
On Leveraging Next-Generation Deep Learning
Techniques for IoT Malware Classification, Family

Attribution and Lineage Analysis

Mirabelle Dib

A Thesis

in

The Department of Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Computer Science

Concordia University

Montréal, Québec, Canada

December 2021

© Mirabelle Dib, 2022

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Mirabelle Dib

Entitled: On Leveraging Next-Generation Deep Learning Techniques for IoT

Malware Classification, Family Attribution and Lineage Analysis

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the final examining committee:

Chair
Dr. Tristan Glatard

Examiner
Dr. Amr Youssef

Examiner
Dr. Tristan Glatard

Thesis Co-Supervisor
Dr. Chadi Assi

Thesis Co-Supervisor
Dr. Elias Bou-Harb

Approved by
Leila Kosseim, Director
The Department of Computer Science and Software Engineering

December 17, 2021
Mourad Debbabi, Dean,
Gina Cody School of Engineering and Computer Science

Abstract

On Leveraging Next-Generation Deep Learning Techniques for IoT Malware
Classification, Family Attribution and Lineage Analysis

Mirabelle Dib

Recent years have witnessed the emergence of new and more sophisticated malware targeting

insecure Internet of Things (IoT) devices, as part of orchestrated large-scale botnets. Moreover, the

public release of the source code of popular malware families such as Mirai [1] has spawned diverse

variants, making it harder to disambiguate their ownership, lineage, and correct label. Such a rapidly

evolving landscape makes it also harder to deploy and generalize effective learning models against

retired, updated, and/or new threat campaigns. To mitigate such threat, there is an utmost need

for effective IoT malware detection, classification and family attribution, which provide essential

steps towards initiating attack mitigation/prevention countermeasures, as well as understanding the

evolutionary trajectories and tangled relationships of IoT malware. This is particularly challenging

due to the lack of fine-grained empirical data about IoT malware, the diverse architectures of IoT-

targeted devices, and the massive code reuse between IoT malware families.

To address these challenges, in this thesis, we leverage the general lack of obfuscation in IoT

malware to extract and combine static features from multi-modal views of the executable binaries

(e.g., images, strings, assembly instructions), along with Deep Learning (DL) architectures for ef-

fective IoT malware classification and family attribution. Additionally, we aim to address concept

drift and the limitations of inter-family classification due to the evolutionary nature of IoT mal-

ware, by detecting in-class evolving IoT malware variants and interpreting the meaning behind their

mutations. To this end, we perform the following to achieve our objectives:

First, we analyze 70,000 IoT malware samples collected by a specialized IoT honeypot and

popular malware repositories in the past 3 years. Consequently, we utilize features extracted from

iii

strings- and image-based representations of IoT malware to implement a multi-level DL architecture

that fuses the learned features from each sub-component (i.e, images, strings) through a neural

network classifier. Our in-depth experiments with four prominent IoT malware families highlight

the significant accuracy of the proposed approach (99.78%), which outperforms conventional single-

level classifiers, by relying on different representations of the target IoT malware binaries that do not

require expensive feature extraction. Additionally, we utilize our IoT-tailored approach for labeling

unknown malware samples, while identifying new malware strains.

Second, we seek to identify when the classifier shows signs of aging, by which it fails to effec-

tively recognize new variants and adapt to potential changes in the data. Thus, we introduce a robust

and effective method that uses contrastive learning and attentive Transformer models to learn and

compare semantically meaningful representations of IoT malware binaries and codes without the

need for expensive target labels. We find that the evolution of IoT binaries can be used as an aug-

mentation strategy to learn effective representations to contrast (dis)similar variant pairs. We discuss

the impact and findings of our analysis and present several evaluation studies to highlight the tan-

gled relationships of IoT malware, as well as the efficiency of our contrastively learned fine-grained

feature vectors in preserving semantics and reducing out-of-vocabulary size in cross-architecture

IoT malware binaries.

We conclude this thesis by summarizing our findings and discussing research gaps that lay the

way for future work.

iv

Dedication

This thesis is dedicated to my parents, Eliane and Toufic.

For their endless love, support and encouragement

v

Acknowledgments

I wish to thank my supervisor Prof. Chadi Assi for his dedicated support, guidance and patience

throughout my Masters degree. I would also like to thank my co-supervisor Dr. Elias Bou-Harb, for

his invaluable feedback, perspective and positive criticism of my research experiments.

