of a model directly from the point cloud (e.g., triangulation) (Chen et 

al., 1999, Lee et al., 2000, Sun et al., 2001), and this STL file can be fed into RP machine 

directly. RP machine can slice STL model. The third approach goes directly from point 

cloud to an RP slice file (layer-based model) (Liu 2001). This slice file need not be 

further sliced by RP machine.  

Point cloud data 

1

2CAD file 
3

11

STL file

1 2

RP slice file 
 

Fig. 1.2:  Point cloud data modelling for RP fabrication 
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1.3.1 Surface model based slicing 

Most of researchers focus on surface-model based slicing for RP manufacture (Lee and 

Woo 2000). The CAD model is firstly constructed with surface modelling method, and 

the surface model is closed up to form a solid model. Then this model is sliced to 

generate a RP model.  Most commercial CAD systems have the function to generate 

the STL file, from CAD model directly, and this STL file is further sliced and 

transferred into an RP manufacturing file format suitable for SLA, LOM, FDM, SLS 

and so on.   

1.3.1.1. Surface reconstruction 

3D modelling is a process of segmentation and surface fitting. The surface 

reconstruction has received considerable attention in the past. The main issues are to 

deal with surfaces of arbitrary topology, to allow non-uniform sampling, and to 

produce models with provable guarantees, e.g., smooth manifolds that accurately 

approximate the actual surface (Boissonnat and Cazals 2002).  

Early attempts by Boissonnat (1984) and Edelsbrunner (1994) were approaches 

aiming at constructing a geometric data structure such as Delaunay triangulations of 

the data points and extracting from this structure a set of facets that approximate the 

surface. Along this direction, Boissonnat and Cazals (2002) further devised the method 

of natural neighbour interpolation, which allows for dealing with non-uniform samples. 

The natural neighbour interpolation was used, which is computed from Voronoi 

diagram of the sample points. Further, it directly produces a surface without computing 

an intermediate polyhedral approximation, and the reconstructed surface is implicitly 

represented as the zero-set of a signed pseudo-distance function which interpolates the 

data points and their normals. 
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A different approach consists in using the input points to define a signed 

distance function and to compute its zero-set. The surface is therefore regarded as a 

level surface of an implicit function defined over the entire embedding space. Hoppe et 

al. (1992,1993) calculated a tangent plane at a sample point using nearby neighbour 

points and assigned a distance to the plane as the signed distance function. Polygonal 

vertices were then obtained by finding the sample points with the zero set of this 

function using the marching cube algorithm. The advantages of Hoppe's algorithm are 

as follows: (1) the algorithm is suitable for handling scattered points because no 

assumptions of inherent structures of the sampled data set are made; and (2) the 

algorithm is capable of automatically inferring the topological type of the surface, 

including the presence of the boundary curves. The major complaint against marching-

cubes-based algorithm is that it is slow for dealing with cloud data.  

Another kind of surface reconstruction method is based on segmentation and 

fitting (Hoffman and Jain, 1987).The cloud data is divided into a suitable patchwork of 

surface regions to which an appropriate single surface is fitted. Data segmentation, 

accomplished either manually or through software, defines the patch boundary curves 

and produces a patchwork of surface regions (Weir et al., 1996). Data modelling 

methods, such as those employing parametric (Varady et al., 1997) or quadric (Weir et 

al., 1996, Chivate and Jablokow 1993) functions are applied to fit appropriate surfaces 

to the data patches. Non-uniform rational B-spline (NURB) curves and surfaces are a 

current research topic due to their ability to accurately approximate most types of 

surface entity encountered in design and manufacturing applications (Piegl and Tiller 

1997). 

 

1.3.1.2. Slicing CAD model 
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Most commercial CAD systems have the function to generate RP-format files, such as 

the STL file, from CAD-format files directly. At present, the interface between CAD 

systems and RP machines is realized by the direct transferring of an STL file (Xu 

1999), i.e, STL file slicing occurs in the RP system. Here, we review some methods for 

slicing CAD models or STL models. In general, there are two slicing approaches for 

determining the layer thickness, i.e., uniform slicing and adaptive slicing. Uniform 

slicing is the simplest approach in which a CAD model is sliced at equal intervals. If 

the layer thickness is sufficiently small, a smooth part model can be obtained. This 

may, however, result in many redundant layers and a long build time on the RP 

machine. On the other hand, if the layer thickness is too large, the build time is short, 

but one may end up with a part having a large shape error. 

Kulkarni and Dutta (1996), and Xu (1999) presented an adaptive slicing 

algorithm to slice CAD models, namely it determines a variable layer thickness for an 

object represented in parametric form. This algorithm uses the normal curvature in the 

vertical direction to determine the maximum allowable layer thickness for the surface 

at the reference level with a pre-specified cusp height. The sliced data are fed into 

Stratasys 3D system for RP fabrication. Mani et al. (1999) gave a method for region-

based adaptive slicing of CAD models. Whereas in traditional adaptive slicing the user 

can impose a single surface finish (cusp height) requirement for the whole object, in 

region-based adaptive slicing, user has the flexibility to impose different surface finish 

requirements on different surfaces of the model. The sliced data are fed into Stratasys 

3D system with a FDM file format. 

Tata et al. (1998) provided an efficient method for layer manufacturing from an 

STL model. This algorithm is based on three fundamental concepts: choice of criterion 

for accommodating complexities of surfaces, recognition of key characteristics and 
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features of the object, and development of a grouping methodology for facets used to 

represent the object. The output is 2D data slice data that can be machined by CNC 

machines, or by SLA RP machines. 

 Sabourin et al. (1997) presented a method to slice the STL model. It builds 

exterior regions of a part within regular thin layers, using adaptive layer thickness, so 

as to produce the required precise part surface. At the same time it also builds the 

interior regions of the part with thick and wide material application. The sliced data are 

fed into Stratasys 3D system with a FDM file format. 

1.3.2 Direct STL-file generation from cloud data 

This approach directly generates the STL file from cloud data, without model 

construction. Direct generation of STL file from the scanned data is favourable in that 

it can reduce the time and error in the modelling process. 

Chen et al. (1999) presented a data reduction method for automatic STL file 

generation directly from CMM data points. First, all the measured points are jointed 

and triangulated based on the vertex-to-vertex rule of STL file format, and the normal 

for each triangle is calculated. Second, for each point, select the neighbouring triangles, 

which share the concerned point, and use their normals to determine whether the point 

can be removed or not. Thus the data points in a flat surface are reduced. Third, to 

further reduction, an error bound is specified, and then regions with similar normals 

are formed.  After reduction of point set, an algorithm for re-triangulation is 

implemented, to cover the blank region. This algorithm can generate a STL file from 

CMM data directly, without a surface model construction. However, it is only applied 

to CMM data, with the structure information. It does not work for laser scanned data 

points, which are dense and have no structure information, such as sequences of the 

points. 
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Lee et al. (2002) presented a method for STL file generation from scanned data 

points based on segmentation and Delaunay triangulation. A triangular net is generated 

to maximize the smallest angle over all triangulations by adopting a bounding box and 

max-min angle criterion with the consideration of topological relationships among 3D 

points. After that, segmentation is performed based on local and global curvature 

between triangles and the segments are classified as plane, smooth and rough regions. 

Then, Delaunay triangulation is performed maintaining the segment boundary so that 

geometric characteristics still exist. However, this method can only deal with 

structured data points, i.e. whose sequences are known. 

Sun et al. (2001) presented a unified, non-redundant triangular mesh method to 

model the cloud data. This algorithm consists of two steps. First, an initial data 

thinning is performed to reduce the copious data set size, employing 3D spatial 

filtering. Second, the triangulation commences using a set of heuristic rules, from a 

user defined seed point. Thus, a geometric model can be constructed from 3D digitized 

data. In fact, a STL file can be generated with this method. 

 

1.3.3 Direct layer-based model construction 

To construct a layer-based model from cloud data is still a new issue. Liu (2001) 

developed an automated segmentation approach for generating a layer-based model 

from point cloud. This is accomplished via three steps. Firstly, the cloud data is 

adaptively subdivided into a set of regions according to a given subdivision tolerance 

(the maximum distance between cloud data points and their respective projected plane), 

and the data in each region is compressed by keeping the feature points (FPs) within 

the user-defined shape tolerance using a digital image processing based reduction 

method. Secondly, based on the FPs of each region, an intermediate point-based curve 
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model is constructed, and RP layer contours are then directly extracted from the 

models. Finally, the RP layer contours are smoothed and subsequently closed to 

generate the final layer-based RP model. He has demonstrated that the developed 

system is able to generate a layer-based model from point cloud. However, the 

subdivision tolerance, which is used to control the layer thickness, does not have an 

explicit relationship with the shape error, thus making the actual shape-error difficult 

to control. 

 

1.4 Research Objectives and Organization of the Thesis 

As seen in the previous section, the surface model generated from the first approach 

has the advantage that it can be edited. However, the shape error of the final RP model 

(between the RP model and the cloud data) comes from three sources: (1) shape error 

between the cloud data and the surface model, (2) shape error between the surface 

model and the STL model, and (3) shape error between the STL model and the layer-

based RP model. This will make the shape error of the RP model very difficult to 

control. The model generated from the second approach is effectively a STL model. 

The shape error of the final RP model comes from two sources: (1) shape error 

between the cloud data and the STL model, and (2) shape error between the STL 

model and the layer-based RP model. Still, the control of the final shape error is not 

straightforward. In the third approach, a layer-based model is directly generated from 

the cloud data, which is very close to the final RP model. Therefore, there is only one 

source of shape error. If this error can be controlled effectively, this approach will have 

a clear advantage over the other two modelling approaches in terms of shape error 

control on the RP model. 
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1.4.1 Overview of algorithm 

In this thesis, we will present an intuitive approach of point cloud segmentation by 

using the shape-error to control the layer thickness so that each layer will yield the 

same shape error. The thickness of each layer in the generated model will therefore be 

different. In this respect, we assume that the RP machines used for fabrication are able 

to handle arbitrary thickness. 

We develop two methods for adaptive slicing. One is adaptive neighbourhood 

search (ANS) based adaptive slicing, and it uses correlation coefficient to determine 

the neighbourhood size of projected data points, so that we can construct a polygon to 

approximate the profile of projected data points. It consists of the following steps: 

(1) The cloud data are segmented into several layers along the RP building 

direction; 

(2) Points within each layer are treated as planar data and a polygon is 

constructed to best-fit the points; 

(3) The thickness of each layer is determined adaptively such that the surface 

error is kept within a given error bound.   

The other one is wavelets-based adaptive slicing, and it uses wavelets to 

construct a polygon, and the general steps are similar to the first one. However, the 

most important step, polygon construction, is different. This method has two main 

steps: First, near maximum allowable thickness for each layer is determined with the 

control of band-width of projected points. This estimated band-width is controlled by 

user specified shape tolerance. Second, for each layer, the profile curve is generated 

with wavelets method. The boundary points between two regions in one layer are 

extracted and sorted by a tangent-vector based method, which uses a fixed 

neighbourhood size to quicken the sorting process. Wavelets are then applied to the 
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curve construction from sorted data points from coarser to finer level under the control 

of the shape error. 

