

Malware detection based on dynamic analysis features

João Guilherme de Lourenço Vieira Duque

Master in Telecommunications and Computer Engineering

Supervisor:
Professor Luís Miguel Martins Nunes, Assistant Professor,
ISCTE-IUL

Co-Supervisor:
Professor Ana Maria Carvalho de Almeida, Assistant Professor,
ISCTE-IUL

October, 2020

Detecção de Malware baseada em recursos de análise dinâmica

João Guilherme de Lourenço Vieira Duque

Mestrado em Engenharia de Telecomunicações e Informática

Orientador:
Professor Doutor Luís Miguel Martins Nunes, Professor Auxiliar,
ISCTE-IUL

Co-Orientadora:
Professora Doutora Ana Maria Carvalho de Almeida, Professora Auxiliar,
ISCTE-IUL

Outubro, 2020

Direitos de cópia ou Copyright

©Copyright: Nome Completo do(a) candidato(a).

O Iscte - Instituto Universitário de Lisboa tem o direito, perpétuo e sem limites geográficos, de

arquivar e publicitar este trabalho através de exemplares impressos reproduzidos em papel ou de

forma digital, ou por qualquer outro meio conhecido ou que venha a ser inventado, de o divulgar

através de repositórios científicos e de admitir a sua cópia e distribuição com objetivos

educacionais ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor.

Automated Android Malware Detection

i

Acknowledgements

To my coordinators, the Professors Luís Nunes and Ana de Almeida, I deeply thank

all their guidance, shared knowledge and support that permitted the smooth development

of this dissertation.

To the collaborators in the AppSentinel Project, Gonçalo Mendes, João Lopes, Nuno

Realista and Francisco Palma, alongside Professor Carlos Serrão, I am grateful for the

expertise and advice they provided. To ISCTE and Aptoide, I am profoundly grateful for

this opportunity to learn.

A special thanks to my family, for giving me the unquestioning support and motivation

to better myself and keep achieving whatever challenges I may face, and, most of all for

believing in me. To my friends a special thanks as well for their uplifting friendship that

I needed to carry on in these unprecedented times.

To all I meantioned above, my sincerest Thanks.

Automated Android Malware Detection

ii

Resumo

O uso generalizado de dispositivos móveis e sua adaptação perfeita às necessidades de

cada utilizador por meio de aplicativos úteis (Apps) tornam-os um alvo principal para que

criadores de malware obtenham acesso a dados confidenciais do usuário, como detalhes

bancários, ou para reter dados e bloquear o acesso do utilizador. Estas apps são

distribuídas em mercados que alojam milhões, e portanto, têm as suas próprias formas de

detecção automatizada de malware, a fim de dissuadir os desenvolvedores de malware e

manter sua loja de apps (e reputação) confiável, mas ainda existem várias apps capazes

de ignorar esses detectores e permanecerem disponíveis no mercado para qualquer

utilizador fazer o download. As estratégias atuais de detecção de malware dependem

principalmente do uso de recursos extraídos estaticamente, dinamicamente ou de uma

conjunção de ambos, e de torná-los adequados para aplicações de aprendizagem

automática, a fim de dimensionar a detecção para cobrir o número de apps que são

enviadas ao mercado. Neste artigo, o foco principal é o estudo da eficácia dos métodos

automáticos de detecção de malware e as suas capacidades de acompanhar a popularidade

de novo malware, bem como as suas tendências em constante mudança. Analisando o

desempenho de algoritmos de ML treinados, com dados do mundo real, em diferentes

períodos e escalas de tempo com recursos extraídos estaticamente, dinamicamente e com

feedback do utilizador, é possível identificar a configuração ideal para maximizar a

detecção de malware.

Palavras-Chave: Detecção de Malware; Análise Dinâmica; Aprendizagem Automática;

Android; ETL.

Automated Android Malware Detection

iii

Abstract

The widespread usage of mobile devices and their seamless adaptation to each users'

needs by the means of useful applications (Apps), makes them a prime target for malware

developers to get access to sensitive user data, such as banking details, or to hold data

hostage and block user access. These apps are distributed in marketplaces that host

millions and therefore have their own forms of automated malware detection in place in

order to deter malware developers and keep their app store (and reputation) trustworthy,

but there are still a number of apps that are able to bypass these detectors and remain

available in the marketplace for any user to download. Current malware detection

strategies rely mostly on using features extracted statically, dynamically or a conjunction

of both, and making them suitable for machine learning applications, in order to scale

detection to cover the number of apps that are submited to the marketplace. In this article,

the main focus is the study of the effectiveness of these automated malware detection

methods and their ability to keep up with the proliferation of new malware and its ever-

shifting trends. By analising the performance of ML algorithms trained, with real world

data, on diferent time periods and time scales with features extracted statically,

dynamically and from user-feedback, we are able to identify the optimal setup to

maximise malware detection.

Keywords: Malware Detection; Dynamic Analysis; Machine Learning; Android; ETL.

Automated Android Malware Detection

iv

Funding

This work is part of the AppSentinel project, co-funded by

Lisboa2020/Portugal2020/EU in the context of the Portuguese Sistema de Incentivos à

I&DT - Projetos em Copromoção (project 33953). The authors also would like to

acknowledge the FCT Project UIDB/MULTI/04466/2020 (ISTAR-IUL) and

UIBD/EEA/50008/2020 (Instituto de Telecomunicações). The authors also appreciate

Aptoide’s collaboration for providing support and the user feedback and static code

analysis data that was used in this study.

Automated Android Malware Detection

v

Index

Acknowledgements .. i

Resumo .. ii

Abstract .. iii

Funding ... iv

Index .. v

Table Index .. vii

Figure Index ... viii

Glossary of Terms, Abbreviations and Acronyms ... ix

Chapter 1 - Introduction .. 1

1.1. Theme Framework ..1

1.2. Motivation and theme relevance ...2

1.3. Research questions and objectives ..3

1.4. Methodological approach ...5

1.5. Structure and organization of the dissertation ..6

Chapter 2 - Literature Review .. 8

2.1. Machine Learning for Malware Detection ..8

2.1.1. Large Scale Automated Detection .. 8

2.1.2. Regarding Data Collection ... 8

2.2. User Feedback Analysis..9

2.3. Static Analysis ..10

2.4. Dynamic Analysis ...11

2.5. Hybrid Analysis ..12

2.6. Closing Remarks ...12

Chapter 3 - Methodology ... 17

3.1. Datasets ...19

3.1. 1. User Feedback Dataset ... 19

3.1. 2. Static Analysis Dataset ... 22

3.1. 3. Dynamic Analysis Dataset ... 25

3.2. Exploratory Data Analysis ...31

3.2.1. Principal Component Analysis ... 31

3.2.2. T-SNE Analysis .. 33

3.3. Data Preparation ...35

3.3.1. Standard Scaler ... 36

3.3.2. Normalizer .. 36

3.3.3. Power Transformer (Yeo-Johnson) .. 37

Automated Android Malware Detection

vi

3.3.3. Quantile Transformer ... 37

3.4. Detection Models..37

3.4.1. Extreme Gradient Boosting .. 37

3.4.2. Random Forest .. 38

3.4.3. Support Vector Machines ... 38

3.4.4. K-Nearest Neighbor .. 38

3.3.5. Naïve Bayes Classifier ... 39

3.5. Model Application ..39

3.6. Model Evaluation ...40

Chapter 4 - Malware Detection Model Testing.. 42

4.1 User Feedback Complete Dataset ..43

4.2 Static Analysis Complete Dataset ...46

4.3 Dynamic Analysis Complete Dataset ..49

4.4 Comparison of Results ..52

4.5 Ratio Analysis ...53

Chapter 5 - Performance Decay Analysis... 55

5.1. User Feedback...56

5.2. Static Analysis ..58

5.3. Dynamic Analysis ...60

Chapter 6 - Conclusions and Recommendations ... 62

6.1 Main Conclusions ..63

6.2 Study Limitations ..65

6.3 Future Research Proposals ..66

Bibliography .. 67

Automated Android Malware Detection

vii

Table Index

Table 1 – Literature Review Summary .. 14

Table 2 – User Feedback Dataset sample distribution ... 20

Table 3 – User Feedback Dataset Feature description ... 20

Table 4 – User Feedback Dataset Feature statistics ... 21

Table 5 – User Feedback Dataset Feature correlation matrix .. 22

Table 6 – Static Analysis Dataset sample distribution ... 23

Table 7 – Static Analysis Dataset Feature description ... 23

Table 8 – Static Analysis Dataset Feature statistics ... 23

Table 9 – Static Analysis Dataset Feature correlation matrix .. 24

Table 10 – Dynamic Analysis Dataset sample distribution .. 25

Table 11 – Dynamic Analysis Dataset Feature description .. 26

Table 12 – Dynamic Analysis Dataset Feature statistics .. 28

Table 13 – Confusion Matrix Example .. 40

Table 14 – Model performance metrics for the full User Feedback dataset 44

Table 15 – Comparison of top model performance for User Feedback models 45

Table 16 – Model performance metrics for the full Static Analysis dataset 47

Table 17 - Comparison of top model performance for Static Analysis models 48

Table 18 – Model performance metrics for the full Dynamic Analysis dataset 50

Table 19 - Comparison of top model performance for Static Analysis models 51

Table 20 – XGBoost performance on the different Datasets with “realistic” ratio 54

Table 21 – Example of model training and testing framework 56

Table 22 – User Feedback Performance Decay Analysis .. 57

Table 23 – Static Analysis Performance Decay Analysis .. 59

Table 24 – Dynamic Analysis Performance Decay Analysis ... 61

Automated Android Malware Detection

viii

Figure Index

Figure 1 - Phases of the CRISP-DM reference model (Chapman, et al. 2000) 5

Figure 2 - Prpoposed Framework Layout ... 18

Figure 3 - Dynamic Analysis Dataset Feature correlation heatmap 30

Figure 4 – User Feedback datasest first 3 PCA components .. 32

Figure 5 – Static Analysis datasest first 3 PCA components ... 32

Figure 6 – Dynamic Analysis datasest first 3 PCA components 33

Figure 7 – User Feedback t-SNE 2D and 3D comparison .. 34

Figure 8 – Static Analysis t-SNE 2D and 3D comparison ... 34

Figure 9 – Dynamic Analysis t-SNE 2D and 3D comparison .. 35

Figure 10 – XGBoost User Feedback feature importance .. 45

Figure 11 - XGBoost Static Analysis feature importance .. 49

Figure 12 - XGBoost Dynamic Analysis feature importance .. 52

Figure 13 – Visual Representation of the User Feedback Performance Decay.............. 58

Figure 14 – Visual Representation of the Static Analysis Performance Decay 60

Figure 15 – Visual Representation of the Dynaic Analysis Performance Decay 61

Automated Android Malware Detection

ix

Glossary of Terms, Abbreviations and Acronyms

ADB – Android Debug Bridge

AUC – Area Under the Curve

App – (Mobile) Application

BNB – Bernoulli Naïve Bayes

CRISP-DM – Cross-Industry Standard Process for Datamining

CSV – Comma-Separated Values

GBM – Gradient Boosting Machine

GNB – Gaussian Naïve Bayes

GUI – Graphical User Interface

IDE – Integrated Development Environment

JSON – JavaScript Object Notation

KNN – K-Nearest Neighbors

MD5 – Message Digest (Series) 5

ML – Machine Learning

NLP – Natural Language Processing

NORM – Normalizer Transformation

OS – Operating System

P-R – Precision Recall curve

PCA – Principal Component Analysis

PHA – Potentially Harmful Application

PowerYJ – Power Transform (Yeo-Johnson)

Automated Android Malware Detection

x

Quant – Quantile Transform

RF – Random Forest

RNN – Recurrent Neural Network

ROC – Receiver Operating Characteristic

SD – Standard Deviation

SSL – Secure Socket Layer

STD – Standardizer Transformation

SVM – Support Vector Machines

TF-IDF – Term Frequency-Inverse Document Frequency

t-SNE – t-Distributed Stochastic Neighbor Embedding

XGBoost – eXtreme Gradient Boosting

Introduction

1

Chapter 1 – Introduction

1.1. Theme Framework

Since the introduction of smartphones to the mainstream global audience, their surge

in popularity, although remarkable, is unsurprising due to their integration of highly

personal and powerful attributes. The unification of portability, high computational

power, an ever-increasing access to the Internet and accessibility make these personal

devices an almost mandatory tool in our modern society, connecting everything and

everyone.

The pervasive nature of these devices and their extended variants, such as tablets and

other mobile platforms, gives an incentive for developers to create apps that allow for a

wide array of uses, from social networks to mobile games and provide an exceedingly

costumizable experience, adapted to each and every users’ needs if they so wish. These

apps are available on online app stores, to which any app developer can submit their own

creations and make them accessible to anyone, as long as they pass the app stores’ own

publishing requirements.

Since most apps end up dealing with large amounts of personal data, like private

information, photos, and even physical location through gps, they become easy targets

for developers with malicious intents. By creating apps that are seemingly innocent on

the surface, these developers can exploit user given permissions to perform a myriad of

harmful actions for their own benefit. This can come in the form of banking details or

leveraging personal information to reinforce another attack vector.

With Android being the most used mobile platform, its app stores are of course the

most targeted. Given the sheer number of malware apps published, the main concern

becomes how to filter through all these apps. Since manually scanning all of this digital

content is nearly impossible and current malware detection methods can still be improved,

it becomes paramount then, to research which kinds of malware detection methods are

most effective and what makes them so, in order to protect users from being exposed to

these kinds of malware and as such create a more user-safe environment for the global

mobile community.

Introduction

2

1.2. Motivation and theme relevance

Smartphones, tablets, and other mobile platforms have long been integrated into our

daily lives, due to the factors mentioned above. These personal computing devices,

surpassing 1 billion units sold in 2014 (Statista 2020), have fueled the development of

complex mobile malware. More than seven million new malware samples have been

accumulated by McAfee in 2018 alone (McAfee 2019).

With Android taking the place of the most used mobile Operating System (OS), with

approximately 76% of the global market share as of November 2019 (StatCounter 2019),

due to its open-source approach and a free of charge Integrated Development

Environment (IDE), it gives developers an easier point of entry to its platform than its

main competitor, the iOS (StatCounter 2019), which has especially rigorous approval

policies and requires developers to use proprietary hardware and software in order to

develop and publish iOS apps, placing a higher barrier to entry on those who wish to

develop iOS apps. The Android platform also allows its users the ability to install apps

from Google unverified sources, that may be accessible through the Internet as well as

third-party app stores.

Joining the Android's platform ease of use with the fact that these apps handle

substancial volumes of personal and sensitive assets (e.g., financial or messaging apps)

portrays the mobile platform as an alluring target for malware developers. In 2013 a report

showed that attackers can earn up to 12,000 USD per month with mobile malware (The

Register 2013). The increase of mobile malware can be associated with the development

of new technologies providing new access points for profitable exploitations

(Spreitzenbarth and Freiling 2012, Nigam 2015). In addition, an increase in black markets

that profit by selling system vulnerabilities, malware source code and malware

development tools, has contributed to a bigger incentive for profit driven malware

(InformationWeek 2014). Due to the risks of malware developers bypassing safeguarding

mechanisms, further improvements must be made to existing methods.

To protect its users, the main Android App Stores have continuously developed

malware detection methods to filter through submitted apps and block those deemed

malicious. They achieve this by using either static or dynamic malware detection

methods, or in some cases, a conjunction of both, to scan the apps’ intent and behaviours

to ascertain if it should be classified as malware or not. Unfortunately, each of these

methods suffer from some form of exploit and can be bypassed with sufficient knowledge.

Introduction

3

For example static analysis detectors, which rely on the analysis of the application’s code

without running it, mean that they are vulnerable to code obfuscation techniques that

remove or limit code access, such as string encryption or renaming of methods and

variables (Moser, Kruegel and Kirda 2007). And similar to it, the dynamic analysis, which

focuses on examining the applications’ behaviour during runtime, remains vulnerable to

being hindered or bypassed with native code (e.g., non-Java Code compiled to run with

an Android Central Processing Unit (CPU)) or reflection (e.g., modification of interfaces,

classes and methods during execution) (Xu, Hassen and Ross 2012), and in some cases,

malicious applications which can detect emulated environments and restrain their harmful

processes accordingly (Xu, Hassen and Ross 2012), in order to circumvent detection.