My gratitude extends to Prof. Chadi Assi and the Faculty of Engineering and Computer Science

for the funding opportunity to complete my studies at the Department of Computer Science and

Software Engineering.

Additionally, I would like to thank the committee members who were more than generous with

their expertise and precious time, and offered me valuable comments towards improving my work.

My thanks extends to Prof. Nizar Bouguila for sharing his expertise and providing generous

feedback. I would also like to thank Dr. Aiman Hanna for constantly granting me teaching oppor-

tunities that helped me financially and ignited my passion for teaching.

Finally, I would like to thank my fellow colleague Dr. Sadegh Torabi for his insightful comments

and collaboration at every stage of my research projects.

“If we knew what it was we were doing, it would not be called research, would it?’’

— Albert Einstein

vi

Contribution of Authors

First Contribution (Accepted in TNSM’21): Mirabelle Dib and Sadegh Torabi equally con-

ceived the presented idea. Mirabelle developed the theory, carried out the experiments, and took

the lead in writing the manuscript. Sadegh Torabi, Elias Bou-Harb and Chadi Assi provided critical

feedback and helped shape the research, analysis and manuscript.

Citation: Dib, Mirabelle, Sadegh Torabi, Elias Bou-Harb, and Chadi Assi. "A Multi-Dimensional

Deep Learning Framework for IoT Malware Classification and Family Attribution." IEEE Transac-

tions on Network and Service Management (2021).

Second Contribution (Submitted at ACM ASIACCS’22): Mirabelle Dib solely conceived

the presented idea. Mirabelle designed, planned and executed the experiments. Mirabelle took the

lead in writing the paper. Sadegh Torabi, Elias Bou-Harb and Chadi Assi discussed the results and

provided comments on the final version of the manuscript. Nizar Bouguila shared his expertise and

opinion on the presented theory.

Citation: Dib, Mirabelle, Sadegh Torabi, Elias Bou-Harb, Nizar Bouguila and Chadi Assi.

"EVOLIoT: A Self-Supervised Contrastive Learning Framework for Detecting and Characterizing

Evolving IoT Malware Variants". In Proceedings of the 2022 ACM Asia Conference on Computer

and Communications Security. (2022)