The wavelet-based method has better error control and is more robust than the 

first one, because fewer parameters are used. Moreover, the approach is fast, since 

fixed neighbourhood size is applied in the sorting process and fast wavelets 

decomposition and reconstruction are used to curve construction, and parallel 

algorithm can be used for curve construction in different layers. 

In our research work, the algorithms can deal with the cloud data and model 

construction where, 

(1) The cloud data is an unorganized, noisy sample of an unknown object 

(2) This unknown object (surface) can have arbitrary topological type 

(3) No other information, such as structure in the data or orientation 

information, is provided 

(4) Constructed RP model has the same shape errors, as that of the real product, 

if we ignore the machine error of the RP machine. 

 

1.4.2 Organisation of thesis 

The thesis contains five chapters as follows: 

Chapter 1 introduces the major processes of reverse engineering and rapid 

prototyping. The literature review is given. The research objectives are then outlined. 

Chapter 2 presents the ANS-based slicing method, i.e., a shape error-controlled 

direct RP model construction algorithm directly from unorganized cloud data. This 

algorithm is based on adaptive neighbo urhood size determination based on correlation 

coefficients of planar points. 
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Chapter 3 describes the WAS method, i.e., a wavelets based direct RP model 

construction algorithm from cloud data. The multiresolution techniques are reviewed 

and then polygon construction from cloud data is presented. 

Chapter 4 illustrates the algorithms with simulation results and real case studies. 

The advantages and disadvantages of these two algorithms are compared. 

Chapter 5 summarizes the work and proposes suggestions for future work. 
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CHAPTER 2 ANS-BASED ADAPTIVE SLICING   

 

 

In this chapter, an adaptive neighbourhood search based adaptive slicing (ANSAS) 

method is presented. This algorithm constructs the direct RP model under the control 

of shape error. It directly slices the point cloud along a direction used to generate a 

layer-based model, which can be applied directly for fabrication using rapid 

prototyping (RP) techniques. It employs an iterative approach to find the maximum 

allowable thickness for each layer. The main challenge is that the thickness of the layer 

must be carefully controlled so that every layer will yield the same shape error, which 

is within the given tolerance bound. A correlation coefficient is derived from the given 

shape error and employed in a neighbourhood search for the construction of the curve 

in each layer. This method seeks to generate a direct RP model with minimum number 

of layers based on a given shape error. Issues including multiple loop segmentation in 

layers, profile curve generation, and data filtering, are discussed.  

 

2.1 The Proposed Adaptive Segmentation Approach 

In our approach, the cloud data set is segmented into a number of layers by slicing the 

point cloud along a user-specified direction. The data points in each layer are projected 

onto an appropriate plane and then these projected data points will be used to 

reconstruct a polygon approximating the profile curve. Segmentation of point cloud is 

an important step in the process of direct RP model construction. In general, there are 

two slicing approaches for determining the layer thickness, i.e., uniform slicing and 
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adaptive slicing. Uniform slicing is the simplest approach in which point cloud is 

sliced at equal intervals. If the layer thickness is sufficiently small, a smooth part 

model can be obtained. This may, however, result in many redundant layers and a long 

build time on the RP machine. On the other hand, if the layer thickness is too large, the 

build time is short, but one may end up with a part having a large shape error. Adaptive 

slicing is one of the approaches to resolve this problem. 

 In cloud data modelling, a shape tolerance is usually given to indicate the 

maximum allowable deviation between the generated model and the cloud data points. 

Therefore, an intuitive method is to use the shape tolerance to control the layer 

thickness of point cloud during segmentation. Since the actual shape error can only be 

calculated after a layer is constructed, the segmentation process should be iterative in 

nature. This process can be illustrated using the example in Fig. 2.1. Given a slicing 

direction (also the RP building direction), the initial layer is obtained from one end 

with a sufficiently small thickness. The mid-plane in the initial layer is used as the 

projection plane and the points within the layer are projected onto this plane. The 2D 

points on the plane are then used to construct a closed polygonal curve. The distances 

between the points and the polygon are then calculated as the actual shape errors 

(σactual). If σactual is smaller than the given shape tolerance (σgiven), the layer thickness is 

adaptively increased until that σactual is very close to σgiven. This final thickness is the 

maximum allowable thickness for the first layer. The first layer is thus constructed by 

extruding the polygon along the slicing direction with the determined maximum 

allowable thickness. The subsequent layers are constructed in the same manner.  

 This layer-based model can be used directly for RP fabrication. The details of 

this approach are described in the following sections. 
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2.2 Planar Polygon Curve Construction within a Layer 

Once a layer is obtained, the points within the layer are projected (along the slicing 

direction) onto the projection plane. The next step is to construct one or several closed 

polygon curves to accurately represent the shape defined by these points. If the 

maximum distance between any two neighbouring points in one closed curve is less 

than the distance between two loops, we can use a threshold to separate these closed 

curves. Since each polygon curve is closed, these polygon curves are constructed at a 

time and the different curves are split naturally. Here, we only discuss the single loop 

curve construction problems.  

 

Initial  
layer 

The projected points of initial 
layer onto the projected plane Slicing direction

Slicing planes

Fig. 2.1: Point cloud slicing and projecting 
 

 The curve construction is to approximate the unorganised point set by a curve. In 

our application, since the projected points have local linearity, we can use line 

segments to represent the local shape of points and thus form a polygon. To 

approximate the point set accurately, the polygonal curve must keep the feature points 

of original shape defined by the point set. Liu (2001) presents an algorithm to construct 

feature-based planar curve from the unorganised data points. In his algorithm, the data 

points are firstly sorted based on the estimated oriented vector to generate the initial 

curve. It begins with a fixed point and then this point and the centre of its 
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neighbourhood points determine the oriented vector of point, based on which the next 

point can be retrieved. Repeatedly, the feature points are determined. The data is 

compressed by removing redundant points other than the feature points. Finally, the 

curve is obtained by linking all the feature points using straight-line segments. 

However, in his algorithm, when determining the oriented vector of a point, he used a 

fixed radius of neighbourhood points. This could result in losing some feature points if 

the chosen radius is too large; and if the chosen radius is too small, the algorithm lacks 

of efficiency.  

Lee (2000) used the concept of correlation in probability theory (Pitman 1992) 

to compute a regression curve. In our work, we employ the correlation concept to 

determine the radius of neighbourhood adaptively in the process of curve construction. 

Based on this idea, we present an efficient algorithm to reconstruct a polygonal curve 

from unorganized planar point set.  

 

2.2.1 Correlation coefficient 

Correlation refers to the degree of association between two or more quantities. In a 

two-dimensional plot, the correlation coefficient is used to measure the strength of the 

linear relationship between two variables on the two axes. Let X and Y be two variables, 

then the correlation coefficient of X and Y can be defined as: 

( ) ( )
)()(

,,
YSXS
YXCovYX =ρ        (2.1)  

Where, ( )[ ] )()()()(()(),( YEXEXYEYEYXEXEYXCov −=−−=  and E(ζ) denotes an 

expectation of a random variable ζ. S (ζ) represents a standard deviation of a random 

variable ζ. Let (X, Y) stands for a set of N data points {Pi = (xi, yi), |i = 1, …, N}, then 

Eq. (2.1) can be re-written as:  
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Where  and  are the average values of {x
_
x

_
y i} and {yi}, respectively. ρ(X, Y) has a 

value between 0 and 1 representing the degree of linear dependence between X and Y.  

In our application, we use this idea to check the linearity of the points with a 

neighbourhood. Fig. 2.2 shows a point P with two neighbourhood radii, R1 and R2. The 

correlation coefficients are 0.921 and 0.632 for R1 and R2, respectively. Points within 

R1 show a better linearity. This is obvious as the neighbourhood of P within R2 include 

inflection points.  

In the problem of planar curve construction, we need to find the maximal 

neighbourhood for each segment, in which a line segment can accurately fit the points. 

Using this idea of correlation coefficient, we can determine the neighbourhood radius 

adaptively. 

 

R1

R2
P

Fig. 2.2: Correlation coefficients of neighborhood points of point P 
 

 

2.2.2 Initial point determination 

The initial point (IP) is a reference point to start the construction of the first segment 

of the polygonal curve from the planar data points. As the points are unorganised and 
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error-filled, the IP selection is very important. Liu (2001) proposed a random search 

method in which a point (start point) is randomly selected from the data points and the 

points within a certain neighbourhood of this point are identified. The centre of these 

points is then calculated and the point closest to the centre is selected as the IP. The 

problem with this method is that if the randomly selected point is very close to an 

inflection point, the IP, subsequently identified by using a fixed neighbourhood radius, 

may be of too much deviation from the original shape. An example is shown in Fig. 

2.3. If point Q is selected as the start point, the centre point O of the neighbourhood 

will be far away from the original shape and the closest point to O will also be the 

worst point to be the IP. 

 
1ŝ

*1
starP

1
startP

*1
endP

1
endP *2

endP

2
endP

2ŝ
*s2ˆ

2D point band

Q O  
Band-width 

t 
P IP

O2

O1 

Pc

L1

Fig. 2.3: IP determination and first, second segment construction 
 

 

To resolve this problem, it is necessary to make sure that the points within the 

first neighbourhood have good linearity. In our approach, we first randomly select a 

start point, and then use a fixed radius to find its neighbourhood points. The correlation 

coefficient (ρ) of this neighbourhood is then calculated. If ρ is larger than a pre-set 
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bound, this neighbourhood is used to find the IP, i.e., the point that is nearest to centre 

of this neighbourhood. Otherwise, we will re-select a point and repeat this checking 

process. For the case in Fig. 2.3, point O will be dropped due to its poor linearity, 

while point P can be used as the start point to find the IP. The IP can then be used as a 

reference point for the first segment construction. 

 

2.2.3 Constructing the first line segment (S1) 

After the IP is identified, its neighbourhood (for the first line segment, S1) is obtained 

such that the ρ satisfies the user requirement. At the same time, it is necessary to make 

the neighbourhood radius R as large as possible so that the resulted polygon has the 

minimum number of line segments. Hence, R needs to be determined adaptively. In 

our approach, we start with a conservatively small value of R and search for the close-

to-optimal neighbourhood radius based on the correlation coefficient. A small ρ means 

poor linearity and thus we need reduce the neighbourhood radius; a large one means 

good linearity and we can increase the neighbourhood radius. This iterative process is 

described as follows: 

 

Algorithm find_neighbourhood_S1 

Given a planar data set C, the IP, initial radius of neighbourhood R, increment of 

radius ∆R, and the predefined low-bound of correlation coefficient ρlow and high-bound 

ρhigh 

(1) Select all the points Pi from C, such that ∈≤− ii R PIPP , C, to form a data set C1. 

(2) Compute the correlation coefficient ρ of data set C1 using Eq. (2.2). 

(3) If ρ > ρhigh 

   R = R + 2∆R, go to step (1) 

 Else if ρ < ρlow 
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  R = R – ∆R, go to step (1) 

 Else 

  Return R and points from C1, stop. 