Even by combining both methods, hybrid analysis still fails to address these issues

completely. Furthermore, as malware keeps evolving to constantly find new exploits and

attack vectors, many of these malicious applications will keep avoiding whichever

detection strategies mobile market operators put in place.

1.3. Research questions and objectives

In this dissertation the aim is to study the effectiveness of several Machine Learning

(ML) approaches in large scale mobile malware detection in the Android environment

and their ability to keep up with the proliferation of new malware and its ever evolving

trends.

This work is part of the AppSentinel project, which proposes to develop a cloud-based

technology for Android app stores to proactively prevent malware circulation through app

behavioural pattern analysis. This project also intends to test applications regarding good

practices in secure mobile software development, which then can lead to educational

feedback to app developers. Finally, the research and development of a supervised ML

system to efficiently detect malicious applications is planned. This last part is where this

dissertation is set, continuing the research and development of the supervised ML system

previously tested in (Lopes 2020) where malware classifiers were trained on features

obtained through static analysis. To facilitate the integration of this work in the context

of this project, several contributions were made, namely in the writing of technical reports

and two research papers (Duque, et al. 2020, Duque, et al. 2020) were developed for

submission regarding the work described in Section 4.1 and Chapter 5, respectively.

Introduction

4

To achieve the best possible approach of feature and algorithm selection and develop

models that can distinguish malware from benign apps, several methods of data analysis,

data preprocessing and ML techniques, are tested, to produce optimal classifiers trained

to differentiate Android malware apps from benign ones and assess their performance in

this task. This objective is divided into several research questions to better address the

overall proof of concept as follows:

• How can user feedback be used for malware detection systems?

• Which user generated data is more relevant to perform malware detection using

ML methods?

• Can Android app analysis tools produce relevant information to train malware

detection systems?

• What should be the best approach to retrain the system to maintain high

performance over time?

The first two questions are relevant to understand if there is knowledge to be extracted

from the feedback users generated in an app store environment that can be used to enhance

a functioning malware detection system, and to what extent is this knowledge helpful.

Understanding which features to use can also be beneficial to better understand the

relationship between feedback and malware.

The third research question focuses on the usage of Android app analysis tools and

leveraging its results to aid malware detection. Converting the outputs these tools provide

into numerical data to be statistically analysed, processed and fed into the machine

learning classifiers, can provide useful insights to create more efficient models.

To answer the fourth and final question, the proposed system must be subject to

testing with data from the months that follow the training data and its performance

observed. This way, the feasibility of the system to adapt to new malware trends can be

examined and optimized, or, if it fails to do so, what can be done to allow such adaptation.

In order to obtain a solution for these research questions 1,864 experiments were

made, resulting in 126,400 algorithms trained and approximately 936 hours or 39 days of

computing power.

Introduction

5

1.4. Methodological approach

This dissertation follows the Cross-Industry Standard Process for Datamining (CRISP-

DM) (Chapman, et al. 2000) methodology in order to build the classification models, .

This open standard provides a robust and well-proven structured approach to designing a

data mining project, from data collection and preparation, to model development and

implementation. Given its powerful flexibility, practicality, and its usefulness, it is

utilized in various fields and industries. As it can be seen in Figure 1, CRISP-DM defines

the six core procedures that serve as guidelines to develop data mining projects: business

understanding, data understanding, data preparation, modelling, evaluation and finally,

deployment. This section outlines these procedures in depth, with the exception of the

deployment procedure which is beyond the scope of this research.

Figure 1 - Phases of the CRISP-DM reference model (Chapman, et al. 2000)

The first step in data mining projects is Business Understanding, where the focus is on

leveraging the business perspective to better understand the project requirements and

objectives to develop an initial plan to meet the desired objectives. Following this, the

Data Understanding phase starts by collecting the data necessary to the project and

Introduction

6

proceeds by utilizing statistical and visual data analysis techniques on the data collected

to scrutinize and discover some insights that can form assumptions to better guide the

succeeding steps. The Data Preparation phase encompasses the necessary procedures,

such as feature selection, transformation, and data cleaning, used to build the data set that

will be fed into the machine learning models. The Modeling phase is comprised of the

selection and application of the chosen modelling techniques, as well as their respective

parameter calibration. Finally, in the Evaluation stage the primary goal is to evaluate and

review the results obtained so far and the steps taken to reach them, considering the

objectives that where set before.

1.5.Structure and organization of the dissertation

This study is composed of the following 4 additional chapters:

• In Chapter 2, an overview of the currently defined state of the art for

automated malware detection methods is presented, along with a more

detailed analysis on the usage of features generated by user feedback, static

code analysis and dynamic code analysis respectively.

• In Chapter 3, the methodology for this study is outlined, with a

comprehensive analysis on the datasets utilised, data analysis, data

preparation and data processing alongside an overview of the algorithms used,

their implementation and the metrics by which they are evaluated.

• In Chapter 4, the analysis of the obtained results for the full datasets is

presented according to the methodology that was deemed appropriate, joined

by a broad comparison of their respective results. A small experiment

analysing the impact of malware to goodware ratio is also presented.

• In Chapter 5, the study of the model performance decay is presented, by

training the best performing model, from the previous chapter in each

category, on different time frames and testing it against the following monthly

periods.

Introduction

7

• Finally, in Chapter 6, conclusions are drawn from this study, as well as some

recommendations to overcome its limitations, alongside some possible

proposals to improve its application in future works.

Literature Review

8

Chapter 2 – Literature Review

In this chapter a detailed overview of the malware detection systems currently in use

is given, alongside some of the tools and processes employed, which are more impactful

and useful to this study.

2.1. Machine Learning for Malware Detection

2.1.1. Large Scale Automated Detection

Large scale mobile malware detection methods currently rely on a mix of automated

detection tools and manual malware detection methods. The former usually depends on

anomaly-based detection schemes to detect unwanted behaviours (Google 2018) based

on known patterns, while the latter usually relies on the usage of code analysis tools like

Androguard (Desnos 2012), Droidbox (Lantz 2011) and Kirin (Enck, Ongtang and

McDaniel 2009), among many others, to reveal malicious patterns or ascertain the level

of risk an app might pose. Although manual detection methods are used to detect novel

malware variations and distinguish between real malicious apps and poorly developed

ones (greyware), they are rather resource intensive and, in most cases, still demand the

intervention of a security analyst (Enck and McDaniel 2010). Therefore, to maintain a

scalable malware detection framework, App stores have the need to continuosly develop

and fine tune these automated methods, so that they can adapt to the ever-emerging

malware trends.

2.1.2. Regarding Data Collection

To effectively train ML algorithms, large amounts of data are usually required. Most

of the works on the subject resort to application repositories (Arp, et al. 2014, Chakradeo,

et al. 2013, Deo, et al. 2016) , or build the datasets indiscriminately with the help of store

scrapers and Antivirus products (Roy, et al. 2015, Singh, Walenstein and Lakhotia 2012,

Allix, et al. 2014). Although app repositories usually provide labeled datasets of known

benign and malicious apps, alongside somewhat large and complex feature vectors for

each app, they are built upon previously detected applications that are sometimes several

years old or are not updated to take into account new malware that had previously evaded

Literature Review

9

detection. While the market downloaded apps do not suffer as much from the old data

predicament, they cannot be reliably labeled with Antivirus products since most known

malware has already been filtered out by the app store and/or the Antivirus products

haven't yet caught up with the most recent malware trends. Nonetheless, these are the

options available to build malware datasets.

ML approaches rely heavily on the quality of the input data, therefore, making the best

use of the available data is essential. However, many obstacles arise when composing a

train/test dataset that can maximise algorithm performance while avoiding biases and

other pitfalls. As mentioned before, a classifier that learns from a dataset that contains

dated apps can lead to inferior results when applied in an up to date realistic scenario.

Another issue that comes up frequently is the malware to goodware ratio. Most works

either try to mimic a realistic less than 1% of malicious apps (Google 2018) in their data

set (Sahs and Khan 2012, Peiravian and Zhu 2013) or try to maintain an equal ratio of

malware to goodware (1:1) (Roy, et al. 2015, Deo, et al. 2016, Chen, et al. 2016) . Both

approaches have diferent pitfalls. The former, while allowing training and testing the

models in a more realistic environment can lead to a goodware classification bias, due to

the highly imbalanced dataset. Meanwhile, the latter can avoid this issue by balancing

both classes, however, this can lead to a misrepresentation in a real-world application.

Lastly, the data itself can have noise built in due to the nature of malware, as there are

malicious apps that have managed to evade detection (e.g., adware) as well as benign

apps that have security flaws and might be considered potentially harmful apps (PHA).

2.2. User Feedback Analysis

Very little has been done with user feedback regarding malware detection. For

example, WHYPER (Pandita, et al. 2013), focused on processing app market metadata,

such as application descriptions, to examine whether the description provided any

indication as to why the application needed certain permissions. Nonetheless, parallels

can be drawn from other uses in the customer feedback analysis domain such as online

reviews for hotels (Antonio, et al. 2018), restaurants (Kiritchenko, et al. 2014), and e-

commerce providers (Kiritchenko, et al. 2014). With app store users being able to post

their feedback regarding their downloaded apps, via ratings, comments, and other sorts

Literature Review

10

of flags, this can potentially be used to help malware detection methods by providing

more features to be analysed.

Although structured information, like ratings and flags, can easily be added as features

to be used by machine learning algorithms, unstructured information like comments need

to be processed first. This can be achieved through Natural Language Processing (NLP)

techniques like sentiment analysis (Eshleman and Yang 2014, Forte and Brazdil 2016),

and opinion mining (Petz, et al. 2013). However, literature on non-social media complaint

analysis is considerably scarce, mainly due to the fact that such data is typically not

publicly available (Filgueiras, et al. 2019). In (Ordenes, et al. 2014), a framework is

proposed to analyse customer experience feedback, using a linguistics-based model, by

identifying activities resources and context, to automatically distinguish compliments

from complaints.

Traditional approaches to text categorization employ feature-based sparse models,

using bag-of-words and Term Frequency-Inverse Document Frequency (TF-IDF)

encoding (Filgueiras, et al. 2019). More recent techniques, such as word embeddings

(Mikolov, et al. 2013) and recurrent neural networks (RNN) (Elman 1990), have also

been used in complaint classification.

2.3. Static Analysis

Static analysis is a detection method which consists of examining a program’s code

without its execution. In the case of the Android environment this analysis also takes into

consideration other components that go beyond the code itself, most notably the

AndroidManifest file, which allows for a more thorough examination. Theoretically, this

method can unveil every possible execution path, however, it suffers from several

drawbacks (Tam, et al. 2017). The major drawback is the vulnerability to obfuscation

techniques, that remove or limit code access (Moser, Kruegel and Kirda 2007), such as

string encryption or renaming methods and variables.

Other drawbacks include the injection of non-Java code, network activity, and the

modification of objects at runtime which are outside the scope of static analysis as they

are only visible during execution (Tam, et al. 2017). Alongside these vulnerabilities is

also the fact that free alternative code compilers mean that signature-based methods are

incompatible with android. Therefore, most android static analysis either focuses on the

Literature Review

11

android package (APK) bytecode, such as DroidMOSS (Zhou, et al. 2012), that uses fuzzy

hashing to leverage small fingerprints from the extracted instruction sequences therefore

localizing altered code, or its APK components, such as the AndroidManifest.xml, which

states permissions, package name, version, referenced libraries and app components, like

Droidmat (Wu, et al. 2012) and PUMA (Sanz, et al. 2013) that leverage machine learning

algorithms to classify apps by their permissions. And finally, the APK classes.dex file,

which contains all Android classes compiled into a dex file format, compatible with the

Dalvik virtual machine.

2.4. Dynamic Analysis

In contrast to static analysis, dynamic analysis executes a program and observes the

results (Tam, et al. 2017). Its main downside is the limited code coverage, since only one

path can be followed each time. However, this can be mitigated by exploiting multiple

execution paths (Brumley, et al. 2007, Chipounov, Kuznetsov and Candea 2011, Moser,

Kruegel and Kirda 2007). Given that android apps are designed for user interaction, user

behaviours need to be emulated via the interface, received intents or with automatic event

injectors (Azim and Neamtiu 2013, Machiry, Tahiliani and Naik 2013, Mahmood,

Mirzaei and Malek 2014). For example, in order to stimulate applications, DynoDroid

(Machiry, Tahiliani and Naik 2013) was developed to simulate real user interactions from

collected user data, such as screen tapping, long pressing and dragging, to find bugs in

Android apps.

Since the app is running during analysis, many features can be gathered from different

architectural layers (e.g., hardware, kernel, app, or OS) to examine its behaviour.

However, since malware is running as well, it can tamper with the analysis or even supress

its malicious behaviour if it detects an emulated environment. While in-the-box analysis

gathers data on the same privilege level as the malware, meaning that it can access

memory structures and high OS-level data easily, it is vulnerable to being attacked or

bypassed, with native code (e.g., non-Java Code compiled to run with an Android Central

Processing Unit (CPU)) or reflection (e.g., modifying methods, classes and interfaces

during runtime) (Xu, Hassen and Ross 2012). Meanwhile, out-of-the-box analysis, like

DroidScope (Yan and Yin 2012) and CopperDroid (Tam, Khan, et al. 2015), manage to

emulate android through a VM, and so, are able to provide complete control and oversight

Literature Review

12

of the Android environment. However, malware can counter emulation by detecting false,

non-real environments and alter its behaviour in order to evade analysis.

2.5. Hybrid Analysis

By combining static and dynamic analysis, hybrid methods can increase robustness,

monitor edited apps, increase code coverage, and find vulnerabilities (Tam, et al. 2017).

By implementing both methods sequentially, certain drawbacks can be limited. For

example, SmartDroid (Zheng, et al. 2012), EvoDroid (Mahmood, Mirzaei and Malek

2014) and in (Spreitzenbarth, Freiling and Echtler, et al. 2013), the authors managed to

increase code coverage by using static analysis to find all possible activity paths in order

to guide dynamic analysis through them. Other detectors, like (Bläsing, et al. 2010), use

static analysis to estimate the app’s risk before dynamically logging its system calls with

kernel-level sandboxing.

Alternatively, by collecting features through static and dynamic analysis, machine

learning algorithms can be trained to detect malware with a large enough dataset. In

(Wang, Qiu and Zhao 2018), several machine learning classifiers were trained on a dataset

composed of a binary feature vector for each app, where features were extracted using

various forms: statically through the apps permission system and API calls, with reverse-

engineering tools Baksmali (JesusFreke 2009) and Androguard (Desnos 2012);

dynamically, through virtualization, with an automated test tool called monkey (Android

Developers 2016); and through malicious behaviour monitoring, using DroidBox (Lantz

2011). Similarly, in (Liu, et al. 2016), machine learning algorithms are also trained on a

binary feature vector created for each app. The main difference being the employment of

the Android Debug Bridge (ADB) to execute apps on the device while connected to a

computer, instead of executing them on a virtualized environment.

2.6. Closing Remarks

Given the vast research done on this subject, the works presented in this section were

selected as an overall representation of the most notable features and drawbacks in each

category. This work does not intend to address the detailed intricacies of the various

analysis methods but rather the use of their respective results to train ML algorithms in

the most effective manner to better classify malicious applications, and afterwards test

Literature Review

13

their effectiveness in retaining classification performance over time as new data becomes

available. Table 1 presents a systematization of the noteworthy works presented above.

Literature Review

14

Table 1 – Literature Review Summary

Study Analysis Detector Sample Source
Sample

Size

Malware

Ratio
Method Summary

(Arp, et al.

2014)
X X

Google Play and

MalGenome
129,013 4% Static

The DREBIN framework leverages features obtained from static code analysis and the manifest file

to train a SVM classifier which detects 93.9% of the malware samples with a false positive rate of 1%.

(Chakradeo

, et al.

2013)

 X
Google Play, Contagio

and MalGenome
15,620 5% Static The MAST framework utilises Multiple Correspondence Analysis (MCA) to rank applications by

their potential to exhibit malicious behaviour.

(Deo, et al.

