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Resumo 

O uso generalizado de dispositivos móveis e sua adaptação perfeita às necessidades de 

cada utilizador por meio de aplicativos úteis (Apps) tornam-os um alvo principal para que 

criadores de malware obtenham acesso a dados confidenciais do usuário, como detalhes 

bancários, ou para reter dados e bloquear o acesso do utilizador. Estas apps são 

distribuídas em mercados que alojam milhões, e portanto, têm as suas próprias formas de 

detecção automatizada de malware, a fim de dissuadir os desenvolvedores de malware e 

manter sua loja de apps (e reputação) confiável, mas ainda existem várias apps capazes 

de ignorar esses detectores e permanecerem disponíveis no mercado para qualquer 

utilizador fazer o download. As estratégias atuais de detecção de malware dependem 

principalmente do uso de recursos extraídos estaticamente, dinamicamente ou de uma 

conjunção de ambos, e de torná-los adequados para aplicações de aprendizagem 

automática, a fim de dimensionar a detecção para cobrir o número de apps que são 

enviadas ao mercado. Neste artigo, o foco principal é o estudo da eficácia dos métodos 

automáticos de detecção de malware e as suas capacidades de acompanhar a popularidade 

de novo malware, bem como as suas tendências em constante mudança. Analisando o 

desempenho de algoritmos de ML treinados, com dados do mundo real, em diferentes 

períodos e escalas de tempo com recursos extraídos estaticamente, dinamicamente e com 

feedback do utilizador, é possível identificar a configuração ideal para maximizar a 

detecção de malware. 

 

Palavras-Chave: Detecção de Malware; Análise Dinâmica; Aprendizagem Automática; 

Android; ETL. 

 

  



Automated Android Malware Detection 

iii 

 

Abstract 

The widespread usage of mobile devices and their seamless adaptation to each users' 

needs by the means of useful applications (Apps), makes them a prime target for malware 

developers to get access to sensitive user data, such as banking details, or to hold data 

hostage and block user access. These apps  are distributed in marketplaces that host 

millions and therefore have their own forms of automated malware detection in place in 

order to deter malware developers and keep their app store (and reputation) trustworthy, 

but there are still a number of apps that are able to bypass these detectors and remain 

available in the marketplace for any user to download. Current malware detection 

strategies rely mostly on using features extracted statically, dynamically or a conjunction 

of both, and making them suitable for machine learning applications, in order to scale 

detection to cover the number of apps that are submited to the marketplace. In this article, 

the main focus is the study of the effectiveness of these automated malware detection 

methods and their ability to keep up with the proliferation of new malware and its ever-

shifting trends. By analising the performance of ML algorithms trained, with real world 

data, on diferent time periods and time scales with features extracted statically, 

dynamically and from user-feedback, we are able to identify the optimal setup to 

maximise malware detection. 

Keywords: Malware Detection; Dynamic Analysis; Machine Learning; Android; ETL. 
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Chapter 1 – Introduction 

1.1. Theme Framework 

Since the introduction of smartphones to the mainstream global audience, their surge 

in popularity, although remarkable, is unsurprising due to their integration of highly 

personal and powerful attributes. The unification of portability, high computational 

power, an ever-increasing access to the Internet and accessibility make these personal 

devices an almost mandatory tool in our modern society, connecting everything and 

everyone.  

The pervasive nature of these devices and their extended variants, such as tablets and 

other mobile platforms, gives an incentive for developers to create apps that allow for a 

wide array of uses, from social networks to mobile games and provide an exceedingly 

costumizable experience, adapted to each and every users’ needs if they so wish. These 

apps are available on online app stores, to which any app developer can submit their own 

creations and make them accessible to anyone, as long as they pass the app stores’ own 

publishing requirements.  

Since most apps end up dealing with large amounts of personal data, like private 

information, photos, and even physical location through gps, they become easy targets 

for developers with malicious intents. By creating apps that are seemingly innocent on 

the surface, these developers can exploit user given permissions to perform a myriad of 

harmful actions for their own benefit. This can come in the form of banking details or 

leveraging personal information to reinforce another attack vector.  

With Android being the most used mobile platform, its app stores are of course the 

most targeted. Given the sheer number of malware apps published, the main concern 

becomes how to filter through all these apps. Since manually scanning all of this digital 

content is nearly impossible and current malware detection methods can still be improved, 

it becomes paramount then, to research which kinds of malware detection methods are 

most effective and what makes them so, in order to protect users from being exposed to 

these kinds of malware and as such create a more user-safe environment for the global 

mobile community. 
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1.2. Motivation and theme relevance 

Smartphones, tablets, and other mobile platforms have long been integrated into our 

daily lives, due to the factors mentioned above. These personal computing devices, 

surpassing 1 billion units sold in 2014 (Statista 2020), have fueled the development of 

complex mobile malware. More than seven million new malware samples have been 

accumulated by McAfee in 2018 alone (McAfee 2019).  

With Android taking the place of the most used mobile Operating System (OS), with 

approximately 76% of the global market share as of November 2019 (StatCounter 2019), 

due to its open-source approach and a free of charge Integrated Development 

Environment (IDE), it gives developers an easier point of entry to its platform than its 

main competitor, the iOS (StatCounter 2019), which has especially rigorous approval 

policies and requires developers to use proprietary hardware and software in order to 

develop and publish iOS apps, placing a higher barrier to entry on those who wish to 

develop iOS apps. The Android platform also allows its users the ability to install apps 

from Google unverified sources, that may be accessible through the Internet as well as 

third-party app stores.  

Joining the Android's platform ease of use with the fact that these apps handle 

substancial volumes of personal and sensitive assets (e.g., financial or messaging apps) 

portrays the mobile platform as an alluring target for malware developers. In 2013 a report 

showed that attackers can earn up to 12,000 USD per month with mobile malware (The 

Register 2013). The increase of mobile malware can be associated with the development 

of new technologies providing new access points for profitable exploitations 

(Spreitzenbarth and Freiling 2012, Nigam 2015). In addition, an increase in black markets 

that profit by selling system vulnerabilities, malware source code and malware 

development tools, has contributed to a bigger incentive for profit driven malware 

(InformationWeek 2014). Due to the risks of malware developers bypassing safeguarding 

mechanisms, further improvements must be made to existing methods. 

To protect its users, the main Android App Stores have continuously developed 

malware detection methods to filter through submitted apps and block those deemed 

malicious. They achieve this by using either static or dynamic malware detection 

methods, or in some cases, a conjunction of both, to scan the apps’ intent and behaviours 

to ascertain if it should be classified as malware or not. Unfortunately, each of these 

methods suffer from some form of exploit and can be bypassed with sufficient knowledge. 
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For example static analysis detectors, which rely on the analysis of the application’s code 

without running it, mean that they are vulnerable to code obfuscation techniques that 

remove or limit code access, such as string encryption or renaming of methods and 

variables (Moser, Kruegel and Kirda 2007). And similar to it, the dynamic analysis, which 

focuses on examining the applications’ behaviour during runtime, remains vulnerable to 

being hindered or bypassed with native code (e.g., non-Java Code compiled to run with 

an Android Central Processing Unit (CPU)) or reflection (e.g., modification of interfaces, 

classes and methods during execution) (Xu, Hassen and Ross 2012), and in some cases, 

malicious applications which can detect emulated environments and restrain their harmful 

processes accordingly (Xu, Hassen and Ross 2012), in order to circumvent detection. 

Even by combining both methods, hybrid analysis still fails to address these issues 

completely. Furthermore, as malware keeps evolving to constantly find new exploits and 

attack vectors, many of these malicious applications will keep avoiding whichever 

detection strategies mobile market operators put in place. 

 

1.3. Research questions and objectives 

In this dissertation the aim is to study the effectiveness of several Machine Learning 

(ML) approaches in large scale mobile malware detection in the Android environment 

and their ability to keep up with the proliferation of new malware and its ever evolving 

trends.  

This work is part of the AppSentinel project, which proposes to develop a cloud-based 

technology for Android app stores to proactively prevent malware circulation through app 

behavioural pattern analysis. This project also intends to test applications regarding good 

practices in secure mobile software development, which then can lead to educational 

feedback to app developers. Finally, the research and development of a supervised ML 

system to efficiently detect malicious applications is planned. This last part is where this 

dissertation is set, continuing the research and development of the supervised ML system 

previously tested in (Lopes 2020) where malware classifiers were trained on features 

obtained through static analysis. To facilitate the integration of this work in the context 

of this project, several contributions were made, namely in the writing of technical reports 

and two research papers (Duque, et al. 2020, Duque, et al. 2020)  were developed for 

submission regarding the work described in Section 4.1 and Chapter 5, respectively.  



Introduction 

4 

 

To achieve the best possible approach of feature and algorithm selection and develop 

models that can distinguish malware from benign apps, several methods of data analysis, 

data preprocessing and ML techniques, are tested, to produce optimal classifiers trained 

to differentiate Android malware apps from benign ones and assess their performance in 

this task. This objective is divided into several research questions to better address the 

overall proof of concept as follows: 

• How can user feedback be used for malware detection systems? 

• Which user generated data is more relevant to perform malware detection using 

ML methods? 

• Can Android app analysis tools produce relevant information to train malware 

detection systems? 

• What should be the best approach to retrain the system to maintain high 

performance over time? 

The first two questions are relevant to understand if there is knowledge to be extracted 

from the feedback users generated in an app store environment that can be used to enhance 

a functioning malware detection system, and to what extent is this knowledge helpful. 

Understanding which features to use can also be beneficial to better understand the 

relationship between feedback and malware. 

The third research question focuses on the usage of Android app analysis tools and 

leveraging its results to aid malware detection. Converting the outputs these tools provide 

into numerical data to be statistically analysed, processed and fed into the machine 

learning classifiers, can provide useful insights to create more efficient models. 

To answer the fourth and final question, the proposed system must be subject to 

testing with data from the months that follow the training data and its performance 

observed. This way, the feasibility of the system to adapt to new malware trends can be 

examined and optimized, or, if it fails to do so, what can be done to allow such adaptation. 

In order to obtain a solution for these research questions 1,864 experiments were 

made, resulting in 126,400 algorithms trained and approximately 936 hours or 39 days of 

computing power. 
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1.4. Methodological approach 

This dissertation follows the Cross-Industry Standard Process for Datamining (CRISP-

DM) (Chapman, et al. 2000) methodology in order to build the classification models, . 

This open standard provides a robust and well-proven structured approach to designing a 

data mining project, from data collection and preparation, to model development and 

implementation. Given its powerful flexibility, practicality, and its usefulness, it is 

utilized in various fields and industries. As it can be seen in Figure 1, CRISP-DM defines 

the six core procedures that serve as guidelines to develop data mining projects: business 

understanding, data understanding, data preparation, modelling, evaluation and finally, 

deployment. This section outlines these procedures in depth, with the exception of the 

deployment procedure which is beyond the scope of this research. 

 

 

Figure 1 - Phases of the CRISP-DM reference model (Chapman, et al. 2000) 

 

The first step in data mining projects is Business Understanding, where the focus is on 

leveraging the business perspective to better understand the project requirements and 

objectives to develop an initial plan to meet the desired objectives. Following this, the 

Data Understanding phase starts by collecting the data necessary to the project and 
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proceeds by utilizing statistical and visual data analysis techniques on the data collected 

to scrutinize and discover some insights that can form assumptions to better guide the 

succeeding steps. The Data Preparation phase encompasses the necessary procedures, 

such as feature selection, transformation, and data cleaning, used to build the data set that 

will be fed into the machine learning models. The Modeling phase is comprised of the 

selection and application of the chosen modelling techniques, as well as their respective 

parameter calibration. Finally, in the Evaluation stage the primary goal is to evaluate and 

review the results obtained so far and the steps taken to reach them, considering the 

objectives that where set before. 

 

1.5.Structure and organization of the dissertation 

This study is composed of the following 4 additional chapters: 

• In Chapter 2, an overview of the currently defined state of the art for 

automated malware detection methods is presented, along with a more 

detailed analysis on the usage of features generated by user feedback, static 

code analysis and dynamic code analysis respectively. 

• In Chapter 3, the methodology for this study is outlined, with a 

comprehensive analysis on the datasets utilised, data analysis, data 

preparation and data processing alongside an overview of the algorithms used, 

their implementation and the metrics by which they are evaluated.  

• In Chapter 4, the analysis of the obtained results for the full datasets is 

presented according to the methodology that was deemed appropriate, joined 

by a broad comparison of their respective results. A small experiment 

analysing the impact of malware to goodware ratio is also presented. 

• In Chapter 5, the study of the model performance decay is presented, by 

training the best performing model, from the previous chapter in each 

category, on different time frames and testing it against the following monthly 

periods. 
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• Finally, in Chapter 6, conclusions are drawn from this study, as well as some 

recommendations to overcome its limitations, alongside some possible 

proposals to improve its application in future works. 
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Chapter 2 – Literature Review 
 

In this chapter a detailed overview of the malware detection systems currently in use 

is given, alongside some of the tools and processes employed, which are more impactful 

and useful to this study. 

 

 

2.1. Machine Learning for Malware Detection  

2.1.1. Large Scale Automated Detection 

Large scale mobile malware detection methods currently rely on a mix of automated 

detection tools and manual malware detection methods. The former usually depends on 

anomaly-based detection schemes to detect unwanted behaviours (Google 2018) based 

on known patterns, while the latter usually relies on the usage of code analysis tools like 

Androguard (Desnos 2012), Droidbox (Lantz 2011) and Kirin (Enck, Ongtang and 

McDaniel 2009), among many others, to reveal malicious patterns or ascertain the level 

of risk an app might pose. Although manual detection methods are used to detect novel 

malware variations and distinguish between real malicious apps and poorly developed 

ones (greyware), they are rather resource intensive and, in most cases, still demand the 

intervention of a security analyst (Enck and McDaniel 2010). Therefore, to maintain a 

scalable malware detection framework, App stores have the need to continuosly develop 

and fine tune these automated methods, so that they can adapt to the ever-emerging 

malware trends. 