 End IF 

 

With these neighbourhood points having good linearity, we can construct a straight 

line segment that locally fits these points. Here, we use a least-square method to 

compute a regression line, which passes the IP(xIP, yIP) and best fits the points within 

the neighbourhood. Let C1 = {Pi = (xi, yi)| i = 1, …, N} be the neighbourhood points, a 

straight line, L1:  y = a(x- xIP) + yIP, can be computed by minimizing a quadratic 

function: 

(∑
=

−+−=
N

i
ii yyxx a

1

2
IPIP )(ε )      (2.3) 

As shown in Fig. 2.3, line L1 has two intersection points, P  and , with the 

neighbourhood circle (centred at IP with a radius R). In theory, P  and can be 

considered as the start and end points of the first segment. However, they may not be 

among the points within the neighbourhood. Thus, we select two points, which are the 

closest to P  and P  respectively, within the neighbourhood, as the start and end 

points, i.e., the closest to P  as P  and the closest to P  as . S

*1
start

*1
endP

*1
start

1
endP

*1
endP

*1
start

1
startP

1
startP

*1
end

*1
start

1
start

*1
end

1 is therefore 

obtained. also defines the unit oriented vector of this neighbourhood 

( = - )/

1
endP

1ŝ
1
endP 11P startend P− ). Using P  as the diameter, a new neighbourhood 

circle is obtained, we then delete all the other points within this circle. The remaining 

planar data set C is also updated. 

1
start

1
endP

In the aforementioned procedure for constructing the first line segment, the 

selection of the initial R plays an important role. This can be illustrated by the example 
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shown in Fig. 2.4 in which the cloud data represent two linear segments. Starting from 

the IP, if the initial R is too small, e.g., R1, only a few neighborhood points are 

included for the first iteration, which gives a poor correlation coefficient. This will lead 

to the reduction of R and the iteration ends with an even smaller R (with 2-3 points 

inside). This is certainly not what we want. On the other hand, if the initial R is too 

large, e.g., R2, we may have a satisfactory correlation coefficient at the first try, but this 

may lead to losing the fine corner feature. In our algorithm, we select the initial R such 

that there are 30-50 data points in this selected region. This generally produces 

satisfactory result. However, this number also depends on the scanning resolution. In 

our application, we use a laser scanner with a resolution of 0.001mm. Moreover, if 

there are fines features on the scanned part, it is assumed that a fine resolution should 

be used so that there are sufficient data points representing these fine features.  

 

 
IP

R1

R2
 

 

Fig. 2.4: Possible problems with the selection of the initial R 
 

2.2.4 Constructing the remaining segments (Si) 

The method for constructing the remaining segments is slightly different from that of 

the first segment. We begin with P  as the start point for the second segment, i.e., 

. We then adaptively determine the neighbourhood for S

1
end

2
startP

i
startP

2. Since the same 

algorithm is used for constructing the remaining segments, we denote the start point as 

 (i ≥ 2). The algorithm to find the radius of the neighbourhood of Si is described 

as follows: 
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Algorithm find_neighbourhood_Si 

Given a planar data set C,  , initial radius of neighbourhood R, increment of radius 

∆R, and the predefined low-bound ρ

i
startP

low and high-bound ρhigh 

 

(1) Construct a neighbourhood circle that is centred at P  and has a radius of R. 

Select all the points P

i
start

k from C, such that ,R≤i
startk − PP to form a data set Ci (k = 

1, 2, …, n). Compute ρ of data set Ci. 

 If ρ < ρlow  

  R = R – ∆R, go to step (1) 

 Else  

  Use the least-square method (section 2.2.3) to compute a regression line that 

passes through . This line has two intersection points with the 

neighbourhood circle, O

i
startP

1 and O2. Let Pave= /n. If ∑
=

n

k
k

1

P 1OP −ave > 2OP −ave , 

= (O*
iŝ 2–O1)/ 12 O−O ; otherwise; = (O*

iŝ 1–O2)/ 12 OO − . 

 End IF 

(2) Construct a neighbourhood circle that is centred at Pc (Pc =  +R ) and has a 

radius of R. Select all the points P

i
startP *

iŝ

k from C, such that ,Rk −P c ≤P  to form a data 

set Ci. Compute ρ of data set Ci. 

(3) If ρ > ρhigh 

  R = R + 2∆R, go to step (4) 

 Else if ρ < ρlow 

  R = R – ∆R, go to step (4) 

 Else 

  Return P  and P , and all the points from Ci
start

*i
end i, stop. 

 End If 

(4) Use the least-square method (section 2.2.3) to compute a regression line that 

passes through . This line has two intersection points with the neighbourhood 

circle,  and . Set = ( - )/

i
startP

*i
endPi

startP *
iŝ

*i
endP i

startP i
start

*i
end PP − . Go to step (2). 
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Since we do not have any prior knowledge about the neighbourhood of Si, i.e., the unit 

oriented vector , we need to find a reasonable estimate to start the iterative process. 

This is achieved in step (1) of Algorithm find_neighbourhood_S

iŝ

i. We start by choosing 

a small R to create a neighbourhood circle (centred at P  as shown in Fig. 2.3) such 

that the points within this circle have a good linearity. We then compute a regression 

line that passes through P , which helps determine a good estimate of . From step 

(2), we start with a neighbourhood circle (centred at P

i
start

i
start

*
iŝ

c = P  +R ) and adaptively 

find the maximal allowable neighbourhood radius. The example shown in Fig. 2.3 

illustrates this process for the construction of S

i
start

*
i

*
iŝ

2. From the final neighbourhood circle 

of S2,  P  is obtained. The closest point to P , within this neighbourhood, is then 

found and used as P . The other point worth mentioning in the above procedure is 

that in each round, a regression procedure is executed. This may cause long 

computation time. A trade-off solution is to use the ŝ obtained from step (1) 

throughout the remaining iterative process so that the computation becomes more 

efficient. 

*
end
2 *

end
2

2
end

The outputs from the above procedure are P  and , and all the points 

from C

i
start

i
endP

i. Using P  as the diameter, a new neighbourhood circle is obtained, we 

then delete all the other points within this circle. The remaining planar data set C is 

also updated. The above algorithm is then applied to construct S

i
start

i
endP

i+1, until the remaining 

planar data set C is null. 
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2.3 Adaptive Layer Thickness Determination 

Upon the completion of the construction of the polygon curves for the initial layer, the 

thickness will be adjusted by using the given shape tolerance (ε) as the control 

parameter. The shape error (σ) of the initial layer is obtained by calculating the 

distances from all the points in the projection plane to the polygon curve and selecting 

the maximum distance. If σ <ε, the thickness of the initial layer is increased; otherwise, 

the thickness of the initial layer is reduced.  The points within the updated initial layer 

are then projected to the projection plane.  Through the curve construction process 

described in section 2.2, a new polygon curve is obtained. The shape error is then re-

calculated and compared with ε and subsequently a decision is made whether to 

increase or reduce the thickness of the initial layer. This iteration process is continued 

until the shape error of the initial layer is slightly less than ε. The construction of the 

first layer is then completed.  

The construction of the subsequent layers is similar to that of the first layer, i.e., 

(1) creating an initial layer with a pre-set thickness, (2) projecting the data points 

within the initial layer to a 2D plane, (3) constructing a polygon curve from the data 

points in the 2D plane, (4) calculating the shape error of the initial layer, and (5) 

adaptively increasing or reducing the thickness of the initial layer until the shape error 

is just within ε, e.g., between 0.9ε and ε. In this way, a direct RP model is generated 

layer by layer adaptively. 

For implementation of the aforementioned iterative procedure, a binary search 

algorithm is developed for finding the thickness of a given layer. This algorithm is 

described as follows: 
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_____________________________________________________________________ 

Algorithm find_thickness_layer 

Given an initial layer thickness h (a relative large value) and shape tolerance ε 

(1) Set hnew = h 

 while (hnew < the total height of the data cloud) 

 { If σ(hnew) < ε; 

   hnew = hnew + h; 

  Else 

   Return hnew, go to (2); 

  End if 

 } 

(2) Hlow = 0, Hhigh = hnew 

 while (Hlow < Hhigh) 

 { 

  Hmid = (Hlow + Hhigh)/2; 

  If band-width (Hmid) > 2ε 

   Hhigh = Hmid; 

  Else if σ(Hmid) > ε 

   Hhigh = Hmid; 

  Else if 0.9ε <σ(Hmid) < ε 

   Return Hmid; 

  Else 

   Hlow = Hmid; 

  End if 

 } 

_____________________________________________________________________ 

 There are two steps in the above algorithm. In step (1), the search range of the 

layer thickness, hnew, is determined. In the second step (2), a binary search approach is 

employed. It can be seen that before σ(Hmid) is checked, band-width (Hmid) is checked 

first to decide whether to halve the search range. Since the calculation of σ(Hmid) 

involves 2D polygon construction, the process is computationally heavy. This 
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checking step is incorporated to avoid the unnecessary calculation of σ(Hmid), thus 

improving efficiency. The band-width (H) is defined as follows: within the 2D 

projection plane, the projected points of layer H resemble a band, and at any position 

of the band, there is a band-width (see Fig. 2.3). The polygon generated for 

representing the band will be within the boundary of the band. Therefore, if the 

maximum band-width of the band is larger than 2ε, the shape error of the generated 

polygon will, most likely, be larger than ε. In this case, the search range for the 

thickness of the layer is halved straightaway.  

 A simple method is developed to estimate the band-with. We firstly place the 2D 

points of layer h into Sh. We then obtain another layer between h and h+∆h and project 

its data points to the same plane. The ∆h is no less than the minimum layer thickness 

for the RP machine. The 2D points within ∆h are placed into S∆h. An example of these 

two sets of data points is shown in Fig. 2.5. For every point in Sh, Pi (i = 1, 2, …, n), 

we then find the corresponding point (Qi) in S∆h, such that among all the points in S∆h, 

PiQi gives the minimum distance (Li). Then, among all the Li (i = 1, 2, …, n), the 

maximum one (Lmax) is taken as the band-width of Sh. Using this estimation method, 

we find that the points in Sh that give the maximum distances are along the interior 

boundary of Sh. Although errors may occur in the estimation of band-width for some 

points along the interior boundary (e.g., at corners in the example in Fig. 2.5), since we 

are only interested in Lmax, we find that Lmax will never over-estimate the actual band-

width. Since we set up 2ε as the low band of the band-width to determine whether to 

proceed to polygon construction, this estimation suit our algorithm very well. 
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Sh 

 

  

 

Band-width

S∆h

Fig. 2.5: Estimation of the band-width of the 2D data points 
 
Using this method, our algorithm is able to handle cases where very thin layer is 

needed with relatively good efficiency. For example, when the surface of the part is 

near-parallel to the slicing plane, the initial relatively large h will result in diffuse 

points in the 2D plane, or points having a large band-width. With this band-width 

checking, the algorithm find_thickness_layer is able to reduce the search range quickly 

and proceed to find a satisfactory layer thickness quite efficiently. It is, however, worth 

noting that when the surface of the part is parallel to the slicing plane, this slicing 

approach will not work. In this case, a different slicing direction should be chosen 

manually. 