vii

Contents

List of Figures xi

List of Tables xiii

List of Abbreviations xiv

1 Introduction 1

1.1 Problem Scope and Motivation . 1

1.2 Objectives and Research Questions . 1

1.3 Contributions . 2

1.3.1 A Multi-Dimensional Deep Learning Framework for IoT Malware Classifi-

cation and Family Attribution . 2

1.3.2 EVOLIoT: A Self-Supervised Contrastive Learning Framework for Detect-

ing and Characterizing Evolving IoT Malware Variants 3

1.4 Thesis Organization . 4

2 Background and Related Work 5

2.1 IoT Threat Landscape . 5

2.1.1 Demystifying IoT Cyber Attacks . 5

2.1.2 IoT Security and Vulnerability Assessment 7

2.1.3 IoT Malware Data Collection . 9

2.1.4 IoT Malware Landscape . 9

2.2 IoT Malware Analysis . 10

viii

2.2.1 The 101 of the ELF File Format . 11

2.2.2 Static versus Dynamic Binaries . 12

2.2.3 Malware Analysis Techniques . 13

2.2.4 IoT Malware Sandboxing Environment 16

2.2.5 Leveraged Dataset . 16

2.3 IoT Malware Detection and Classification . 19

2.4 Malware Evolution and Lineage Inference . 22

2.5 Concept Drift in Machine Learning-based Security Applications 24

3 A Multi-Dimensional Deep Learning Framework for IoT Malware Classification and

Family Attribution 26

3.1 Overview . 26

3.2 Contributions . 28

3.3 Multimodal Deep Learning Framework . 29

3.4 Feature Modalities . 30

3.4.1 Image-based Component . 30

3.4.2 String-based Component . 32

3.5 Fusion Component and Classification . 33

3.6 Experimental Results . 35

3.6.1 Evaluating the Image-based Component 36

3.6.2 Evaluating the String-based Component 37

3.6.3 Effectiveness of the Proposed Multi-Level DL Model 38

3.6.4 Comparison with Feature Engineering Approaches 39

3.6.5 Label Prediction for Unknown/Unseen Malware 42

3.7 Discussion . 45

3.7.1 Limitations . 47

3.7.2 Future Work . 48

3.8 Summary and Concluding Remarks . 49

ix

4 EVOLIoT: A Self-Supervised Contrastive Learning Framework for Detecting and Char-

acterizing Evolving IoT Malware Variants 50

4.1 Overview . 50

4.2 Contributions . 53

4.3 Background and Problem Scope . 54

4.3.1 Concept Drift (In-Class Evolution) . 54

4.3.2 Contrastive Learning (CL) . 55

4.3.3 Attentive Transformer Language Model 56

4.3.4 Problem Scope and Insights . 56

4.4 Approach . 58

4.4.1 Feature Extraction & Pre-Processing . 59

4.4.2 Instruction Embedding Model . 60

4.4.3 Contrastive Objective . 61

4.4.4 Understanding Evolutionary Changes . 64

4.4.5 Evaluation of Instruction Embeddings . 64

4.5 Results . 65

4.5.1 Data Collection . 65

4.5.2 Observing Concept Drift . 66

4.5.3 Impact of Contrastive Objective . 67

4.5.4 Characterizing Variant Changes . 71

4.5.5 Evaluation . 74

4.6 Limitations and Future Work . 79

4.7 Summary and Concluding Remarks . 80

5 Conclusion and Future Work 82

Bibliography 83

x

List of Figures

Figure 2.1 The overall Mirai botnet operation [2]. 6

Figure 2.2 Structure of an ELF binary [3]. 11

Figure 2.3 An overview of the multi-architecture dynamic malware analysis pipeline. . 16

Figure 3.1 Overview of the Multi-Level Deep Learning Malware Classification System. 30

Figure 3.2 Grayscale images of malware samples belonging to the Tsunami, Hajime

and Gafgyt Families. 31

Figure 3.3 Process of visualizing a malware as a grayscale image. 31

Figure 3.4 Evaluation results for the selected feature-engineering approaches. 39

Figure 3.5 Cumulative distribution function of the samples predicted as (a) Mirai and

(b) Gafgyt. 42

Figure 4.1 The impact of drifting samples on the classification accuracy for samples of

the Mirai family (trained/tested MLP classifier with a 3 months sliding window). 55

Figure 4.2 An overview of the proposed EVOLIoT framework/approach and its various

stages. 58

Figure 4.3 Re-casting SimCLR [4] as a phylogenetic tree where augmentations are the

evolved malware variants. 62

Figure 4.4 Overview of our semantic code search engine. 65

Figure 4.5 A diagrammatic representation of the silhouette coefficient formula s(xi). C1

and C2 are clusters. 67

Figure 4.6 t-SNE visualization of learned representations on 6,000 randomly selected

Mirai samples with (a) Standard embedding, and (b) Contrastive Embedding. . . 68

xi

Figure 4.7 A weighted graph constructed using UMAP [5] representing the connectivity

between the strings embeddings of (a) 10,000 Mirai and (b) 3,000 Gafgyt samples

with highlighted nodes that represent 11 variants identified by EVOLIoT (§4.5.4). 72

Figure 4.8 Comparing ROC and AUC performance results. 78

Figure 4.9 Visualization of syntactically different yet semantically similar embeddings

belonging to clusters 1, 3, and 14. 79

Figure 4.10 Visualization of the growth of the vocabulary size when the corpus size in-

creases. 80

xii

List of Tables

Table 2.1 Structure of an ELF header. 13

Table 2.2 Distribution of malware by family. 17

Table 2.3 Inconsistent labels assigned to the same variant by 12 out of 62 independent

AV engines on VirusTotal. 18

Table 3.1 Hyper-parameter tuning/selection and 10-fold cross validation performance

evaluation results for the selected DL models. 36

Table 3.2 Summary of the previous state-of-the-art classification approaches (NA stands

for Not Available). 40

Table 4.1 Drifting detection results on the Drebin and IoT malware datasets when com-

paring CADE with a baseline vanilla autoencoder (AE). 69

Table 4.2 Results of the semantic search retrieval using different baselines as code em-

bedders. 76

Table 4.3 List of manually extracted features from binaries disassembly using Padawan