 

2.1.2. Regarding Data Collection 

To effectively train ML algorithms, large amounts of data are usually required. Most 

of the works on the subject resort to application repositories (Arp, et al. 2014, Chakradeo, 

et al. 2013, Deo, et al. 2016)  , or build the datasets indiscriminately with the help of store 

scrapers and Antivirus products (Roy, et al. 2015, Singh, Walenstein and Lakhotia 2012, 

Allix, et al. 2014). Although app repositories usually provide labeled datasets of known 

benign and malicious apps, alongside somewhat large and complex feature vectors for 

each app, they are built upon previously detected applications that are sometimes several 

years old or are not updated to take into account new malware that had previously evaded 
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detection. While the market downloaded apps do not suffer as much from the old data 

predicament, they cannot be reliably labeled with Antivirus products since most known 

malware has already been filtered out by the app store and/or the Antivirus products 

haven't yet caught up with the most recent malware trends. Nonetheless, these are the 

options available to build malware datasets.  

ML approaches rely heavily on the quality of the input data, therefore, making the best 

use of the available data is essential. However, many obstacles arise when composing a 

train/test dataset that can maximise algorithm performance while avoiding biases and 

other pitfalls. As mentioned before, a classifier that learns from a dataset that contains 

dated apps can lead to inferior results when applied in an up to date realistic scenario.  

Another issue that comes up frequently is the malware to goodware ratio. Most works 

either try to mimic a realistic less than 1% of malicious apps (Google 2018) in their data 

set  (Sahs and Khan 2012, Peiravian and Zhu 2013)  or try to maintain an equal ratio of 

malware to goodware (1:1) (Roy, et al. 2015, Deo, et al. 2016, Chen, et al. 2016)  . Both 

approaches have diferent pitfalls. The former, while allowing training and testing the 

models in a more realistic environment can lead to a goodware classification bias, due to 

the highly imbalanced dataset. Meanwhile, the latter can avoid this issue by balancing 

both classes, however, this can lead to a misrepresentation in a real-world application. 

Lastly, the data itself can have noise built in due to the nature of malware, as there are 

malicious apps that have managed to evade detection (e.g., adware) as well as benign 

apps that have security flaws and might be considered potentially harmful apps (PHA).  

 

2.2. User Feedback Analysis 

Very little has been done with user feedback regarding malware detection. For 

example, WHYPER (Pandita, et al. 2013), focused on processing app market metadata, 

such as application descriptions, to examine whether the description provided any 

indication as to why the application needed certain permissions. Nonetheless, parallels 

can be drawn from other uses in the customer feedback analysis domain such as online 

reviews for hotels (Antonio, et al. 2018), restaurants (Kiritchenko, et al. 2014), and e-

commerce providers (Kiritchenko, et al. 2014). With app store users being able to post 

their feedback regarding their downloaded apps, via ratings, comments, and other sorts 
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of flags, this can potentially be used to help malware detection methods by providing 

more features to be analysed.  

Although structured information, like ratings and flags, can easily be added as features 

to be used by machine learning algorithms, unstructured information like comments need 

to be processed first. This can be achieved through Natural Language Processing (NLP) 

techniques like sentiment analysis (Eshleman and Yang 2014, Forte and Brazdil 2016), 

and opinion mining (Petz, et al. 2013). However, literature on non-social media complaint 

analysis is considerably scarce, mainly due to the fact that such data is typically not 

publicly available (Filgueiras, et al. 2019). In (Ordenes, et al. 2014), a framework is 

proposed to analyse customer experience feedback, using a linguistics-based model, by 

identifying activities resources and context, to automatically distinguish compliments 

from complaints.  

Traditional approaches to text categorization employ feature-based sparse models, 

using bag-of-words and Term Frequency-Inverse Document Frequency (TF-IDF) 

encoding (Filgueiras, et al. 2019). More recent techniques, such as word embeddings 

(Mikolov, et al. 2013) and recurrent neural networks (RNN) (Elman 1990), have also 

been used in complaint classification. 

 

2.3. Static Analysis 

Static analysis is a detection method which consists of examining a program’s code 

without its execution. In the case of the Android environment this analysis also takes into 

consideration other components that go beyond the code itself, most notably the 

AndroidManifest file, which allows for a more thorough examination. Theoretically, this 

method can unveil every possible execution path, however, it suffers from several 

drawbacks (Tam, et al. 2017). The major drawback is the vulnerability to obfuscation 

techniques, that remove or limit code access (Moser, Kruegel and Kirda 2007), such as 

string encryption or renaming methods and variables.  

Other drawbacks include the injection of non-Java code, network activity, and the 

modification of objects at runtime which are outside the scope of static analysis as they 

are only visible during execution (Tam, et al. 2017). Alongside these vulnerabilities is 

also the fact that free alternative code compilers mean that signature-based methods are 

incompatible with android. Therefore, most android static analysis either focuses on the 
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android package (APK) bytecode, such as DroidMOSS (Zhou, et al. 2012), that uses fuzzy 

hashing to leverage small fingerprints from the extracted instruction sequences therefore 

localizing altered code, or its APK components, such as the AndroidManifest.xml, which 

states permissions, package name, version, referenced libraries and app components, like 

Droidmat (Wu, et al. 2012) and PUMA (Sanz, et al. 2013) that leverage machine learning 

algorithms to classify apps by their permissions. And finally, the APK classes.dex file, 

which contains all Android classes compiled into a dex file format, compatible with the 

Dalvik virtual machine. 

 

2.4. Dynamic Analysis 

In contrast to static analysis, dynamic analysis executes a program and observes the 

results (Tam, et al. 2017). Its main downside is the limited code coverage, since only one 

path can be followed each time. However, this can be mitigated by exploiting multiple 

execution paths (Brumley, et al. 2007, Chipounov, Kuznetsov and Candea 2011, Moser, 

Kruegel and Kirda 2007). Given that android apps are designed for user interaction, user 

behaviours need to be emulated via the interface, received intents or with automatic event 

injectors (Azim and Neamtiu 2013, Machiry, Tahiliani and Naik 2013, Mahmood, 

Mirzaei and Malek 2014). For example, in order to stimulate applications, DynoDroid 

(Machiry, Tahiliani and Naik 2013) was developed to simulate real user interactions from 

collected user data, such as screen tapping, long pressing and dragging, to find bugs in 

Android apps.  

Since the app is running during analysis, many features can be gathered from different 

architectural layers (e.g., hardware, kernel, app, or OS) to examine its behaviour. 

However, since malware is running as well, it can tamper with the analysis or even supress 

its malicious behaviour if it detects an emulated environment. While in-the-box analysis 

gathers data on the same privilege level as the malware, meaning that it can access 

memory structures and high OS-level data easily, it is vulnerable to being attacked or 

bypassed, with native code (e.g., non-Java Code compiled to run with an Android Central 

Processing Unit (CPU)) or reflection (e.g., modifying methods, classes and interfaces 

during runtime) (Xu, Hassen and Ross 2012). Meanwhile, out-of-the-box analysis, like 

DroidScope (Yan and Yin 2012) and CopperDroid (Tam, Khan, et al. 2015), manage to 

emulate android through a VM, and so, are able to provide complete control and oversight 
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of the Android environment. However, malware can counter emulation by detecting false, 

non-real environments and alter its behaviour in order to evade analysis. 

 

2.5. Hybrid Analysis 

By combining static and dynamic analysis, hybrid methods can increase robustness, 

monitor edited apps, increase code coverage, and find vulnerabilities (Tam, et al. 2017). 

By implementing both methods sequentially, certain drawbacks can be limited. For 

example, SmartDroid (Zheng, et al. 2012), EvoDroid (Mahmood, Mirzaei and Malek 

2014) and in (Spreitzenbarth, Freiling and Echtler, et al. 2013), the authors managed to 

increase code coverage by using static analysis to find all possible activity paths in order 

to guide dynamic analysis through them. Other detectors, like (Bläsing, et al. 2010), use 

static analysis to estimate the app’s risk before dynamically logging its system calls with 

kernel-level sandboxing.  

Alternatively, by collecting features through static and dynamic analysis, machine 

learning algorithms can be trained to detect malware with a large enough dataset. In 

(Wang, Qiu and Zhao 2018), several machine learning classifiers were trained on a dataset 

composed of a binary feature vector for each app, where features were extracted using 

various forms: statically through the apps permission system and API calls, with reverse-

engineering tools Baksmali (JesusFreke 2009) and Androguard (Desnos 2012); 

dynamically, through virtualization, with an automated test tool called monkey (Android 

Developers 2016); and through malicious behaviour monitoring, using DroidBox (Lantz 

2011). Similarly, in (Liu, et al. 2016), machine learning algorithms are also trained on a 

binary feature vector created for each app. The main difference being the employment of 

the Android Debug Bridge (ADB) to execute apps on the device while connected to a 

computer, instead of executing them on a virtualized environment. 

 

2.6. Closing Remarks 

Given the vast research done on this subject, the works presented in this section were 

selected as an overall representation of the most notable features and drawbacks in each 

category. This work does not intend to address the detailed intricacies of the various 

analysis methods but rather the use of their respective results to train ML algorithms in 

the most effective manner to better classify malicious applications, and afterwards test 
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their effectiveness in retaining classification performance over time as new data becomes 

available. Table 1 presents a systematization of the noteworthy works presented above. 
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Table 1 – Literature Review Summary 

Study Analysis Detector Sample Source 
Sample 

Size 

Malware 

Ratio 
Method Summary 

(Arp, et al. 

2014) 
X X 

Google Play and 

MalGenome 
129,013 4% Static 

The DREBIN framework leverages features obtained from static code analysis and the manifest file 

to train a SVM classifier which detects 93.9% of the malware samples with a false positive rate of 1%. 

(Chakradeo

, et al. 

2013) 

  X 
Google Play, Contagio 

and MalGenome 
15,620 5% Static The MAST framework utilises Multiple Correspondence Analysis (MCA) to rank applications by 

their potential to exhibit malicious behaviour. 

(Deo, et al. 

2016) 
  X 

Marvin, McAfee, 

MalGenome and Drebin 
124,190 50% Static 

This framework proposes the use of Venn-Abers predictors for assessing the quality of binary 

classification tasks to identify antiquated models. 

(Roy, et al. 

2015) 
X   

Google Play, VirusShare 

and Arbor Networks 
1,019,000 Several Static 

This study tested several differing experimentations regarding the use of ML classifiers to detect 

malware based on static analysis. 

(Singh, 

Walenstein 

and 

Lakhotia 

2012) 

X   Unnamed AV Company 4,173 100% Static 

This study tries to track malware concept drift through similarity of byte 2-grams and mnemonic 2-

grams. 

(Allix, et 

al. 2014) 
  X 

Google Play, Appchina, 

1Mobile 
206,237 30% Static This study demonstrates the relevance of historic coherence in the selection of datasets. 

(Sahs and 

Khan 

2012) 

  X Unnamed Source 2,172 4% Static 

This framework demonstrates the usage of machine learning-based malware detection systems for the 

Android operating system. By using Permissions and Control Flow Graphs as features to train a SVM 

model. 

(Peiravian 

and Zhu 

2013) 

  X Unnamed Source 1,860 32% Static 

In this study the authors used APKs Permissions and API calls to train three different machine learning 

classifiers: SVM, Decision Trees and Bagging. And compared results on the algorithms trained with 

different feature combinations. 

(Chen, et 

al. 2016) 
  X 

MalGenome, Mobile-

Sandbox 
6,000 50% Static 

This study used syntax-based and semantics-based features to train several classifiers, reporting na 

improved robustness to classifier performance when semantics-based features are incorporated in 

training as compared to syntax-based features. 

(Pandita, et 

al. 2013) 
X   Google Play 581 Unknown NLP 

WHYPER focuses on persmissions for a given app and inspects whether or not the app's description 

provides details as to why the app needs the permission. 

(Wu, et al. 

2012) 
  X 

Google Play and 

Contagio 
1,738 13% Static 

DroidMat studies the impact of different feature compositions on the model performance of two 

classifiers, KNN and NaïveBayes. 

(Sanz, et 

al. 2013) 
  X 

Google Play and 

VirusTotal 
606 40% Static 

The PUMA framework focuses on the usage of permissions to train several different machine learning 

classifiers. 
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Table 1 (Continued) – Literature Review Summary 

Study Analysis Detector Sample Source 
Sample 

Size 

Malware 

Ratio 
Method Summary 

(Brumley, et al. 

2007) 
X   Unnamed Source - - Dynamic 

The BitScope framework prosposes several techniques to extract behavioural 

information through an emulated environment. 

(Chipounov, 

Kuznetsov and 

Candea 2011) 

X   - - - Dynamic 

The S2E platform performs in-vivo multipath analysis of systems through the 

combination of virtualization, dynamic binary translation and symbolic execution 

to perform a behaviour analysis. 

(Moser, Kruegel 

and Kirda 2007) 
X   

Unnamed AV 

Company 
308 100% Dynamic 

This study presents a system that explores multiple execution paths by letting the 

program fully execute each path and reverting to checkpoints placed along the way. 