 

2.4 Summary 

In this chapter, a method for generation direct RP models from arbitrarily scattered 

cloud data is presented.  The modelling process consists of several steps: (1) the cloud 

data are segmented into several layers along the RP building direction, (2) points 

within each layer is treated as planar data and a polygon is constructed to best-fit the 

points, (3) the thickness of each layer is determined adaptively such that the surface 

error is kept just within a given error bound.  The algorithm based on this method has 

been implemented. Test results on both simulated and real cases will be given in 

Chapter 4 to demonstrate the efficiencies of the algorithm. 
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 The main contribution of this approach is two-fold. Firstly, the polygonal curve 

construction algorithm is adaptive in nature. It is capable of automatically finding a 

feasible starting point and identifying the maximum allowable neighbourhood for each 

segment. It is also able to deal with segments with multiple-loop profile effectively. 

Secondly, the thickness of each layer is determined adaptively, based on a given 

surface tolerance. This provides an intuitive control parameter to users and the 

resultant model a close-to-minimum RP building time. 

 The main remaining challenging issue is the adaptive determination of the lower 

and upper linearity bounds in polygonal curve construction. We have observed that this 

is related to the given shape tolerance and the random errors in the original cloud data.  
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CHAPTER 3 WAVELETS-BASED ADAPTIVE SLICING  

 

 

This chapter describes an application of B-spline wavelets for direct RP model 

construction from cloud data points. The method models the cloud data by adaptive 

slicing along a user-specified direction, and consists of two main steps.  

Firstly, thickness for each layer close to the allowable is determined with the 

control of band-width of projected points. This estimated band-width is controlled by 

user-specified shape tolerance. The boundary points between two regions in one layer 

are extracted and sorted by a tangent-vector based method, which uses a fixed 

neighbourhood size to quicken the sorting process. 

 Secondly, for each layer, the profile curve is generated with the wavelets 

method. Wavelets are applied to the curve construction from the sorted data points 

from coarser to finer level under the control of shape error.  

This approach has better error control and is more robust than ANS-based 

method because fewer parameters are used. Moreover, the approach is very fast, since 

fixed neighbourhood size is applied in the sorting process, and fast wavelets 

decomposition and reconstruction are used in the curve construction, and a parallel 

algorithm can be used for curve construction in different layers. 
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3.1 Adaptive Segmentation Approach 

In our approach, the cloud data is segmented into a number of layers by slicing the 

point cloud along a user-specified direction. The data points in each layer are projected 

onto an appropriate plane and then these projected data points are used to construct a 

polygon approximating the profile curve.  

As shown in Fig 3.1, the problem of segmentation in our application can be 

stated roughly as follows: Given cloud data X and a slicing direction n, use a sequence 

of slicing planes Pi, i=1, 2, …m, which are perpendicular to the direction n, to segment 

X into subsets Xi, i=1, 2, …m-1. Each subset Xi, determined by two slicing planes Pi 

and Pi+1, is then projected onto Pi to form a planar data set Di. Thus, the goal of 

segmentation is to determine these planes Pi, such that there are curves Ci to fit Di, and 

the distance d between Ci and Di is within the user-specified shape tolerance ε. 

 To solve this problem, there are two approaches to slice the cloud data X. One 

is the uniform slicing and the other is adaptive slicing. The distance between Pi and 

Pi+1, is called layer thickness Ti. If layer thickness Ti, i=1, 2, …m-1, are uniform, the 

slicing will be a uniform slicing; otherwise it is an adaptive slicing. These two slicing 

methods are compared in (Wu et al., 2003). 

In (Liu 2001, 2002), an adaptive data subdivision algorithm was presented 

based on subdivision error tolerance ε, specified by the user. In each layer, the 

subdivision error can be defined as the average distance of these distances between 

each data point in Xi and the projecting plane Pi. A method based on binary 

subdivision was presented to segment the cloud data X layer by layer, from one end of 

X, with the control of subdivision error. However, the subdivision error tolerance ε is 

difficult to determine, because it cannot give a straight relation to the projected data 

point Di. If ε is too small, maximal layer thickness is not achieved since Di is very thin. 
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When we slice the object with similar cross-section, we will meet this case. Even 

worse, Di may be discontinous when ε is small enough. On the other hand, if ε is too 

large, Di becomes very thick and it is very difficult to reconstruct the profile curve 

from Di. 

To address this problem, Wu et al., (2003) presented an adaptive slicing 

approach to form a relation between layer thickness and shape tolerance directly. 

 The first slicing plane P1 is defined by passing the end point of cloud data. To 

obtain T1, Wu et al. (2003) used a binary search method, i.e., starting with a large 

value T1 and ∆T1, get subset X1 and ∆X1, which are projected onto P1 to form planar 

set D1 and ∆D1, and estimate band-width as: 
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Fig. 3.1: Cloud data segmentation 
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(b) projected data points Di (a) slice cloud data 

This estimated band width determines the layer thickness to be increased or reduced by 

half, until R is close to and less than 2ε. Then, polygon curve C1 is constructed from D1 

and actual shape error, the distance between D1 and C1, is calculated and compared 

with the shape tolerance ε to decide if the layer thickness should be changed. Then an 

iteration process for thickness determination is carried on, until a maximum allowable 
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thickness for the first layer is determined. Similarly, thicknesses for subsequent layers 

are obtained layer by layer.  

However, with a large thickness value, the projected points may be diffuse, and 

the algorithm of polygon construction may fail to work in this case. Moreover, polygon 

construction in each round of obtaining layer thickness is computationally expensive, 

and the band width with a 2ε bound may require a large neighbourhood, which will 

lead to filtering of small features, such as corners.  

In this chapter, we extend the idea of (Wu at el. 2003) and try to overcome 

these difficulties. The difference is that, for subset X1, we use a plane P12 to divide X1 

into two sets as X11 and X12, which are projected onto plane P1 to form two projected 

data set D11 and D12 respectively, which satisfies: 

ε<
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With these two constraints, boundary points B1 can be extracted from D11 and D12 as: 

         11
12

1 | DPQP
DQ

P ∈








−
∈

= and
Min

j
j

B                 (3.4) 

We use B1 to construct profile curve to approximate D1. Since B1 is thinner than D1, 

small neighbourhood size can be used which can recover sharp corners. Similarly, 

subsequent layers Xi and its corresponding projected data set Di and boundary points 

Bi are obtained with equations (3.2), (3.3) and (3.4). We assume that Bi has the same 

topology as Di, and assume that Bi lies in the middle of Di. This assumption is not 

rigorous in theory, but in practise, it does work. In our simulation and real cases, we 

find that Bi approximate Di well. Details of curve construction from planar points will 
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be discussed in next section. In the example of Fig. 3.1b, the Bi is obtained as shown in 

Fig. 3.2. 

 

 

 

 

 

 

Fig. 3.2: Boundary points 
 

After rough slicing, the cloud data X is segmented into subsets Xi and its 

projected points Di and boundary points Bi are obtained. Then, contour curve 

construction is carried out from Di and Bi layer by layer. Actual shape errors are 

obtained from the largest distance between Di and its curve, and the comparison of 

actual shape error and shape tolerance will determine whether fine slicing need to carry 

out or not. Details will be given in the following sections. 

  

3.2 Polygonal Curve Construction from Cloud Data 

After rough slicing, we obtain subset points and their corresponding projected point set. 

The next step is to construct one or several closed polygon curves to accurately 

represent the shape defined by these points. Since each polygon curve is closed, these 

polygon curves are constructed one by one and different curves (in the case of 

multiple-loop) are split naturally. Here, we only discuss the single loop curve 

construction problems.  
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The problem of curve construction from planar points can be stated as follows: 

Given planar data point set D that lie on an unknown curve UC, create a curve C to 

approximate UC, such that the constructed curve C should have the same topological 

type as UC, and can be every where close to UC. 

In our application, there are few assumptions about the planar points D. The 

points D may be noisy, and no structure or other information is assumed within them. 

The shape of unknown curve UC may have arbitrary topological type, including sharp 

features such as corners. 

To reconstruct a curve from a 2D data set, two different methods can be used, i.e., 

interpolation and approximation (Amidror 2002). Interpolation methods approximate 

the underlying function by finding a curve that passes through the known data points 

and these data points are highly accurate, reliable and sparse.  However, data fitting 

methods find an approximate curve that passes close to the known value but not 

necessarily exactly through them, and these points are dense with relatively high noise. 

From this aspect, we focus on data fitting in our application. 

There are many approaches for curve construction from organized data points, 

however little research work devotes to curve construction from unorganized data 

points. This paper focuses on data fitting from unorganized data points.  

Different approximation approaches are presented, which can be classified into 

global methods and local methods. Global methods assume that the unknown curve 

UC is a continuous curve, and usually a least square method is used to achieve the 

approximated curve C to fit UC (Taubin and Ronfard 1996). Obviously, global 

methods are not suitable to unknown curves with an arbitrary topology. Local fitting 

methods use piecewise curves to fit the “nearby points” piece by piece, such that a 
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complex shape can be approximated. In our application, we focus on local data fitting 

method. 

Apparently, how to decide “nearby points”, i.e., neighbourhood points, such 

that a piecewise curve can fit to these points, is an important and difficult issue in local 

data fitting. Two general methods can be used. One is the fixed neighbourhood size, 

i.e., the number of neighbourhood points is specified by user, and neighbourhood 

points are determined by calculating the distance between neighbourhood point and a 

related point and selecting the points according to the distance from small to large (Liu 

2001). Fixed neighbourhood size can give a fast computation, however it causes severe 

problems in practise. As show Fig 3.3, when the number of data points is too small, the 

constructed curve will be of zigzag or even has over-fitting problem. On the other hand, 

if the number is too large, unwanted points will be included, and small features such as 

corners of the curve are filtered, thus topology of the curve is different with that 

unknown curve. 

 
(a) neighbourhood number too small (b) neighbourhood number too large 

Fig. 3.3: Problems caused by fixed neighbourhood point’s number 
 

 

The other method is to use adaptive neighbourhood size (Lee 2000, Wu et al., 

2003). Both of them used correlation coefficient of neighbourhood points to decide the 

neighbourhood size. In (Lee 2000), triangulating the given data set prior to the actual 
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curve fitting is necessary, and line segment is rotated iteratively during process of 

curve fitting. While in (Wu et al. 2003), triangulation is not needed, and line segment 

orientation is determined by previously selected points. However, there are some 

problems in both of them. 

In the procedure for constructing the line segment, the selection of the initial 

neighbourhood size R is a difficult issue. This can be illustrated by the example shown 

in Fig. 2.4 in which the cloud data represent two linear segments. Starting from the IP, 

if the initial R is too small, e.g., R1, only a few neighborhood points are included for 

the first iteration, which gives a poor correlation coefficient. This will lead to the 

reduction of R and the iteration ends with an even smaller R (with 2-3 points inside). 