2016)
 X

Marvin, McAfee,

MalGenome and Drebin
124,190 50% Static

This framework proposes the use of Venn-Abers predictors for assessing the quality of binary

classification tasks to identify antiquated models.

(Roy, et al.

2015)
X

Google Play, VirusShare

and Arbor Networks
1,019,000 Several Static

This study tested several differing experimentations regarding the use of ML classifiers to detect

malware based on static analysis.

(Singh,

Walenstein

and

Lakhotia

2012)

X Unnamed AV Company 4,173 100% Static

This study tries to track malware concept drift through similarity of byte 2-grams and mnemonic 2-

grams.

(Allix, et

al. 2014)
 X

Google Play, Appchina,

1Mobile
206,237 30% Static This study demonstrates the relevance of historic coherence in the selection of datasets.

(Sahs and

Khan

2012)

 X Unnamed Source 2,172 4% Static

This framework demonstrates the usage of machine learning-based malware detection systems for the

Android operating system. By using Permissions and Control Flow Graphs as features to train a SVM

model.

(Peiravian

and Zhu

2013)

 X Unnamed Source 1,860 32% Static

In this study the authors used APKs Permissions and API calls to train three different machine learning

classifiers: SVM, Decision Trees and Bagging. And compared results on the algorithms trained with

different feature combinations.

(Chen, et

al. 2016)
 X

MalGenome, Mobile-

Sandbox
6,000 50% Static

This study used syntax-based and semantics-based features to train several classifiers, reporting na

improved robustness to classifier performance when semantics-based features are incorporated in

training as compared to syntax-based features.

(Pandita, et

al. 2013)
X Google Play 581 Unknown NLP

WHYPER focuses on persmissions for a given app and inspects whether or not the app's description

provides details as to why the app needs the permission.

(Wu, et al.

2012)
 X

Google Play and

Contagio
1,738 13% Static

DroidMat studies the impact of different feature compositions on the model performance of two

classifiers, KNN and NaïveBayes.

(Sanz, et

al. 2013)
 X

Google Play and

VirusTotal
606 40% Static

The PUMA framework focuses on the usage of permissions to train several different machine learning

classifiers.

Literature Review

15

Table 1 (Continued) – Literature Review Summary

Study Analysis Detector Sample Source
Sample

Size

Malware

Ratio
Method Summary

(Brumley, et al.

2007)
X Unnamed Source - - Dynamic

The BitScope framework prosposes several techniques to extract behavioural

information through an emulated environment.

(Chipounov,

Kuznetsov and

Candea 2011)

X - - - Dynamic

The S2E platform performs in-vivo multipath analysis of systems through the

combination of virtualization, dynamic binary translation and symbolic execution

to perform a behaviour analysis.

(Moser, Kruegel

and Kirda 2007)
X

Unnamed AV

Company
308 100% Dynamic

This study presents a system that explores multiple execution paths by letting the

program fully execute each path and reverting to checkpoints placed along the way.

(Azim and

Neamtiu 2013)
X Google Play 25 - Dynamic

The A3E framework presents two novel approaches to app exploration, Targeted

Exploration and Depth first that focus on the events triggered during GUI

exploration.

(Machiry,

Tahiliani and

Naik 2013)

X Google Play 50 - Dynamic

The Dynodroid framework presents a practical system for generating relevant

inputs on mobile apps with a novel "observe-select-execute" approach,

significantly automating task testing.

(Xu, Hassen and

Ross 2012)
X Lisvid 3,189 - Dynamic

The Aurasium framework is able to detect attempts by multiple applications to

collaborate and implement a malicious logic on critical resources.

(Yan and Yin

2012)
X Unnamed Source 2 100% Dynamic

DroidScope is a dynamic binary instrumentation tool that rebils two levels of

semantic information: OS and Java. API tracing, native instruction tracing, Dalvik

instruction tracing and taint tracking are already core components.

(Tam, Khan, et

al. 2015)
X

Contagio, MalGenome

and McAfee
2,986 100% Dynamic

The CopperDroid framework uses VMI-based dynamic system call-centric

analysis to describe the application behavior

Literature Review

16

Table 1 (Continued) – Literature Review Summary

Study Analysis Detector Sample Source Sample Size
Malware

Ratio
Method Summary

(Zheng, et al.

2012)
X X Unnamed Source 7 100% Hybrid

SmartDroid is a framework that combines static and dynamic analysis to

automatically reveal UI-based trigger conditions. It uses static analysis to build

Call Graphs in order to guide the dynamic analysis towards the sensitive APIs.

(Mahmood,

Mirzaei and

Malek 2014)

X X F-Droid 110 - Hybrid

Evodroid presents a novel evolutionary testing technique that preserves and

promotes the genetic makeup of individuals in the automated testing search

process.

(Spreitzenbarth,

Freiling and

Echtler, et al.

2013)

X X

Google Play,

VirusTotal and other

Unnamed sources

183,500 >1% Hybrid

This study proposes the usage of static and dynamic analysis to detect malicious

behaviour. Most notably logging all performed actions including those

stemming from native API calls.

(Bläsing, et al.

2010)
X X Google Play 151 >1% Hybrid

The AASandbox framework uses both static and dynamic analysis to

automatically detect suspicious applications. Static analysis scans the package

for malicious patterns without installing it, while the dynamic analysis

implementation is placed in kernel space and hijacks system calls for further

analysis.

(Liu, et al. 2016) X X
Wandoujia and

MalGenome
1,000 50% Hybrid

This study proposes a hybrid scheme that submits applications through both

analysis methods and builds several classifiers with the features extracted from

both methods.

Methodology

17

Methodology

18

Chapter 3 – Methodology

The focus of this chapter is on describing the framework designed to test the proof of concept

of malware detection using different types of data to train the algorithms. Figure 2 shows the

framework layout. The main objective is to show that it is possible to detect malware apps using

features extracted from user feedback data, static code analysis, and dynamic code analysis.

Figure 2 - Prpoposed Framework Layout

This framework is then divided into those three sections respectively, using the same pipeline

for each. This framework was developed in the continuation of the AppSentinel project, in (Lopes

2020) a prototypical pipeline was already tested for its potential use regarding the usage of features

obtained through static code analysis to train machine learning classifiers, obtaining similar results

to those in Chapter 4.2.

The Data Processor segment is composed of the various transformative and preparatory

techniques applied onto the various datasets, before being fed into the Classifier Model

Development segment. Here the various machine learning classifiers are trained on the previously

Methodology

19

prepared data and the best performing ones are select for comparison. These segments are detailed

in Chapter 3.

Another study followed in order to test the ability of the models generated by this framework

to adapt to temporal changes in the malware patterns, by training them with different sizes of

historically coherent datasets and testing them on the months that followed those same datasets.

This way an analysis was made on the effectiveness of these models to adapt in an unforeseen

environment with data from “future” sets relative to those used in training and validation. This

procedure and its results are detailed in Chapter 5.

3.1. Datasets

Here the complete datasets for each of the categories are examined. Their feature composition

further inspected in order to maintain the most significant ones and remove the ones that are less

contributive to the overall system performance. This is achieved by means of correlation analysis

between the features. This helps ensure that the models are not being trained on redundant and

unneeded information, therefore, reducing the overall time required to train them as well as

increasing correct detection rate.

As mentioned before, in (Lopes 2020) the possibility of using features obtained through static

analysis to train machine learning classifiers to detect malicious applications had already been

tested, however, in order to test the reproducibility and replicability of his methods and validate

his findings, it was decided to repeat the same methods using a similar dataset to train the models.

The results in Chapter 4.2 show similar findings to those in (Lopes 2020), proving that his findings

contribute to the scientific knowledge in this field.

3.1.1. User Feedback Dataset

The first dataset used was the user feedback data. This historically coherent dataset originated

from Aptoide’s repository and is comprised of 2332 applications and their respective feedback,

from the beginning of October 2019 to the end of January 2020. Table 2 displays a more detailed

breakdown.

Methodology

20

Table 2 – User Feedback Dataset sample distribution

 2019 2020
Average

 October November December January

Number of

samples
586 141 450 1155 583

Malware samples 49 64 79 396 147

Goodware

samples
537 77 371 759 436

Malware Ratio 8% 45% 18% 34% 26%

This dataset was constructed from apps submitted to the Aptoide’s app store during the

mentioned time period, and each app was labelled with a target classification of Trusted or Critical,

indicating the classification of Goodware or Malware respectively, which was given by Aptoide’s

internal security audit.

Besides the target feature, this dataset included the following other features detailed in Table 3.

Table 3 – User Feedback Dataset Feature description

Feature Description

MD5 Application MD5 Checksum

Package Android Package which the application belongs to

Date Date when the application was analysed and classified as Goodware or Malware

1 Star Rating Number of 1 Star Ratings

2 Star Rating Number of 2 Star Ratings

3 Star Rating Number of 3 Star Ratings

4 Star Rating Number of 4 Star Ratings

5 Star Rating Number of 5 Star Ratings

Good Flag Number of "Good" Flags users gave

Virus Flag Number of "Virus" Flags users gave

Fake Flag Number of "Fake" Flags users gave

License Flag Number of "Needs License" Flags users gave

Comments All the comments users gave to the application

Classification Target application label - Trusted or Critical

This dataset has the distinctive characteristic of allowing to observe the feedback users gave to

malicious apps before these were detected and swiftly removed from the app store. With this twist,

the machine learning classifiers have the possibility of detecting certain patterns that might allow

for malware classification. Because nonnumerical features like MD5 and Package serve only as

Methodology

21

identifiers, they were removed. The date feature was only useful into dividing the apps into

monthly groups, so it was removed as well. Finally, due to being out of the scope of this study, the

comments were removed as well.

Table 4 shows the statistical distribution of this data set. A few things are worth noting. Firstly,

that each application has at least one value for each feature, demonstrated by the count value being

equal to the number of apps. Secondly, the mean represents the mean value for each feature across

the whole dataset. Globally, there was an average of 1046 ratings and 9 flags per application.

Thirdly, the standard deviation represents the value dispersion or by how much does each feature

vary from the mean. Fourthly, the percentiles represent the number of observations that can be

found under each percentage, with 50% being the median. Finally, the minimum and maximum

values represent their respective equivalents in each feature, for example the 5 Star Rating has a

maximum value of 353,411 which means that the maximum number of 5 Star Ratings an

application received was 353,411.

Table 4 – User Feedback Dataset Feature statistics

Features Statistics

Feature
Star Ratings Flags Target

1 2 3 4 5 Good Virus Fake License Classification

Count 2332 2332 2332 2332 2332 2332 2332 2332 2332 2332

Mean 554.5 151.2 1,121.3 609.1 5,282.7 8.7 3.9 3.8 11.7 0.25

Standard

Deviation
4,404.8 1,069.2 8,088 3,399.5 37,987.3 56.4 19.3 22.8 140.7 0.43

Minimum 0 0 0 0 0 0 0 0 0 0

25% 0 0 0 0 1 0 1 0 0 0

50% 2 0 2 1 10 1 1 0 0 0

75% 38 10 63 40.2 361 4.2 2 2 1 1

Max 37,049 9,859 74,968 29,994 353,411 1,332 618 638 4125 1

Furthermore, we can see a detailed statistical feature distribution which reveals a high degree

of deviation from the mean alongside varying maximum values. These are explained by the fact

that a small percentage of apps reach high levels of popularity, therefore, receive more user

feedback, wether it be favourable or not. A certain level of correlation can be observed between

all ratings, the value ranges for each of the feature groups are similar. To further examine this

Table 5 presents a correlation matrix.

Methodology

22

Table 5 – User Feedback Dataset Feature correlation matrix

Correlation Matrix

Features
Star Ratings Flags

1 2 3 4 5 Good Virus Fake License

Star

Ratings

1 1.000 0.952 0.850 0.813 0.882 0.165 0.085 0.021 0.114

2 0.952 1.000 0.860 0.908 0.895 0.130 0.062 -0.005 0.056

3 0.850 0.860 1.000 0.664 0.961 0.170 0.068 0.000 0.073

4 0.813 0.908 0.664 1.000 0.755 0.059 0.040 -0.018 0.051

5 0.882 0.895 0.961 0.755 1.000 0.165 0.070 -0.006 0.063

Flags

Good 0.165 0.130 0.170 0.059 0.165 1.000 0.622 0.588 0.536

Virus 0.085 0.062 0.068 0.040 0.070 0.622 1.000 0.653 0.409

Fake 0.021 -0.005 0.000 -0.018 -0.006 0.588 0.653 1.000 0.404

License 0.114 0.056 0.073 0.051 0.063 0.536 0.409 0.404 1.000

Table 5 shows that the numeric ratings have a high degree of correlation between themselves.

The same can be said to a lesser extent about the symbolic flags. Although this presents itself as

redundant information, their relation to the opposing feature group shows very low levels of

correlation, therefore, allowing the models to interpret this as relevant information. This will be

demonstrated in the exploratory data analysis sub chapter.

3.1.2. Static Analysis Dataset

The second dataset utilized contained the static code analysis results of 131,429 applications by

analysing their AndroidManifest.xml and DEX files with the Androguard (Desnos 2012) tool,

which contain essential information about the app to the Android build tools and the Android OS.

Among many attributes, the manifest file declares the following: the app’s package name and md5

checksum as identifiers; app components, which include all activities, services, broadcast receivers

and content providers, device configurations it can handle and intent filters; the permissions that

the app needs; the hardware and software features the app requires.

This dataset contains apps from the beginning of October 2019 to the end of March 2020. Table

6 displays a more detailed breakdown. Much like the previous dataset the applications were

labelled with a target classification of Trusted or Critical, indicating the Goodware or Malware

Methodology

23

classification respectively, which was given by Aptoide’s internal security audit. Besides this

target feature the dataset also included the following other features detailed in Table 7.

Table 6 – Static Analysis Dataset sample distribution

 2019 2020
Average

 October November December January February March

Number of

samples
21,934 24,158 32,757 13,923 16,170 22,487 21,905

Malware samples 9,889 10,524 14,918 5,550 5,558 8,409 9,141

Goodware

samples
12,045 13,634 17,839 8,373 10,612 14,078 12,764

Malware Ratio 45% 44% 46% 40% 34% 37% 41%

This dataset allows for a statistical analysis of the app’s resources usage and requirements.

Because the MD5 checksum serves only as an identifier, this feature was removed. The rest of the

features represent the numerical representation of each occurring feature to use as model inputs.

Table 7 – Static Analysis Dataset Feature description

Feature Description

MD5 Application MD5 Checksum

Time Time it took to analyse the app's files

Size Size of the application in bytes

Permissions Number of permissions the app needs in order to run

Activities Number of activity components the app can execute

Services Number of Services. Long operations usually run in the background

Receivers Number of android-name attributes of all receivers

Opcodes Number of Dalvik specific opcodes

Res. Strings Number of additional resource files

Smali Strings Number of smali (non-Java code) strings

API Package Number of API classes the app needs to run

System

Commands
Number of System commands the app executes

Intents Number of intent messages to activate activities, services, or receivers

Classification Target application label - Trusted or Critical

Table 8 shows a detailed statistical distribution of each feature from this data set. This set

contained 34,172 malware labelled applications, which represented approximately 26% of the total

dataset. Similarly to the previous dataset, the maximum values of every feature far exceeded the

mean values, usually by one or two orders of magnitude. This value disparity can cause certain

algorithms to learn incorrect weights due to big value differences, this will be addressed in section

3.3.

Methodology

24

Table 8 – Static Analysis Dataset Feature statistics

SD – Standard Deviation, Min – Minimum, Max - Maximum

Features Statistics

Feature Permissions Activities Services Receivers Opcodes
Resource

Strings

Smali

Strings

API

Packages

Sys

cmd
Intents

Count 131429 131429 131429 131429 131429 131429 131429 131429 131429 131429

Mean 15 33.2 10.3 7.1 563374 546.3 30181 148515 135.8 16.7

SD 17.2 67.9 18.3 9.5 265373 1047.6 30042 109331 156.6 46.4

Min 0 0 0 0 0 0 0 0 0 0

25% 6 6 2 1 398063 70 12328 77538 41 3

50% 11 15 6 4 609000 168 21135 129317 78 8

75% 18 37 13 9 756225 552 41301 199498 186 18

Max 326 6198 488 148 3614313 65510 738219 2265619 4677 5031

Table 9 shows the correlation matrix for the static analysis dataset, to better understand the

relationship between each feature and their correlations. In it, it is shown that this set of features

presents low correlations values with the exceptions of certain functions like services, activities,

and receivers, as well as code execution like smali Strings, API packages, and system commands.