(Azim and 

Neamtiu 2013) 
X   Google Play 25 - Dynamic 

The A3E framework presents two novel approaches to app exploration, Targeted 

Exploration and Depth first that focus on the events triggered during GUI 

exploration. 

(Machiry, 

Tahiliani and 

Naik 2013) 

X   Google Play 50 - Dynamic 

The Dynodroid framework presents a practical system for generating relevant 

inputs on mobile apps with a novel "observe-select-execute" approach, 

significantly automating task testing. 

(Xu, Hassen and 

Ross 2012) 
X   Lisvid 3,189 - Dynamic 

The Aurasium framework is able to detect attempts by multiple applications to 

collaborate and implement a malicious logic on critical resources. 

(Yan and Yin 

2012) 
X   Unnamed Source 2 100% Dynamic 

DroidScope is a dynamic binary instrumentation tool that rebils two levels of 

semantic information: OS and Java. API tracing, native instruction tracing, Dalvik 

instruction tracing and taint tracking are already core components. 

(Tam, Khan, et 

al. 2015) 
X   

Contagio, MalGenome 

and McAfee 
2,986 100% Dynamic 

The CopperDroid framework uses VMI-based dynamic system call-centric 

analysis to describe the application behavior 
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Table 1 (Continued) – Literature Review Summary 

Study Analysis Detector Sample Source Sample Size 
Malware 

Ratio 
Method Summary 

(Zheng, et al. 

2012) 
X X Unnamed Source 7 100% Hybrid 

SmartDroid is a framework that combines static and dynamic analysis to 

automatically reveal UI-based trigger conditions. It uses static analysis to build 

Call Graphs in order to guide the dynamic analysis towards the sensitive APIs. 

(Mahmood, 

Mirzaei and 

Malek 2014) 

X X F-Droid 110 - Hybrid 

Evodroid presents a novel evolutionary testing technique that preserves and 

promotes the genetic makeup of individuals in the automated testing search 

process. 

(Spreitzenbarth, 

Freiling and 

Echtler, et al. 

2013) 

X X 

Google Play, 

VirusTotal and other 

Unnamed sources 

183,500 >1% Hybrid 

This study proposes the usage of static and dynamic analysis to detect malicious 

behaviour. Most notably logging all performed actions including those 

stemming from native API calls. 

(Bläsing, et al. 

2010) 
X X Google Play 151 >1% Hybrid 

The AASandbox framework uses both static and dynamic analysis to 

automatically detect suspicious applications. Static analysis scans the package 

for malicious patterns without installing it, while the dynamic analysis 

implementation is placed in kernel space and hijacks system calls for further 

analysis. 

(Liu, et al. 2016) X X 
Wandoujia and 

MalGenome 
1,000 50% Hybrid 

This study proposes a hybrid scheme that submits applications through both 

analysis methods and builds several classifiers with the features extracted from 

both methods. 
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Chapter 3 – Methodology 

 

The focus of this chapter is on describing the framework designed to test the proof of concept 

of malware detection using different types of data to train the algorithms. Figure 2 shows the 

framework layout. The main objective is to show that it is possible to detect malware apps using 

features extracted from user feedback data, static code analysis, and dynamic code analysis.  

 

Figure 2 - Prpoposed Framework Layout 

This framework is then divided into those three sections respectively, using the same pipeline 

for each. This framework was developed in the continuation of the AppSentinel project, in (Lopes 

2020) a prototypical pipeline was already tested for its potential use regarding the usage of features 

obtained through static code analysis to train machine learning classifiers, obtaining similar results 

to those in Chapter 4.2.  

The Data Processor segment is composed of the various transformative and preparatory 

techniques applied onto the various datasets, before being fed into the Classifier Model 

Development segment. Here the various machine learning classifiers are trained on the previously 
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prepared data and the best performing ones are select for comparison. These segments are detailed 

in Chapter 3. 

Another study followed in order to test the ability of the models generated by this framework 

to adapt to temporal changes in the malware patterns, by training them with different sizes of 

historically coherent datasets and testing them on the months that followed those same datasets. 

This way an analysis was made on the effectiveness of these models to adapt in an unforeseen 

environment with data from “future” sets relative to those used in training and validation. This 

procedure and its results are detailed in Chapter 5. 

 

3.1. Datasets  

Here the complete datasets for each of the categories are examined. Their feature composition 

further inspected in order to maintain the most significant ones and remove the ones that are less 

contributive to the overall system performance. This is achieved by means of correlation analysis 

between the features. This helps ensure that the models are not being trained on redundant and 

unneeded information, therefore, reducing the overall time required to train them as well as 

increasing correct detection rate. 

As mentioned before, in (Lopes 2020) the possibility of using features obtained through static 

analysis to train machine learning classifiers to detect malicious applications had already been 

tested, however, in order to test the reproducibility and replicability of his methods and validate 

his findings, it was decided to repeat the same methods using a similar dataset to train the models. 

The results in Chapter 4.2 show similar findings to those in (Lopes 2020), proving that his findings 

contribute to the scientific knowledge in this field. 

 

3.1.1. User Feedback Dataset 

The first dataset used was the user feedback data. This historically coherent dataset originated 

from Aptoide’s repository and is comprised of 2332 applications and their respective feedback, 

from the beginning of October 2019 to the end of January 2020. Table 2 displays a more detailed 

breakdown.  
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Table 2 – User Feedback Dataset sample distribution 

  2019 2020 
Average 

  October November December January 

Number of 

samples 
586 141 450 1155 583 

Malware samples 49 64 79 396 147 

Goodware 

samples 
537 77 371 759 436 

Malware Ratio 8% 45% 18% 34% 26% 

 

This dataset was constructed from apps submitted to the Aptoide’s app store during the 

mentioned time period, and each app was labelled with a target classification of Trusted or Critical, 

indicating the classification of Goodware or Malware respectively, which was given by Aptoide’s 

internal security audit.  

Besides the target feature, this dataset included the following other features detailed in Table 3. 

Table 3 – User Feedback Dataset Feature description 

Feature Description 

MD5 Application MD5 Checksum 

Package Android Package which the application belongs to 

Date Date when the application was analysed and classified as Goodware or Malware 

1 Star Rating Number of 1 Star Ratings 

2 Star Rating Number of 2 Star Ratings 

3 Star Rating Number of 3 Star Ratings 

4 Star Rating Number of 4 Star Ratings 

5 Star Rating Number of 5 Star Ratings 

Good Flag Number of "Good" Flags users gave 

Virus Flag Number of "Virus" Flags users gave 

Fake Flag Number of "Fake" Flags users gave 

License Flag Number of "Needs License" Flags users gave 

Comments All the comments users gave to the application 

Classification Target application label - Trusted or Critical 

 

This dataset has the distinctive characteristic of allowing to observe the feedback users gave to 

malicious apps before these were detected and swiftly removed from the app store. With this twist, 

the machine learning classifiers have the possibility of detecting certain patterns that might allow 

for malware classification. Because nonnumerical features like MD5 and Package serve only as 
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identifiers, they were removed. The date feature was only useful into dividing the apps into 

monthly groups, so it was removed as well. Finally, due to being out of the scope of this study, the 

comments were removed as well.  

Table 4 shows the statistical distribution of this data set. A few things are worth noting. Firstly, 

that each application has at least one value for each feature, demonstrated by the count value being 

equal to the number of apps. Secondly, the mean represents the mean value for each feature across 

the whole dataset. Globally, there was an average of 1046 ratings and 9 flags per application. 

Thirdly, the standard deviation represents the value dispersion or by how much does each feature 

vary from the mean. Fourthly, the percentiles represent the number of observations that can be 

found under each percentage, with 50% being the median. Finally, the minimum and maximum 

values represent their respective equivalents in each feature, for example the 5 Star Rating has a 

maximum value of 353,411 which means that the maximum number of 5 Star Ratings an 

application received was 353,411. 

Table 4 – User Feedback Dataset Feature statistics 

Features Statistics 

Feature 
Star Ratings Flags Target 

1 2 3 4 5 Good Virus Fake License Classification 

Count 2332 2332 2332 2332 2332 2332 2332 2332 2332 2332 

Mean 554.5 151.2 1,121.3 609.1 5,282.7 8.7 3.9 3.8 11.7 0.25 

Standard 

Deviation 
4,404.8 1,069.2 8,088 3,399.5 37,987.3 56.4 19.3 22.8 140.7 0.43 

Minimum 0 0 0 0 0 0 0 0 0 0 

25% 0 0 0 0 1 0 1 0 0 0 

50% 2 0 2 1 10 1 1 0 0 0 

75% 38 10 63 40.2 361 4.2 2 2 1 1 

Max 37,049 9,859 74,968 29,994 353,411 1,332 618 638 4125 1 

 

Furthermore, we can see a detailed statistical feature distribution which reveals a high degree 

of deviation from the mean alongside varying maximum values. These are explained by the fact 

that a small percentage of apps reach high levels of popularity, therefore, receive more user 

feedback, wether it be favourable or not. A certain level of correlation can be observed between 

all ratings, the value ranges for each of the feature groups are similar. To further examine this 

Table 5 presents a correlation matrix. 
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Table 5 – User Feedback Dataset Feature correlation matrix 

Correlation Matrix 

Features 
Star Ratings Flags 

1 2 3 4 5 Good Virus Fake License 

Star 

Ratings 

1 1.000 0.952 0.850 0.813 0.882 0.165 0.085 0.021 0.114 

2  0.952 1.000 0.860 0.908 0.895 0.130 0.062 -0.005 0.056 

3 0.850 0.860 1.000 0.664 0.961 0.170 0.068 0.000 0.073 

4 0.813 0.908 0.664 1.000 0.755 0.059 0.040 -0.018 0.051 

5 0.882 0.895 0.961 0.755 1.000 0.165 0.070 -0.006 0.063 

Flags 

Good 0.165 0.130 0.170 0.059 0.165 1.000 0.622 0.588 0.536 

Virus 0.085 0.062 0.068 0.040 0.070 0.622 1.000 0.653 0.409 

Fake 0.021 -0.005 0.000 -0.018 -0.006 0.588 0.653 1.000 0.404 

License 0.114 0.056 0.073 0.051 0.063 0.536 0.409 0.404 1.000 

 

Table 5 shows that the numeric ratings have a high degree of correlation between themselves. 

The same can be said to a lesser extent about the symbolic flags. Although this presents itself as 

redundant information, their relation to the opposing feature group shows very low levels of 

correlation, therefore, allowing the models to interpret this as relevant information. This will be 

demonstrated in the exploratory data analysis sub chapter. 

 

3.1.2. Static Analysis Dataset 

The second dataset utilized contained the static code analysis results of 131,429 applications by 

analysing their AndroidManifest.xml and DEX files with the Androguard (Desnos 2012) tool, 

which contain essential information about the app to the Android build tools and the Android OS. 

Among many attributes, the manifest file declares the following: the app’s package name and md5 

checksum as identifiers; app components, which include all activities, services, broadcast receivers 

and content providers, device configurations it can handle and intent filters; the permissions that 

the app needs; the hardware and software features the app requires. 

This dataset contains apps from the beginning of October 2019 to the end of March 2020. Table 

6 displays a more detailed breakdown. Much like the previous dataset the applications were 

labelled with a target classification of Trusted or Critical, indicating the Goodware or Malware 
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classification respectively, which was given by Aptoide’s internal security audit. Besides this 

target feature the dataset also included the following other features detailed in Table 7. 

Table 6 – Static Analysis Dataset sample distribution 

  2019 2020 
Average 

  October November December January February March 

Number of 

samples 
21,934 24,158 32,757 13,923 16,170 22,487 21,905 

Malware samples 9,889 10,524 14,918 5,550 5,558 8,409 9,141 

Goodware 

samples 
12,045 13,634 17,839 8,373 10,612 14,078 12,764 

Malware Ratio 45% 44% 46% 40% 34% 37% 41% 

 

This dataset allows for a statistical analysis of the app’s resources usage and requirements. 

Because the MD5 checksum serves only as an identifier, this feature was removed. The rest of the 

features represent the numerical representation of each occurring feature to use as model inputs. 

Table 7 – Static Analysis Dataset Feature description 

Feature Description 

MD5 Application MD5 Checksum 

Time Time it took to analyse the app's files 

Size Size of the application in bytes 

Permissions Number of permissions the app needs in order to run 

Activities Number of activity components the app can execute 

Services Number of Services. Long operations usually run in the background 

Receivers Number of android-name attributes of all receivers 

Opcodes Number of Dalvik specific opcodes 

Res. Strings Number of additional resource files  

Smali Strings Number of smali (non-Java code) strings 

API Package Number of API classes the app needs to run 

System 

Commands 
Number of System commands the app executes 

Intents Number of intent messages to activate activities, services, or receivers 

Classification Target application label - Trusted or Critical 

Table 8 shows a detailed statistical distribution of each feature from this data set. This set 

contained 34,172 malware labelled applications, which represented approximately 26% of the total 

dataset. Similarly to the previous dataset, the maximum values of every feature far exceeded the 

mean values, usually by one or two orders of magnitude. This value disparity can cause certain 

algorithms to learn incorrect weights due to big value differences, this will be addressed in section 

3.3. 
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Table 8 – Static Analysis Dataset Feature statistics 

SD – Standard Deviation, Min – Minimum, Max - Maximum 

Features Statistics 

Feature Permissions Activities Services Receivers Opcodes 
Resource 

Strings 

Smali 

Strings 

API 

Packages 

Sys 

cmd 
Intents 

Count 131429 131429 131429 131429 131429 131429 131429 131429 131429 131429 

Mean 15 33.2 10.3 7.1 563374 546.3 30181 148515 135.8 16.7 

SD 17.2 67.9 18.3 9.5 265373 1047.6 30042 109331 156.6 46.4 

Min 0 0 0 0 0 0 0 0 0 0 

25% 6 6 2 1 398063 70 12328 77538 41 3 

50% 11 15 6 4 609000 168 21135 129317 78 8 

75% 18 37 13 9 756225 552 41301 199498 186 18 

Max 326 6198 488 148 3614313 65510 738219 2265619 4677 5031 

Table 9 shows the correlation matrix for the static analysis dataset, to better understand the 

relationship between each feature and their correlations. In it, it is shown that this set of features 

presents low correlations values with the exceptions of certain functions like services, activities, 

and receivers, as well as code execution like smali Strings, API packages, and system commands. 