This is certainly not what we want. On the other hand, if the initial R is too large, e.g., 

R2, we may have a satisfactory correlation coefficient at the first try, but this may lead 

to losing the fine corner feature. Similar cases are met to decide the increased 

neighborhood size ∆R. If ∆R is too large, sharp corner is easy to be missed, thus fast 

algorithm such as binary search method cannot be used to determine the final 

neighborhood size. 

 In (Wu et al. 2003), to solve this problem, a tradeoff is obtained that the initial 

neighborhood R is to select such that the number of data points in this selected region 

is no less than a user specified value. This generally produces satisfactory result. 

However, this number depends on not only the scanning resolution but also the 

complexity of the unknown curve shape. Hence, it is difficult to determine. Moreover, 

this user specified value together with user specified correlation coefficient bounds 

would make the algorithm not robust. If the bound is to strict, the actual correlation 

coefficient is out of the bounds, while at the same time the points number reaches the 
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user specified tolerance. Hence these two conflicted conditions cause the algorithm 

breakdown.  

Here a multiresolution method based on wavelets is used to construct the 

polygon curve. We state our goal of curve construction here: Given planar data point 

set D, 2D medial point set B, to construct a curve C from B such that ε<−CD and 

C is concise. 

           In the fit-and-fair method, there are two progressive errors: one is the shape 

error between planar data points and fitting curve, the other one is the shape error 

between faired curve and fitting curve. However, the control of these two progressive 

errors cannot guarantee that the final error between data points and final curve is 

within tolerance. Hence, we present an algorithm based on wavelets to determine a 

curve with certain fairness from planar data points directly. 

Mainly there are two steps. Firstly, sorting method is applied to sort the medial 

point set B. We use the same algorithm of (Wu et al. 2003), except that we do not use 

adaptive neighbourhood size. From section 3.1, we know that the band-width of B is 

less than shape tolerance ε. Hence, we can use a fixed neighbourhood size as shape  

tolerance ε, and there will be no self-intersection problems. The algorithm will be 

robust, since we need not use the user-specified initial neighbourhood size, nor the 

correlation coefficient bounds. Also, sharp corners can be kept because small 

neighbourhood size is used. However, as we mentioned above, fixed neighbourhood 

size can cause zigzag shape, and the small size will also give a dense sorted data points. 

Thus, further processing will be needed. 

Secondly, a multiresolution method is applied to decompose the sorted data 

points into coarser levels, and then polygon reconstructed from coarse-to-fine level 

under the control of shape tolerance. Details are given in following sections. 
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             A multiscale technique for shape representation has been developed based on 

wavelets (Chung and Kuo 1996, Chung 2000). In Computer Graphics, wavelet 

methods are developed for the multiresolution representation of parametric curves and 

surfaces, and it is mainly used as a powerful tool for curve and surface hierarchical 

design. Wang et al. (1999) presented a multiscale curvature-based shape representation 

using B-spline wavelets. This wavelet transforms are used to efficiently estimate the 

multiscale curvature functions. Based on the curvature scale-space image, they 

introduced a coarse-to-fine matching algorithm which automatically detects the 

dominant points and uses them as knots for curve interpolation. Esteve et al. (2001) 

presented a multiresolution method for implicit curves and surfaces based on wavelets 

to simplify the topology. 

         However the above mentioned methods for curve representation started with a 

source of such data in digital ordered form. To represent a curve from unorganized 

scattered data points based on wavelets is the interest in our application. Moreover, the 

curve construction is under the control of shape error, and data reduction method is 

necessary to be integrated into wavelets based curve construction. 

 

3.2.1 Wavelets and Multiresolution Analysis  

Wavelet transform is a highly developed technique used in several fields such as signal 

processing, image processing, communications, computer graphics and mathematics. 

In computer graphics, it can deal with the representation and manipulation of 

geometric shapes such as curves and shapes suitable for hierarchical design.  This 

section reviews some basic concepts and methods of wavelet transformation and 

multiresolution analysis as applicable to the development of our application. 
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Comprehensive study of the subject can be found in Wavelets texts such as 

(Daubechies 1992, Chui 1992, Stollnitz et al., 1996). 

 

(a) Multiresolution analysis (MRA) 

A MRA involves approximation of functions in nested subspaces of a linear vector 

space Vj such that  

221012 .........}0{ LVVVVVV →⊂⊂⊂⊂⊂← −− j                                     (3.5) 

The basis functions of Vj are called scaling functions at the resolution level j and 

denoted by  (i=1, 2, …). With the increase of level j, represents a finer level of 

the function. 
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The subspace Wn (the wavelet subspace) is said to be the orthogonal complementary 

subspace of Vn in Vn+1. The basis functions of Wj are called wavelets at the resolution 

level j and denoted by j
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(b) End-point B-spline Wavelets 

We employ the cubic endpoint-interpolating B-spline blending functions that are 

defined on a uniformly spaced knot sequence as the scaling functions, because they 

can describe a smooth curve and are refinable. In practice, they are well-understood 

and used (Chui, 1992). These functions have a compact support, and the vector space 

has a limited number of basis functions. Hence, we can decompose and reconstruct 

multiresolution functions using matrix calculations (Stollnitz et al., 1996). Because the 

endpoint-interpolating B-spline blending functions and its corresponding wavelets are 

defined in bounded domains, a function  is represented by a limited number 

of scaling functions (blending functions) as  
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Where  is a row matrix of scaling functions and coefficients c  form a column 

matrix of the scaling coefficients (control points), and m

)(ujφ j

j is the dimension of Vj. 

Similarly, we can also represent a function jj ug W∈)(  

                                                  (3.9) jjj uug d•= )()( ψ

With )(ujψ is a row matrix of wavelet basis functions and nj is the dimension of Wj 

and detail coefficients dj is a matrix of column. Because Wj is the complement of Vj in 

Vj+1, the dimensions of these spaces satisfy mj+1=mj+nj .The subspaces Vj is nested thus 

it is equivalent to having scaling function that are refinable. That is for all j=1, 2, …, 

there must exist a matrix of constants Pj such that  

                                                   (3.10) jjj uu P)()(1 φφ =−

Obviously, Pj is a m  matrix. Similarly, since W1−× jj m j is also a subspace of Vj, a 

matrix Qj can also be found that satisfies: 
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                                               (3.11) jjj uu Q)()(1 ψψ =−

and Qj is a m matrix. Equations (3.2) and (3.3) are said to be two-scale relations 

for and

1−× jj n

)(uj)(ujφ ψ , respectively, and the matrices Pj and Qj are called synthesis filters. 

The following shows the synthesis filters at level j=2. 





























=

160000
88000
012400
031030
004120
00088
000016

16
12P





























−

−−

−−

−

=

13680
2064240
1793691

10531053
6911793

2402064
01368

2064
12Q

 

(c) Wavelet decomposition and reconstruction 

If we wish to create a low-resolution version cj-1 of cj with a smaller number of 

coefficients nj-1, there is a matrix Aj that can perform such a function that: 

                               c                        (3.12) jjj cA=−1

Where Aj is a constant m matrix. Since cjj m×−1 j-1 contains fewer entries than cj, it is 

intuitively clear that some amount of detail is lost in this filtering process. Thus the lost 

information dj-1 can be obtained with a matrix Bj such that: 

                             d                       (3.13) jjj cB=−1

Where Bj is a constant n matrix. The pair of matrix Ajj m×−1 j and Bj are called 

analysis filters. The process of splitting the coefficients cj into a low-resolution version 

cj-1 and detail dj-1 is called decomposition.  On the other hand, the original coefficients 

cj can be recovered from cj-1 and dj-1 by using the matrices Pj and Qj as: 

                            c                (3.14) 11 −− += jjjjj dQcP

Recovering cj from cj-1 and dj-1 is called synthesis or reconstruction. According to 

equations (3.12) (3.13) and (3.14), we can derive the following relation: 
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With these formulations, we can directly apply them to the multiresolution 

representations of curves. Hence, we can decompose and synthesis the endpoint 

interpolating B-spline curves at different scales. 

 

3.2.2 Polygonal curve construction from cloud data based on wavelets 

There are many methods for curve fitting from cloud data, however the fitting curve 

will be of zigzag or self-intersected, which need further fair. But most fairing methods 

will cause the difference between faired curve and original planar data points out of 

shape tolerance. Multiresolution based on wavelets can give a good locality which 

helps to decompose curves into lower levels. However, using wavelets to construct a 

smoothed curve directly from cloud data is still a challenging issue.  

            In our application of cloud data modelling, using a preprocessing method, we 

can obtain the sorted data point set S from medial point set B. From this stage, our goal 

becomes: Given sorted data point S and projected data point set D, to construct a 

concise curve C to fit D such that ε<−CD . 

 

(a) Curve decomposing.  

Wavelets can be used to represent parametric curves simply by computing the wavelet 

decomposition of each coordinate function separately. For a planar curve 

C(u)=(x(u),y(u)), C(u) is a vector-valued function of the independent variable, u, then 

we can decompose its x(u) and y(u) function separately. Here, we denote the scaling 

coefficients c and detail coefficients d as the vector-valued decomposed coefficients of 

the planar curve.  
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To decompose the curve, the basic idea is to assume this initial data point set S as 

control points {cj} of a curve at level j. We thus use a end-point interpolating B-spline 

as scaling basis and B-spline wavelets to decompose this initial curve into lower levels 

at j, j-1… until level r ( suppose). Scaling coefficients and detail coefficients are 

obtained in each level decomposing as shown in Fig 3.4. 
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Fig. 3.4: Wavelets decomposition 
 

         To store these scaling and detail coefficients, we can use a data set with constant 

size. From section 3.1.1, we know that the dimension of scaling coefficients equals to 

the dimension of scaling coefficients plus that of detail coefficients at its lower level. 

In a higher level, the dimension of scaling coefficients is nearly two times as that of its 

neighbouring lower level.  

         At finer scales, we can obtain a good localization of feature points such as corner 

points. But due to the influence of noise or high frequency details, the spurious points 

are included. At coarser scale, small features together with spurious points are filtered, 

then we can obtain the overall picture of the curve, but the differences between the 

curve and the original planar data points are larger due to the smoothing procedure. 

Therefore, we have to combine the multiscale information to extract the scaling 

coefficients in different levels. In coarser level, if a line segment constructed by the 

two scaling coefficients meet shape tolerance, we will extract these two coefficients, 
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and the portion of planar points related to this line segment is approximated by this line 

segment. Then we continue to extract scaling coefficients from coarser to finer.  

           Our method is different from that for curve compression. For curve compression, 

at a certain level, a standard procedure is to set all wavelet coefficients below a given 

threshold value to zero, but this kind of removal wavelets coefficients only give a least 

square sense error (Chui, 1992). However, the threshold has no meaning with shape 

error. Hence, the threshold is not so easy to be determined by users, especially for 

different levels, that the thresholds have to be different. We extend the idea of coarse-

to-fine (Wang et al., 1999) to extract segments from coarser level to finer level by the 

shape error control. Since we need construct a curve from cloud data, we use different 

error checking and data reduction method. And to quicken the process of error 

calculation, we try to use scaling coefficients to approximate the curve, not B-spline 

curve segments as they mentioned. The details will be presented in the following 

sections. 