This is possibly due to the function group they belong to, leading to similar usage. So far none of

these features present themselves as redundant information, and therefore, are used as input to

train and validate the models.

Table 9 – Static Analysis Dataset Feature correlation matrix

Correlation Matrix

 Permissions Activities Services Receivers Opcodes
Resource

Strings

Smali

Strings

API

Packages

System

cmd
Intents

Permissions 1.00 0.50 0.69 0.64 0.24 0.40 0.42 0.40 0.35 0.45

Activities 0.50 1.00 0.62 0.60 0.19 0.44 0.43 0.42 0.41 0.29

Services 0.69 0.62 1.00 0.79 0.24 0.37 0.42 0.40 0.36 0.49

Receivers 0.64 0.60 0.79 1.00 0.31 0.48 0.52 0.48 0.46 0.47

Opcodes 0.24 0.19 0.24 0.31 1.00 0.29 0.53 0.61 0.47 0.16

Res Strings 0.40 0.44 0.37 0.48 0.29 1.00 0.63 0.60 0.51 0.38

Smali

Strings
0.42 0.43 0.42 0.52 0.53 0.63 1.00 0.89 0.87 0.38

API

Packages
0.40 0.42 0.40 0.48 0.61 0.60 0.89 1.00 0.83 0.36

System

cmd
0.35 0.41 0.36 0.46 0.47 0.51 0.87 0.83 1.00 0.29

Intents 0.45 0.29 0.49 0.47 0.16 0.38 0.38 0.36 0.29 1.00

Methodology

25

3.1.3. Dynamic Analysis Dataset

The third and final dataset utilized contained the dynamic code analysis results of 4866

applications by analysing their runtime behaviour and network usage with the Droidbox (Lantz

2011) and CuckooDroid (Revivo and Caspi 2014) tools alongside static code analysis results from

Androguard (Desnos 2012) previously described. The dynamic analysis aspect of this dataset

allows for a better understanding of malware behaviour by analysing the network traffic generated

and received, file and camera accessed and even cryptographic operations through the Android

API. These behaviour components were examined during the app’s runtime through the usage of

an emulator and extracted to the host machine with the Android Debug Bridge (ADB).

This dataset contains apps from the beginning of February 2020 to the end of July 2020,

encompassing a total of 6 months of app report data. Table 10 displays a more detailed breakdown.

Like the previous two datasets the applications were labelled as being detected malware or not,

but unlike the previous two, this dataset was semi-randomly collected from the Koodous (Koodous

2018) platform during that time frame, where the apps are analysed with the tools mentioned and

expert malware analysts review the analysis results and vote to decide wether the applications are

malware or not. Table 11 displays each feature and their function.

Table 10 – Dynamic Analysis Dataset sample distribution

 2020
Average

 February March April May June July

Number of

samples
347 972 1,093 1,100 900 453 811

Malware samples 176 544 519 550 450 228 411

Goodware

samples
171 428 574 550 450 225 400

Malware Ratio 51% 56% 47% 50% 50% 50% 51%

Methodology

26

Table 11 – Dynamic Analysis Dataset Feature description

Tool Feature Description

Androguard

Displayed Version Android version code

Target SDK

Version
Recommended Android version

Min SDK Version Minimum Android version required

Providers
Number of content providers that manage access the central data

repository

New Permissions Number of new permissions the app requested in order to run

Filters
Number of intent filters that decide the type of intents the components

would like to receive

Activities Number of activity components the app can execute

Receivers Number of android-name attributes of all receivers

Services Number of Services. Long operations usually run in the background

Permissions Number of new permissions the app requests in order to run

URLs Number of URL links in the application

Ads Number of Advertisement components

Installed Apps Number of searches for installed applications

Serial No Serial number

MCC
Number of Mobile Country Code methods, used to identify network

operators

SMS Number of SMS methods used

Phonecall Number of Phonecall methods used

Crypto
Number of cryptographic operatios used (such as encryption or key

generation)

SSL Number of SSL connections

Camera Number of Camera methods used

Dynamic

Broadcast

Receiver

Number of event triggers

IMEI Number of Get device ID Key events

Sensor Number of Sensor events

Run Binary Number of binaries used

CukooDroid

Socket Number of sockets used

HTTP Number of HTTP connections established

Hosts Number of Host adresses

DNS Number of DNS requests

Domains Number of domains accessed

Methodology

27

Table 11 (Continued) – Dynamic Analysis Dataset Feature description

Tool Feature Description

DroidBox

Domains Number of domains accessed

Files Written Number of files written

Files Read Number of files read

Crypto Number of Crypto methods used

Service Start Number of services started

Libraries Number of libraries used

Dexclass Number of processes for dexclass

Send Net Number of network operations sent (HTTP, POST, GET, etc..)

Receive Net Number of network operations received (HTTP, POST, GET, etc..)

Target Classification Target application label - Malware Detected or Not Detected

This extensive feature composition further allows the detection of more complex patterns. Due

to the complex issue of analysing string-based features, like domains accessed, libraries used, and

files read, most of these were turned into string or word counts to facilitate a more statistical

analysis approach, this process is further detailed in section 3.3. Other features were removed due

to serving only as app identifiers, such as SHA256 and MD5 checksums. Lastly others were

dropped because they did not contain any information at all due to being empty for most apps.

Table 9 shows the featurewise statistical analysis of this dataset. Here a detailed statistical

feature distribution can be observed. Similarly to the previous datasets’ statistical distributions,

this one also shows very low standard deviations joined by low maximum values. This is due to

the fact that each application doesn’t need to use all features available in the Android OS, such as

the camera, sending text messages or making phonecalls. One particularity is the Android

displayed version which contains some odd but still valid versions. Figure 3 shows the correlation

between the aforementioned features, due to the elevated number of features a heatmap represented

an easier visual medium to represent their correlation matrix. These features show for the most

part low levels of correlation between themselves, with a few exceptions, most notably between

features related to network associated actions, such as HTTP connections and Host addresses, and

associations between cryptographic methods and Secure Socket Layer (SSL) connections.

Although some of these features reach very high levels of correlation, they were maintained due

to their varying levels of correlation with the other features.

Methodology

28

Table 12 – Dynamic Analysis Dataset Feature statistics

SD – Standard Deviation

Androguard Features Statistics

Feature
Displayed

Version

Target

SDK

Version

Min

SDK

Version

Providers
New

Permissions
Filters Activities Receivers

Count 4,866 4,866 4,866 4,866 4,866 4,866 4,866 4,866

Mean 51,153 22.24 13.39 1.03 0.17 11.74 12.62 5.87

SD 2,913,813 6.99 6.37 2.2 0.59 10 15.43 3.87

Min 0 0 0 0 0 0 0 0

25% 1.1 22 8 0 0 3 8 2

50% 1.2 22 15 0 0 16 10 8

75% 2.1 28 17 1 0 16 13 8

Max 201,809,190 30 29 22 10 135 380 40

Table 12 (Continued) – Dynamic Analysis Dataset Feature statistics

Androguard Features Statistics

Feature Services Permissions URLs Ads
Installed

Apps

Serial

No.
MCC SMS

Count 4866 4866 4866 4866 4866 4866 4866 4866

Mean 4.88 13.39 91.5 0.86 0.19 0.04 2.16 0.19

SD 4.16 9.32 216.54 1.35 0.53 0.23 1.24 0.71

Min 0 0 0 0 0 0 0 0

25% 3 8 43 0 0 0 1 0

50% 5 13 47 0 0 0 3 0

75% 5 15 66 3 0 0 3 0

Max 92 76 1667 6 3 3 7 11

Table 12 (Continued) – Dynamic Analysis Dataset Feature statistics

Androguard Features Statistics

Feature Phonecall Crypto SSL Camera
Dynamic Broadcast

Receiver
IMEI Sensor

Run

Binary

Count 4866 4866 4866 4866 4866 4866 4866 4866

Mean 0.07 2.68 2.72 0.46 2.76 2.6 0.03 2.6

SD 0.33 0.99 0.86 1.19 0.85 1.05 0.23 1.09

Min 0 0 0 0 0 0 0 0

25% 0 3 3 0 3 3 0 3

50% 0 3 3 0 3 3 0 3

75% 0 3 3 0 3 3 0 3

Max 4 9 6 10 7 8 3 11

Methodology

29

Table 12 (Continued) – Dynamic Analysis Dataset Feature statistics

CuckooDroid Features Statistics

Feature Socket HTTP Hosts DNS Domains

Count 4866 4866 4866 4866 4866

Mean 2.77 0.05 0.08 0.74 0.08

SD 0.78 0.7 0.47 4.98 0.48

Min 0 0 0 0 0

25% 3 0 0 0 0

50% 3 0 0 0 0

75% 3 0 0 0 0

Max 6 21 11 116 9

Table 12 (Continued) – Dynamic Analysis Dataset Feature statistics

Droidbox Feature Statistics

Feature Domains
Files

Written

Files

Read
Crypto

Service

Start
Libraries Dexclass

Send

Net

Receive

Net

Count 4866 4866 4866 4866 4866 4866 4866 4866 4866

Mean 0.05 1 1.34 1.85 0.01 0.02 0.3 0.05 0.1

SD 0.38 4.27 3.83 12.86 0.23 0.32 0.52 0.68 1.58

Min 0 0 0 0 0 0 0 0 0

25% 0 0 0 0 0 0 0 0 0

50% 0 0 0 0 0 0 0 0 0

75% 0 1 3 0 0 0 1 0 0

Max 11 44 91 130 10 12 6 20 50

Methodology

30

Figure 3 - Dynamic Analysis Dataset Feature correlation heatmap

Methodology

31

3.2. Exploratory Data Analysis

 This section focuses on describing the exploratory data analysis procedures that

help uncover useful patterns in the data samples. According to (Tukey 1962) these

methods are primarily of a visual nature in order to make analysis easier, more precise or

more accurate. This section is divided into two parts which represent two different

dimensionality reduction approaches: Principal Component Analysis (PCA); and T-

Distributed Stochastic Neighbor Embedding (t-SNE) analysis. For these approaches, the

programming language Python (Rossum 1995) was used in conjunction with Matplotlib

(Hunter 2007) and Scikit-learn (Buitinck, et al. 2013) libraries.

3.2.1. Principal Component Analysis

Due to the large nature of the datasets used, a commonly applied technique to interpret

them is Principal Component Analysis (PCA) (Wold, Esbensen and Geladi 1987).

According to (Jolliffe and Cadima 2016), this technique is one way to perform

dimensionality reduction on such datasets, by trying to reduce information loss and

clarifying readability. This is achieved by creating new variables from the ones available

that are uncorrelated and iteratively maximizing variance.

The following images were accomplished with Python’s (Rossum 1995) Scikit-learn

(Buitinck, et al. 2013) library. Figures 4 to 6 show the first three PCA components of the

user feedback, static analysis, and dynamic analysis, respectively, which are show in three

dimensions for improved readability. These figures show small, isolated clusters of both

malware and goodware, slightly separated from the main cluster. The transparency of

each circle indicates the frequency of apps that fall into that group. This further outlines

the ability of malicious applications to mimic goodware.

In the user feedback cases, the first 3 components managed to explain approximately

76% of the total variance. To be able to explain the total variance in this sample, the PCA

would need 8 components, which is just one less feature than the the available ones. For

the other two datasets, their respective PCA showed that the first 3 components managed

to explain approximately 100% of the total variance.

Methodology

32

Figure 4 – User Feedback datasest first 3 PCA components

Figure 5 – Static Analysis datasest first 3 PCA components

Methodology

33

Figure 6 – Dynamic Analysis datasest first 3 PCA components

3.2.2. T-SNE Analysis

The large complexity of this issue, due to the elevated feature space, required a

different approach more suited for this task of dimensionality reduction. T-Distributed

Stochastic Neighbor Embedding (t-SNE) (Maaten and Hinton 2008) is a more appropriate

approach for large and complext datasets due to its proficiency in embedding high-

dimensional data for visualization in low-dimensional spaces. This algorithm

accomplishes this by forming a probability distribution over object pairs so that similar

objects are given a higher probability while contrasting object pairs are given a lower one.

Then it defines these probabilities in a low-dimensional plot by minimizing the

divergence between the two distributions relative to their positions on the plot.

This approach is known for forming visual clusters from the original data wich are

strongly dependant on the algorithm parameterization. These can appear from non-

clustered data as well and present misleading results. To avoid this pitfall, over 200

parameter combinations were tested for each dataset, most notably between perplexity

and learning rate, avoiding the false clusters by finding the outputs that confirm

convergence patterns.

Methodology

34

Figures 7 to 9 present the exemplary results of the algorithm applied to the three

separate datasets. Here it is shown both two- and three-dimensional perspectives for the

three respective datasets. Contrary to the PCA results, these outputs indicate a clear

presence of easily identifiable malware clusters, most notably in the representation from

the dynamic analysis dataset. However, many malicious samples continue to present

themselves alongside goodware, especially in the static analysis dataset. This clear

definition of some clusters of malware make it expectable that classification models are

able to differentiate clearly at least part of the malware.

Figure 7 – User Feedback t-SNE 2D and 3D comparison

Figure 8 – Static Analysis t-SNE 2D and 3D comparison

Methodology

35

Figure 9 – Dynamic Analysis t-SNE 2D and 3D comparison

3.3. Data Preparation

 To facilitate model application and to improve its performance, the quality of the

data that is fed into them is of crucial importance. This section outlines the methods used

to prepare and process data before applying the machine learning algorithms. To perform

these types of data transformation several tools were used, namely Microsoft Excel and

Python programming language (Rossum 1995) in conjunction with the Pandas

(McKinney 2010), Numpy (Walt, Colbert and Varoquaux 2011), and Scikit-learn

(Buitinck, et al. 2013) libraries.

Since the datasets used are reports produced from analysis tools, their outputs are

already structured and their features well defined. Other than the Koodous reports, for the

dynamic analysis dataset, which had to be converted from detailed JSON files to a single

CSV file, the other datasets were already in Microsoft Excel sheets which made

conversion to CSV a non-issue. As such, invalid data as well as data errors were not

found.

To improve model preformance of the user feedback dataset some outliers were

removed. Due to the elevated popularity of some apps and their features presenting values

in orders of magnitude higher than the rest, the top 0.5% of the goodware applications

was removed, therefore, a total of 2318 remained from the original 2332.

Methodology

36

In order to develop balanced models and reduce their bias to the majority of the sample

population, the user feedback and static analysis datsets were balanced to approximately

1:1 malware to goodware ratio. This was achieved through a random undersample of the

majority class, which in both cases was the goodware class. Although the current

literature does not indicate in this case which malware to goodware ratio provides better

results when applied to a real-world scenario, this procedure was made to circumvent a

high goodware bias from the models during training.

To better utilise the Koodous analysis reports, many features had to be transformed to

be served as input for the models to learn on. Owing to the text based naure of some

features, for example, the specific files read were converted into the total number of files

read for each app instead of creating a single unique feature for each specific file which

would create a very sparse matrix. The same was done to the rest of the text-based

features, like cryptographic processes, domains accessed, HTTP connections and so on.

Other features that did not present any content were removed as well as unique identifiers.

Following these primary data preparation methods several data preprocessing

techniques were chosen to transform the datasets. These techniques were chosen to create

several separately processed datasets before inputing them into the machine learning

algorithms. This was done to avoid model biases, and in some cases improve time

efficiency, by scaling the features to the same scales and therefore contributing equally

to the model fitting. Alongside these, the unprocessed datasets were also used in model

fitting to serve as performance control. They are as follows:

3.3.1. Standard Scaler

The Standard Scaler (STD) preprocessing method standardizes each feature by

removing the mean and scaling to unit variance, essentially setting the mean value to 0

and a standard deviation of 1. With multivariate datasets this is achieved feature-wise,

standardizing each feature according to their values, independent from each other.