This is possibly due to the function group they belong to, leading to similar usage. So far none of 

these features present themselves as redundant information, and therefore, are used as input to 

train and validate the models. 

Table 9 – Static Analysis Dataset Feature correlation matrix 

Correlation Matrix 

 Permissions Activities Services Receivers Opcodes 
Resource 

Strings 

Smali 

Strings 

API 

Packages 

System 

cmd 
Intents 

Permissions 1.00 0.50 0.69 0.64 0.24 0.40 0.42 0.40 0.35 0.45 

Activities 0.50 1.00 0.62 0.60 0.19 0.44 0.43 0.42 0.41 0.29 

Services 0.69 0.62 1.00 0.79 0.24 0.37 0.42 0.40 0.36 0.49 

Receivers 0.64 0.60 0.79 1.00 0.31 0.48 0.52 0.48 0.46 0.47 

Opcodes 0.24 0.19 0.24 0.31 1.00 0.29 0.53 0.61 0.47 0.16 

Res Strings 0.40 0.44 0.37 0.48 0.29 1.00 0.63 0.60 0.51 0.38 

Smali 

Strings 
0.42 0.43 0.42 0.52 0.53 0.63 1.00 0.89 0.87 0.38 

API 

Packages 
0.40 0.42 0.40 0.48 0.61 0.60 0.89 1.00 0.83 0.36 

System 

cmd 
0.35 0.41 0.36 0.46 0.47 0.51 0.87 0.83 1.00 0.29 

Intents 0.45 0.29 0.49 0.47 0.16 0.38 0.38 0.36 0.29 1.00 
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3.1.3. Dynamic Analysis Dataset 

The third and final dataset utilized contained the dynamic code analysis results of 4866 

applications by analysing their runtime behaviour and network usage with the Droidbox (Lantz 

2011) and CuckooDroid (Revivo and Caspi 2014) tools alongside static code analysis results from 

Androguard (Desnos 2012) previously described. The dynamic analysis aspect of this dataset 

allows for a better understanding of malware behaviour by analysing the network traffic generated 

and received, file and camera accessed and even cryptographic operations through the Android 

API. These behaviour components were examined during the app’s runtime through the usage of 

an emulator and extracted to the host machine with the Android Debug Bridge (ADB). 

This dataset contains apps from the beginning of February 2020 to the end of July 2020, 

encompassing a total of 6 months of app report data. Table 10 displays a more detailed breakdown. 

Like the previous two datasets the applications were labelled as being detected malware or not, 

but unlike the previous two, this dataset was semi-randomly collected from the Koodous (Koodous 

2018) platform during that time frame, where the apps are analysed with the tools mentioned and 

expert malware analysts review the analysis results and vote to decide wether the applications are 

malware or not. Table 11 displays each feature and their function. 

Table 10 – Dynamic Analysis Dataset sample distribution 

  2020 
Average 

  February March April May June July 

Number of 

samples 
347 972 1,093 1,100 900 453 811 

Malware samples 176 544 519 550 450 228 411 

Goodware 

samples 
171 428 574 550 450 225 400 

Malware Ratio 51% 56% 47% 50% 50% 50% 51% 
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Table 11 – Dynamic Analysis Dataset Feature description 

Tool Feature Description 

Androguard 

Displayed Version Android version code 

Target SDK 

Version 
Recommended Android version 

Min SDK Version Minimum Android version required 

Providers 
Number of content providers that manage access the central data 

repository 

New Permissions Number of new permissions the app requested in order to run 

Filters 
Number of intent filters that decide the type of intents the components 

would like to receive 

Activities Number of activity components the app can execute 

Receivers Number of android-name attributes of all receivers 

Services Number of Services. Long operations usually run in the background 

Permissions Number of new permissions the app requests in order to run 

URLs Number of URL links in the application 

Ads Number of Advertisement components 

Installed Apps Number of searches for installed applications 

Serial No Serial number 

MCC 
Number of Mobile Country Code methods, used to identify network 

operators 

SMS Number of SMS methods used 

Phonecall Number of Phonecall methods used 

Crypto 
Number of cryptographic operatios used (such as encryption or key 

generation) 

SSL Number of SSL connections 

Camera Number of Camera methods used 

Dynamic 

Broadcast 

Receiver 

Number of event triggers 

IMEI Number of Get device ID Key events 

Sensor Number of Sensor events 

Run Binary Number of binaries used 

CukooDroid 

Socket Number of sockets used 

HTTP Number of HTTP connections established 

Hosts Number of Host adresses 

DNS Number of DNS requests 

Domains Number of domains accessed 
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Table 11 (Continued) – Dynamic Analysis Dataset Feature description 

Tool Feature Description 

DroidBox 

Domains Number of domains accessed 

Files Written Number of files written 

Files Read Number of files read 

Crypto Number of Crypto methods used 

Service Start Number of services started 

Libraries Number of libraries used 

Dexclass Number of processes for dexclass 

Send Net Number of network operations sent (HTTP, POST, GET, etc..) 

Receive Net Number of network operations received (HTTP, POST, GET, etc..) 

Target Classification Target application label - Malware Detected or Not Detected 

 

This extensive feature composition further allows the detection of more complex patterns. Due 

to the complex issue of analysing string-based features, like domains accessed, libraries used, and 

files read, most of these were turned into string or word counts to facilitate a more statistical 

analysis approach, this process is further detailed in section 3.3. Other features were removed due 

to serving only as app identifiers, such as SHA256 and MD5 checksums. Lastly others were 

dropped because they did not contain any information at all due to being empty for most apps.  

Table 9 shows the featurewise statistical analysis of this dataset. Here a detailed statistical 

feature distribution can be observed. Similarly to the previous datasets’ statistical distributions, 

this one also shows very low standard deviations joined by low maximum values. This is due to 

the fact that each application doesn’t need to use all features available in the Android OS, such as 

the camera, sending text messages or making phonecalls. One particularity is the Android 

displayed version which contains some odd but still valid versions. Figure 3 shows the correlation 

between the aforementioned features, due to the elevated number of features a heatmap represented 

an easier visual medium to represent their correlation matrix. These features show for the most 

part low levels of correlation between themselves, with a few exceptions, most notably between 

features related to network associated actions, such as HTTP connections and Host addresses, and 

associations between cryptographic methods and Secure Socket Layer (SSL) connections. 

Although some of these features reach very high levels of correlation, they were maintained due 

to their varying levels of correlation with the other features. 
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Table 12 – Dynamic Analysis Dataset Feature statistics 

SD – Standard Deviation 

Androguard Features Statistics 

Feature 
Displayed 

Version 

Target 

SDK 

Version 

Min 

SDK 

Version 

Providers 
New 

Permissions 
Filters Activities Receivers 

Count 4,866 4,866 4,866 4,866 4,866 4,866 4,866 4,866 

Mean 51,153 22.24 13.39 1.03 0.17 11.74 12.62 5.87 

SD 2,913,813 6.99 6.37 2.2 0.59 10 15.43 3.87 

Min 0 0 0 0 0 0 0 0 

25% 1.1 22 8 0 0 3 8 2 

50% 1.2 22 15 0 0 16 10 8 

75% 2.1 28 17 1 0 16 13 8 

Max 201,809,190 30 29 22 10 135 380 40 

 

Table 12 (Continued) – Dynamic Analysis Dataset Feature statistics 

Androguard Features Statistics 

Feature Services Permissions URLs Ads 
Installed 

Apps 

Serial 

No. 
MCC SMS 

Count 4866 4866 4866 4866 4866 4866 4866 4866 

Mean 4.88 13.39 91.5 0.86 0.19 0.04 2.16 0.19 

SD 4.16 9.32 216.54 1.35 0.53 0.23 1.24 0.71 

Min 0 0 0 0 0 0 0 0 

25% 3 8 43 0 0 0 1 0 

50% 5 13 47 0 0 0 3 0 

75% 5 15 66 3 0 0 3 0 

Max 92 76 1667 6 3 3 7 11 

 
Table 12 (Continued) – Dynamic Analysis Dataset Feature statistics 

Androguard Features Statistics 

Feature Phonecall Crypto SSL Camera 
Dynamic Broadcast 

Receiver 
IMEI Sensor 

Run 

Binary 

Count 4866 4866 4866 4866 4866 4866 4866 4866 

Mean 0.07 2.68 2.72 0.46 2.76 2.6 0.03 2.6 

SD 0.33 0.99 0.86 1.19 0.85 1.05 0.23 1.09 

Min 0 0 0 0 0 0 0 0 

25% 0 3 3 0 3 3 0 3 

50% 0 3 3 0 3 3 0 3 

75% 0 3 3 0 3 3 0 3 

Max 4 9 6 10 7 8 3 11 
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Table 12 (Continued) – Dynamic Analysis Dataset Feature statistics 

CuckooDroid Features Statistics 

Feature Socket HTTP Hosts DNS Domains 

Count 4866 4866 4866 4866 4866 

Mean 2.77 0.05 0.08 0.74 0.08 

SD 0.78 0.7 0.47 4.98 0.48 

Min 0 0 0 0 0 

25% 3 0 0 0 0 

50% 3 0 0 0 0 

75% 3 0 0 0 0 

Max 6 21 11 116 9 

 

Table 12 (Continued) – Dynamic Analysis Dataset Feature statistics 

Droidbox Feature Statistics 

Feature Domains  
Files 

Written 

Files 

Read 
Crypto 

Service 

Start 
Libraries Dexclass 

Send 

Net 

Receive 

Net 

Count 4866 4866 4866 4866 4866 4866 4866 4866 4866 

Mean 0.05 1 1.34 1.85 0.01 0.02 0.3 0.05 0.1 

SD 0.38 4.27 3.83 12.86 0.23 0.32 0.52 0.68 1.58 

Min 0 0 0 0 0 0 0 0 0 

25% 0 0 0 0 0 0 0 0 0 

50% 0 0 0 0 0 0 0 0 0 

75% 0 1 3 0 0 0 1 0 0 

Max 11 44 91 130 10 12 6 20 50 
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Figure 3 - Dynamic Analysis Dataset Feature correlation heatmap
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3.2. Exploratory Data Analysis 

 This section focuses on describing the exploratory data analysis procedures that 

help uncover useful patterns in the data samples. According to (Tukey 1962) these 

methods are primarily of a visual nature in order to make analysis easier, more precise or 

more accurate. This section is divided into two parts which represent two different 

dimensionality reduction approaches: Principal Component Analysis (PCA); and T-

Distributed Stochastic Neighbor Embedding (t-SNE) analysis. For these approaches, the 

programming language Python (Rossum 1995) was used in conjunction with Matplotlib 

(Hunter 2007) and Scikit-learn (Buitinck, et al. 2013) libraries. 

 

3.2.1. Principal Component Analysis 

Due to the large nature of the datasets used, a commonly applied technique to interpret 

them is Principal Component Analysis (PCA) (Wold, Esbensen and Geladi 1987). 

According to (Jolliffe and Cadima 2016), this technique is one way to perform 

dimensionality reduction on such datasets, by trying to reduce information loss and 

clarifying readability. This is achieved by creating new variables from the ones available 

that are uncorrelated and iteratively maximizing variance.  

The following images were accomplished with Python’s (Rossum 1995) Scikit-learn 

(Buitinck, et al. 2013) library. Figures 4 to 6 show the first three PCA components of the 

user feedback, static analysis, and dynamic analysis, respectively, which are show in three 

dimensions for improved readability. These figures show small, isolated clusters of both 

malware and goodware, slightly separated from the main cluster. The transparency of 

each circle indicates the frequency of apps that fall into that group. This further outlines 

the ability of malicious applications to mimic goodware. 

In the user feedback cases, the first 3 components managed to explain approximately 

76% of the total variance. To be able to explain the total variance in this sample, the PCA 

would need 8 components, which is just one less feature than the the available ones. For 

the other two datasets, their respective PCA showed that the first 3 components managed 

to explain approximately 100% of the total variance. 
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Figure 4 – User Feedback datasest first 3 PCA components 

 

Figure 5 – Static Analysis datasest first 3 PCA components 



Methodology 

33 

 

 

Figure 6 – Dynamic Analysis datasest first 3 PCA components 

 

3.2.2. T-SNE Analysis 

The large complexity of this issue, due to the elevated feature space, required a 

different approach more suited for this task of dimensionality reduction. T-Distributed 

Stochastic Neighbor Embedding (t-SNE) (Maaten and Hinton 2008) is a more appropriate 

approach for large and complext datasets due to its proficiency in embedding high-

dimensional data for visualization in low-dimensional spaces. This algorithm 

accomplishes this by forming a probability distribution over object pairs so that similar 

objects are given a higher probability while contrasting object pairs are given a lower one. 