 

(b) Extract scaling coefficients at the coarsest level  

After decomposition, we use the scaling coefficients to the approximate original planar 

data points. Before we extract the scaling coefficients, we need to identify the storable 

scaling coefficients. Given scaling coefficient ci and its two neighbour coefficients ci-1 

and ci+1, ci is termed as a storable point associating with the planar projected data 

points P when the following criterion is satisfied for every data point Pci(j) in Pci: 

                              ε≤−− +− })(,)( 11 iiciiici jj ccPccPmin{              (3.16) 

Where ε is the shape tolerance and the data point set Pci, is formed from P, as the 

distance between each point Pci(m) in Pci and ci is the shortest distance among those 

between Pci (m) and all scaling coefficients ck (k=1,2,..), namely, 
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Obviously, if two neighbouring scaling coefficients ci and ci+1 are storable, and 

also their other neighbouring coefficients ci-1 and ci+2 are storable, we can link ci and 

ci+1 into a line segment and hence the coefficients ci and ci+1 are extracted as the 

desired points as we need.   

              Thus, the scaling and detail coefficients at higher levels corresponding to 

these two coefficients can be flagged, and this issue will be discussed further in the 

next section. Also, to reduce the calculation time, we delete data points from the planar 

data set that is nearest to this line segment. For every point Pci,ci+1(j) in data set Pci and 

Pci+1, as Pci and Pci+1 are obtained with ci and ci+1 based on equation (3.17), if this point 

satisfies 

                             ε≤− ++ 11, )( iicici j ccP                   (3.18) 

Where ε is the shape tolerance, then we can delete data point Pci,ci+1(j) from planar data 

set P. 

           Similarly, when we identify more than 3 continuous scaling coefficients which 

are storable, we can extract the inner scaling coefficients within these scaling 

coefficients (two end points are not considered). We call this case as Multi-Storable-

Extracting (MSE). Within in MSE, we will reduce the data points from planer data set 

by one and one line segment with equation (3.18). To store the extracted coefficients, 

we can use a global dynamic list to save the coefficients and its corresponding spatial 

index.  

            The process for extracting scaling coefficients on coarsest level, i.e, level r is 

described as follows: 

 
Algorithm extract_scalingcoefficients _cr 
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Given a planar data set Pi,(i=0, 1,…,N) the scaling coefficient set cj,(j=0, 1,…,2r+3) shape 

tolerance ε, the algorithm extracts scaling coefficients into a global list GList; 

 

           1. Find the first sacling coefficients ci that is storable with index i. 
                       If no storable scaling coefficients existed in c 
                           go to step 4 
                       Else 
                            k=1 
                            go to step 2 
                       EndIf 
           2. While(i=i+1<2r) 
                       { 
                          If Ci is storable 
                                  k=k+1 
                         Else if (k>3) 

a.  j=i-k+1  
                     Extract scaling coefficients cj and store it into Glist with its index j 
                      j=j+1 

b. Extract scaling coefficients cj store them into Glist together with its index 
j  
Reduce data points around line segment cj-1cj from P based on equation 
(3.17) 

c. j=j+1, go back to step b, so long as j<i-2 
 

k=0 
                            Else 
                                  k=0 
                             EndIf 
                          } 

3. If (k>3)       
d. j=i-k+1  

                  Extract scaling coefficients cj and store it into Glist with its index j 
                  j=j+1 

e. Extract scaling coefficients cj store them into Glist together with its index 
j  

Reduce data points around line segment cj-1cj from P based on 
equation(3.17) 

f. j=j+1, go back to step e, so long as j<i-2 
                 Else  
                       go to step 4 
                 End If 
            4. Terminate      
 
 

With this method, we can extract some MSEs, such as {ci, ci+1, …ci+k-1} as an k 

number MSE, and at the same time, we can reduce data points from planar data point 

set. As shown in Fig. 3.5, there are three MSE segments consisted of storable points, at 
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coarsest level, and in this case the level is 5 (there are 25+3 scaling points). These 

scaling coefficient points are stored in a data set as Fig. 3.8 a shows, and the MSEs are 

easily recognized.  

 

MSE2 
MSE3

Storable point 

Planar projected point

Non Storable point MSE1 

 

Fig. 3.5: Extracting scaling coefficients at coarsest level 
 

(c) Extract scaling coefficients at the remaining levels 

The method for extracting scaling coefficients of the remaining levels is slightly 

different from that of the coarsest level. To perform extracting scaling coefficients in 

higher level, we firstly need to reconstruct these scaling coefficients from the coarser 

level scaling coefficients and detail coefficients. This process can be shown in Fig. 3.6. 

With synthesis filters P and Q, we can construct the scaling coefficients in an efficient 

way. 

         However, in our application, the smooth section of planar data points is 

approximated by the extracted scaling coefficients in coarser level, so the 

corresponding portion of this section in finer level need not be recalculated, i.e., the 

smooth section approximated by scaling coefficients that extracted in coarser levels 

need remain fixed in finer levels. 
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Fig. 3.6: Wavelets reconstruction 
 

In coarser level, we extract some MSEs, which can approximate the portions of 

planar points within the shape tolerance. Hence, we need fix these MSEs in their 

corresponding portions in the finer levels. For example, a MSE at level j is 

{ , ,…..  }, after reconstruction with the synthesis matrixes Pj
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coefficients {dj} at level j, and this MSE has a corresponding area as 

{ , , , ….. , }, this updated MSE can be 

approximated by the old MSE, since the old one satisfies the shape tolerance as we 

checked in level j. Fig. 3.6 shows the updated MSE from the MSE in Fig. 3.5. We need 

use the coefficients in the old MSE to replace the coefficients in the new MSE. After 

replacing, we can use the similar algorithm to extract new scaling coefficients as what 

presented in section 3.1.2. Fig. 3.7 shows some new MSE. However, two issues we 

need pay attention. First, to reduce computation time, we need not carry on 

recalculating inner scaling coefficients in the updated MSE. Second, we need store the 

spatial indices of scaling coefficients, so that the indices of scaling coefficients at any 

levels have a global sequence. To address these problems, we use the updated MSEs to 

divide the scaling coefficients into some sections, and each section needs include the 

end scaling coefficient of its neighbouring updated MSE or MSEs. We call these 

sections as Non-Updated MSE (NUMSE). 
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Updated MSE3
Updated MSE2 

Storable point 
Planar projected point

Non Storable point 
Updated Storable point 

Updated MSE1 
New MSE

New MSE
 

Fig. 3.7: Finer level of a decomposition curve  
 

With these NUMSEs, we can directly use the similar algorithm as mentioned 

above. But we still need care about the indices problem as above mentioned. We use a 

global list GList to store the extracted coefficients and their corresponding indices. 

Reconstruction from a level to one level higher, the number of scaling coefficients will 

be doubled. Hence we need double the index of scaling coefficients in the GList so that 

the stored coefficients extracted at coarser level have fixed indices compared to the 

extracted coefficients at the higher level. Fig. 3.8 a shows three MSEs at level j, and 

Fig. 3.8b shows the reconstructed scaling coefficients at level j+1, and there are three 

updated MSEs. Fig. 3.8c shows the four NUMSEs and Fig. 3.8d shows two new MSEs 

extracted from NUMSEs.  Fig. 3.8 illustrates data structure of the scaling points in Fig. 

3.6 and Fig. 3.7. 
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MSE1 MSE2 MSE3
(a) 

(b) 

Updated MSE1 Updated MSE2 Updated MSE3 
NUMSE3 NUMSE4NUMSE2NUMSE1 

(c) 

New MSENew MSE 
(d) 

 

Fig. 3.8: Scaling coefficients extracting at finer level 
 

            The main steps for extracting scaling coefficients on the next finer level, i.e., 

level j+1 is described as follows: 

(1) Reconstruct scaling coefficients cj+1 from cj with equation (3.14) 

(2)With the index of MSEs in cj, find out their corresponding updated MSEs in 

cj+1, 

(3)Using these updated MSEs, get NUMSEs 

(4)For each existed element (extracted scaling coefficients at level j) of global 

GList, update its index with double its value 

(5)For each NUMSEs, using algorithm presented in section 3.2 to extract New 

MSEs 

To store the extracted coefficients of a New MSE, we need compute the number of the 

elements in MSEs that occurs before this New MSE. 

          After extracting scaling coefficients cj+1, we reconstruct the scaling coefficients 

cj+2, and use the New MSEs and Updated MSEs at level j to get Updated MSEs at level 

j+2. The above algorithm is then applied to extract the coefficients at higher level, until 
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there is no NUMSE at a level. Finally, we can sort the scaling coefficients in the global 

list according to their indices value. Thus the whole polygonal curve is obtained. 

 

3.3 Adaptive Layered-based Direct RP Model Construction 

In our application to construct models for RP, the cloud data is segmented into a 

number of layers by slicing the point cloud along a user-specified direction. The data 

points in each layer are projected onto the mid-plane and then these projected data 

points will be used to reconstruct a polygon approximating the profile curve. Shape 

tolerance is usually given to indicate the maximum allowable deviation between the 

generated model and the cloud data points.  

In our application, there are two main steps for layer-based Direct RP model 

construction. The first step is to roughly slice the cloud data object. From an end of the 

object, we use a binary search (Wu et al. 2003) to obtain a subset X11 such that 

equation (3.2) is satisfied. Then a subset X12 can be obtained with the binary search 

algorithm such that equation (3.3) is satisfied. With these two subsets and their 

projected point set D11 and D12, extract their medial points based on equation (3.4). 

Hence, the first layer is obtained. Similarly, the subsequent layers are obtained. With 

rough slicing, the cloud data is sliced into layers with adaptive layer thickness and 

medial points in each layer. 

In the second step, we carry on polygonal curve construction algorithm based 

on the multiresolution method as presented in this chapter. Medial points are firstly 

sorted with a small fixed neighbourhood radius, and then B-spline wavelets are used to 

extract the polygon points in sense of filtering small noise of sorted medial points, and 

the extracting process is a coarse-to-fine process under the control of shape tolerance. 

Thus with these two steps, the polygon for each layer is obtained.  
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However, one drawback should be mentioned in our approach. Using wavelets 

to filter small noise of sorted points may lead to the divergence of the algorithm. To 

state clearly, we use the first layer as an example. In theory, the medial points B1 lies 

in medial of projected points D1 because of the control of bandwidth tolerance ε, but 

after multi-resolution extracting of sorted point set S1, the distance between D1 and 

final polygon C may be out shape tolerance ε. To solve this problem, an easy way is to 

restrict the bandwidth tolerance, say as 0.7~0.9ε in most of our case studies. Thus, with 

this stricter bandwidth tolerance, the medial points B1 will lie in a thinner projected D1, 

thus the algorithm will converge. However, stricter bandwidth will cause that the layer 

thickness is less than maximal. To resolve this confliction, we need tradeoffs.  