3.3.2. Normalizer

The Normalizer (NORM) preprocessing method rescales the vector for each sample to

have unit norm, independently of the distribution of the samples, effectively scaling each

row of the dataset to unit norm, without removing the mean.

Methodology

37

3.3.3. Power Transformer (Yeo-Johnson)

The Power Transformer (PowerYJ) preprocessing method, utilizing the Yeo-Johnson

transform (Yeo and Johnson 2000) variant, develops a monotonic transformation of data

using power functions, turning the data more Gaussian-like, while also allowing for zero

and negative values, where the optimal parameter for stabilizing variance and minimizing

skewness is estimated through maximum likelihood.

3.3.3. Quantile Transformer

The Quantile Transformer (Quant) preprocessing method transforms the features to

follow a normal distribution using quantiles information. This transformation tends to

spread out to the most frequent values while also reducing the impact of outliers, making

it a robust preprocessing scheme. This transformation is applied to each feature

independently, firstly by mapping the original values to an uniform distribution using an

estimate of the cumulative distribution function, and secondly, by mapping the obtained

values to the desired output distribution using the associated quantile function.

3.4. Detection Models

This section presents the algorithms chosen to construct the malware detection models.

Algorithms from different classifier families were selected to fit the optimization pipeline,

by systematically training these under differently preprocessed datasets and

parameterizations and comparing their results the most effective algorithm is chosen for

each of the three types of analysis. Here a simple description of each of the algorithms

introduced. The following algorithms were used through the Python programming

language (Rossum 1995) in conjunction with the Scikit-learn (Buitinck, et al. 2013) and

XGBoost (Chen and Guestrin 2016) libraries.

3.4.1. Extreme Gradient Boosting

The Extreme Gradient Boosting (XGBoost) (Chen and Guestrin 2016) algorithm is an

optimized distributed gradient boosting algorithm designed with a focus on efficiency and

flexibility. An ensemble method which is a variant of the Gradient Boosting Machine

(GMB), providing a parallel tree boosting method. It utilizes a depth-first approach to tree

Methodology

38

pruning, meaning it uses the max depth parameter as specified and starts pruning trees

backward. This feature alongside cache awareness and out-of-core computing, among

many other optimizations, create an enhanced version of the GBM framework therefore,

reducing training time and improving prediction power.

3.4.2. Random Forest

Another ensemble method, the Random Forest (RF) classifier (Breiman 2001) is a

meta estimator that generates and fits a forest of decision tree classifiers on various sub-

samples of the dataset and uses averaging to improve the predictive accuracy and control

over-fitting. Each of the individual trees is considered a weak learner that is constructed

on a subset of the original dataset. To make the final prediction, the algorithm uses the

average prediction of over all the trees. The number of trees defined, and their depth,

allows for a better control over variance and bias.

3.4.3. Support Vector Machines

The Support Vector Machines (SVM) (Vapnik, Golowich and Smola 1997) are a set

of supervised machine learning methods used for regression, classification, and outlier

detection. They work by finding the hyperplane in the N-dimensional space, where N is

the number of features, that precisely separates the datapoints. These hyperplanes are

essentially decision boundaries that separate the datapoints through the usage of support

vectors that try to maximise the margin between the data points and the hyperplane. Due

to the high dimensionality and clustered properties of the datasets used, the Radial Basis

Function (RBF) kernel was the one used in this study. The RBF kernel is a function whose

value is dependant on the distance between the data points.

3.4.4. K-Nearest Neighbor

The K-Nearest Neighbor (KNN) (Altman 1992) is a non-parametric instance-based

learning method used for regression and classification. The principle behind this method

is to find the K predefined number of training samples closest in distance to the new point.

The classification is computed from a majority vote of these nearest neighbors of each

Methodology

39

point and the weight of these votes can be defined as dependant on the distance of the

neighbors, the nearest neighbors therefore having a more impactful vote than the others.

3.3.5. Naïve Bayes Classifier

Two variants of the Naïve Bayes classifier were used, the Gaussian Naïve Bayes

(GNB) and the Bernoulli Naïve Bayes (BNB) (Manning, Schütze and Raghavan 2008),

these methods are a set of supervised learning algorithms based on applying Bayes’

theorem with the assumption of conditional independence between every pair of features

given the value of the class variable. The difference between these two variants is in the

distribution of the data, the former assumes a Gaussian data distribution while in the latter

the data assumes multivariate Bernoulli destributions.

3.5. Model Application

To develop the optimized model for each of the datasets, a simple approach was taken

that enabled to get the most out of each algorithm. The previously introduced algorithms

were applied on the three different datasets, user feedback, static and dynamic analysis,

and each of their differently preprocessed variants, alongside the original dataset without

any of the preprocessed methods applied to serve as a performance comparison baseline.

Each of the datasets were divided into 80% train and validation data, with a corresponding

20% data holdout to use as test data to measure the performance of the final model fit on

the training dataset. The training data was split using a 10-fold stratified cross validation

which works by randomly partitioning the sample data into k-sized subsamples. This

variation perserves the percentages of samples from each class and as such is considered

a better scheme when compared to regular cross validation (Kohavi 1995).

To automate the hyperparameter tunning of all the learning algorithms, a random grid

search strategy was implemented, with 100 parameter combinations for each algorithm.

This was to ensure that the best parameterization for each algorithm and dataset

combination was achieved without exhausting all of the parameter combinations through

a normal grid search or through a manual search, which would be impractical due to the

time constraints and computational power available. This chosen method has been shown

to be more efficient than the other two in (Bergstra and Bengio 2012).

Methodology

40

3.6. Model Evaluation

To compare the performance between models, several metrics were used. These

following evaluation metrics were chosen to classify and compare models in different

categories. To better understand some of the following metrics a brief introduction of the

confusion matrix concept is needed. Table 13 depicts an example of a confusion matrix.

Table 13 – Confusion Matrix Example

Predicted Class

 Positive Negative

Actual

Class

Positive
True Positives

(TP)

False Negatives

(FN)

Negative
False Positives

(FP)

True Negatives

(TN)

This presents the relationship between each class and what the model predicted. True

Positives (TP) and True Negatives (TN) are the malware and goodware samples

respectively that the model classified correctly. While False Positives (FP) and False

Negatives (FN) are the incorrectly classified goodware and malware respectively,

goodware being classified as malware and vice-versa. From these basic measures the

overall evaluation of the system is given by:

• Precision: 𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (positive predicted value)

• Recall: 𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (sensitivity, hit rate or true positive rate)

• Accuracy: 𝐴 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

• F1 score: 𝐹1 = 2 ∗
𝑃∗𝑅

𝑃+𝑅

Methodology

41

• False-positive rate: 𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
 (Apps that are goodware, but are predicted

as malware)

• False-negative rate: 𝐹𝑁𝑅 =
𝐹𝑁

𝐹𝑁+𝑇𝑃
 (Apps that are malware, but are predicted as

goodware)

Besides these metrics, the Area Under the Curve (AUC) of the Receiver Operating

Characteristic (ROC) curve and the AUC of the Precision-Recal (P-R) were also used

as metrics to compare model performance. These two metrics calculate the ability of a

binary classifier system as its discrimination threshold between classes is shifted. In

the case of ROC curve, the TPR is ploted against the FPR at different thresholds while

the P-R curve shows the tradeoff between precision and recall for different thresholds.

The AUC of these respective curves represents the measure of separability, how well

the model is capable of distinguishing between classes, in this case, between malware

and goodware.

Finally, the training time of the models is also taken into consideration. This is

calculated as the sum of the time taken to train and test each of the hyperparameter

configurations before outputting the one that has the best overall performance metric

values.

Methodology

42

Malware Detection Model Testing

43

Chapter 4 – Malware Detection Model Testing

This chapter focuses on the testing of the different detection models previously

developed and trained on the different dataset categories. Each detection model is tested

and compared on the various evaluation metrics formerly introduced for each of the

differently preprocessed datasets. The algorithm that displayed the best overall

performance is then selected for the performance decay study in the chapter that follows.

The models developed in this section are built using the full balanced datasets of each

category with a malware to goodware ratio of 1:1.

4.1 User Feedback Complete Dataset

Table 14 presents the results for all the classification models developed for each of the

differently preprocessed versions of the original user feedback dataset, alongside the

unpreprocessed dataset as a reference point. Most models show similar results

performance-wise with some variations, and few exceptions. The ensemble algorithms,

XGBoost and Random Forest, provided the best results overall with all of the dataset

variants, with XGBoost prevailing on top by reaching an F1 Score of 0.79 with the

PowerYJ transform and AUC/ROC and AUC/P-R scores of 0.873 and 0.841 respectively

with the STD transformed dataset.

A notable mention to the PowerYJ transform which allowed the other algorithms to

reach their best results overall, with the exception of NBBernoull, most notably the

distance based algorithms, SVM and KNN, which in this case rival the scores of the

Random Forest algorithm, with 0.75 F1 Score in both models and 0.818 and 0.830

AUC/ROC from the SVM and KNN models respectively. The Naïve Bayes based

algorithms showed weakest performance overall due to their need of specific data

distributions. Nonetheless, the NBGaus achieved similar results compared to the other

models with the Quant transformation and the NBBernoulli without any kind of

preprocessing method and even achieving the lowest FNR of 19.5%. Although in raw

numbers there are lower ones these are irrelevant due to the high FPR bias, which in some

cases reaches 100%, rendering these models negligible.

Malware Detection Model Testing

44

Table 14 – Model performance metrics for the full User Feedback dataset

Algorithm
Preprocessing

Method

F1

Score
Accuracy FPR FNR

AUC

ROC

AUC

P-R
Total Time

XGBoost NoPrep 0.770 0.775 0.136 0.314 0.867 0.835 1h 40m 15.83s

XGBoost STD 0.770 0.775 0.144 0.305 0.873 0.841 1h 27m 51.84s

XGBoost NORM 0.750 0.754 0.203 0.288 0.842 0.775 0h 56m 20.58s

XGBoost PowerYJ 0.790 0.788 0.144 0.280 0.863 0.808 0h 36m 36.93s

XGBoost Quant 0.770 0.771 0.136 0.322 0.869 0.839 0h 23m 17.26s

RF NoPrep 0.720 0.725 0.237 0.314 0.808 0.789 1h 8m 46.66s

RF STD 0.710 0.712 0.212 0.364 0.804 0.789 3h 49m 0.99s

RF NORM 0.730 0.733 0.314 0.220 0.810 0.771 3h 26m 28.16s

RF PowerYJ 0.710 0.712 0.229 0.347 0.806 0.790 3h 11m 43.36s

RF Quant 0.720 0.720 0.237 0.322 0.806 0.789 3h 5m 55.01s

SVM NoPrep 0.720 0.716 0.314 0.254 0.787 0.743 1h 13m 59.12s

SVM STD 0.600 0.614 0.542 0.229 0.721 0.716 0h 33m 22.75s

SVM NORM 0.700 0.699 0.246 0.356 0.790 0.771 0h 25m 55.93s

SVM PowerYJ 0.750 0.750 0.186 0.314 0.818 0.794 0h 29m 25.29s

SVM Quant 0.710 0.712 0.186 0.390 0.769 0.714 0h 32m 6.58s

KNN NoPrep 0.710 0.716 0.212 0.356 0.774 0.767 0h 1m 0.63s

KNN STD 0.700 0.699 0.254 0.347 0.771 0.744 0h 1m 9.68s

KNN NORM 0.700 0.703 0.246 0.347 0.796 0.777 0h 1m 11.03s

KNN PowerYJ 0.750 0.754 0.212 0.280 0.830 0.807 0h 1m 0.59s

KNN Quant 0.720 0.725 0.237 0.314 0.796 0.647 0h 1m 3.39s

NBGaus NoPrep 0.350 0.508 0.983 0.000 0.772 0.761 0h 0m 4.28s

NBGaus STD 0.380 0.521 0.958 0.000 0.548 0.551 0h 0m 4.24s

NBGaus NORM 0.680 0.686 0.246 0.381 0.761 0.732 0h 0m 4.37s

NBGaus PowerYJ 0.690 0.699 0.424 0.178 0.780 0.774 0h 0m 4.2s

NBGaus Quant 0.710 0.708 0.288 0.297 0.773 0.769 0h 0m 4.46s

NBBernoulli NoPrep 0.720 0.720 0.364 0.195 0.754 0.761 0h 0m 9.35s

NBBernoulli STD 0.380 0.508 0.941 0.042 0.510 0.740 0h 0m 9.48s

NBBernoulli NORM 0.330 0.500 0.000 1.000 0.500 0.750 0h 0m 9.16s

NBBernoulli PowerYJ 0.630 0.653 0.585 0.110 0.684 0.649 0h 0m 9.46s

NBBernoulli Quant 0.540 0.597 0.746 0.059 0.622 0.631 0h 0m 8.81s

Table 15 highlights the difference of the top preprocessed datasets for each of the

models used, presenting in addition the mean and standard deviation (SD) results of the

cross validation. The low standard deviation values for every model indicate little

variance between each fold from the cross-validation procedure, suggesting that the

algorithms could maintain similar levels of performance on analogous datasets.

Malware Detection Model Testing

45

Table 15 – Comparison of top model performance for User Feedback models

SD – Standard Deviation

Model
Preprocess

Method
Measure F1 Accuracy FPR FNR

AUC

ROC

AUC

P-R

XGBoost PowerYJ
Mean 0.790 0.788 0.144 0.280 0.863 0.808

SD 0.054 0.029 0.022 0.032 0.036 0.027

RF Norm
Mean 0.740 0.733 0.314 0.220 0.810 0.771

SD 0.040 0.038 0.048 0.033 0.048 0.042

SVM PowerYJ
Mean 0.750 0.750 0.186 0.314 0.818 0.794

SD 0.049 0.023 0.022 0.051 0.052 0.048

KNN PowerYJ
Mean 0.750 0.754 0.212 0.280 0.830 0.807

SD 0.033 0.031 0.046 0.037 0.055 0.049

NBGaus Quant
Mean 0.710 0.708 0.288 0.297 0.773 0.769

SD 0.040 0.038 0.044 0.032 0.046 0.055

NBBernoulli NoPrep
Mean 0.720 0.720 0.364 0.195 0.754 0.716

SD 0.039 0.048 0.049 0.038 0.047 0.050

A particular feature of the XGBoost (Chen and Guestrin 2016) framework is that it

allows to calculate the importance of each feature used in the model training and by how

much it influences it. Figure 10 shows the importance of each feature sorted by their gain

in the developed highest performing XGBoost model, in this case the one applied on the

PowerYJ transformed dataset. In this case the gain metric represents the average gain

across all splits the feature is used in.

Figure 10 – XGBoost User Feedback feature importance

Malware Detection Model Testing

46

Here we can see that the Flag Virus is considered the most important feature, this

means that users can be expected to give this flag to more suspicious apps. Following

this, the 3- and 5-star ratings were ranked in second and third place respectively, possibly

due to the fact that popular apps present in the marketplace are less likely to show

malicious behaviours, given that these were the most used ratings on average. In last place

of importance came the Flag License, most likely due to its use being more prevalent

when apps are still gaining popularity and are still not widely used.

4.2 Static Analysis Complete Dataset

Following this, Table 16 shows the model test results for the Static Analysis dataset

and all its differently preprocessed variants, joined by the unprocessed dataset to serve as

point of reference. In this case the Naïve Bayes algorithms failed to meet any

requirements, showing poor performance overall. However, the other algorithms

demonstrated more viable malware detection when compared to the previous use case.

The XGBoost models, demonstrated superior performance yet again, this time with the

Quantile transformed dataset, reaching an F1 Score of 0.86 and both AUCs above the 90%

threshold, with 0.913 and 0.926 for the AUC/ROC and AUC/P-R respectively,

demonstrating the capability of classifying malware with this type of analysis only, also

reaching a low FPR of 7.8%. The distance-based algorithms, SVM and KNN, also showed

improved overall performance in this use case, reaching an F1 Score of 0.84 and 0.83,

respectively. The major downside with the SVM models is their very high training time

when compared to the rest, even reaching an astounding 40 hours of train time for all of

the parameter combinations in the unprocessed dataset. Lastly, the RF models

demonstrated little improvement comparatively to the previous use case due to the very

high FNR bias reaching 43.2% in the worst case.

