1,913 research outputs found

    A Multi-view Context-aware Approach to Android Malware Detection and Malicious Code Localization

    Full text link
    Existing Android malware detection approaches use a variety of features such as security sensitive APIs, system calls, control-flow structures and information flows in conjunction with Machine Learning classifiers to achieve accurate detection. Each of these feature sets provides a unique semantic perspective (or view) of apps' behaviours with inherent strengths and limitations. Meaning, some views are more amenable to detect certain attacks but may not be suitable to characterise several other attacks. Most of the existing malware detection approaches use only one (or a selected few) of the aforementioned feature sets which prevent them from detecting a vast majority of attacks. Addressing this limitation, we propose MKLDroid, a unified framework that systematically integrates multiple views of apps for performing comprehensive malware detection and malicious code localisation. The rationale is that, while a malware app can disguise itself in some views, disguising in every view while maintaining malicious intent will be much harder. MKLDroid uses a graph kernel to capture structural and contextual information from apps' dependency graphs and identify malice code patterns in each view. Subsequently, it employs Multiple Kernel Learning (MKL) to find a weighted combination of the views which yields the best detection accuracy. Besides multi-view learning, MKLDroid's unique and salient trait is its ability to locate fine-grained malice code portions in dependency graphs (e.g., methods/classes). Through our large-scale experiments on several datasets (incl. wild apps), we demonstrate that MKLDroid outperforms three state-of-the-art techniques consistently, in terms of accuracy while maintaining comparable efficiency. In our malicious code localisation experiments on a dataset of repackaged malware, MKLDroid was able to identify all the malice classes with 94% average recall

    Predicting Fraud Apps Using Hybrid Learning Approach: A Survey

    Get PDF
    Each individual in the planet are mobile phone users in fact smart-phone users with android applications. So, due to this attractiveness and well-known concept there will be a hasty growth in mobile technology. And in addition in information mining, mining the required information from a fastidious application is exceptionally troublesome. Consolidating these two ideas of ranking frauds in android market and taking out required information is gone exceptionally tough.The mobile phone Apps has developed at massive speed in some years; as for march 2017, there are nearby 2.8 million Apps at google play and 2.2 Apps at Google Apps store. In addition, there are over 400,000 self-governing app developers all fighting for the attention of the same potential clients. The Google App Store saw 128,000 new business apps alone in 2014 and the mobile gaming category alone has contest to the tune of almost 300,000 apps. Here the major need to make fraud search in Apps is by searching the high ranked applications up to 30-40 which may be ranked high in some time or the applications which are in those high ranked lists should be confirmed but this is not applied for thousands of applications added per day. So, go for wide examination by applying some procedure to every application to judge its ranking. Discovery of ranking fraud for mobile phone applications, require a flawless, fraud less and result that show correct application accordingly provide ranking; where really make it occur by searching fraud of applications. They create fraud of App by ranked high the App by methods using such human water armies and bot farms; where they create fraud by downloading application through different devices and provide fake ratings and reviews. So, extract critical data connecting particular application such as review which was called comments and lots of other information, to mine and place algorithm to identify fakeness in application rank

    User Review-Based Change File Localization for Mobile Applications

    Get PDF
    In the current mobile app development, novel and emerging DevOps practices (e.g., Continuous Delivery, Integration, and user feedback analysis) and tools are becoming more widespread. For instance, the integration of user feedback (provided in the form of user reviews) in the software release cycle represents a valuable asset for the maintenance and evolution of mobile apps. To fully make use of these assets, it is highly desirable for developers to establish semantic links between the user reviews and the software artefacts to be changed (e.g., source code and documentation), and thus to localize the potential files to change for addressing the user feedback. In this paper, we propose RISING (Review Integration via claSsification, clusterIng, and linkiNG), an automated approach to support the continuous integration of user feedback via classification, clustering, and linking of user reviews. RISING leverages domain-specific constraint information and semi-supervised learning to group user reviews into multiple fine-grained clusters concerning similar users' requests. Then, by combining the textual information from both commit messages and source code, it automatically localizes potential change files to accommodate the users' requests. Our empirical studies demonstrate that the proposed approach outperforms the state-of-the-art baseline work in terms of clustering and localization accuracy, and thus produces more reliable results.Comment: 15 pages, 3 figures, 8 table