Assume that the unknown object is T of thickness along slicing direction, and 

the minimal layer thickness for slicing is Tmin, thus the number of layers N with the 

minimal thickness is T/Tmin. Assume each layer has n data points, the computation time 

can be roughly estimated. The approach in (Wu et al. 2003) need O(n4m), while the 

algorithm in this method can be of O(mn2lgn). Moreover, in this approach, the 

boundary data points sorting and the profile curve construction in different layers can 

be implemented in parallel, which will further quicken the computation. 

 

3.4 Summary 

A practical method for achieving Direct RP model construction from 3D cloud data, 

with accuracy control, has been described. The method commences with an adaptive 

slicing cloud data along a direction with the control of shape tolerance. The 

information of boundary points in each layer helps to carry out the quick sorting 

algorithm and then, the multiresolution method is applied to the sorted data points and 

projected points to construct a polygon that fit data set within the shape tolerance. The 
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neighbourhood size and bounds of linearity, which are necessary and difficult in the 

method presented in chapter 2, are avoided in this method. Testing results on both 

simulated and real cases will be given in Chapter 4 to show that the algorithm is 

effective. 
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CHAPTER 4 CASE STUDIES 

 

 

The algorithms for Direct RP model construction based on the two methods, ANSAS 

and WAS, have been implemented with C/C++ in the OpenGL environment. Both 

simulation results and real case studies are presented here to illustrate the efficacy of 

the algorithm. The simulation case studies are based on simulated data sets in which 

the original cloud data are generated by mathematical equations, so that the theoretical 

shape errors can be obtained accurately and comparison can be made directly.  The real 

case is based on measured data points that are obtained by a laser scanner, and the 

results after processing are input to a RP machine for fabrication. 

 

4.1. Application Examples of ANSAS 

Three case studies are presented here to illustrate the efficacy of the algorithm based 

on ANSAS. The first two are simulated cases, and the third one is a case study of an 

actual object, for its cloud data points are obtained from the laser scanner, VIVID 900 

system. 

 

4.1.1 Case study 1 

In the first case study, a sphere is selected by taking the advantage of its known 

geometry so that the shape error of the actual slicing can be compared with the 
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theoretical one accurately. The equation of a sphere with a radius of 2 is given as (note 

random error is incorporated in the equations to simulate noise in the point cloud): 

    x = 2cos(β)cos(α)+τ   τ is randomly distributed in [-0.01, +0.01] 

    y = 2cos(β)sin(α)+τ            β = [-π/2, +π/2] 

    z = 2sin(β)                                    α = [0, 2π] 

We use a sampling increment of 0.01 and 0.02 to sample β and α respectively to obtain 

the cloud data of the sphere. There are totally 98,721 points generated, and the original 

cloud data is shown in Fig. 4.1a.  

 For data processing, the initial layer thickness is set at 0.04, and the initial 

neighbourhood radius is 0.1. ρlow and ρhigh are set as 0.85 and 0.9 respectively. 

Employing a shape tolerance of 0.08, the direct RP model of the sphere shown in Fig. 

4.1b is obtained. This model contains 11,812 vertices (points in constructed polygons) 

distributed in 74 layers. Fig. 4.2a shows the maximum shape error of each layer in the 

generated model. It can be seen that the maximum shape errors of all the layers are 

very close to 0.08. As shown in Fig. 4.2b, the sphere with a radius of 2 is then sliced 

into 74 layers according to the layer thickness in the generated model and the 

theoretical shape error, also known as stair stepping error as Fig. 4.1c shows. It can be 

seen that the theoretical errors are close to 0.08 too (except the two tip areas).  

 

Layer error 

(c) (b)(a)
 

Fig. 4.1: The original cloud data and the direct RP model in case study one 
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In the two tips, the projected data points are diffuse, and it is difficult to 

construct a contour curve from these projected points. In our algorithm, we will reduce 

the layer thickness to as small as possible, up to the required minimal layer thickness 

of RP machine. When we use this required minimal thickness to slice the cloud data, 

the actual shape error may be larger than shape tolerance, hence tip problem occurs. 

(b)(a) 
 

Fig. 4.2: Shape error comparison in case study one (ε = 0.08) 
 

4.1.2 Case study 2 

The second case study uses an object composed of 4 spherical patches (see Fig. 4.3a).  

The parameter of larger sphere is the same as that in the first case study, and the 

equations of 3 smaller half-spheres are based on the following basic form: 

    x = cos(β)cos(α)+τ         τ  is randomly distributed in [-0.001, +0.001] 

    y = cos(β)sin(α)+τ         β = [0, +π/2] 

    z = sin(β)                              α = [0, 2π] 

The three half-spheres in the object are then formed by the transformation of the basic 

form as follows: 
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(1) Translate the basic form along z-axis by 1.732 to obtain the first half-sphere. 

(2) Rotate the basic form around y-axis clockwise by 60˚ and translate it along z-

axis by 1.732 to form the second half-sphere. 

(3)  Rotate the basic form around y-axis counter-clockwise by 120˚ and translate it 

along z-axis by 1.732 to form the third half-sphere.  

We use sampling increments of 0.02 and 0.05 to sample β and α respectively to obtain 

the cloud data of the spheres. There are altogether 46,057 points. The original object is 

shown in Fig. 4.3a. 

(b) (a) 

 

Fig. 4.3: The original cloud data and the direct RP model of second case study 
  

The initial layer thickness is set at 0.04, and the initial neighbourhood radius is 0.1. 

ρlow and ρhigh are set as 0.85 and 0.9 respectively. Employing a shape tolerance of 0.06, 

the direct RP model of the sphere shown in Fig. 4.3b is obtained. This model contains 

21,306 vertices distributed in 88 layers. Fig. 4.4a shows the maximum shape error in 

each layer and it can be seen that the shape errors of all the layers are very close to 

0.06. Fig. 4.4b shows the theoretical maximum shape error of the object in each layer 

sliced using the same pattern as in the generated RP model. Most of the shape errors in 

each layer (theoretical) are close to 0.06, although it is not as uniform as in case study 

one. This may be due to the complexity of the object. On the other hand, in both case 
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studies one and two, the theoretical shape errors in the two tip areas are much larger 

than the given shape error. This is caused by the zero-radius at the tips. Similarly, there 

exist tip problems in three small half- spheres, which can be seen from Fig. 4.4b. 

(b) (a) 
 

Fig. 4.4: Shape error comparison in case study two (ε = 0.06) 
 

4.1.3 Case study 3 

The third case study is that of a toy-cow as shown in Fig. 4.5. The original object can 

be boxed in a volume of 150mm×120mm×90mm and was digitised by a laser scanner, 

Minolta VIVID-900 digitizer. The data sets were obtained from different view angles, 

and the noisy data points and background data points were filtered and the holes were 

filled to produce a cloud data set of 1,098,753 points. The adaptive slicing algorithm 

was applied to the cloud data employing an error tolerance of 0.7 mm, initial layer 

thickness of 0.2 mm, and the initial neighbourhood radius of 0.2 mm. ρlow and ρhigh 

were set as 0.85 and 0.9 respectively. This resulted in a direct RP model as shown Fig. 

4.6a with 115 layers and 59,686 points. The shape error of each layer in the generated 
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model is shown in Fig. 4.7a and it clearly shows that the shape errors are within 0.7 

mm. In the model construction process, the head area (ears and horns) has a very 

complex shape, and it posed a multiple-loop problem. This can be seen clearly in Fig. 

4.6b, in which the multiple-loops are separated successfully and the corresponding 

layers are generated.  

 It took about 30 minutes for the adaptive slicing algorithm to generate the RP 

model using a PC of 1.5GHZ CPU. The direct RP model was then converted to a 

layer-based RP slice-data file in CLI format and fed to a RP machine, high-

temperature Laser Manufacturing System (HTLMS). For this RP machine, a uniform 

thickness of layers is required, and hence the direct RP model of 115 layers was further 

sliced into 535 layers, with the layer thickness of 0.2 mm (the thinnest layer in the 

model). It took about six hours to complete the fabrication. Fig. 4.7b shows the real 

work-piece fabricated by the RP machine based on the direct RP model. However, in a 

RP machine that can deposit material with different layer thickness, time-saving could 

be up to 78.5%. 

 
 
 
 
 
 
 
 
 
 

(a) (b)
 

Fig. 4.5: The original object and cloud data,  
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(a) (b)
 

Fig. 4.6: The direct RP model and a zoom-in view at the head 

 

(a) (b) 

(a) Shape error of the direct RP model in case study three 
(b) The toy-cow fabricated by RP machine

Fig. 4.7: Shape error of the direct RP model 
 
 

4.2. Application Examples of WAS 

Three case studies are presented here to illustrate the efficacy of the algorithm 

presented in Chapter 3. To compare the performance of this algorithm with that in 

Chapter 2, we use the same data points as in case 4.1.1 and case 4.1.2. Moreover, to 

illustrate the advantage of dealing with sharp corners over the former algorithm, we 

also present a trihedron as a case study. 
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4.2.1 Case study 1 

The data points of the first case study are the same as the case in section 4.1.1. For data 

processing, the initial layer thickness is set at 0.04. Employing a shape tolerance of 

0.08, the direct RP model of the sphere shown in Fig. 4.8 is obtained. In this case study, 

the profile curve is decomposed into around five levels. This model contains 9,923 

vertices distributed in 67 layers. Fig. 4.9a shows the maximum shape error of each 

layer in the generated model. It can be seen that the maximum shape errors of all the 

layers are very close to 0.08. The sphere with a radius of 2 is then sliced into 67 layers 

according to the layer thickness in the generated model and the theoretical shape error, 

is shown in Fig. 4.9b. It can be seen that the theoretical errors are close to 0.08 too 

(except the two tip areas).  

 

Fig. 4.8: The Direct RP model of shpere 
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(a) (b)  

Fig. 4.9: Shape error comparison in case study one (ε = 0.08) 
 

The number of layers is only 67. The WAS and ANSAS algorithms are running 

on a PC with a 1.8GHZ CPU, and the memory is 256MB. WAS took 4 minutes to 

complete the slicing this case, however ANSAS took 11 minutes.  It shows that WAS 

has the advantage over ANSAS in this respect. Moreover, the number of layer 

thickness and vertices after processing are not so different in these two cases, and 

hence, WAS did not have an obvious advantage to reduce the data points. 

4.2.2 Case study 2 

In the second case study, the data points are the same as the case in section 4.1.2, and 

the original cloud data is shown in Fig. 4.3 a. The minimal layer thickness is set at 0.04, 

and the shape tolerance is 0.06, then the direct RP model of the sphere shown in Fig. 

4.10 is obtained. There are totally 18,419 points that are distributed in 76 layers. We 

can see that the number of layers is less than that of the result dealt by ANSAS with 

the same shape tolerance. 
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Fig. 4.10: The Direct RP model of spheres 
 

Fig. 4.11a shows the maximum shape error in each layer and it can be seen that the 

shape errors of all the layers are very close to 0.06. Fig. 4.11b shows the theoretical 

maximum shape error of the object in each layer sliced using the same pattern as in the 

generated RP model. Most of the shape errors in each layer (theoretical) are close to 

0.06, although it is not as uniform as in case study 1 in section 4.2.1. This may be due 

to the complexity of the object. On the other hand, in both case studies 1 and 2, the 

theoretical shape errors in the two tip areas are much larger than the given shape error. 