ELF tool [6]. 77

xiii

List of Abbreviations

AV Anti Virus

C&C Command & Control

CFG Control Flow Graph

CSSL Contrastive Self-Supervised Learning

DAG Directed Acyclic Graph

DDoS Distributed Denial of Service

DL Deep Reinforcement Learning

ELF Executable and Linkable Format

GOT Global Offset Table

IoT Internet of Things

LSTM Long Short-Term Memory

ML Machine Learning

MST Minimum Spanning Tree

NLP Natural Language Processing

NN Neural Network

OS Operating System

PE Portable Executable

UPX Ultimate Packer for eXecutables

xiv

VT VirusTotal

xv

Chapter 1

Introduction

1.1 Problem Scope and Motivation

The emergence of Internet of Things malware, which leverages exploited devices to perform

large-scale attacks (e.g., Mirai botnet [1]), presents a major threat to the Internet ecosystem [2, 7].

To mitigate such threat, there is an utmost need to evaluate the security of IoT paradigm by de-

veloping effective learning-based tools and techniques for the prompt detection, classification and

characterization of evolving IoT threats. This is challenging due to: (i) the world-wide spread of a

large number of interconnected insecure IoT devices, (ii) the lack of fine-grained IoT malware labels

and well-designed ground truth datasets for evaluation, (iii) the complex relationship and similari-

ties in terms of code reuse among emerging malware variants and (iv) the lack of scalable family

attribution, binary similarity and lineage inference tools that support multiple CPU architectures.

We present in the following sub-sections our objectives and how we aim at addressing these

challenges by leveraging deep learning techniques along with static malware analysis to classify,

detect and investigate IoT malware variants and their changing malicious nature.

1.2 Objectives and Research Questions

The main objective of this thesis is to leverage next-generation techniques to implement ef-

fective, scalable and robust IoT-tailored approaches for correctly classifying IoT malware binaries,

1

detecting evolving variants over time, and interpreting the meaning behind their drift. Given the

threats associated with the rise of IoT malware strains and the challenges associated with the lack of

empirical data and representative labels, the capability to combat concept drift and the limitations

of intra-family classification by inferring with certainty to which family a malware belongs and

highlighting the dynamics behind the emergence of new malware strains over time, is essential to

build a better understanding about the changing threat landscape while supporting the development

of effective detection and mitigation measures.

In particular, we want to answer the following research questions (RQs):

(1) How can we develop and evaluate a classification approach that automatically learns static

features from multiple raw modalities of IoT malware binaries, while improving the overall

classification accuracy and reducing the cost of artificial feature engineering? Given the

benefits of the proposed multi-level deep learning approach, how can we leverage it to detect

new or unknown malware samples given the information about existing malware families?

(2) Is the performance of classifiers likely to degrade with time, as the nature of the IoT malware

landscape is changing? How can we leverage contrastive learning and attentive Transformer

models to detect in-class evolving IoT malware binaries and understand the meaning behind

the changing relationship between them by using an interpretable strings-based similarity

analysis?

1.3 Contributions

We present a summary of the main contributions made throughout this thesis to answer the

aforementioned objectives:

1.3.1 A Multi-Dimensional Deep Learning Framework for IoT Malware Classifica-

tion and Family Attribution

We propose a multi-level approach that leverages a combination of static features along with

DL techniques for effective IoT malware classification and family attribution. Our aim is to (i)

2

leverage the lack of widely deployed sophisticated malware obfuscation for extracting static features

from different modalities of the IoT malware binaries, (ii) overcome the limitations of artificial

feature engineering by leveraging deep learning methods that automatically and efficiently extract

strings features, and (iii) improve the overall classification accuracy by building a multi-dimensional

architecture that combines different representations of the target IoT malware binaries.

To achieve our objectives and answer our first research question, we leverage 70,000 IoT mal-

ware executables detected by a specialized IoT honeypot (IoTPOT [8]) and publicly available

threat repositories (e.g., VirusTotal [9]) during the past three years. Additionally, we devise an

image-based analysis technique to visualize malware binaries files as images and we utilize reverse-

engineering and static malware analysis techniques to extract useful strings from the binaries.

More importantly, we implement our multi-level DL architecture by fusing the learned features

from each image-based and strings-based component through a neural network classifier. Conse-

quently, we perform a series of experiments and evaluate the effectiveness of our approach in com-

parison to state-of-the-art approaches. In addition to classifying known IoT malware, we leverage

the proposed approach for classifying unknown samples, which are attributed to a few predominant

IoT malware families.