Malware Detection Model Testing

47

Table 16 – Model performance metrics for the full Static Analysis dataset

Algorithm
Preprocessing

Method

F1

Score
Accuracy FPR FNR

AUC

ROC

AUC

P-R
Total Time

XGBoost NoPrep 0.840 0.838 0.082 0.242 0.902 0.918 2h 15m 48.77s

XGBoost STD 0.850 0.849 0.106 0.196 0.903 0.915 6h 6m 40.3s

XGBoost NORM 0.850 0.849 0.059 0.243 0.905 0.917 4h 34m 3.19s

XGBoost PowerYJ 0.840 0.838 0.129 0.194 0.898 0.915 2h 47m 36.95s

XGBoost Quant 0.860 0.856 0.078 0.210 0.913 0.926 3h 32m 54.33s

RF NoPrep 0.740 0.745 0.089 0.420 0.788 0.833 4h 27m 57.17s

RF STD 0.740 0.749 0.070 0.432 0.790 0.834 6h 39m 22.4s

RF NORM 0.750 0.755 0.061 0.428 0.795 0.842 9h 54m 0.56s

RF PowerYJ 0.730 0.742 0.096 0.420 0.789 0.834 6h 7m 47.52s

RF Quant 0.740 0.746 0.086 0.422 0.788 0.833 6h 12m 18.68s

SVM NoPrep 0.790 0.798 0.026 0.378 0.827 0.881 40h 29m 53.36s

SVM STD 0.810 0.809 0.073 0.309 0.855 0.865 9h 18m 32.12s

SVM NORM 0.640 0.646 0.482 0.225 0.679 0.620 11h 23m 29.28s

SVM PowerYJ 0.830 0.833 0.103 0.230 0.881 0.872 12h 31m 44.12s

SVM Quant 0.840 0.837 0.099 0.227 0.883 0.874 11h 39m 26.04s

KNN NoPrep 0.810 0.814 0.114 0.259 0.862 0.879 0h 40m 39.1s

KNN STD 0.830 0.830 0.145 0.196 0.891 0.911 2h 57m 52.16s

KNN NORM 0.800 0.805 0.118 0.272 0.857 0.886 1h 6m 19.25s

KNN PowerYJ 0.830 0.832 0.129 0.208 0.893 0.913 2h 41m 39.87s

KNN Quant 0.830 0.833 0.134 0.200 0.892 0.909 0h 18m 49.74s

NBGaus NoPrep 0.510 0.562 0.761 0.115 0.655 0.579 0h 1m 2.45s

NBGaus STD 0.510 0.562 0.761 0.115 0.655 0.579 0h 1m 2.01s

NBGaus NORM 0.480 0.548 0.818 0.087 0.705 0.686 0h 1m 1.88s

NBGaus PowerYJ 0.630 0.635 0.476 0.255 0.666 0.619 0h 1m 1.94s

NBGaus Quant 0.650 0.652 0.422 0.275 0.669 0.629 0h 1m 1.92s

NBBernoulli NoPrep 0.450 0.534 0.072 0.859 0.580 0.587 0h 1m 4.48s

NBBernoulli STD 0.560 0.583 0.663 0.171 0.611 0.739 0h 1m 4.21s

NBBernoulli NORM 0.330 0.500 0.000 1.000 0.500 0.750 0h 1m 3.52s

NBBernoulli PowerYJ 0.570 0.592 0.618 0.197 0.631 0.736 0h 1m 4.33s

NBBernoulli Quant 0.580 0.596 0.618 0.191 0.626 0.723 0h 1m 4.28s

Table 17 displays the performance metrics of the top performing model for each

algorithm for comparison. It is worth noting that in this case the Quant transform was

favored by most algorithms apart from RF and KNN. Here the variation between folds

for each metric averages around a decimal point, demonstrating stable performance

between cross-validation folds.

Malware Detection Model Testing

48

Table 17 - Comparison of top model performance for Static Analysis models

SD – Standard Deviation

Model
Preprocess

Method
Measure

F1

Score
Accuracy FPR FNR

AUC

ROC

AUC

P-R

XGBoost Quant
Mean 0.860 0.856 0.078 0.210 0.913 0.926

SD 0.013 0.011 0.006 0.010 0.007 0.008

RF Norm
Mean 0.750 0.755 0.061 0.428 0.795 0.842

SD 0.010 0.012 0.011 0.029 0.006 0.007

SVM Quant
Mean 0.840 0.837 0.099 0.227 0.883 0.874

SD 0.011 0.014 0.016 0.020 0.005 0.006

KNN PowerYJ
Mean 0.830 0.832 0.129 0.208 0.893 0.913

SD 0.014 0.010 0.018 0.027 0.009 0.011

NBGaus Quant
Mean 0.650 0.652 0.422 0.275 0.669 0.629

SD 0.037 0.038 0.044 0.019 0.007 0.009

NBBernoulli Quant
Mean 0.580 0.596 0.618 0.191 0.626 0.723

SD 0.045 0.048 0.051 0.022 0.010 0.007

To be able to understand the impact of each feature of the dataset used in this use case,

the same analysis was performed as in the previous section, using the top performing

model to extract its feature importance values, in this case the XGBoost model trained on

the Quant transformed Static Analysis dataset. In Figure 11 the features from the Static

Analysis dataset are ordered in terms of importance by the same gain metric. In this case

all the features display very similar values. The notable instances are the Resource

Strings, where the number of additional resource files an app has can indicate its intent,

and the Dalvik specific opcodes, which appear to be less relevant than the other features.

Malware Detection Model Testing

49

Figure 11 - XGBoost Static Analysis feature importance

4.3 Dynamic Analysis Complete Dataset

Finally, Table 18 introduces the model performance metrics when applied to the

dynamic analysis dataset, and all its preprocessed variants. This last use case

demonstrated the relevance of dynamic analysis features. Although the Naïve Bayes

algorithms displayed the lowest performance values overall, they still exhibited similar

classifying capabilities when compared to the other algorithms. The remaining algorithms

were all capable of surpassing the 90% thresholds for Accuracy and F1 Scores. The

XGBoost models remained unchallenged in their overall performance, although by a

much smaller margin, being surpassed by the RF and KNN models in the time taken to

train.

Malware Detection Model Testing

50

Table 18 – Model performance metrics for the full Dynamic Analysis dataset

Algorithm
Preprocessing

Method

F1

Score
Accuracy FPR FNR

AUC

ROC

AUC

P-R
Total Time

XGBoost NoPrep 0.940 0.938 0.106 0.018 0.973 0.958 0h 21m 55.92s

XGBoost STD 0.940 0.939 0.106 0.016 0.972 0.959 0h 20m 10.24s

XGBoost NORM 0.930 0.934 0.100 0.032 0.968 0.955 0h 24m 15.52s

XGBoost PowerYJ 0.940 0.939 0.102 0.020 0.967 0.952 0h 24m 38.35s

XGBoost Quant 0.940 0.940 0.104 0.016 0.973 0.961 0h 33m 48.64s

RF NoPrep 0.930 0.928 0.104 0.040 0.965 0.955 0h 11m 9.21s

RF STD 0.920 0.917 0.117 0.050 0.970 0.961 0h 10m 26.33s

RF NORM 0.930 0.928 0.106 0.037 0.967 0.958 0h 23m 47.17s

RF PowerYJ 0.920 0.923 0.102 0.052 0.970 0.962 0h 9m 38.94s

RF Quant 0.920 0.919 0.100 0.062 0.970 0.960 0h 9m 41.97s

SVM NoPrep 0.920 0.922 0.098 0.058 0.948 0.924 2h 35m 41.42s

SVM STD 0.940 0.935 0.100 0.029 0.962 0.951 1h 29m 21.98s

SVM NORM 0.920 0.923 0.129 0.025 0.948 0.924 0h 52m 5.31s

SVM PowerYJ 0.930 0.928 0.102 0.042 0.953 0.935 0h 58m 24.56s

SVM Quant 0.920 0.916 0.098 0.071 0.961 0.939 0h 17m 18.83s

KNN NoPrep 0.930 0.929 0.115 0.027 0.961 0.952 0h 2m 38.01s

KNN STD 0.930 0.929 0.113 0.029 0.959 0.944 0h 4m 3.69s

KNN NORM 0.930 0.926 0.104 0.044 0.950 0.926 0h 1m 54.51s

KNN PowerYJ 0.940 0.935 0.104 0.025 0.968 0.956 0h 4m 5.44s

KNN Quant 0.930 0.931 0.108 0.029 0.960 0.943 0h 3m 9.72s

NBGaus NoPrep 0.810 0.820 0.200 0.060 0.900 0.910 0h 0m 2.69s

NBGaus STD 0.810 0.809 0.315 0.067 0.930 0.921 0h 0m 2.69s

NBGaus NORM 0.850 0.849 0.210 0.092 0.907 0.874 0h 0m 1.61s

NBGaus PowerYJ 0.900 0.897 0.123 0.083 0.915 0.901 0h 0m 1.64s

NBGaus Quant 0.750 0.757 0.444 0.042 0.923 0.901 0h 0m 1.47s

NBBernoulli NoPrep 0.880 0.880 0.183 0.056 0.914 0.896 0h 0m 3.69s

NBBernoulli STD 0.780 0.780 0.367 0.073 0.870 0.853 0h 0m 2.38s

NBBernoulli NORM 0.330 0.500 0.000 1.000 0.500 0.750 0h 0m 2.12s

NBBernoulli PowerYJ 0.870 0.868 0.204 0.060 0.906 0.874 0h 0m 3.41s

NBBernoulli Quant 0.830 0.830 0.290 0.050 0.888 0.857 0h 0m 2.26s

Table 19 shows the top performing models for each of the algorithms side by side for

an easier comparison, as well as the mean and standard deviation values from the cross-

validation method.

Malware Detection Model Testing

51

Table 19 - Comparison of top model performance for Dynamic Analysis models

SD – Standard Deviation

Model
Preprocess

Method
Measure

F1

Score
Accuracy FPR FNR

AUC

ROC

AUC

P-R

XGBoost Quant
Mean 0.940 0.940 0.104 0.016 0.973 0.961

SD 0.011 0.010 0.016 0.007 0.006 0.005

RF Norm
Mean 0.930 0.928 0.106 0.037 0.967 0.958

SD 0.012 0.010 0.020 0.011 0.090 0.008

SVM STD
Mean 0.940 0.935 0.100 0.029 0.962 0.951

SD 0.023 0.034 0.025 0.013 0.040 0.019

KNN PowerYJ
Mean 0.830 0.832 0.129 0.208 0.893 0.913

SD 0.009 0.011 0.032 0.023 0.010 0.009

NBGaus PowerYJ
Mean 0.900 0.897 0.123 0.083 0.915 0.901

SD 0.025 0.031 0.055 0.025 0.040 0.042

NBBernoulli NoPrep
Mean 0.880 0.880 0.183 0.056 0.914 0.896

SD 0.036 0.040 0.049 0.026 0.047 0.039

In the same fashion as the previous cases the feature importance analysis was made.

Figure 12 displays the importance of each feature in this dataset ordered by their average

gain across all splits that were used in the training of the highest performing model, in

this case the XGBoost model trained on the Quant transformed dataset. This XGBoost

model considered the number of content providers that manage access to the central data

repository the most relevant feature followed by the number of receivers, filters and DNS

requests, indicating that these are the most relevant to identify the presence of malicious

behaviour.

Malware Detection Model Testing

52

Figure 12 - XGBoost Dynamic Analysis feature importance

Although the XGBoost model did consider some features like the number of

phonecalls and libraries used to have zero information gain, it does not mean that other

models did not extract information out of these. Therefore, it was decided to maintain the

features for training further models.

4.4 Comparison of Results

By analysing the results obtained from the models built on each of the dataset

categories, the XGBoost algorithm demonstrated the best overall capabilities in

classifying malware. Its results were mostly consistent in each of the preprocessed

variants in each category. It is worth noting its proficiency as a classifier even when

trained on the original dataset without any of the preprocessing methods applied

beforehand.

The user feedback models showed the lowest results. This can be due to the fact that

users tend to generate feedback according to how they feel about the applications, relying

Malware Detection Model Testing

53

more on their emotions rather than their objective experience with each app. This is shown

by the previously demonstrated high correlation values between the features in this

dataset, most notably the rating values, which indicate the low variance of each rating

value across the dataset, meaning that even highly popular apps retained overall the same

percentage of low ratings than unpopular ones.

In the static analysis use case, the models displayed mostly the same relations with

each other performance-wise, but with slight improvements overall. The XGBoost

algorithm continued to be superior, being the only to produce models with AUCs above

the 90% threshold, further displaying its ability as a classifier. The FNR remained above

20% in most cases, which means that observing each apps’ code alone is not enough to

enable satisfactory discrimination between malware and goodware.

In the dynamic analysis case, every classifier was able to properly discriminate

malware from goodware, apart from the Naïve Bayes algorithms by comparison. The

FPRs remained largely around the 10% mark while FNRs remained below the 5% mark.

This is a good indicator of the ability for these classifiers to distinguish malware from

goodware with a complex set of features obtained from analysing application behaviour.

Lastly, the training times cannot be compared between use cases due to the large

difference in application samples in each of the categories.

4.5 Ratio Analysis

To demonstrate the impact of class imbalance on the performance of the classifier

models, a small experiment was devised. In this instance, the top performing algorithm

(XGBoost) underwent the same pipeline, but with the small change of using an

approximation of a “realistic” malware to goodware ratio in the training and testing

datasets. In (Google 2018) they indicate that less than 1% of all applications published in

their app store are PHAs, however no indication is made on the amount of malicious

applications that are submitted to the marketplace. Due too this undisclosed amount, it

was assumed that 10% of the apps in the train and testing dataset were malware, as

“realistic” measure. Table 20 displays the performance results of this experiment.

Malware Detection Model Testing

54

Table 20 – XGBoost performance on the different Datasets with “realistic” ratio

User Feedback Dataset

Algorithm Preprocess Method
F1

Score
Accuracy FPR FNR

AUC

ROC

AUC

P-R

XGBoost NoPrep 0.870 0.895 0.020 0.943 0.835 0.359

XGBoost STD 0.870 0.908 0.006 0.943 0.849 0.363

XGBoost NORM 0.900 0.919 0.009 0.800 0.879 0.424

XGBoost PowerYJ 0.880 0.900 0.020 0.886 0.854 0.399

XGBoost Quant 0.860 0.908 0.000 1.000 0.862 0.471

Static Analsysis Dataset

Algorithm Preprocess Method
F1

Score
Accuracy FPR FNR

AUC

ROC

AUC

P-R

XGBoost NoPrep 0.930 0.940 0.012 0.540 0.850 0.603

XGBoost STD 0.940 0.941 0.014 0.507 0.864 0.631

XGBoost NORM 0.940 0.941 0.015 0.499 0.850 0.613

XGBoost PowerYJ 0.940 0.941 0.018 0.475 0.847 0.614

XGBoost Quant 0.930 0.940 0.013 0.528 0.845 0.605

Dynamic Analsysis Dataset

Algorithm Preprocess Method
F1

Score
Accuracy FPR FNR

AUC

ROC

AUC

P-R

XGBoost NoPrep 0.930 0.936 0.029 0.408 0.968 0.659

XGBoost STD 0.950 0.947 0.029 0.286 0.969 0.742

XGBoost NORM 0.930 0.934 0.025 0.469 0.964 0.641

XGBoost PowerYJ 0.940 0.938 0.029 0.388 0.951 0.570

XGBoost Quant 0.940 0.942 0.023 0.408 0.971 0.696

At first glance the usage of a more “realistic” malware to goodware ratio shows higher

values for the F1 Score, Accuracy, FPR and AUC ROC metrics, indicating better

performance when compared to the previous results. However, a crucial detail renders

these models as poor classifiers. With the FNR showing unusual high values, this exposes

the goodware classification bias, where the models, due to the higher number of samples

from the goodware class tend to more frequently classify new testing samples as such, in

one case even reaching 100% false negatives, where this particular model classified every

test sample as goodware. This poor performance is further reflected in the AUC P-R

metric which averages around the 50 to 60% mark.

This small experiment also reinforces the notion that machine learning classifiers need

to be evaluated with several different metrics taken into account. Instead of relying only

on general performance metrics like the F1 Score and AUC ROC, other metrics should

also be analysed and considered depending on the problem at hand.

