52 research outputs found

    An Introduction to Malware

    Get PDF

    Anomaly based intrusion detection for network monitoring using a dynamic honeypot.

    Get PDF
    This thesis proposes a network based intrusion detection approach using anomaly detection and achieving low configuration and maintenance costs. A honeypots is an emerging security tool that has several beneficial characteristics, one of which is that all traffic to it is anomalous. A dynamic honeypot reduces the configuration and maintenance costs of honeypot deployment. An anomaly based intrusion detection system with low configuration and maintenance costs can be constructed by simply observing the egress and ingress to a dynamic honeypot. This thesis explores the design and implementation of a dynamic honeypot using a variety of publicly available tools. The main contributions of the design consist of a database containing network relevant information and a dynamic honeypot engine that generates honeypot configurations from the relevant network information. The thesis also explores a simple intrusion detection system built around the dynamic honeypot. These systems were experimentally implemented and preliminary testing identified anomalous traffic, though in some cases it was not necessarily intrusive. In one instance the dynamic honeypot based intrusion detection system identified an intrusion, which was not detected by conventional means

    Self-healing control flow protection in sensor applications

    Full text link
    Since sensors do not have a sophisticated hardware archi-tecture or an operating system to manage code for safety, attacks injecting code to exploit memory-related vulnerabil-ities can present threats to sensor applications. In a sen-sor’s simple memory architecture, injected code can alter the control flow of a sensor application to either misuse ex-isting routines or download other malicious code to achieve attacks. To protect the control flow, this paper proposes a self-healing scheme that can detect attacks attempting to alter the control flow and then recover sensor applications to normal operations with minimum overhead. The self-healing scheme embeds diversified protection code at partic-ular locations to enforce access control in program memory. Both the access control code and the recovery code are de-signed to be resilient to control flow attacks that attempt to evade the protection. Furthermore, the self-healing scheme directly processes application code at the machine instruc-tion level, instead of performing control or data analysis on source code. The implementation and evaluation show that the self-healing scheme is lightweight in protecting sensor applications

    Security Technologies and Methods for Advanced Cyber Threat Intelligence, Detection and Mitigation

    Get PDF
    The rapid growth of the Internet interconnectivity and complexity of communication systems has led us to a significant growth of cyberattacks globally often with severe and disastrous consequences. The swift development of more innovative and effective (cyber)security solutions and approaches are vital which can detect, mitigate and prevent from these serious consequences. Cybersecurity is gaining momentum and is scaling up in very many areas. This book builds on the experience of the Cyber-Trust EU project’s methods, use cases, technology development, testing and validation and extends into a broader science, lead IT industry market and applied research with practical cases. It offers new perspectives on advanced (cyber) security innovation (eco) systems covering key different perspectives. The book provides insights on new security technologies and methods for advanced cyber threat intelligence, detection and mitigation. We cover topics such as cyber-security and AI, cyber-threat intelligence, digital forensics, moving target defense, intrusion detection systems, post-quantum security, privacy and data protection, security visualization, smart contracts security, software security, blockchain, security architectures, system and data integrity, trust management systems, distributed systems security, dynamic risk management, privacy and ethics

    Data Exfiltration:A Review of External Attack Vectors and Countermeasures

    Get PDF
    AbstractContext One of the main targets of cyber-attacks is data exfiltration, which is the leakage of sensitive or private data to an unauthorized entity. Data exfiltration can be perpetrated by an outsider or an insider of an organization. Given the increasing number of data exfiltration incidents, a large number of data exfiltration countermeasures have been developed. These countermeasures aim to detect, prevent, or investigate exfiltration of sensitive or private data. With the growing interest in data exfiltration, it is important to review data exfiltration attack vectors and countermeasures to support future research in this field. Objective This paper is aimed at identifying and critically analysing data exfiltration attack vectors and countermeasures for reporting the status of the art and determining gaps for future research. Method We have followed a structured process for selecting 108 papers from seven publication databases. Thematic analysis method has been applied to analyse the extracted data from the reviewed papers. Results We have developed a classification of (1) data exfiltration attack vectors used by external attackers and (2) the countermeasures in the face of external attacks. We have mapped the countermeasures to attack vectors. Furthermore, we have explored the applicability of various countermeasures for different states of data (i.e., in use, in transit, or at rest). Conclusion This review has revealed that (a) most of the state of the art is focussed on preventive and detective countermeasures and significant research is required on developing investigative countermeasures that are equally important; (b) Several data exfiltration countermeasures are not able to respond in real-time, which specifies that research efforts need to be invested to enable them to respond in real-time (c) A number of data exfiltration countermeasures do not take privacy and ethical concerns into consideration, which may become an obstacle in their full adoption (d) Existing research is primarily focussed on protecting data in ‘in use’ state, therefore, future research needs to be directed towards securing data in ‘in rest’ and ‘in transit’ states (e) There is no standard or framework for evaluation of data exfiltration countermeasures. We assert the need for developing such an evaluation framework