The outcome of this contribution is published/presented at the IEEE TNSM (2021) [10].

1.3.2 EVOLIoT: A Self-Supervised Contrastive Learning Framework for Detecting

and Characterizing Evolving IoT Malware Variants

The increasing number of detected IoT malware and the threat associated with the IoT-driven

cyber attacks has pushed the security community to develop rigorous mitigation approaches against

the spread of IoT malware strains by building effective learning-based malware detectors and clas-

sifiers. Yet, it is still unclear what makes each group of malware distinct or how the same family

evolves over time. Our aim is to understand the complex relationship and (dis)similarities among

malware variants by (i) understanding how the performance of classifiers degrade with time as new

malware campaigns are introduced, (ii) detecting drifting IoT malware variants within the same

malware family and consequently (iii) interpreting the meaning behind their drift.

To reach our objectives and thus answer our second research question, we adopt a cross-architecture

3

code-based analysis that can capture a binary’s malicious intent and evolutionary essence regardless

of its instruction set architecture (ISA). We propose a self-supervised contrastive learning approach

based on pre-trained attentive language models such as BERT [11], which effectively learns and

compares semantically meaningful representations of binary code, without the need for expensive

target labels. We evaluate our approach on the same large corpus of IoT malware binaries used in the

previous work, and highlight the constant evolution of variants among each family from different

perspectives. We also extensively evaluate our proposed method on different applications and test

our well-balanced instruction normalization strategy to demonstrate its effectiveness in conserving

as much contextual/semantic information as possible for cross-architecture syntactic variations.

The outcome of this contribution is submitted at the ACM ASIACCS Conference (2022).

1.4 Thesis Organization

The remainder of this thesis is structured as follows: In Chapter 2, we present background in-

formation along with a review of related work. In Chapter 3, we present our multi-dimensional ap-

proach for classifying and attributing IoT malware families. Chapter 4 presents our self-supervised

contrastive learning approach towards detecting in-class evolving IoT malware variants and charac-

terizing their mutations.

4

Chapter 2

Background and Related Work

In what follows, we provide background information about the IoT threat landscape, the ELF

binary structure and common malware analysis techniques, followed by a review of literature with

respect to various concerned topics as presented in recent published work, such as IoT malware

detection and classification, malware evolution and concept drift. We also provide an overview of

the dataset that we leverage throughout the presented thesis contributions.

2.1 IoT Threat Landscape

2.1.1 Demystifying IoT Cyber Attacks

The insecurities of Internet-connected IoT devices have made them vulnerable to hijacking and

weaponization for use en masse to carry out cyber attacks. Under the control of a botnet called

Mirai [1] which took the Internet by storm in late 2016, 600,000 vulnerable IoT devices over-

whelmed several high-profile targets, such as Dyn (major US domain service company), OVH

(cloud computing company), Airbnb, Github, and Twitter among others [2]. Such attack served

as an indication of the potential devastating impact that these exploited devices represent. Since

then, the volume and sophistication of attacks targeting IoT devices have grown abruptly, and new

IoT-tailored malware/botnets are frequently emerging [2,7]. The release of the Mirai botnet source

code has fueled the rapid evolution of more advanced and sophisticated Mirai-like variants such

5

Bots
Attacker

Command
& Control

Report
Server Victim

Loader

DDoS
Target

Report

Dispatch Load

Send
Command

Attack

Scan

Relay

Figure 2.1: The overall Mirai botnet operation [2].

as Hajime [12], Satori [13], and BrickerBot [14] to name a few, which follow the same over-

all operation as presented in Figure 2.1 to find and exploit vulnerable devices. In general, Mirai

bots start by scanning the IPV4 address space for other devices that run telnet or SSH, attempting

to brute-force log in using 10 usernames and passwords pairs randomly selected from a hardcoded

dictionary of 62 credentials (1©). After a successful login, the victim IP and valid credentials are

reported back to a fixed server (2©), which in turn asynchronously triggers a loader program (3©)

to download and execute an architecture-specific malicious payload (4©). After infection, Mirai

fortifies itself by killing other processes associated with competing variants like Qbot [15] and

concealing its presence by deleting the downloaded binary. Meanwhile, the bot listens for attack

commands from its command and control (C2) server while concurrently scanning for new victims