Malware Detection Model Testing

55

Performance Decay Analysis

56

Chapter 5 – Performance Decay Analysis

This chapter’s focus is on the model’s ability to retain their performance over the

course of the following months after they are developed. Due to the performance

presented from the XGBoost algorithm in the previous chapter, it was decided to use this

algorithm exclusively for the purposes of this part of the study. The same framework was

used with the only difference in selecting the specific time frames for training and testing

separately. The XGBoost models were trained and tested on the differently transformed

data and developed using the same random grid search hyperparameter system with 100

tested combinations.

To effectively study the model performance decay for each of the data categories,

these were broken down into monthly datasets. These monthly datasets were then used to

train the models on different time frames and tested on the months that followed, for

example, training the models with data from October to November and then testing them

separately on December, January, and so on. The number of sequential monthly

combinations were made according to the data available as well. For example, if the total

dataset was comprised of 6 months, the incremental monthly training combinations were

tested separately in the remaining months, as exemplified in Table 21.

Table 21 – Example of model training and testing framework

October November December January February March

 - Training - Testing

5.1. User Feedback

Like in the previous chapters the first analysis category to be submitted to this analysis

was the user feedback. On account of having the shortest time frame of data available,

from October 2019 to January 2020, long-term performance decay analysis becomes

Performance Decay Analysis

57

somewhat limited. Nonetheless, several XGboost algorithms were trained and validated

in each of the sequential monthly combinations and tested on the remaining ones.

Table 22 displays the detailed reports of each model train-test combination. Here it

becomes evident the inability of a model trained on the limited time frame of one month.

Although the XGBoost model trained only on the data from the month of October has a

comparative performance to its equivalent in the previous chapter (0.79 F1 Score) when

tested on the following month of November, it abruptly declines when applied to the data

from December and January, reaching an ineffective F1 Score of 0.54 alongside a FNR

of 57.7%.

When trained on more data, from October to November, the model becomes more

resilient to changes. Instead of declining in performance, it improved in all metrics apart

from the FPR. Notwithstanding the absence of additional monthly time frames, the model

trained on three months worth of data demonstrated that supplementary data improves

performance.

In Figure 13 it is shown a visual representation of Table 22, indicating the possibility

that the month of November provided an easier time in testing the model to discriminate

malware from goodware, and when used for training, auxiliate in its weight learning

procedure, clearly demonstrating that for this case more data stabilizes model

performance when tested in future data.

Table 22 – User Feedback Performance Decay Analysis

Training Months Testing
F1

Score
Accuracy FPR FNR

AUC

ROC

AUC

P-R

October

Nov 0.790 0.793 0.293 0.121 0.909 0.896

Dec 0.670 0.678 0.472 0.169 0.749 0.723

Jan 0.540 0.545 0.333 0.577 0.594 0.501

October to

November

Dec 0.710 0.713 0.278 0.296 0.748 0.728

Jan 0.730 0.729 0.367 0.174 0.792 0.774

October to

December
Jan 0.740 0.738 0.277 0.247 0.796 0.748

Performance Decay Analysis

58

Figure 13 – Visual Representation of the User Feedback Performance Decay

5.2. Static Analysis

The static analysis data allows for a better overview of performance decay thanks to

the wider time frame of six months, from October 2019 to March 2020, as well as the

largest number of data samples of the three. Replicating the aforementioned procedure,

the XGBoost model was trained on increasingly wider monthly time frames and tested on

the remaining ones.

Table 23 presents the evaluation metrics for each of the XGBoost train-test

combinations. These results again confirm the low malware detection capabilities of

models trained on short time frames of data, even with each month averaging

approximately 22,000 thousand samples. Although the model trained on the first month

of the dataset displays high performance when tested against the following months, the

overall variability of its performance joined by low performance metrics in some case

reveals its inefficacy as a robust model. However, the smaller complexity of the data

shows FPR and FNR in a low range of 22% and 15% respectively, when compared to the

models that follow.

The need for a wider time frame is further acknowledged by the improvement in

overall performance shown by the models trained on ever increasing time periods. With

Accuracy values climbing from an average of 0.67, with the model trained on a period of

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N O V E M B E R D E C E M B E R J A N U A R Y D E C E M B E R J A N U A R Y J A N U A R Y

T R A I N I N G M O N T H S : O C T O B E R O C T O B E R T O N O V E M B E R O C T O B E R T O
D E C E M B E R

F1 Score Accuracy FPR FNR AUC ROC AUC P-R

Performance Decay Analysis

59

three months, to 0.759 when trained on six months of data. However, because of the

increased data noise, the models gained a high malware classification bias demonstrated

by the contrasting 5% (on average) FPR to the 50% (on average) FNR.

Finally, in similarity to the previous case, Figure 14 shows a visual representation of

Table 23, assisting the hypotheses that models trained on wider time frames lead to more

stability in overall model performance.

Table 23 – Static Analysis Performance Decay Analysis

Training Months Testing
F1

Score
Accuracy FPR FNR

AUC

ROC

AUC

P-R

October

Nov 0.780 0.778 0.289 0.154 0.738 0.639

Dec 0.820 0.818 0.224 0.141 0.895 0.858

Jan 0.680 0.683 0.269 0.364 0.668 0.594

Feb 0.820 0.817 0.220 0.145 0.839 0.747

Mar 0.610 0.622 0.222 0.534 0.773 0.726

October to

November

Dec 0.630 0.661 0.042 0.636 0.730 0.773

Jan 0.670 0.694 0.051 0.561 0.768 0.801

Feb 0.620 0.653 0.038 0.657 0.729 0.769

Mar 0.660 0.684 0.040 0.591 0.761 0.800

October to

December

Jan 0.710 0.725 0.089 0.462 0.790 0.821

Feb 0.670 0.686 0.076 0.552 0.764 0.797

Mar 0.700 0.713 0.067 0.507 0.787 0.819

October to

January

Feb 0.710 0.726 0.072 0.475 0.802 0.829

Mar 0.700 0.715 0.080 0.490 0.794 0.830

October to

February
Mar 0.750 0.759 0.087 0.395 0.830 0.862

Performance Decay Analysis

60

Figure 14 – Visual Representation of the Static Analysis Performance Decay

5.3. Dynamic Analysis

Finally, the static analysis dataset was the last one to undergo the performance decay

analysis. Having an equivalent time window to the Static Analysis dataset of six months,

from February 2020 to July 2020, allows the analysis of the performance decay of the

models trained with this data to match that of the previous case. Although the average

number of data samples per month is approximately 800, paling in comparison the the

previous 22,000, the large feature composition allows for more complex patterns to be

discovered by the algorithms that allow for an easier discrimination of malware from

goodware, as seen in the previous chapter.

Table 24 exhibits the performance evaluation metrics for each of the XGBoost train-

test set combinations once demonstrating the need for a wider time frame of training data,

with Figure 15 providing an equivalent visual representation. Although with this type of

feature rich data the model did not suffer as much of a performance drop when trained

with fewer months, the high variability in the results is still present. The same increase in

overall performance follows the increase in training time frame. The performance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N O V D E C J A N F E B M A R D E C J A N F E B M A R J A N F E B M A R F E B M A R M A R

T R A I N I N G M O N T H S : O C T O C T T O N O V O C T T O D E C O C T T O J A N O C T T O
F E B

F1 Score Accuracy FPR FNR AUC ROC AUC P-R

Performance Decay Analysis

61

variability also decreases up to the 3 months mark, stabilizing on the same value

thresholds from there on.

Table 24 – Dynamic Analysis Performance Decay Analysis

Training Months Testing
F1

Score
Accuracy FPR FNR

AUC

ROC

AUC P-

R

February

March 0.880 0.880 0.087 0.147 0.952 0.940

April 0.860 0.861 0.251 0.014 0.880 0.812

May 0.710 0.721 0.127 0.432 0.885 0.855

June 0.930 0.928 0.027 0.117 0.980 0.980

July 0.760 0.773 0.022 0.429 0.956 0.828

February to March

April 0.860 0.863 0.234 0.029 0.916 0.858

May 0.850 0.855 0.149 0.142 0.891 0.853

June 0.930 0.932 0.022 0.115 0.966 0.970

July 0.820 0.822 0.009 0.345 0.966 0.972

February to April

May 0.930 0.927 0.027 0.119 0.980 0.981

June 0.940 0.944 0.022 0.088 0.983 0.982

July 0.960 0.961 0.031 0.047 0.973 0.936

February to May
June 0.960 0.957 0.031 0.054 0.984 0.984

July 0.910 0.909 0.013 0.168 0.975 0.944

February to June July 0.960 0.960 0.036 0.044 0.975 0.968

Figure 15 – Visual Representation of the Dynaic Analysis Performance Decay

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M A R A P R M A Y J U N J U L Y A P R M A Y J U N J U L Y M A Y J U N J U L Y J U N J U L Y J U L Y

T R A I N I N G M O N T H S : F E B F E B T O M A R F E B T O A P R F E B T O M A Y F E B T O
J U N E

F1 Score Accuracy FPR FNR AUC ROC AUC P-R

Performance Decay Analysis

62

Conclusions and Recommendations

63

Chapter 6 – Conclusions and Recommendations

6.1 Main Conclusions

The goal of the current work is the development of a proof of concept malware

detection framework based on different methods of statistical analysis in an Android

environment, and its resilience to continuously shifting malware trends. To achieve this,

a predictive system was first designed to be capable of identifying malicious Android

applications with the usage of three different kinds of analytical methods, through user

feedback analysis, static code analysis, and finally, dynamic code analysis. This

framework allows for an easier and automated detection of Android malware by reducing

the manpower needed to scrutinize an entire app store as well as providing a more user-

safe environment. As such, this framework presents a possible improvement on already

existing methods present on contemporary app stores, alleviating user concerns by

reducing the amount of malware they might stumble upon, as well as, focusing the work

of security experts on more complex forms of malware that might go unnoticed by

traditional methods. The proposed system can also adapt to new forms of malware as they

become more and more popular amongst malware developers, by the means of retraining,

therefore, accompanying malware’s evolution in complexity and adaptation to new

technological improvements.

With the purpose of developing the best malware detector for the three instances

mentioned, this framework was fashioned to generate and test several types of models

under differing circumstances. As such, the datasets were subject to different kinds of

data preprocessing techniques to attain the best malware classifier. Subsequently, the

algorithms were trained and tested using the full datasets, as well as a following study on

their performance decay when trained with fixed monthly sets and tested on the months

that followed. The algorithms used to develop the most effective malware classifier were

the XGBoost, Random Forest, Support Vector Machine, K-Nearest Neighbour, Gaussian

Naïve Bayes, and Bernoulli Naïve Bayes, with their performance measured by F1 Score,

Accuracy, FPR and FNR, AUC ROC and AUC P-R.

As mentioned, the study aimed at detecting malicious Android applications from three

types of historical data. The first one, user feedback data, was gathered from Aptoide

within a time interval of four months, ranging from October 2019 to January 2020. This

Conclusions and Recommendations

64

set of data allowed for a deeper understanding of the relationship between applications

and the feedback users gave them by demonstrating certain feature patterns.

Training the models with separate user feedback feature groups, such as numerical

ratings and symbolic flags yielded subpar results, mainly since each of these groups

presented a high degree of correlation between the features which comprised them. The

relationship between the different numerical ratings is but a causal one, linked by the

popularity of the app and the percentage of users that like/dislike said app, which usually

remains stable. The same can be said, to a lesser extent, about the symbolic flags feature

group. Although numerical ratings, and to some extent, symbolic flags have a certain

degree of correlation in their own categories, combining both of these types of features

allows the machine learning classifiers to detect relevant patterns that enable a reasonable

malware detection rate, with results of up to 79% F1 Score and 86% AUC ROC. The

performance decay study of this scenario showed a decline in overall performance when

the models were tested on the months that follow the training ones, however, when trained

with three months of data and tested with the final fourth month, the results showed

sufficient improvement to suggest that with a wider time frame of training data better

results could be reached.

In the second instance, historical data of static code analysis was used. This data set

was comprised of six months of data, ranging from October 2019 to March 2020, gathered

from Aptoide’s internal security team. In this case, the features presented themselves as

having differing levels of correlation between each another, this meant that each feature

was able to contribute relevant information for pattern detection. This combination of

features allows the algorithms to consistently detect malware apps, with results of up to

86% F1 Score and 91% AUC ROC. Following this, the model performance decay analysis

showed a sudden decline of performance when trained with fewer than five months of

historical data and applied to the following months. Training with five months of data and

testing on the sixth yielded results that started to approximate the original model,

suggesting the possibility that with more training data the models would become more

resilient to changes.

In the third and final instance, historical data of dynamic code analysis was used. This

dataset consisted of six months of historical data, ranging from February 2020 to July

2020, gathered from the Koodous collaborative platform for Android malware research.

Conclusions and Recommendations

65

In this case, using a combination of features assembled from multiple Android analysis

tools made possible a statistical analysis of android apps from different types of activities,

services, processes, and accesses. This in turn helped aggregate apps that behaved in

similar malicious manners, therefore, making it easier for the classifiers to separate these

groups from the ones that behaved in standard fashion. This combination of features

gathered allows the algorithms to consistently detect malware apps, with results of up to

94% F1 Score and 97% AUC ROC. Following this, the model performance decay analysis

showed a sudden decline of performance when trained with fewer than five months of

historical data and applied to the following months. Training with five months of data and

testing on the sixth yielded results that started to approximate the original model,

suggesting the possibility that with more training data the models would become more

robust to changes.

Regarding the research questions that were set out in the beginning of this work, it was

demonstrated that symbolical representations of user feedback such as star ratings and

flags can be used to train malware classifiers, to a limited extent, and that both feature

groups are relevant to this endeavor, particulary the Fake and Virus flags and the 3- and

5-star ratings. Following this it was demonstrated that Android analysis tools are able

produce relevant information to train malware detection systems when their outputs are

converted into count-based features. Finally, the best approach to retrain this system to

maintain high performance over time was not achieved, mainly due to the need for a

dataset with a wider time period, and also a need for a more comprehensive analysis on

the variations of both train and test time windows.

6.2 Study Limitations

This framework hinges on model optimization by combining different models,

parameters and different preprocessing techniques to output a single most optimized

model pipeline. However, several decisions were made with the assumption of common

data mining practices in mind, of which there is very little to none theoretical work

available to study their effectiveness and impact. In this work the decision to select a K-

fold cross validation scheme with a K of ten was made according to standard practices in

the industry for this type of dataset. The same goes for the choice of withholding twenty

percent of the datasets for validation. Joining these, but more specific to this knowledge

Conclusions and Recommendations

66

domain, is the malware to goodware ratios used in the training datasets. Although these

are considered standard practices, there exists no systematic research on the best practices

of these parameters.

Another limitation was the computation power and time available to run the tests. With

this constraint, more algorithms from different machine learning schools could be applied

and their results compared. Alongside this, the ability to train more candidates through

the random grid search would be possible, and therefore, cover a larger spectrum of

possible parameter combinations for each of the models and delivering more optimized

and consistent results.

Finally, the various datasets lacked app coherence, in a sense that each of the datasets

were comprised of different applications. More notably, the set used for the dynamic

analysis approach was vastly different from the other two given its originating source.

This led to an inability to directly compare the chosen analysis methods.

6.3 Future Research Proposals

As previously stated, many improvements could still be made to the proposed

framework, namely the automation of the training of malware classification models at set

intervals, or even online training, to keep this system as an always active and updated

security measure, as a means to develop a more hands-off approach to malware detection.

Regarding the usage of user generated data to improve malware classification, utilizing

app store comments to create new features could help improve detection rates. Text

mining processes like sentiment analysis and document clustering could extract

potentially beneficial information to improve malware detection in this environment.

Along with this, a user centric approach to rate the validity their feedback would lessen

the impact of feedback given from bots and spammers as well as elevate the influence of

authentic users.