    SysMART Indoor Services: A System of Smart and Connected Supermarkets

    Full text link
    Smart gadgets are being embedded almost in every aspect of our lives. From smart cities to smart watches, modern industries are increasingly supporting the Internet of Things (IoT). SysMART aims at making supermarkets smart, productive, and with a touch of modern lifestyle. While similar implementations to improve the shopping experience exists, they tend mainly to replace the shopping activity at the store with online shopping. Although online shopping reduces time and effort, it deprives customers from enjoying the experience. SysMART relies on cutting-edge devices and technology to simplify and reduce the time required during grocery shopping inside the supermarket. In addition, the system monitors and maintains perishable products in good condition suitable for human consumption. SysMART is built using state-of-the-art technologies that support rapid prototyping and precision data acquisition. The selected development environment is LabVIEW with its world-class interfacing libraries. The paper comprises a detailed system description, development strategy, interface design, software engineering, and a thorough analysis and evaluation.Comment: 7 pages, 11 figur

    Malware detection based on dynamic analysis features

    Get PDF
    The widespread usage of mobile devices and their seamless adaptation to each users' needs by the means of useful applications (Apps), makes them a prime target for malware developers to get access to sensitive user data, such as banking details, or to hold data hostage and block user access. These apps are distributed in marketplaces that host millions and therefore have their own forms of automated malware detection in place in order to deter malware developers and keep their app store (and reputation) trustworthy, but there are still a number of apps that are able to bypass these detectors and remain available in the marketplace for any user to download. Current malware detection strategies rely mostly on using features extracted statically, dynamically or a conjunction of both, and making them suitable for machine learning applications, in order to scale detection to cover the number of apps that are submited to the marketplace. In this article, the main focus is the study of the effectiveness of these automated malware detection methods and their ability to keep up with the proliferation of new malware and its ever-shifting trends. By analising the performance of ML algorithms trained, with real world data, on diferent time periods and time scales with features extracted statically, dynamically and from user-feedback, we are able to identify the optimal setup to maximise malware detection.O uso generalizado de dispositivos móveis e sua adaptação perfeita às necessidades de cada utilizador por meio de aplicativos úteis (Apps) tornam-os um alvo principal para que criadores de malware obtenham acesso a dados confidenciais do usuário, como detalhes bancários, ou para reter dados e bloquear o acesso do utilizador. Estas apps são distribuídas em mercados que alojam milhões, e portanto, têm as suas próprias formas de detecção automatizada de malware, a fim de dissuadir os desenvolvedores de malware e manter sua loja de apps (e reputação) confiável, mas ainda existem várias apps capazes de ignorar esses detectores e permanecerem disponíveis no mercado para qualquer utilizador fazer o download. As estratégias atuais de detecção de malware dependem principalmente do uso de recursos extraídos estaticamente, dinamicamente ou de uma conjunção de ambos, e de torná-los adequados para aplicações de aprendizagem automática, a fim de dimensionar a detecção para cobrir o número de apps que são enviadas ao mercado. Neste artigo, o foco principal é o estudo da eficácia dos métodos automáticos de detecção de malware e as suas capacidades de acompanhar a popularidade de novo malware, bem como as suas tendências em constante mudança. Analisando o desempenho de algoritmos de ML treinados, com dados do mundo real, em diferentes períodos e escalas de tempo com recursos extraídos estaticamente, dinamicamente e com feedback do utilizador, é possível identificar a configuração ideal para maximizar a detecção de malware