Then it defines these probabilities in a low-dimensional plot by minimizing the 

divergence between the two distributions relative to their positions on the plot. 

This approach is known for forming visual clusters from the original data wich are 

strongly dependant on the algorithm parameterization. These can appear from non-

clustered data as well and present misleading results. To avoid this pitfall, over 200 

parameter combinations were tested for each dataset, most notably between perplexity 

and learning rate, avoiding the false clusters by finding the outputs that confirm 

convergence patterns. 
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Figures 7 to 9 present the exemplary results of the algorithm applied to the three 

separate datasets. Here it is shown both two- and three-dimensional perspectives for the 

three respective datasets. Contrary to the PCA results, these outputs indicate a clear 

presence of easily identifiable malware clusters, most notably in the representation from 

the dynamic analysis dataset. However, many malicious samples continue to present 

themselves alongside goodware, especially in the static analysis dataset. This clear 

definition of some clusters of malware make it expectable that classification models are 

able to differentiate clearly at least part of the malware.  

 

Figure 7 – User Feedback t-SNE 2D and 3D comparison 

 

 

Figure 8 – Static Analysis t-SNE 2D and 3D comparison 
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Figure 9 – Dynamic Analysis t-SNE 2D and 3D comparison 

 

 

3.3. Data Preparation 

 To facilitate model application and to improve its performance, the quality of the 

data that is fed into them is of crucial importance. This section outlines the methods used 

to prepare and process data before applying the machine learning algorithms. To perform 

these types of data transformation several tools were used, namely Microsoft Excel and 

Python programming language (Rossum 1995) in conjunction with the Pandas 

(McKinney 2010), Numpy (Walt, Colbert and Varoquaux 2011), and Scikit-learn 

(Buitinck, et al. 2013) libraries. 

Since the datasets used are reports produced from analysis tools, their outputs are 

already structured and their features well defined. Other than the Koodous reports, for the 

dynamic analysis dataset, which had to be converted from detailed JSON files to a single 

CSV file, the other datasets were already in Microsoft Excel sheets which made 

conversion to CSV a non-issue. As such, invalid data as well as data errors were not 

found.  

To improve model preformance of the user feedback dataset some outliers were 

removed. Due to the elevated popularity of some apps and their features presenting values 

in orders of magnitude higher than the rest, the top 0.5% of the goodware applications 

was removed, therefore, a total of 2318 remained from the original 2332. 
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In order to develop balanced models and reduce their bias to the majority of the sample 

population, the user feedback and static analysis datsets were balanced to approximately 

1:1 malware to goodware ratio. This was achieved through a random undersample of the 

majority class, which in both cases was the goodware class. Although the current 

literature does not indicate in this case which malware to goodware ratio provides better 

results when applied to a real-world scenario, this procedure was made to circumvent a 

high goodware bias from the models during training.  

To better utilise the Koodous analysis reports, many features had to be transformed to 

be served as input for the models to learn on. Owing to the text based naure of some 

features, for example, the specific files read were converted into the total number of files 

read for each app instead of creating a single unique feature for each specific file which 

would create a very sparse matrix. The same was done to the rest of the text-based 

features, like cryptographic processes, domains accessed, HTTP connections and so on. 

Other features that did not present any content were removed as well as unique identifiers. 

Following these primary data preparation methods several data preprocessing 

techniques were chosen to transform the datasets. These techniques were chosen to create 

several separately processed datasets before inputing them into the machine learning 

algorithms. This was done to avoid model biases, and in some cases improve time 

efficiency, by scaling the features to the same scales and therefore contributing equally 

to the model fitting. Alongside these, the unprocessed datasets were also used in model 

fitting to serve as performance control. They are as follows: 

3.3.1. Standard Scaler 

The Standard Scaler (STD) preprocessing method standardizes each feature by 

removing the mean and scaling to unit variance, essentially setting the mean value to 0 

and a standard deviation of 1. With multivariate datasets this is achieved feature-wise, 

standardizing each feature according to their values, independent from each other. 

3.3.2. Normalizer 

The Normalizer (NORM) preprocessing method rescales the vector for each sample to 

have unit norm, independently of the distribution of the samples, effectively scaling each 

row of the dataset to unit norm, without removing the mean. 
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3.3.3. Power Transformer (Yeo-Johnson) 

The Power Transformer (PowerYJ) preprocessing method, utilizing the Yeo-Johnson 

transform (Yeo and Johnson 2000) variant, develops a monotonic transformation of data 

using power functions, turning the data more Gaussian-like, while also allowing for zero 

and negative values, where the optimal parameter for stabilizing variance and minimizing 

skewness is estimated through maximum likelihood. 

3.3.3. Quantile Transformer 

The Quantile Transformer (Quant) preprocessing method transforms the features to 

follow a normal distribution using quantiles information. This transformation tends to 

spread out to the most frequent values while also reducing the impact of outliers, making 

it a robust preprocessing scheme. This transformation is applied to each feature 

independently, firstly by mapping the original values to an uniform distribution using an 

estimate of the cumulative distribution function, and secondly, by mapping the obtained 

values to the desired output distribution using the associated quantile function. 

 

 

3.4. Detection Models 

This section presents the algorithms chosen to construct the malware detection models. 

Algorithms from different classifier families were selected to fit the optimization pipeline, 

by systematically training these under differently preprocessed datasets and 

parameterizations and comparing their results the most effective algorithm is chosen for 

each of the three types of analysis. Here a simple description of each of the algorithms 

introduced. The following algorithms were used through the Python programming 

language (Rossum 1995) in conjunction with the Scikit-learn (Buitinck, et al. 2013) and 

XGBoost (Chen and Guestrin 2016) libraries. 

 

3.4.1. Extreme Gradient Boosting 

The Extreme Gradient Boosting (XGBoost) (Chen and Guestrin 2016) algorithm is an 

optimized distributed gradient boosting algorithm designed with a focus on efficiency and 

flexibility. An ensemble method which is a variant of the Gradient Boosting Machine 

(GMB), providing a parallel tree boosting method. It utilizes a depth-first approach to tree 



Methodology 

38 

 

pruning, meaning it uses the max depth parameter as specified and starts pruning trees 

backward. This feature alongside cache awareness and out-of-core computing, among 

many other optimizations, create an enhanced version of the GBM framework therefore, 

reducing training time and improving prediction power. 

 

3.4.2. Random Forest 

Another ensemble method, the Random Forest (RF) classifier (Breiman 2001) is a 

meta estimator that generates and fits a forest of decision tree classifiers on various sub-

samples of the dataset and uses averaging to improve the predictive accuracy and control 

over-fitting. Each of the individual trees is considered a weak learner that is constructed 

on a subset of the original dataset. To make the final prediction, the algorithm uses the 

average prediction of over all the trees. The number of trees defined, and their depth, 

allows for a better control over variance and bias. 

 

3.4.3. Support Vector Machines 

The Support Vector Machines (SVM) (Vapnik, Golowich and Smola 1997) are a set 

of supervised machine learning methods used for regression, classification, and outlier 

detection. They work by finding the hyperplane in the N-dimensional space, where N is 

the number of features, that precisely separates the datapoints. These hyperplanes are 

essentially decision boundaries that separate the datapoints through the usage of support 

vectors that try to maximise the margin between the data points and the hyperplane. Due 

to the high dimensionality and clustered properties of the datasets used, the Radial Basis 

Function (RBF) kernel was the one used in this study. The RBF kernel is a function whose 

value is dependant on the distance between the data points. 

 

3.4.4. K-Nearest Neighbor 

The K-Nearest Neighbor (KNN) (Altman 1992) is a non-parametric instance-based 

learning method used for regression and classification. The principle behind this method 

is to find the K predefined number of training samples closest in distance to the new point. 

The classification is computed from a majority vote of these nearest neighbors of each 
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point and the weight of these votes can be defined as dependant on the distance of the 

neighbors, the nearest neighbors therefore having a more impactful vote than the others. 

 

3.3.5. Naïve Bayes Classifier 

Two variants of the Naïve Bayes classifier were used, the Gaussian Naïve Bayes 

(GNB) and the Bernoulli Naïve Bayes (BNB) (Manning, Schütze and Raghavan 2008), 

these methods are a set of supervised learning algorithms based on applying Bayes’ 

theorem with the assumption of conditional independence between every pair of features 

given the value of the class variable. The difference between these two variants is in the 

distribution of the data, the former assumes a Gaussian data distribution while in the latter 

the data assumes multivariate Bernoulli destributions. 

 

3.5. Model Application 

To develop the optimized model for each of the datasets, a simple approach was taken 

that enabled to get the most out of each algorithm. The previously introduced algorithms 

were applied on the three different datasets, user feedback, static and dynamic analysis, 

and each of their differently preprocessed variants, alongside the original dataset without 

any of the preprocessed methods applied to serve as a performance comparison baseline. 

Each of the datasets were divided into 80% train and validation data, with a corresponding 

20% data holdout to use as test data to measure the performance of the final model fit on 

the training dataset. The training data was split using a 10-fold stratified cross validation 

which works by randomly partitioning the sample data into k-sized subsamples. This 

variation perserves the percentages of samples from each class and as such is considered 

a better scheme when compared to regular cross validation (Kohavi 1995). 

To automate the hyperparameter tunning of all the learning algorithms, a random grid 

search strategy was implemented, with 100 parameter combinations for each algorithm. 

This was to ensure that the best parameterization for each algorithm and dataset 

combination was achieved without exhausting all of the parameter combinations through 

a normal grid search or through a manual search, which would be impractical due to the 

time constraints and computational power available. This chosen method has been shown 

to be more efficient than the other two in (Bergstra and Bengio 2012). 
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3.6. Model Evaluation 

To compare the performance between models, several metrics were used. These 

following evaluation metrics were chosen to classify and compare models in different 

categories. To better understand some of the following metrics a brief introduction of the 

confusion matrix concept is needed. Table 13 depicts an example of a confusion matrix. 

Table 13 – Confusion Matrix Example 

  

Predicted Class 

 

 Positive Negative 

Actual 

Class 

Positive 
True Positives 

(TP) 

False Negatives 

(FN) 

Negative 
False Positives 

(FP) 

True Negatives 

(TN) 

This presents the relationship between each class and what the model predicted. True 

Positives (TP) and True Negatives (TN) are the malware and goodware samples 

respectively that the model classified correctly. While False Positives (FP) and False 

Negatives (FN) are the incorrectly classified goodware and malware respectively, 

goodware being classified as malware and vice-versa. From these basic measures the 

overall evaluation of the system is given by: 

• Precision: 𝑃 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (positive predicted value)  

• Recall: 𝑅 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (sensitivity, hit rate or true positive rate)  

• Accuracy: 𝐴 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

• F1 score: 𝐹1 = 2 ∗
𝑃∗𝑅

𝑃+𝑅
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• False-positive rate: 𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
 (Apps that are goodware, but are predicted 

as malware)  

• False-negative rate: 𝐹𝑁𝑅 =
𝐹𝑁

𝐹𝑁+𝑇𝑃
 (Apps that are malware, but are predicted as 

goodware)  

Besides these metrics, the Area Under the Curve (AUC) of the Receiver Operating 

Characteristic (ROC) curve and the AUC of the Precision-Recal (P-R) were also used 

as metrics to compare model performance. These two metrics calculate the ability of a 

binary classifier system as its discrimination threshold between classes is shifted. In 

the case of ROC curve, the TPR is ploted against the FPR at different thresholds while 

the P-R curve shows the tradeoff between precision and recall for different thresholds. 

The AUC of these respective curves represents the measure of separability, how well 

the model is capable of distinguishing between classes, in this case, between malware 

and goodware. 

Finally, the training time of the models is also taken into consideration. This is 

calculated as the sum of the time taken to train and test each of the hyperparameter 

configurations before outputting the one that has the best overall performance metric 

values. 
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Chapter 4 – Malware Detection Model Testing 

This chapter focuses on the testing of the different detection models previously 

developed and trained on the different dataset categories. Each detection model is tested 

and compared on the various evaluation metrics formerly introduced for each of the 

differently preprocessed datasets. The algorithm that displayed the best overall 

performance is then selected for the performance decay study in the chapter that follows. 

The models developed in this section are built using the full balanced datasets of each 

category with a malware to goodware ratio of 1:1.  

 

4.1 User Feedback Complete Dataset 

Table 14 presents the results for all the classification models developed for each of the 

differently preprocessed versions of the original user feedback dataset, alongside the 

unpreprocessed dataset as a reference point. Most models show similar results 

performance-wise with some variations, and few exceptions. The ensemble algorithms, 

XGBoost and Random Forest, provided the best results overall with all of the dataset 

variants, with XGBoost prevailing on top by reaching an F1 Score of 0.79 with the 

PowerYJ transform and AUC/ROC and AUC/P-R scores of 0.873 and 0.841 respectively 

with the STD transformed dataset.  