Studying the output of other Android app analysis tools could provide additional

relevant features and information to the system. The combination of user feedback, the

static code analysis and dynamic code analysis features could also be useful, not only in

adding more complex patterns for the models to learn on, but with more features

available, selecting more relevant ones and eliminating redundant ones to reduce noise

and unneeded information which could improve efficiency and detection rates. Another

Conclusions and Recommendations

67

possibility is the development of a triage architecture that employs each model in a

cascading fashion to avoid wasting the more resource costly methods of dynamic analysis

on already detected malware.

Finally, a study on the effects of the variation of test horizons, from days to weeks, to

establish the ideal rate at which the models would need to be retrained before starting to

lose performance.

68

Bibliography

Allix, Kevin, Tegawendé F. Bissyande, Jaques Klein, and Yves Le Traon. 2014.

“Machine Learning-Based Malware Detection for Android Applications: History

Matters!”

Altman, Naomi S. 1992. “An introduction to kernel and nearest-neighbor nonparametric

regression.” The American Statistician, 175-185.

Android Developers. 2016. UI/Application Exerciser Monkey. Accessed December

2019. https://developer.android.com/studio/test/monkey.

Antonio, Nuno, Ana Maria de Almeida, Luís Nunes, Fernando Batista, and Ricardo

Ribeiro. 2018. “Hotel online reviews: creating a multi-source aggregated index.”

International Journal of Contemporary Hospitality Management.

Arp, Daniel, Michael Spreitzenbarth, Malte Hübner, Hugo Gascon, e Konrad Rieck.

2014. “Effective and explainable detection of Android malware in your pocket.”

Proceedings of the Network and Distributed System (NDSS).

Azim, Tanzirul, and IIulian G. Neamtiu. 2013. “Targeted and depth-first exploration for

systematic testing of android apps.” Proceedings of the 2013 ACM SIGPLAN

international conference on Object oriented programming systems languages &

applications, October: 641-660.

Bergstra, James, and Yoshua Bengio. 2012. “Random search for hyper-parameter

optimization.” The Journal of Machine Learning Research, 281-305.

Bläsing, Thomas, Leonid Batyuk, Aubrey-Derrick Schmidt, Seyit Ahmet Camtepe, and

Sahin Albayrak. 2010. “An android application sandbox system for suspicious

software detection.” 2010 5th International Conference on Malicious and

Unwanted Software, October: 55-62.

Breiman, Leo. 2001. “Random forests.” Machine learning, 5-32.

Brumley, David, Cody Hartwig, Min Gyung Kang, Zhenkai Liang, James Newsome,

Pongsin Poosankam, Song Dawn, and Heng Yin. 2007. “BitScope:

Automatically dissecting malicious binaries.” Technical Report, School of

Computer Science, Carnegie Mellon University.

Buitinck, Lars, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller,

Olivier Grisel, Vlad Niculae, et al. 2013. “API design for machine learning

software: experiences from the scikit-learn project.” arXiv preprint.

Chakradeo, Saurabh, Bradley Reaves, Patrick Traynor, and William Enck. 2013. “Mast:

Triage for market-scale mobile malware analysis.” Proceedings of the sixth

ACM conference on Security and privacy in wireless and mobile networks, 13-

24.

Chapman, Pete, Julian Clinton, Randy Kerber, Thomas Khabaza, Thomas Reinartz,

Colin Shearer, and Rüdiger Wirth. 2000. CRISP-DM 1.0: Step-by-step data

mining guide. The Modeling Agency. Accessed September 23, 2020. https://the-

modeling-agency.com/crisp-dm.pdf.

Chen, Tianqi, and Carlos Guestrin. 2016. “Xgboost: A scalable tree boosting system.”

Proceedings of the 22nd acm sigkdd international conference on knowledge

discovery and data mining, August: 785-794.

Chen, Wei, David Aspinall, Andrew D. Gordon, Charles Sutton, e Igor Muttik. 2016.

“More semantics more robust: Improving android malware classifiers.”

Proceedings of the 9th ACM conference on security & privacy in wireless and

mobile networks, July: 147-158.

69

Chipounov, Vitaly, Volodymyr Kuznetsov, and George Candea. 2011. “S2E: A

platform for in-vivo multi-path analysis of software systems.” Acm Sigplan

Notices, 265-278.

Deo, Amit, Santanu Dash, Guillermo Suarez-Tangil, Volodya Vovk, and Lorenzo

Cavallaro. 2016. “Prescience: Probabilistic guidance on the retraining

conundrum for malware detection.” Proceedings of the 2016 ACM Workshop on

Artificial Intelligence and Security, October: 71-82.

Desnos, Anthony. 2012. “Androguard.” code.google.com. Accessed June 2020.

https://code.google.com/archive/p/androguard/.

Duque, João, Gonçalo Mendes, Luís Nunes, Ana Maria Almeida, and Carlos Serrão.

2020. “Automated android malware detection using user feedback.” Journal of

Cybersecurity (waiting acceptance).

Duque, João, Gonçalo Mendes, Luís Nunes, Ana Maria de Almeida, and Carlos Serrão.

2020. “Automated android malware detection: system retraining.” Journal of

Cybersecurity (waiting acceptance).

Elman, Jeffrey L. 1990. “Finding structure in time.” Cognitive science, 179-211.

Enck, W, and P McDaniel. 2010. “Not So Great Expectations: Why Application

Markets Haven't Failed Security.” IEEE Security and Privacy (IEEE Security

and Privacy).

Enck, William, Machigar Ongtang, and Patrick McDaniel. 2009. “On Lightweight

Mobile Phone Application Certification.” Proceedings of the 16th ACM

Conference on Computer and Communications Security CCS. Association for

Computing Machinery.

Eshleman, Ryan M., and Hui Yang. 2014. “"Hey# 311, Come Clean My Street!": A

Spatio-temporal Sentiment Analysis of Twitter Data and 311 Civil Complaints.”

2014 IEEE Fourth International Conference on Big Data and Cloud Computing,

December: 477.484.

Filgueiras, João, Luís Barbosa, Gil Rocha, Henrique L. Cardoso, Luís P. Reis, João P.

Machado, and Ana M. Oliveira. 2019. “Complaint Analysis and Classification

for Economic and Food Safety.” Proceedings of the Second Workshop on

Economics and Natural Language Processing, November: 51-60.

Forte, Ana C., and Pavel Brazdil. 2016. “Determining the level of clients’

dissatisfaction from their commentaries.” International Conference on

Computational Processing of the Portuguese Language, July: 74-85.

Google. 2018. “Android Security & Privacy 2018 Year In Review.”

source.android.com. Accessed June 2020.

https://source.android.com/security/reports/Google_Android_Security_2018_Re

port_Final.pdf.

Hunter, John D. 2007. “Matplotlib: A 2D Graphics Environment.” Computing in

Science & Engineering 90-95.

InformationWeek. 2014. Cybercrime black markets grow up. Accessed December 2019.

www.informationweek.com/cybercrime-black-markets-grow-up/d/d-id/1127911.

JesusFreke. 2009. Smali. Accessed June 2020. https://github.com/JesusFreke/smali.

Jolliffe, Ian T., and Jorge Cadima. 2016. “Principal component analysis: a review and

recent developments.” Philosophical Transactions of the Royal Society A:

Mathematical, Physical and Engineering Sciences.

Kiritchenko, Svetlana, Xiaodan Zhu, Colin Cherry, and Saif M. Mohammad. 2014.

“NRC-Canada-2014: Detecting aspects and sentiment in customer reviews.”

Proceedings of the 8th international workshop on semantic evaluation (SemEval

2014), 437-442.

70

Kohavi, Ron. 1995. “A study of cross-validation and bootstrap for accuracy estimation

and model selection.” Ijcai, August: 1137-1145.

Koodous. 2018. Koodous: Online malware analysis platform. Accessed December

2019. https://koodous.com/.

Lantz, Patrick. 2011. “Droidbox.” code.google.com. Accessed June 2020.

https://code.google.com/archive/p/droidbox/.

Liu, Yu, Yichi Zhang, Haibin Li, and Xu Chen. 2016. “A hybrid malware detecting

scheme for mobile Android applications.” 2016 IEEE International Conference

on Consumer Electronics (ICCE), January: 155-156.

Lopes, João. 2020. “Malware detection methods for Android mobile applications.”

ISCTE (under evaluation).

Maaten, Laurends van der., and Geoffrey Hinton. 2008. “Visualizing data using t-SNE.”

Journal of machine learning research, Nov: 2579-2605.

Machiry, Aravind, Rohan Tahiliani, and Mayur Naik. 2013. “Dynodroid: An input

generation system for android apps.” Proceedings of the 2013 9th Joint Meeting

on Foundations of Software Engineering, August: 224-234.

Mahmood, Riyadh, Nariman Mirzaei, and Sam Malek. 2014. “Evodroid: Segmented

evolutionary testing of android apps.” Proceedings of the 22nd ACM SIGSOFT

International Symposium on Foundations of Software Engineering, November:

599-609.

Manning, Christopher D., Hinrich Schütze, and Prabhakar Raghavan. 2008.

“Introduction to information retrieval.” Cambridge University press.

McAfee. 2019. “McAfee: Mobile Threats Report.” www.mcafee.com. Accessed April

20, 2020. https://www.statista.com/statistics/263437/global-smartphone-sales-

to-end-users-since-2007.

McKinney, Wes. 2010. “Data Structures for Statistical Computing in Python.”

Proceedings of the 9th Python in Science Conference, 51-56.

Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeffrey Dean. 2013.

“Distributed representations of words and phrases and their compositionality.”

Advances in neural information processing systems, 3111-3119.

Moser, A., C. Kruegel, and E. Kirda. 2007. “Limits of static analysis for malware

detection.” Twenty-Third Annual Computer Security Applications Conference

(ACSAC), December: 421-430.

Moser, Andreas, Christopher Kruegel, and Engin Kirda. 2007. “Exploring multiple

execution paths for malware analysis.” 2007 IEEE Symposium on Security and

Privacy (SP'07), May: 231-245.

Nigam, Ruchna. 2015. “A Timeline Of Mobile Botnets.” Virus Bulletin.

Ordenes, Francisco V., Babis Theodoulidis, Jamie Burton, Thorsten Gruber, and

Mohamed Zaki. 2014. “Analyzing customer experience feedback using text

mining: A linguistics-based approach.” Journal of Service Research, 278-295.

Pandita, Rahul, Xusheng Xiao, Wei Yang, William Enck, and Tao Xie. 2013.

“WHYPER: Towards automating risk assessment of mobile applications.” 22nd

USENIX Security Symposium (USENIX Security 13), 527-542.

Peiravian, Nasser, and Xingquan Zhu. 2013. “Machine learning for android malware

detection using permission and api calls.” IEEE 25th international conference

on tools with artificial intelligence, November: 300-305.

Petz, Gerald, Michal Karpowicz, Harald Fürschuß, Andreas Auinger, Václav Stříteský,

and Andreas Holzinger. 2013. “Opinion mining on the web 2.0–characteristics

of user generated content and their impacts.” International Workshop on

71

Human-Computer Interaction and Knowledge Discovery in Complex,

Unstructured, Big Data, July: 35-46.

Revivo, Idan, and Ofer Caspi. 2014. CuckooDroid. Accessed June 2020.

https://github.com/idanr1986/cuckoo-droid.

Rossum, Guido van. 1995. Python tutorial. Technical Report, Amsterdam: Centrum

voor Wiskunde en Informatica (CWI).

Roy, Sankaras, Jordan DeLoach, Yuping Li, Nicolae Herndon, Doina Caragea, Xinming

Ou, Venkatesh-Prasad Ranganath, Hongmin Li, and Nicolais L. Guevara. 2015.

“Experimental study with real-world data for android app security analysis using

machine learning.” Proceedings of the 31st Annual Computer Security

Applications Conference, December: 81-90.

Sahs, Justin, and Latifur Khan. 2012. “A machine learning approach to android malware

detection.” European Intelligence and Security Informatics Conference, 141-

147.

Sanz, Borja, Igor Santos, Carlos Laorden, Xabier Ugarte-Pedrero, Pablo G. Bringas, and

Gonzalo Álvarez. 2013. “Puma: Permission usage to detect malware in android.”

International Joint Conference CISIS’12-ICEUTE 12-SOCO 12 Special

Sessions, 289-298.

Singh, Anshuman, Andrew Walenstein, and Arun Lakhotia. 2012. “Tracking concept

drift in malware families.” Proceedings of the 5th ACM workshop on Security

and artificial intelligence, October: 81-92.

Spreitzenbarth, Michael, and Felix Freiling. 2012. Android Malware on the Rise.

Technical report, Department Informatik, Friedrich Alexander Universität

Erlangen Nürnberg (FAU). Accessed April 2020. https://opus4.kobv.de/opus4-

fau/frontdoor/index/index/docId/2210.

Spreitzenbarth, Michael, Felix Freiling, Florian Echtler, Thomas Schreck, and Johannes

Hoffmann. 2013. “Mobile-sandbox: having a deeper look into android

applications.” Proceedings of the 28th Annual ACM Symposium on Applied

Computing, March: 1808-1815.

StatCounter. 2019. StatCounter: Mobile Operating System Market Share Worldwide.

Accessed April 20 2020. https://gs.statcounter.com/os-market-

share/mobile/worldwide.

Statista. 2020. Statista: Number of smartphones sold to end users worldwide from 2007

to 2020. Accessed April 22, 2020.

https://www.statista.com/statistics/263437/global-smartphone-sales-to-end-

users-since-2007.

Tam, Kimberly, Ali Feizollah, Nor B. Anuar, Rosli Salleh, and Lorenzo Cavallaro.

2017. “The evolution of android malware and android analysis techniques.”

ACM Computing Surveys (CSUR), 1-41.

Tam, Kimberly, Salahuddin J. Khan, Aristide Fattori, and Lorenzo Cavallaro. 2015.

“Copperdroid: Automatic reconstruction of android malware behaviors.” Ndss,

February.

The Register. 2013. The Register: Earn 8,000 a month with bogus apps from Russian

malware factories. Accessed April 2020.

https://www.theregister.com/2013/08/05/mobile_malware_lookout/.

Tukey, John W. 1962. “The future of data analysis.” The annals of mathematical

statistics 1-67.

Vapnik, Vladimir, Steven Golowich, and Alex Smola. 1997. “Support vector method

for function approximation, regression estimation and signal processing.”

Advances in neural information processing systems, 281-287.

72

Walt, Stéfan J. van der, S. Chris Colbert, and Gael Varoquaux. 2011. “The NumPy

array: a structure for efficient numerical computation.” Computing in science &

engineering, 22-30.

Wang, Lei, Tie Qiu, and Wenbing Zhao. 2018. “Quality, Reliability, Security and

Robustness in Heterogeneous Systems.” 15th EAI International Conference.

Wold, Svante, Kim Esbensen, and Paul Geladi. 1987. “Principal component analysis.”

Chemometrics and intelligent laboratory systems, 37-52.

Wu, Dong-Jie, Ching-Hao Mao, Te-En Wei, Hahn-Ming Lee, and Kuo-Ping Wu. 2012.

“Droidmat: Android malware detection through manifest and api calls tracing.”

2012 Seventh Asia Joint Conference on Information Security, August: 62-69.

Xu, Rubin, Saïdi Hassen, and Anderson Ross. 2012. “Aurasium: Practical policy

enforcement for android applications.” Presented as part of the 21st USENIX

Security Symposium (USENIX Security 12).

Yan, Lok Kwong, and Heng Yin. 2012. “Droidscope: Seamlessly reconstructing the OS

and dalvik semantic views for dynamic android malware analysis.” Presented as

part of the 21st USENIX Security Symposium (USENIX Security 12), 569-584.

Yeo, In-Kwon, and Richard A. Johnson. 2000. “A new family of power transformations

to improve normality or symmetry.” Biometrika,, 954-959.

Zheng, Cong, Shixiong Zhu, Shuaifu Dai, Guofei Gu, Xiaorui Gong, Xinhui Han, e Wei

Zou. 2012. “Smartdroid: an automatic system for revealing ui-based trigger

conditions in android applications.” Proceedings of the second ACM workshop

on Security and privacy in smartphones and mobile devices. 93-104.

Zhou, Wu, Yajin Zhou, Xuxian Jiang, and Peng Ning. 2012. “Detecting repackaged

smartphone applications in third-party android marketplaces.” Proceedings of

the second ACM conference on Data and Application Security and Privacy,

February: 317-326.