This is caused by the zero-radius at the tips. The profile curve is decomposed into five 

levels during the construction with the wavelets. WAS took 7 minutes to complete this 

case study, while ANSAS took 15 minutes. Obviously, WAS method is faster than 

ANSAS method. 
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(a) 

 

Fig. 4.11: Shape error comparison in case study one (ε = 0.06) 
 

4.2.3 Case study 3 

In the third case study, the object used has corners.  As we stated in previous chapters, 

the WAS has the advantage of dealing with sharp corners, we present a simulation 

model here.  

This case is a sphere patch together with a trihedron. The equation of a sphere 

with a radius of 2 is given as (note random error is incorporated in the equations to 

simulate noise in the point cloud): 

    x = 2cos(β)cos(α)+τ   τ is randomly distributed in [-0.01, +0.01] 

    y = 2cos(β)sin(α)+τ            β = [-π/2, +π/6] 

    z = 2sin(β)                                    α = [0, 2π] 

The four vertices of the trihedron are: 

                  A=[0, -1.732, 1]; 
                  B=[-1.5, 0.866, 1]; 
                  C=[1.5, 0.866, 1]; 
                  D=[0, 0, 4.464]; 

(b) 
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Thus, the trihedron is on the top of the sphere patch, and A, B, and C lie on the 

sphere patch. The centre E of triangle ABC is: [0, 0, 1]. 

We use a sampling increment of 0.01 and 0.02 to sample β and α respectively 

to obtain the cloud data of the sphere patch.  To sample the trihedron, we first use 

parallel planes along ED to slice trihedron to obtain the intersection points O, P, and Q 

on DA, DB and DC. Then, we use the linear interpolation formula to sample the line 

OP, PQ and OQ. The linear sampling formula is as follows: Given start point S and 

end points E, the points in the line segment SE are sampled as: αS+(1-α)E, and α is a 

variable among [0,1]. 

 The distances between slicing planes are 0.01, and the linear parameter α is 

sampled as 0.01, and then the trihedron is sampled. In our simulation, a random error 

distributed in [-0.01, 0.01], is added into the sampled data points. There are totally 468, 

512 points generated, and the original cloud data is shown in Fig. 4.12a. 

 
(a) (b) (c) 

Fig. 4.12: The original cloud data and the direct RP model of third case study 
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 (a) (b) 

Fig. 4.13: Shape error comparison in case study one (ε = 0.05) 
 

For data processing, the initial layer thickness is set at 0.04, and the shape 

tolerance is set at 0.05, the direct RP model of the sphere shown in Fig. 4.12b and Fig. 

4.12c are obtained. This model contains 8,875 vertices distributed in 71 layers. Fig. 

4.13a shows the maximum shape error of each layer in the generated model. It can be 

seen that the maximum shape errors of all the layers are very close to 0.05. The CAD 

model of this case is then sliced into 71 layers according to the layer thickness in the 

generated model and the theoretical shape error is shown in Fig. 4.13b. It can be seen 

that the theoretical errors are close to 0.05 too (except the two end areas). When 

employing ANSAS method to slice this case study with the shape tolerance at 0.05, 

neighbourhood size at 0.1, and linearity bounds at 0.85 and 0.9 respectively, it 

terminated and gave a result as shown in Fig. 4.14. If parameters of the bounds and 

neighbourhood size are selected suitably, ANSAS can slice this object. We did not 

show the final results here, because this case study is used to show the efficiency of 

WAS method to slice the object with sharp corners. 
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Fig. 4.14: Direct RP model of case study 3 based on ANSAS 
 

To see the sharp corner construction, we select one layer of the sliced cloud 

data to show the process. As Fig. 4.15a shows, the thickness of cloud data is 0.087, and 

it is the 38th layer of the cloud data from Fig. 4.12. Fig. 4.15b shows the projected data 

points of this layer. There are totally 2,510 points. 

(a) (b) 
 

Fig. 4.15: Cloud data and its planar data set in one layer 
 

Using the segmentation method in Chapter 3, the boundary points in this layer 

are obtained as shown in Fig.4.16, which shows the boundary points together with the 

projected points, and we can see that the boundary points are nearly in the middle of 

the projected point band. Fig. 4.16b shows the boundary points, and we can see that it 

is dense but it keeps the topology of the whole projected points. There are totally 528 

points. 
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To carry on curve construction, we first use the fixed neighborhood size to sort 

the boundary points, as shown in Fig. 4.17a, and there are 128 points left. We set these 

sequenced data points as the initial scaling coefficients of wavelets, and then 

decompose it level by level. Then, using WAS, we can get the final curve shown in Fig. 

4.17, and there are 29 points left. The shape error, maximal distance from planar data 

points in Fig. 4.15, to this curve, is 0.048, which is close to the shape tolerance 0.05. 

(b) (a) 
 

Fig. 4.16: Boundary points in one layer 
 

(b) (a) 
 

Fig. 4.17: Curve decomposition and reconstruction based on wavelets 
 

To compare the WAS with ANSAS, we use the ANSAS to reconstruct the 

curve from planar data points in Fig. 4.15. Employing the shape tolerance 0.05, the 

73



Chapter 4 Case Studies 

initial neighborhood size 0.05, and the correlation coefficient bound at 0.85 and 0.9, 

we get the curve as shown in Fig. 4.18. There are 28 data points left, and the shape 

error is 0.052.  We can see that at the corners, the curve shows zigzags, and more 

seriously, there exists self-intersection. Hence, WAS is better to deal with small sharp 

corners than ANSAS. To solve this problem, we need to use a curve smoothing 

method, which is a time-consuming process. 

 

Fig. 4.18: Curve construction based on adaptive neighborhood size. 
 

4.2.4 Case Study 4 

The part used in the fourth case study is a lower jaw model as shown in Fig. 4.19. The 

original object can be boxed in a volume of 78mm×72mm×52mm and was digitised by 

the laser scanner, Minolta VIVID-900 digitizer. The data sets were obtained from 

different view angles, and the noisy data points and background data points were 

filtered and the holes were filled to produce a cloud data set of 276,591 points. The 

adaptive slicing algorithm was applied to the cloud data employing an error tolerance 

of 0.8 mm, and initial layer thickness of 0.2 mm. This resulted in a direct RP model as 

shown Fig. 4.20a with 68 layers and 9,438 points. The shape error of each layer in the 

generated model is shown in Fig. 4.20b and it clearly shows that the shape errors are 

within 0.8 mm.  
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We employed a shape tolerance of 0.5 mm and initial layer thickness of 0.2 mm. 

This resulted in a direct RP model as shown Fig. 4.21a with 84 layers and 15, 347 

points. The shape error of each layer in the generated model is shown in Fig. 4.21b and 

it clearly shows that the shape errors are within 0.5 mm.  However, the shape tolerance 

cannot be arbitrarily small, because the cloud data are not sampled dense enough, and 

there are errors during scanning process. Moreover, the RP machine cannot fabricate 

the model with arbitrary small thickness, and its required layer thickness will cause the 

shape error to be larger than shape tolerance. In this case, we find 0.5mm is nearly the 

minimal shape tolerance we could use. 

 

Fig. 4.19: Cloud data of lower jaw 
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(a) (b) 
 

Fig. 4.20: Direct RP model (WAS) and shape error (ε=0.8mm) 
 

(b) (a) 
 

Fig. 4.21: Direct RP model (WAS) and shape error (ε=0.5mm) 
 

To compare the result of this case generated by WAS with that generated by 

ANSAS, we use ANSAS to construct the RP model from the same cloud data. We 

employ the shape error at 0.8mm, the initial neighbourhood size at 0.4mm, the initial 

layer thickness at 0.2mm, and the correlation coefficient bounds at 0.85 and 0.09. The 

Direct RP model is obtained shown as Fig.4.22a, and there are 72 layers together with 
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13,214 data points. The shape error of each layer in the generated model is shown in 

Fig. 4.22b and it clearly shows that the shape errors are within 0.8 mm. We can see 

that using WAS result in fewer number of layers than ANSAS, when both of them use 

the same shape tolerance, in this case, 0.8mm. As for speed comparison, WAS took 18 

minutes, while ANSAS took 34 minutes. 

However, ANSAS is not so robust in this case study, because it needs a tradeoff 

among the parameters of neighbourhood size, number of neighbourhood data points of 

the certain point, and correlation coefficients bounds, as we mentioned in Chapter 2. 

When we select the shape tolerance 0.5mm, ANSAS does not work, even though we 

tried many different parameters. Hence, we can see that WAS is more robust than 

ANSAS not only in principle but also in practise. 

 
(a) (b) 

Fig. 4.22: Direct RP model (ANSAS) and shape error (ε=0.8mm) 
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CHAPTER 5 CONCLUSIONS AND FUTURE WORKS 

 
 
In this thesis, two methods for generating RP models directly from arbitrarily scattered 

cloud data are presented.  In these two methods, the modelling process consists of 

several steps: (1) the cloud data are segmented into several layers along the RP build 

direction; (2) points within each layer are treated as co-planar and a polygon is 

constructed to best-fit the points; (3) the thickness of each layer is determined 

adaptively such that the surface error is kept just within a given error bound.   

Basically, the two methods differ in step 2 by using a different curve 

construction method. The first method, ANSAS, uses the correlation coefficient to 

control the neighbourhood size in its adaptive polygon construction. This algorithm is 

efficient in dealing with smooth surfaces without sharp corners. 

The second method uses wavelets to decompose the curve level by level. The 

curve is constructed by matching the desired resolution to the required error. This 

method is compact relative to the segmentation results of cloud data. But it is very fast, 

and good at dealing with small and sharp features, such as corners and creases. 

Algorithms based on the two methods have been implemented with C/C++ in 

OpenGL platform. The results of both simulated and practical cases show that the 

algorithms are effective. 

 The main contribution of this thesis is two-fold. Firstly, the polygon construction 

algorithm is adaptive in nature. It is capable of automatically finding a feasible starting 

point and identifying the maximum allowable neighbourhood for each segment. It is 

also able to deal with segments with multiple-loop profile effectively. Secondly, the 

thickness of each layer is determined adaptively, based on a given surface tolerance. 
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This provides an intuitive control parameter to users and the resulted model needs a 

close-to-minimum RP building time. 

 Further challenging issues are as follows: The first one is on the adaptive 

determination of the lower and upper linearity bounds for the polygonal curve 

construction in ANSAS method. We have observed that this is related to the given 

shape tolerance and the random errors in the original cloud data. Future study into 

controlling these two bounds can be pursued by considering the shape tolerance and 

the accuracy level of the scanner. Another challenge is to determine the bandwidth 

tolerance more accurately, such that the multiresolution curve construction algorithm 

in the wavelet-based method is always convergent. A simple method has been 

employed to restrict the bandwidth in this thesis. However, this simplification may 

reduce the final layer thickness. Hence, a future study is to control the bandwidth 

based on shape tolerance. 
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