A notable mention to the PowerYJ transform which allowed the other algorithms to 

reach their best results overall, with the exception of NBBernoull, most notably the 

distance based algorithms, SVM and KNN, which in this case rival the scores of the 

Random Forest algorithm, with 0.75 F1 Score in both models and 0.818 and 0.830 

AUC/ROC from the SVM and KNN models respectively. The Naïve Bayes based 

algorithms showed weakest performance overall due to their need of specific data 

distributions. Nonetheless, the NBGaus achieved similar results compared to the other 

models with the Quant transformation and the NBBernoulli without any kind of 

preprocessing method and even achieving the lowest FNR of 19.5%. Although in raw 

numbers there are lower ones these are irrelevant due to the high FPR bias, which in some 

cases reaches 100%, rendering these models negligible.  
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Table 14 – Model performance metrics for the full User Feedback dataset 

Algorithm 
Preprocessing 

Method 

F1 

Score 
Accuracy FPR FNR 

AUC 

ROC 

AUC   

P-R 
Total Time 

XGBoost NoPrep 0.770 0.775 0.136 0.314 0.867 0.835 1h 40m 15.83s 

XGBoost STD 0.770 0.775 0.144 0.305 0.873 0.841 1h 27m 51.84s 

XGBoost NORM 0.750 0.754 0.203 0.288 0.842 0.775 0h 56m 20.58s 

XGBoost PowerYJ 0.790 0.788 0.144 0.280 0.863 0.808 0h 36m 36.93s 

XGBoost Quant 0.770 0.771 0.136 0.322 0.869 0.839 0h 23m 17.26s 

RF NoPrep 0.720 0.725 0.237 0.314 0.808 0.789 1h 8m 46.66s 

RF STD 0.710 0.712 0.212 0.364 0.804 0.789 3h 49m 0.99s 

RF NORM 0.730 0.733 0.314 0.220 0.810 0.771 3h 26m 28.16s 

RF PowerYJ 0.710 0.712 0.229 0.347 0.806 0.790 3h 11m 43.36s 

RF Quant 0.720 0.720 0.237 0.322 0.806 0.789 3h 5m 55.01s 

SVM NoPrep 0.720 0.716 0.314 0.254 0.787 0.743 1h 13m 59.12s 

SVM STD 0.600 0.614 0.542 0.229 0.721 0.716 0h 33m 22.75s 

SVM NORM 0.700 0.699 0.246 0.356 0.790 0.771 0h 25m 55.93s 

SVM PowerYJ 0.750 0.750 0.186 0.314 0.818 0.794 0h 29m 25.29s 

SVM Quant 0.710 0.712 0.186 0.390 0.769 0.714 0h 32m 6.58s 

KNN NoPrep 0.710 0.716 0.212 0.356 0.774 0.767 0h 1m 0.63s 

KNN STD 0.700 0.699 0.254 0.347 0.771 0.744 0h 1m 9.68s 

KNN NORM 0.700 0.703 0.246 0.347 0.796 0.777 0h 1m 11.03s 

KNN PowerYJ 0.750 0.754 0.212 0.280 0.830 0.807 0h 1m 0.59s 

KNN Quant 0.720 0.725 0.237 0.314 0.796 0.647 0h 1m 3.39s 

NBGaus NoPrep 0.350 0.508 0.983 0.000 0.772 0.761 0h 0m 4.28s 

NBGaus STD 0.380 0.521 0.958 0.000 0.548 0.551 0h 0m 4.24s 

NBGaus NORM 0.680 0.686 0.246 0.381 0.761 0.732 0h 0m 4.37s 

NBGaus PowerYJ 0.690 0.699 0.424 0.178 0.780 0.774 0h 0m 4.2s 

NBGaus Quant 0.710 0.708 0.288 0.297 0.773 0.769 0h 0m 4.46s 

NBBernoulli NoPrep 0.720 0.720 0.364 0.195 0.754 0.761 0h 0m 9.35s 

NBBernoulli STD 0.380 0.508 0.941 0.042 0.510 0.740 0h 0m 9.48s 

NBBernoulli NORM 0.330 0.500 0.000 1.000 0.500 0.750 0h 0m 9.16s 

NBBernoulli PowerYJ 0.630 0.653 0.585 0.110 0.684 0.649 0h 0m 9.46s 

NBBernoulli Quant 0.540 0.597 0.746 0.059 0.622 0.631 0h 0m 8.81s 

Table 15 highlights the difference of the top preprocessed datasets for each of the 

models used, presenting in addition the mean and standard deviation (SD) results of the 

cross validation. The low standard deviation values for every model indicate little 

variance between each fold from the cross-validation procedure, suggesting that the 

algorithms could maintain similar levels of performance on analogous datasets. 
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Table 15 – Comparison of top model performance for User Feedback models 

SD – Standard Deviation 

Model 
Preprocess 

Method 
Measure F1 Accuracy FPR FNR 

AUC 

ROC 

AUC 

P-R 

XGBoost PowerYJ 
Mean 0.790 0.788 0.144 0.280 0.863 0.808 

SD 0.054 0.029 0.022 0.032 0.036 0.027 

RF Norm 
Mean 0.740 0.733 0.314 0.220 0.810 0.771 

SD 0.040 0.038 0.048 0.033 0.048 0.042 

SVM PowerYJ 
Mean 0.750 0.750 0.186 0.314 0.818 0.794 

SD 0.049 0.023 0.022 0.051 0.052 0.048 

KNN PowerYJ 
Mean 0.750 0.754 0.212 0.280 0.830 0.807 

SD 0.033 0.031 0.046 0.037 0.055 0.049 

NBGaus Quant 
Mean 0.710 0.708 0.288 0.297 0.773 0.769 

SD 0.040 0.038 0.044 0.032 0.046 0.055 

NBBernoulli NoPrep 
Mean 0.720 0.720 0.364 0.195 0.754 0.716 

SD 0.039 0.048 0.049 0.038 0.047 0.050 

A particular feature of the XGBoost (Chen and Guestrin 2016) framework is that it 

allows to calculate the importance of each feature used in the model training and by how 

much it influences it. Figure 10 shows the importance of each feature sorted by their gain 

in the developed highest performing XGBoost model, in this case the one applied on the 

PowerYJ transformed dataset. In this case the gain metric represents the average gain 

across all splits the feature is used in. 

 

Figure 10 – XGBoost User Feedback feature importance 
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Here we can see that the Flag Virus is considered the most important feature, this 

means that users can be expected to give this flag to more suspicious apps. Following 

this, the 3- and 5-star ratings were ranked in second and third place respectively, possibly 

due to the fact that popular apps present in the marketplace are less likely to show 

malicious behaviours, given that these were the most used ratings on average. In last place 

of importance came the Flag License, most likely due to its use being more prevalent 

when apps are still gaining popularity and are still not widely used. 

 

4.2 Static Analysis Complete Dataset 

Following this, Table 16 shows the model test results for the Static Analysis dataset 

and all its differently preprocessed variants, joined by the unprocessed dataset to serve as 

point of reference. In this case the Naïve Bayes algorithms failed to meet any 

requirements, showing poor performance overall. However, the other algorithms 

demonstrated more viable malware detection when compared to the previous use case. 

The XGBoost models, demonstrated superior performance yet again, this time with the 

Quantile transformed dataset, reaching an F1 Score of 0.86 and both AUCs above the 90% 

threshold, with 0.913 and 0.926 for the AUC/ROC and AUC/P-R respectively, 

demonstrating the capability of classifying malware with this type of analysis only, also 

reaching a low FPR of 7.8%. The distance-based algorithms, SVM and KNN, also showed 

improved overall performance in this use case, reaching an F1 Score of 0.84 and 0.83, 

respectively. The major downside with the SVM models is their very high training time 

when compared to the rest, even reaching an astounding 40 hours of train time for all of 

the parameter combinations in the unprocessed dataset. Lastly, the RF models 

demonstrated little improvement comparatively to the previous use case due to the very 

high FNR bias reaching 43.2% in the worst case. 
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Table 16 – Model performance metrics for the full Static Analysis dataset 

Algorithm 
Preprocessing 

Method 

F1 

Score 
Accuracy FPR FNR 

AUC 

ROC 

AUC     

P-R 
Total Time 

XGBoost NoPrep 0.840 0.838 0.082 0.242 0.902 0.918 2h 15m 48.77s 

XGBoost STD 0.850 0.849 0.106 0.196 0.903 0.915 6h 6m 40.3s 

XGBoost NORM 0.850 0.849 0.059 0.243 0.905 0.917 4h 34m 3.19s 

XGBoost PowerYJ 0.840 0.838 0.129 0.194 0.898 0.915 2h 47m 36.95s 

XGBoost Quant 0.860 0.856 0.078 0.210 0.913 0.926 3h 32m 54.33s 

RF NoPrep 0.740 0.745 0.089 0.420 0.788 0.833 4h 27m 57.17s 

RF STD 0.740 0.749 0.070 0.432 0.790 0.834 6h 39m 22.4s 

RF NORM 0.750 0.755 0.061 0.428 0.795 0.842 9h 54m 0.56s 

RF PowerYJ 0.730 0.742 0.096 0.420 0.789 0.834 6h 7m 47.52s 

RF Quant 0.740 0.746 0.086 0.422 0.788 0.833 6h 12m 18.68s 

SVM NoPrep 0.790 0.798 0.026 0.378 0.827 0.881 40h 29m 53.36s 

SVM STD 0.810 0.809 0.073 0.309 0.855 0.865 9h 18m 32.12s 

SVM NORM 0.640 0.646 0.482 0.225 0.679 0.620 11h 23m 29.28s 

SVM PowerYJ 0.830 0.833 0.103 0.230 0.881 0.872 12h 31m 44.12s 

SVM Quant 0.840 0.837 0.099 0.227 0.883 0.874 11h 39m 26.04s 

KNN NoPrep 0.810 0.814 0.114 0.259 0.862 0.879 0h 40m 39.1s 

KNN STD 0.830 0.830 0.145 0.196 0.891 0.911 2h 57m 52.16s 

KNN NORM 0.800 0.805 0.118 0.272 0.857 0.886 1h 6m 19.25s 

KNN PowerYJ 0.830 0.832 0.129 0.208 0.893 0.913 2h 41m 39.87s 

KNN Quant 0.830 0.833 0.134 0.200 0.892 0.909 0h 18m 49.74s 

NBGaus NoPrep 0.510 0.562 0.761 0.115 0.655 0.579 0h 1m 2.45s 

NBGaus STD 0.510 0.562 0.761 0.115 0.655 0.579 0h 1m 2.01s 

NBGaus NORM 0.480 0.548 0.818 0.087 0.705 0.686 0h 1m 1.88s 

NBGaus PowerYJ 0.630 0.635 0.476 0.255 0.666 0.619 0h 1m 1.94s 

NBGaus Quant 0.650 0.652 0.422 0.275 0.669 0.629 0h 1m 1.92s 

NBBernoulli NoPrep 0.450 0.534 0.072 0.859 0.580 0.587 0h 1m 4.48s 

NBBernoulli STD 0.560 0.583 0.663 0.171 0.611 0.739 0h 1m 4.21s 

NBBernoulli NORM 0.330 0.500 0.000 1.000 0.500 0.750 0h 1m 3.52s 

NBBernoulli PowerYJ 0.570 0.592 0.618 0.197 0.631 0.736 0h 1m 4.33s 

NBBernoulli Quant 0.580 0.596 0.618 0.191 0.626 0.723 0h 1m 4.28s 

 

Table 17 displays the performance metrics of the top performing model for each 

algorithm for comparison. It is worth noting that in this case the Quant transform was 

favored by most algorithms apart from RF and KNN. Here the variation between folds 

for each metric averages around a decimal point, demonstrating stable performance 

between cross-validation folds.  
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Table 17 - Comparison of top model performance for Static Analysis models 

SD – Standard Deviation 

Model 
Preprocess 

Method 
Measure 

F1 

Score 
Accuracy FPR FNR 

AUC 

ROC 

AUC 

P-R 

XGBoost Quant 
Mean 0.860 0.856 0.078 0.210 0.913 0.926 

SD 0.013 0.011 0.006 0.010 0.007 0.008 

RF Norm 
Mean 0.750 0.755 0.061 0.428 0.795 0.842 

SD 0.010 0.012 0.011 0.029 0.006 0.007 

SVM Quant 
Mean 0.840 0.837 0.099 0.227 0.883 0.874 

SD 0.011 0.014 0.016 0.020 0.005 0.006 

KNN PowerYJ 
Mean 0.830 0.832 0.129 0.208 0.893 0.913 

SD 0.014 0.010 0.018 0.027 0.009 0.011 

NBGaus Quant 
Mean 0.650 0.652 0.422 0.275 0.669 0.629 

SD 0.037 0.038 0.044 0.019 0.007 0.009 

NBBernoulli Quant 
Mean 0.580 0.596 0.618 0.191 0.626 0.723 

SD 0.045 0.048 0.051 0.022 0.010 0.007 

 

 

To be able to understand the impact of each feature of the dataset used in this use case, 

the same analysis was performed as in the previous section, using the top performing 

model to extract its feature importance values, in this case the XGBoost model trained on 

the Quant transformed Static Analysis dataset. In Figure 11 the features from the Static 

Analysis dataset are ordered in terms of importance by the same gain metric. In this case 

all the features display very similar values. The notable instances are the Resource 

Strings, where the number of additional resource files an app has can indicate its intent, 

and the Dalvik specific opcodes, which appear to be less relevant than the other features. 
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Figure 11 - XGBoost Static Analysis feature importance 

 

4.3 Dynamic Analysis Complete Dataset 

Finally, Table 18 introduces the model performance metrics when applied to the 

dynamic analysis dataset, and all its preprocessed variants. This last use case 

demonstrated the relevance of dynamic analysis features. Although the Naïve Bayes 

algorithms displayed the lowest performance values overall, they still exhibited similar 

classifying capabilities when compared to the other algorithms. The remaining algorithms 

were all capable of surpassing the 90% thresholds for Accuracy and F1 Scores. The 

XGBoost models remained unchallenged in their overall performance, although by a 

much smaller margin, being surpassed by the RF and KNN models in the time taken to 

train. 
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Table 18 – Model performance metrics for the full Dynamic Analysis dataset 