    Security Technologies and Methods for Advanced Cyber Threat Intelligence, Detection and Mitigation

    Get PDF
    The rapid growth of the Internet interconnectivity and complexity of communication systems has led us to a significant growth of cyberattacks globally often with severe and disastrous consequences. The swift development of more innovative and effective (cyber)security solutions and approaches are vital which can detect, mitigate and prevent from these serious consequences. Cybersecurity is gaining momentum and is scaling up in very many areas. This book builds on the experience of the Cyber-Trust EU project’s methods, use cases, technology development, testing and validation and extends into a broader science, lead IT industry market and applied research with practical cases. It offers new perspectives on advanced (cyber) security innovation (eco) systems covering key different perspectives. The book provides insights on new security technologies and methods for advanced cyber threat intelligence, detection and mitigation. We cover topics such as cyber-security and AI, cyber-threat intelligence, digital forensics, moving target defense, intrusion detection systems, post-quantum security, privacy and data protection, security visualization, smart contracts security, software security, blockchain, security architectures, system and data integrity, trust management systems, distributed systems security, dynamic risk management, privacy and ethics

    On Detection of Current and Next-Generation Botnets.

    Full text link
    Botnets are one of the most serious security threats to the Internet and its end users. A botnet consists of compromised computers that are remotely coordinated by a botmaster under a Command and Control (C&C) infrastructure. Driven by financial incentives, botmasters leverage botnets to conduct various cybercrimes such as spamming, phishing, identity theft and Distributed-Denial-of-Service (DDoS) attacks. There are three main challenges facing botnet detection. First, code obfuscation is widely employed by current botnets, so signature-based detection is insufficient. Second, the C&C infrastructure of botnets has evolved rapidly. Any detection solution targeting one botnet instance can hardly keep up with this change. Third, the proliferation of powerful smartphones presents a new platform for future botnets. Defense techniques designed for existing botnets may be outsmarted when botnets invade smartphones. Recognizing these challenges, this dissertation proposes behavior-based botnet detection solutions at three different levels---the end host, the edge network and the Internet infrastructure---from a small scale to a large scale, and investigates the next-generation botnet targeting smartphones. It (1) addresses the problem of botnet seeding by devising a per-process containment scheme for end-host systems; (2) proposes a hybrid botnet detection framework for edge networks utilizing combined host- and network-level information; (3) explores the structural properties of botnet topologies and measures network components' capabilities of large-scale botnet detection at the Internet infrastructure level; and (4) presents a proof-of-concept mobile botnet employing SMS messages as the C&C and P2P as the topology to facilitate future research on countermeasures against next-generation botnets. The dissertation makes three primary contributions. First, the detection solutions proposed utilize intrinsic and fundamental behavior of botnets and are immune to malware obfuscation and traffic encryption. Second, the solutions are general enough to identify different types of botnets, not a specific botnet instance. They can also be extended to counter next-generation botnet threats. Third, the detection solutions function at multiple levels to meet various detection needs. They each take a different perspective but are highly complementary to each other, forming an integrated botnet detection framework.Ph.D.Computer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/91382/1/gracez_1.pd