(5©, 6©). Now in contrast to Mirai which scans services such as HTTP and Telnet on TCP ports

80/23/2323, the analysis of recent Mirai-like variants such as Satori highlighted scanning activ-

ities towards TCP port 37215 to execute remote code into the device upgrade process of specific

Huawei routers. Furthermore, a spike in exploits against TCP port 52869 indicates a clear targeted

attack towards Huawei routers. Moreover, other Mirai-related botnets have started leveraging not

only telnet credentials brute-forcing but also exploiting very specific software vulnerabilites in IoT

device firmware [16,17]. This shows the dedication of cybercriminals to building more sophisticated

botnets, and hence is a revelation of a real evolution from the first Mirai botnet.

6

2.1.2 IoT Security and Vulnerability Assessment

The "s" in IoT stands for security. In other words, a competitive landscape (i.e., profiting busi-

nesses, short time-to-market) and technical constraints on IoT devices (i.e. low-cost, limited compu-

tational powers) have made it challenging for IoT devices’ manufacturers to design and implement

complex security features in these devices. Consequently, this negligence of several security con-

siderations have enabled the rise of IoT-driven cyber attacks. An extensive survey by Neshenko et

al. [18] on several studies dedicated to IoT (in)security have revealed a total of nine (9) degrees of

IoT vulnerabilities. Of which:

Weak Authentication and Insufficient Access Control. The main goal of attacks against au-

thentication and access control is to gain unauthorized access to IoT resources and data to further

perform malicious actions. The most common type of attack is a dictionary attack, in which a botnet

attempts to brute force the victim credentials. On this subject, Kolias et al. [19] has explained how a

dictionary attack can jeopardize and manipulate millions of Internet-facing IoT devices into launch-

ing coordinated attacks against important services. The Mirai botnet has introduced a balanced

dictionary attack in which a random subset of the most frequently used credentials is picked and

attempted [2]. Such attacks are enabled by a majority of devices allowing passwords of insufficient

complexity and length, such as "admin" or "1234" [20]. Moreover, after installation, many devices

do not request its consumers to change the default user credentials. Markowsky et al. [21] have

concluded that the Carna botnet has surveyed the entire IPv4 address space in 2012 and unveiled

more than 1.6 million devices around the world using user default credentials. Cui et al. [22] have

performed large-scale Internet scans of IoT devices and found over half a million publicly acces-

sible IoT devices configured with factory default root password. A study by Alrawi et al. [23] has

identified over 39 types of IoT devices with elevated permissions which could allow unauthorized

users to gain privilege access and spy on the end-users.

Networks-based Vulnerabilities. Various studies have focused on IoT-specific vulnerabilities

created by network or protocol weaknesses. For example, the security of the ZigBee protocol built to

address the unique needs of low-cost, low-power wireless IoT networks has been studied by several

works [24]. The authors have demonstrated how ZigBee-enabled IoT devices can be compromised,

7

controlled and manipulated to conduct denial of service on IoT. They pinpointed an insufficient

property of key management where the keys are transmitted unencrypted hence enabling the leak of

sensitive information and allowing control over the devices.

Unnecessary Open Ports. Another network vulnerability to be considered is related to port

blocking policies. By conducting port scanning, penetration testing and fingerprinting examinations

of numerous consumer IoT devices, Sachidananda et al. [25] have discovered that a large number of

devices have unnecessary open ports/services (e.g., SSH(22), Telnet(23), HTTP(80)), which could

be easily leveraged to leak confidential information about operating systems, device types, IP ad-

dresses, and transferred data. For instance, the Belkin smart camera was found to expose a large

number of ports, 5 TCP and 31 UDP. Another example is the HP printer which responds to a special

port 9100 which was used for printing with no authorization. Such vulnerability was exploited to

attack more than 150,000 printers [26, 27].

Firmware-based Vulnerabilities. Studies [16,17] have shown that IoT botnets started leverag-

ing not only telnet credentials brute-forcing but also exploiting a myriad of software vulnerabilities

(e.g., backdoors, primary root access points, and a lack of Secure Socket Layer (SSL) usage [18,28])

in IoT device firmware. Such flaws have allowed attackers to steal WiFi credentials [29], control

smart TVs and home assist devices [30], and turn smart thermostats into spy gadgets [31]. Costin

et al. [32] conducted a large-scale assessment of IoT device firmware and discovered a total of 38

previously unknown vulnerabilities in over 693 firmware images, altogether affecting 140K acces-

sible devices over the Internet. In addition, Konstantinou et al. [33] revealed the drastic potential of

vulnerable power grid firmware to corrupt traffic signals and cause uncontrolled power outages.