Algorithm 
Preprocessing 

Method 

F1 

Score 
Accuracy FPR FNR 

AUC 

ROC 

AUC 

P-R 
Total Time 

XGBoost NoPrep 0.940 0.938 0.106 0.018 0.973 0.958 0h 21m 55.92s 

XGBoost STD 0.940 0.939 0.106 0.016 0.972 0.959 0h 20m 10.24s 

XGBoost NORM 0.930 0.934 0.100 0.032 0.968 0.955 0h 24m 15.52s 

XGBoost PowerYJ 0.940 0.939 0.102 0.020 0.967 0.952 0h 24m 38.35s 

XGBoost Quant 0.940 0.940 0.104 0.016 0.973 0.961 0h 33m 48.64s 

RF NoPrep 0.930 0.928 0.104 0.040 0.965 0.955 0h 11m 9.21s 

RF STD 0.920 0.917 0.117 0.050 0.970 0.961 0h 10m 26.33s 

RF NORM 0.930 0.928 0.106 0.037 0.967 0.958 0h 23m 47.17s 

RF PowerYJ 0.920 0.923 0.102 0.052 0.970 0.962 0h 9m 38.94s 

RF Quant 0.920 0.919 0.100 0.062 0.970 0.960 0h 9m 41.97s 

SVM NoPrep 0.920 0.922 0.098 0.058 0.948 0.924 2h 35m 41.42s 

SVM STD 0.940 0.935 0.100 0.029 0.962 0.951 1h 29m 21.98s 

SVM NORM 0.920 0.923 0.129 0.025 0.948 0.924 0h 52m 5.31s 

SVM PowerYJ 0.930 0.928 0.102 0.042 0.953 0.935 0h 58m 24.56s 

SVM Quant 0.920 0.916 0.098 0.071 0.961 0.939 0h 17m 18.83s 

KNN NoPrep 0.930 0.929 0.115 0.027 0.961 0.952 0h 2m 38.01s 

KNN STD 0.930 0.929 0.113 0.029 0.959 0.944 0h 4m 3.69s 

KNN NORM 0.930 0.926 0.104 0.044 0.950 0.926 0h 1m 54.51s 

KNN PowerYJ 0.940 0.935 0.104 0.025 0.968 0.956 0h 4m 5.44s 

KNN Quant 0.930 0.931 0.108 0.029 0.960 0.943 0h 3m 9.72s 

NBGaus NoPrep 0.810 0.820 0.200 0.060 0.900 0.910 0h 0m 2.69s 

NBGaus STD 0.810 0.809 0.315 0.067 0.930 0.921 0h 0m 2.69s 

NBGaus NORM 0.850 0.849 0.210 0.092 0.907 0.874 0h 0m 1.61s 

NBGaus PowerYJ 0.900 0.897 0.123 0.083 0.915 0.901 0h 0m 1.64s 

NBGaus Quant 0.750 0.757 0.444 0.042 0.923 0.901 0h 0m 1.47s 

NBBernoulli NoPrep 0.880 0.880 0.183 0.056 0.914 0.896 0h 0m 3.69s 

NBBernoulli STD 0.780 0.780 0.367 0.073 0.870 0.853 0h 0m 2.38s 

NBBernoulli NORM 0.330 0.500 0.000 1.000 0.500 0.750 0h 0m 2.12s 

NBBernoulli PowerYJ 0.870 0.868 0.204 0.060 0.906 0.874 0h 0m 3.41s 

NBBernoulli Quant 0.830 0.830 0.290 0.050 0.888 0.857 0h 0m 2.26s 

 

Table 19 shows the top performing models for each of the algorithms side by side for 

an easier comparison, as well as the mean and standard deviation values from the cross-

validation method. 
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Table 19 - Comparison of top model performance for Dynamic Analysis models 

SD – Standard Deviation 

Model 
Preprocess 

Method 
Measure 

F1 

Score 
Accuracy FPR FNR 

AUC 

ROC 

AUC 

P-R 

XGBoost Quant 
Mean 0.940 0.940 0.104 0.016 0.973 0.961 

SD 0.011 0.010 0.016 0.007 0.006 0.005 

RF Norm 
Mean 0.930 0.928 0.106 0.037 0.967 0.958 

SD 0.012 0.010 0.020 0.011 0.090 0.008 

SVM STD 
Mean 0.940 0.935 0.100 0.029 0.962 0.951 

SD 0.023 0.034 0.025 0.013 0.040 0.019 

KNN PowerYJ 
Mean 0.830 0.832 0.129 0.208 0.893 0.913 

SD 0.009 0.011 0.032 0.023 0.010 0.009 

NBGaus PowerYJ 
Mean 0.900 0.897 0.123 0.083 0.915 0.901 

SD 0.025 0.031 0.055 0.025 0.040 0.042 

NBBernoulli NoPrep 
Mean 0.880 0.880 0.183 0.056 0.914 0.896 

SD 0.036 0.040 0.049 0.026 0.047 0.039 

 

In the same fashion as the previous cases the feature importance analysis was made. 

Figure 12 displays the importance of each feature in this dataset ordered by their average 

gain across all splits that were used in the training of the highest performing model, in 

this case the XGBoost model trained on the Quant transformed dataset. This XGBoost 

model considered the number of content providers that manage access to the central data 

repository the most relevant feature followed by the number of receivers, filters and DNS 

requests, indicating that these are the most relevant to identify the presence of malicious 

behaviour. 
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Figure 12 - XGBoost Dynamic Analysis feature importance 

Although the XGBoost model did consider some features like the number of 

phonecalls and libraries used to have zero information gain, it does not mean that other 

models did not extract information out of these. Therefore, it was decided to maintain the 

features for training further models. 

 

4.4 Comparison of Results 

By analysing the results obtained from the models built on each of the dataset 

categories, the XGBoost algorithm demonstrated the best overall capabilities in 

classifying malware. Its results were mostly consistent in each of the preprocessed 

variants in each category. It is worth noting its proficiency as a classifier even when 

trained on the original dataset without any of the preprocessing methods applied 

beforehand. 

The user feedback models showed the lowest results. This can be due to the fact that 

users tend to generate feedback according to how they feel about the applications, relying 



Malware Detection Model Testing 

53 

 

more on their emotions rather than their objective experience with each app. This is shown 

by the previously demonstrated high correlation values between the features in this 

dataset, most notably the rating values, which indicate the low variance of each rating 

value across the dataset, meaning that even highly popular apps retained overall the same 

percentage of low ratings than unpopular ones. 

In the static analysis use case, the models displayed mostly the same relations with 

each other performance-wise, but with slight improvements overall. The XGBoost 

algorithm continued to be superior, being the only to produce models with AUCs above 

the 90% threshold, further displaying its ability as a classifier. The FNR remained above 

20% in most cases, which means that observing each apps’ code alone is not enough to 

enable satisfactory discrimination between malware and goodware. 

In the dynamic analysis case, every classifier was able to properly discriminate 

malware from goodware, apart from the Naïve Bayes algorithms by comparison. The 

FPRs remained largely around the 10% mark while FNRs remained below the 5% mark. 

This is a good indicator of the ability for these classifiers to distinguish malware from 

goodware with a complex set of features obtained from analysing application behaviour. 

Lastly, the training times cannot be compared between use cases due to the large 

difference in application samples in each of the categories. 

 

4.5 Ratio Analysis 

To demonstrate the impact of class imbalance on the performance of the classifier 

models, a small experiment was devised. In this instance, the top performing algorithm 

(XGBoost) underwent the same pipeline, but with the small change of using an 

approximation of a “realistic” malware to goodware ratio in the training and testing 

datasets. In (Google 2018) they indicate that less than 1% of all applications published in 

their app store are PHAs, however no indication is made on the amount of malicious 

applications that are submitted to the marketplace. Due too this undisclosed amount, it 

was assumed that 10% of the apps in the train and testing dataset were malware, as 

“realistic” measure. Table 20 displays the performance results of this experiment. 
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Table 20 – XGBoost performance on the different Datasets with “realistic” ratio 

User Feedback Dataset 

Algorithm Preprocess Method 
F1 

Score 
Accuracy FPR FNR 

AUC 

ROC 

AUC 

P-R 

XGBoost NoPrep 0.870 0.895 0.020 0.943 0.835 0.359 

XGBoost STD 0.870 0.908 0.006 0.943 0.849 0.363 

XGBoost NORM 0.900 0.919 0.009 0.800 0.879 0.424 

XGBoost PowerYJ 0.880 0.900 0.020 0.886 0.854 0.399 

XGBoost Quant 0.860 0.908 0.000 1.000 0.862 0.471 

Static Analsysis Dataset 

Algorithm Preprocess Method 
F1 

Score 
Accuracy FPR FNR 

AUC 

ROC 

AUC 

P-R 

XGBoost NoPrep 0.930 0.940 0.012 0.540 0.850 0.603 

XGBoost STD 0.940 0.941 0.014 0.507 0.864 0.631 

XGBoost NORM 0.940 0.941 0.015 0.499 0.850 0.613 

XGBoost PowerYJ 0.940 0.941 0.018 0.475 0.847 0.614 

XGBoost Quant 0.930 0.940 0.013 0.528 0.845 0.605 

Dynamic Analsysis Dataset 

Algorithm Preprocess Method 
F1 

Score 
Accuracy FPR FNR 

AUC 

ROC 

AUC 

P-R 

XGBoost NoPrep 0.930 0.936 0.029 0.408 0.968 0.659 

XGBoost STD 0.950 0.947 0.029 0.286 0.969 0.742 

XGBoost NORM 0.930 0.934 0.025 0.469 0.964 0.641 

XGBoost PowerYJ 0.940 0.938 0.029 0.388 0.951 0.570 

XGBoost Quant 0.940 0.942 0.023 0.408 0.971 0.696 

At first glance the usage of a more “realistic” malware to goodware ratio shows higher 

values for the F1 Score, Accuracy, FPR and AUC ROC metrics, indicating better 

performance when compared to the previous results. However, a crucial detail renders 

these models as poor classifiers. With the FNR showing unusual high values, this exposes 

the goodware classification bias, where the models, due to the higher number of samples 

from the goodware class tend to more frequently classify new testing samples as such, in 

one case even reaching 100% false negatives, where this particular model classified every 

test sample as goodware. This poor performance is further reflected in the AUC P-R 

metric which averages around the 50 to 60% mark. 

This small experiment also reinforces the notion that machine learning classifiers need 

to be evaluated with several different metrics taken into account. Instead of relying only 

on general performance metrics like the F1 Score and AUC ROC, other metrics should 

also be analysed and considered depending on the problem at hand. 
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Chapter 5 – Performance Decay Analysis 

This chapter’s focus is on the model’s ability to retain their performance over the 

course of the following months after they are developed. Due to the performance 

presented from the XGBoost algorithm in the previous chapter, it was decided to use this 

algorithm exclusively for the purposes of this part of the study. The same framework was 

used with the only difference in selecting the specific time frames for training and testing 

separately. The XGBoost models were trained and tested on the differently transformed 

data and developed using the same random grid search hyperparameter system with 100 

tested combinations. 

To effectively study the model performance decay for each of the data categories, 

these were broken down into monthly datasets. These monthly datasets were then used to 

train the models on different time frames and tested on the months that followed, for 

example, training the models with data from October to November and then testing them 

separately on December, January, and so on. The number of sequential monthly 

combinations were made according to the data available as well. For example, if the total 

dataset was comprised of 6 months, the incremental monthly training combinations were 

tested separately in the remaining months, as exemplified in Table 21. 

 

Table 21 – Example of model training and testing framework 

October November December January February March 

            

            

            

            

            
      

   - Training   - Testing  

 

 

5.1. User Feedback 

Like in the previous chapters the first analysis category to be submitted to this analysis 

was the user feedback. On account of having the shortest time frame of data available, 

from October 2019 to January 2020, long-term performance decay analysis becomes 
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somewhat limited. Nonetheless, several XGboost algorithms were trained and validated 

in each of the sequential monthly combinations and tested on the remaining ones. 

Table 22 displays the detailed reports of each model train-test combination. Here it 

becomes evident the inability of a model trained on the limited time frame of one month. 

Although the XGBoost model trained only on the data from the month of October has a 

comparative performance to its equivalent in the previous chapter (0.79 F1 Score) when 

tested on the following month of November, it abruptly declines when applied to the data 

from December and January, reaching an ineffective F1 Score of 0.54 alongside a FNR 

of 57.7%. 

When trained on more data, from October to November, the model becomes more 

resilient to changes. Instead of declining in performance, it improved in all metrics apart 

from the FPR. Notwithstanding the absence of additional monthly time frames, the model 

trained on three months worth of data demonstrated that supplementary data improves 

performance. 

In Figure 13 it is shown a visual representation of Table 22, indicating the possibility 

that the month of November provided an easier time in testing the model to discriminate 

malware from goodware, and when used for training, auxiliate in its weight learning 

procedure, clearly demonstrating that for this case more data stabilizes model 

performance when tested in future data. 

 

 
Table 22 – User Feedback Performance Decay Analysis 

Training Months Testing 
F1 

Score 
Accuracy FPR FNR 

AUC 

ROC 

AUC 

P-R 

October 

Nov 0.790 0.793 0.293 0.121 0.909 0.896 

Dec 0.670 0.678 0.472 0.169 0.749 0.723 

Jan 0.540 0.545 0.333 0.577 0.594 0.501 

October to 

November 

Dec 0.710 0.713 0.278 0.296 0.748 0.728 

Jan 0.730 0.729 0.367 0.174 0.792 0.774 

October to 

December 
Jan 0.740 0.738 0.277 0.247 0.796 0.748 

 

 



Performance Decay Analysis 

58 

 

 

 

Figure 13 – Visual Representation of the User Feedback Performance Decay 

 

5.2.  Static Analysis 

The static analysis data allows for a better overview of performance decay thanks to 

the wider time frame of six months, from October 2019 to March 2020, as well as the 

largest number of data samples of the three. Replicating the aforementioned procedure, 

the XGBoost model was trained on increasingly wider monthly time frames and tested on 

the remaining ones. 