    Best Practices and Recommendations for Cybersecurity Service Providers

    Full text link
    This chapter outlines some concrete best practices and recommendations for cybersecurity service providers, with a focus on data sharing, data protection and penetration testing. Based on a brief outline of dilemmas that cybersecurity service providers may experience in their daily operations, it discusses data handling policies and practices of cybersecurity vendors along the following five topics: customer data handling; information about breaches; threat intelligence; vulnerability-related information; and data involved when collaborating with peers, CERTs, cybersecurity research groups, etc. There is, furthermore, a discussion of specific issues of penetration testing such as customer recruitment and execution as well as the supervision and governance of penetration testing. The chapter closes with some general recommendations regarding improving the ethical decision-making procedures of private cybersecurity service providers

    Ethical and Unethical Hacking

    Get PDF
    The goal of this chapter is to provide a conceptual analysis of ethical, comprising history, common usage and the attempt to provide a systematic classification that is both compatible with common usage and normatively adequate. Subsequently, the article identifies a tension between common usage and a normativelyadequate nomenclature. ‘Ethical hackers’ are often identified with hackers that abide to a code of ethics privileging business-friendly values. However, there is no guarantee that respecting such values is always compatible with the all-things-considered morally best act. It is recognised, however, that in terms of assessment, it may be quite difficult to determine who is an ethical hacker in the ‘all things considered’ sense, while society may agree more easily on the determination of who is one in the ‘business-friendly’ limited sense. The article concludes by suggesting a pragmatic best-practice approach for characterising ethical hacking, which reaches beyond business-friendly values and helps in the taking of decisions that are respectful of the hackers’ individual ethics in morally debatable, grey zones

    On Leveraging Next-Generation Deep Learning Techniques for IoT Malware Classification, Family Attribution and Lineage Analysis

    Get PDF
    Recent years have witnessed the emergence of new and more sophisticated malware targeting insecure Internet of Things (IoT) devices, as part of orchestrated large-scale botnets. Moreover, the public release of the source code of popular malware families such as Mirai [1] has spawned diverse variants, making it harder to disambiguate their ownership, lineage, and correct label. Such a rapidly evolving landscape makes it also harder to deploy and generalize effective learning models against retired, updated, and/or new threat campaigns. To mitigate such threat, there is an utmost need for effective IoT malware detection, classification and family attribution, which provide essential steps towards initiating attack mitigation/prevention countermeasures, as well as understanding the evolutionary trajectories and tangled relationships of IoT malware. This is particularly challenging due to the lack of fine-grained empirical data about IoT malware, the diverse architectures of IoT-targeted devices, and the massive code reuse between IoT malware families. To address these challenges, in this thesis, we leverage the general lack of obfuscation in IoT malware to extract and combine static features from multi-modal views of the executable binaries (e.g., images, strings, assembly instructions), along with Deep Learning (DL) architectures for effective IoT malware classification and family attribution. Additionally, we aim to address concept drift and the limitations of inter-family classification due to the evolutionary nature of IoT malware, by detecting in-class evolving IoT malware variants and interpreting the meaning behind their mutations. To this end, we perform the following to achieve our objectives: First, we analyze 70,000 IoT malware samples collected by a specialized IoT honeypot and popular malware repositories in the past 3 years. Consequently, we utilize features extracted from strings- and image-based representations of IoT malware to implement a multi-level DL architecture that fuses the learned features from each sub-component (i.e, images, strings) through a neural network classifier. Our in-depth experiments with four prominent IoT malware families highlight the significant accuracy of the proposed approach (99.78%), which outperforms conventional single-level classifiers, by relying on different representations of the target IoT malware binaries that do not require expensive feature extraction. Additionally, we utilize our IoT-tailored approach for labeling unknown malware samples, while identifying new malware strains. Second, we seek to identify when the classifier shows signs of aging, by which it fails to effectively recognize new variants and adapt to potential changes in the data. Thus, we introduce a robust and effective method that uses contrastive learning and attentive Transformer models to learn and compare semantically meaningful representations of IoT malware binaries and codes without the need for expensive target labels. We find that the evolution of IoT binaries can be used as an augmentation strategy to learn effective representations to contrast (dis)similar variant pairs. We discuss the impact and findings of our analysis and present several evaluation studies to highlight the tangled relationships of IoT malware, as well as the efficiency of our contrastively learned fine-grained feature vectors in preserving semantics and reducing out-of-vocabulary size in cross-architecture IoT malware binaries. We conclude this thesis by summarizing our findings and discussing research gaps that lay the way for future work
    • 

    corecore