    Supporting Evolution and Maintenance of android Apps

    Get PDF
    Mobile developers and testers face a number of emerging challenges. These include rapid platform evolution and API instability; issues in bug reporting and reproduction involving complex multitouch gestures; platform fragmentation; the impact of reviews and ratings on the success of their apps; management of crowd-sourced requirements; continuous pressure from the market for frequent releases; lack of effective and usable testing tools; and limited computational resources for handheld devices. Traditional and contemporary methods in software evolution and maintenance were not designed for these types of challenges; therefore, a set of studies and a new toolbox of techniques for mobile development are required to analyze current challenges and propose new solutions. This dissertation presents a set of empirical studies, as well as solutions for some of the key challenges when evolving and maintaining android apps. In particular, we analyzed key challenges experienced by practitioners and open issues in the mobile development community such as (i) android API instability, (ii) performance optimizations, (iii) automatic GUI testing, and (iv) energy consumption. When carrying out the studies, we relied on qualitative and quantitative analyses to understand the phenomena on a large scale by considering evidence extracted from software repositories and the opinions of open-source mobile developers. From the empirical studies, we identified that dynamic analysis is a relevant method for several evolution and maintenance tasks, in particular, because of the need of practitioners to execute/validate the apps on a diverse set of platforms (i.e., device and OS) and under pressure for continuous delivery. Therefore, we designed and implemented an extensible infrastructure that enables large-scale automatic execution of android apps to support different evolution and maintenance tasks (e.g., testing and energy optimization). In addition to the infrastructure we present a taxonomy of issues, single solutions to the issues, and guidelines to enable large execution of android apps. Finally, we devised novel approaches aimed at supporting testing and energy optimization of mobile apps (two key challenges in evolution and maintenance of android apps). First, we propose a novel hybrid approach for automatic GUI-based testing of apps that is able to generate (un)natural test sequences by mining real applications usages and learning statistical models that represent the GUI interactions. In addition, we propose a multi-objective approach for optimizing the energy consumption of GUIs in android apps that is able to generate visually appealing color compositions, while reducing the energy consumption and keeping a design concept close to the original

    Do Android Taint Analysis Tools Keep Their Promises?

    Full text link
    In recent years, researchers have developed a number of tools to conduct taint analysis of Android applications. While all the respective papers aim at providing a thorough empirical evaluation, comparability is hindered by varying or unclear evaluation targets. Sometimes, the apps used for evaluation are not precisely described. In other cases, authors use an established benchmark but cover it only partially. In yet other cases, the evaluations differ in terms of the data leaks searched for, or lack a ground truth to compare against. All those limitations make it impossible to truly compare the tools based on those published evaluations. We thus present ReproDroid, a framework allowing the accurate comparison of Android taint analysis tools. ReproDroid supports researchers in inferring the ground truth for data leaks in apps, in automatically applying tools to benchmarks, and in evaluating the obtained results. We use ReproDroid to comparatively evaluate on equal grounds the six prominent taint analysis tools Amandroid, DIALDroid, DidFail, DroidSafe, FlowDroid and IccTA. The results are largely positive although four tools violate some promises concerning features and accuracy. Finally, we contribute to the area of unbiased benchmarking with a new and improved version of the open test suite DroidBench

    Android Application Security Scanning Process

    Get PDF
    This chapter presents the security scanning process for Android applications. The aim is to guide researchers and developers to the core phases/steps required to analyze Android applications, check their trustworthiness, and protect Android users and their devices from being victims to different malware attacks. The scanning process is comprehensive, explaining the main phases and how they are conducted including (a) the download of the apps themselves; (b) Android application package (APK) reverse engineering; (c) app feature extraction, considering both static and dynamic analysis; (d) dataset creation and/or utilization; and (e) data analysis and data mining that result in producing detection systems, classification systems, and ranking systems. Furthermore, this chapter highlights the app features, evaluation metrics, mechanisms and tools, and datasets that are frequently used during the app’s security scanning process
    corecore