Table 23 presents the evaluation metrics for each of the XGBoost train-test 

combinations. These results again confirm the low malware detection capabilities of 

models trained on short time frames of data, even with each month averaging 

approximately 22,000 thousand samples. Although the model trained on the first month 

of the dataset displays high performance when tested against the following months, the 

overall variability of its performance joined by low performance metrics in some case 

reveals its inefficacy as a robust model. However, the smaller complexity of the data 

shows FPR and FNR in a low range of 22% and 15% respectively, when compared to the 

models that follow. 

The need for a wider time frame is further acknowledged by the improvement in 

overall performance shown by the models trained on ever increasing time periods. With 

Accuracy values climbing from an average of 0.67, with the model trained on a period of 
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three months, to 0.759 when trained on six months of data. However, because of the 

increased data noise, the models gained a high malware classification bias demonstrated 

by the contrasting 5% (on average) FPR to the 50% (on average) FNR.  

Finally, in similarity to the previous case, Figure 14 shows a visual representation of 

Table 23, assisting the hypotheses that models trained on wider time frames lead to more 

stability in overall model performance. 

 
Table 23 – Static Analysis Performance Decay Analysis 

Training Months Testing 
F1 

Score 
Accuracy FPR FNR 

AUC 

ROC 

AUC 

P-R 

October 

Nov 0.780 0.778 0.289 0.154 0.738 0.639 

Dec 0.820 0.818 0.224 0.141 0.895 0.858 

Jan 0.680 0.683 0.269 0.364 0.668 0.594 

Feb 0.820 0.817 0.220 0.145 0.839 0.747 

Mar 0.610 0.622 0.222 0.534 0.773 0.726 

October to 

November 

Dec 0.630 0.661 0.042 0.636 0.730 0.773 

Jan 0.670 0.694 0.051 0.561 0.768 0.801 

Feb 0.620 0.653 0.038 0.657 0.729 0.769 

Mar 0.660 0.684 0.040 0.591 0.761 0.800 

October to 

December 

Jan 0.710 0.725 0.089 0.462 0.790 0.821 

Feb 0.670 0.686 0.076 0.552 0.764 0.797 

Mar 0.700 0.713 0.067 0.507 0.787 0.819 

October to 

January 

Feb 0.710 0.726 0.072 0.475 0.802 0.829 

Mar 0.700 0.715 0.080 0.490 0.794 0.830 

October to 

February 
Mar 0.750 0.759 0.087 0.395 0.830 0.862 
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Figure 14 – Visual Representation of the Static Analysis Performance Decay 

 

 

5.3. Dynamic Analysis 

Finally, the static analysis dataset was the last one to undergo the performance decay 

analysis. Having an equivalent time window to the Static Analysis dataset of six months, 

from February 2020 to July 2020, allows the analysis of the performance decay of the 

models trained with this data to match that of the previous case. Although the average 

number of data samples per month is approximately 800, paling in comparison the the 

previous 22,000, the large feature composition allows for more complex patterns to be 

discovered by the algorithms that allow for an easier discrimination of malware from 

goodware, as seen in the previous chapter. 

Table 24 exhibits the performance evaluation metrics for each of the XGBoost train-

test set combinations once demonstrating the need for a wider time frame of training data, 

with Figure 15 providing an equivalent visual representation. Although with this type of 

feature rich data the model did not suffer as much of a performance drop when trained 

with fewer months, the high variability in the results is still present. The same increase in 

overall performance follows the increase in training time frame. The performance 
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variability also decreases up to the 3 months mark, stabilizing on the same value 

thresholds from there on. 

 
Table 24 – Dynamic Analysis Performance Decay Analysis 

Training Months Testing 
F1 

Score 
Accuracy FPR FNR 

AUC 

ROC 

AUC P-

R 

February 

March 0.880 0.880 0.087 0.147 0.952 0.940 

April 0.860 0.861 0.251 0.014 0.880 0.812 

May 0.710 0.721 0.127 0.432 0.885 0.855 

June 0.930 0.928 0.027 0.117 0.980 0.980 

July 0.760 0.773 0.022 0.429 0.956 0.828 

February to March 

April 0.860 0.863 0.234 0.029 0.916 0.858 

May 0.850 0.855 0.149 0.142 0.891 0.853 

June 0.930 0.932 0.022 0.115 0.966 0.970 

July 0.820 0.822 0.009 0.345 0.966 0.972 

February to April 

May 0.930 0.927 0.027 0.119 0.980 0.981 

June 0.940 0.944 0.022 0.088 0.983 0.982 

July 0.960 0.961 0.031 0.047 0.973 0.936 

February to May 
June 0.960 0.957 0.031 0.054 0.984 0.984 

July 0.910 0.909 0.013 0.168 0.975 0.944 

February to June July 0.960 0.960 0.036 0.044 0.975 0.968 

 

 

 

 

 

 
Figure 15 – Visual Representation of the Dynaic Analysis Performance Decay 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M A R A P R M A Y J U N J U L Y A P R M A Y J U N J U L Y M A Y J U N J U L Y J U N J U L Y J U L Y

T R A I N I N G  M O N T H S :  F E B F E B  T O  M A R F E B  T O  A P R F E B  T O  M A Y F E B  T O  
J U N E

F1 Score Accuracy FPR FNR AUC ROC AUC P-R



Performance Decay Analysis 

62 

 

  



Conclusions and Recommendations 

63 

 

Chapter 6 – Conclusions and Recommendations 

6.1 Main Conclusions 

The goal of the current work is the development of a proof of concept malware 

detection framework based on different methods of statistical analysis in an Android 

environment, and its resilience to continuously shifting malware trends. To achieve this, 

a predictive system was first designed to be capable of identifying malicious Android 

applications with the usage of three different kinds of analytical methods, through user 

feedback analysis, static code analysis, and finally, dynamic code analysis. This 

framework allows for an easier and automated detection of Android malware by reducing 

the manpower needed to scrutinize an entire app store as well as providing a more user-

safe environment. As such, this framework presents a possible improvement on already 

existing methods present on contemporary app stores, alleviating user concerns by 

reducing the amount of malware they might stumble upon, as well as, focusing the work 

of security experts on more complex forms of malware that might go unnoticed by 

traditional methods. The proposed system can also adapt to new forms of malware as they 

become more and more popular amongst malware developers, by the means of retraining, 

therefore, accompanying malware’s evolution in complexity and adaptation to new 

technological improvements. 

With the purpose of developing the best malware detector for the three instances 

mentioned, this framework was fashioned to generate and test several types of models 

under differing circumstances. As such, the datasets were subject to different kinds of 

data preprocessing techniques to attain the best malware classifier. Subsequently, the 

algorithms were trained and tested using the full datasets, as well as a following study on 

their performance decay when trained with fixed monthly sets and tested on the months 

that followed. The algorithms used to develop the most effective malware classifier were 

the XGBoost, Random Forest, Support Vector Machine, K-Nearest Neighbour, Gaussian 

Naïve Bayes, and Bernoulli Naïve Bayes, with their performance measured by F1 Score, 

Accuracy, FPR and FNR, AUC ROC and AUC P-R.  

As mentioned, the study aimed at detecting malicious Android applications from three 

types of historical data. The first one, user feedback data, was gathered from Aptoide 

within a time interval of four months, ranging from October 2019 to January 2020. This 
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set of data allowed for a deeper understanding of the relationship between applications 

and the feedback users gave them by demonstrating certain feature patterns.  

Training the models with separate user feedback feature groups, such as numerical 

ratings and symbolic flags yielded subpar results, mainly since each of these groups 

presented a high degree of correlation between the features which comprised them. The 

relationship between the different numerical ratings is but a causal one, linked by the 

popularity of the app and the percentage of users that like/dislike said app, which usually 

remains stable. The same can be said, to a lesser extent, about the symbolic flags feature 

group. Although numerical ratings, and to some extent, symbolic flags have a certain 

degree of correlation in their own categories, combining both of these types of features 

allows the machine learning classifiers to detect relevant patterns that enable a reasonable 

malware detection rate, with results of up to 79% F1 Score and 86% AUC ROC. The 

performance decay study of this scenario showed a decline in overall performance when 

the models were tested on the months that follow the training ones, however, when trained 

with three months of data and tested with the final fourth month, the results showed 

sufficient improvement to suggest that with a wider time frame of training data better 

results could be reached. 

In the second instance, historical data of static code analysis was used. This data set 

was comprised of six months of data, ranging from October 2019 to March 2020, gathered 

from Aptoide’s internal security team. In this case, the features presented themselves as 

having differing levels of correlation between each another, this meant that each feature 

was able to contribute relevant information for pattern detection. This combination of 

features allows the algorithms to consistently detect malware apps, with results of up to 

86% F1 Score and 91% AUC ROC. Following this, the model performance decay analysis 

showed a sudden decline of performance when trained with fewer than five months of 

historical data and applied to the following months. Training with five months of data and 

testing on the sixth yielded results that started to approximate the original model, 

suggesting the possibility that with more training data the models would become more 

resilient to changes. 

In the third and final instance, historical data of dynamic code analysis was used. This 

dataset consisted of six months of historical data, ranging from February 2020 to July 

2020, gathered from the Koodous collaborative platform for Android malware research. 
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In this case, using a combination of features assembled from multiple Android analysis 

tools made possible a statistical analysis of android apps from different types of activities, 

services, processes, and accesses. This in turn helped aggregate apps that behaved in 

similar malicious manners, therefore, making it easier for the classifiers to separate these 

groups from the ones that behaved in standard fashion. This combination of features 

gathered allows the algorithms to consistently detect malware apps, with results of up to 

94% F1 Score and 97% AUC ROC. Following this, the model performance decay analysis 

showed a sudden decline of performance when trained with fewer than five months of 

historical data and applied to the following months. Training with five months of data and 

testing on the sixth yielded results that started to approximate the original model, 

suggesting the possibility that with more training data the models would become more 

robust to changes.  

Regarding the research questions that were set out in the beginning of this work, it was 

demonstrated that symbolical representations of user feedback such as star ratings and 

flags can be used to train malware classifiers, to a limited extent, and that both feature 

groups are relevant to this endeavor, particulary the Fake and Virus flags and the 3- and 

5-star ratings. Following this it was demonstrated that Android analysis tools are able 

produce relevant information to train malware detection systems when their outputs are 

converted into count-based features. Finally, the best approach to retrain this system to 

maintain high performance over time was not achieved, mainly due to the need for a 

dataset with a wider time period, and also a need for a more comprehensive analysis on 

the variations of both train and test time windows. 

 

6.2 Study Limitations 

This framework hinges on model optimization by combining different models, 

parameters and different preprocessing techniques to output a single most optimized 

model pipeline. However, several decisions were made with the assumption of common 

data mining practices in mind, of which there is very little to none theoretical work 

available to study their effectiveness and impact. In this work the decision to select a K-

fold cross validation scheme with a K of ten was made according to standard practices in 

the industry for this type of dataset. The same goes for the choice of withholding twenty 

percent of the datasets for validation. Joining these, but more specific to this knowledge 
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domain, is the malware to goodware ratios used in the training datasets. Although these 

are considered standard practices, there exists no systematic research on the best practices 

of these parameters.  

Another limitation was the computation power and time available to run the tests. With 

this constraint, more algorithms from different machine learning schools could be applied 

and their results compared. Alongside this, the ability to train more candidates through 

the random grid search would be possible, and therefore, cover a larger spectrum of 

possible parameter combinations for each of the models and delivering more optimized 

and consistent results. 

Finally, the various datasets lacked app coherence, in a sense that each of the datasets 

were comprised of different applications. More notably, the set used for the dynamic 

analysis approach was vastly different from the other two given its originating source. 

This led to an inability to directly compare the chosen analysis methods. 

 

6.3 Future Research Proposals 

As previously stated, many improvements could still be made to the proposed 

framework, namely the automation of the training of malware classification models at set 

intervals, or even online training, to keep this system as an always active and updated 

security measure, as a means to develop a more hands-off approach to malware detection. 

Regarding the usage of user generated data to improve malware classification, utilizing 

app store comments to create new features could help improve detection rates. Text 

mining processes like sentiment analysis and document clustering could extract 

potentially beneficial information to improve malware detection in this environment. 

Along with this, a user centric approach to rate the validity their feedback would lessen 

the impact of feedback given from bots and spammers as well as elevate the influence of 

authentic users. 

Studying the output of other Android app analysis tools could provide additional 

relevant features and information to the system. The combination of user feedback, the 

static code analysis and dynamic code analysis features could also be useful, not only in 

adding more complex patterns for the models to learn on, but with more features 

available, selecting more relevant ones and eliminating redundant ones to reduce noise 

and unneeded information which could improve efficiency and detection rates. Another 
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possibility is the development of a triage architecture that employs each model in a 

cascading fashion to avoid wasting the more resource costly methods of dynamic analysis 

on already detected malware. 

Finally, a study on the effects of the variation of test horizons, from days to weeks, to 

establish the ideal rate at which the models would need to be retrained before starting to 

lose performance. 
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