Improper Patch Management Capabilities. To minimize such attack vectors, IoT operating

systems and firmware should be regularly updated/patched. Nevertheless, these mechanisms are not

widely adopted in IoT devices as many manufacturers do not have set up automated patch-update

mechanisms. Tekeoglu et al. [28] identified a vulnerability in available update/patch mechanisms

that lack integrity guarantees, rendering them susceptible to being maliciously modified and applied

at large.

8

2.1.3 IoT Malware Data Collection

Studying the threat landscape of smart IoT devices is challenging given the rareness of IoT-

related empirical data and the fact that IoT encompasses an array of different types of devices,

that can be deployed in a large variety of environments. Motivated by this, efforts have been put

to collect IoT-tailored data, particularly malware binaries. For instance, IoTPOT offered by Pa et

al. [34] was the first of its kind honeypot emulating Telnet services of various IoT devices running on

different CPU architectures. They observed multiple attempts to download external malware binary

files, as well as three phases of Telnet-based attacks, namely, intrusion, infection and monetization.

Similarly, Guarnizo et al. [35] presented SIPHON, the Scalable high-Interaction Honeypt platform

for IoT devices. The authors demonstrated how worldwide wormholes and a few physical devices

can mimic various IoT devices and attract malicious traffic, such as popular target locations, scanned

ports, and user agents. Gandhi et al. [36] proposed another IoT-honeypot called HIoTPOT and

observed that 67% of daily connections were unauthorized, which confirms the increasing interest

of attackers in finding vulnerable IoT devices.

In an alternative work, Dowling et al. [37] designed a honeypot which explores attacks against

ZigBee-based IoT devices by emulating a ZigBee gateway. The authors reported that 94% of all

attacks were dictionary attacks. Luo et al. [38] leveraged machine learning techniques to automat-

ically learn the behaviors of different types of IoT devices and create an intelligent and interactive

honeypot.

By simulating a variety of IoT devices, the proposed honeypots have addressed the lack of

empirical knowledge/data about IoT by facilitating the collection of IoT-tailored malware, which

can adequately be analyzed to better understand the evolutionary state of IoT malware, as well as to

build effective detection and classification modules.

2.1.4 IoT Malware Landscape

The public release of the source code of the IoT-based botnet Mirai [1] has prompted new actors

to easily bootstrap their own botnet and compete with other botmasters over the control of vulnerable

IoT devices. Antonakakis et al. [2] have presented the first comprehensive study of the Mirai botnet

9

and described the effect of the shared source code on the release of new specialized variants. Several

other works have focused on the customizations of Mirai (e.g., Hajime, BrickerBot) to study the

change in their infection behavior [19] as well as to reveal shared password combinations used

during brute forcing [39]. Vervier et al. [7] have shed the light on the abruptly changing IoT threat

ecosystem, typically dominated by Mirai, where new attack players (e.g., Hajime, IoT Reaper) are

claiming their share of vulnerable IoT devices by targeting a wider range of firmware vulnerabilities.

While these works focus on one botnet, Griffioen et al. [40] have focused on multiple Mirai-like

variants competing for the same IoT devices to identify the differences in success between botnets.

They exploit 7,500 IoT honeypots and a flaw in the design of Mirai’s random number generator

to conclude that IoT botnets are not self-sustaining. Alternatively, Torabi et al. [41] leveraged

passive network measurements collected from the darknet along with IoT device information to

infer compromised IoT devices in the wild.

While previous works hold valuable insights on the threat landscape of IoT malware, further

research is needed to prevent the emergence of new intra-family strains and track the evolution of

existing ones.

2.2 IoT Malware Analysis

In the past two decades, the security community has focused almost exclusively on fighting

generic malware targeting Windows or more recently, Android devices. As a result, a majority of

papers have developed techniques tailored to the analysis of PE binaries, the detection of ongo-

ing threats and the prevention of new infection attempts on Windows operating systems. It is only

since the appearance of the newsworthy Mirai botnet [2] and Shellshock [42] that non-Windows

malicious software started receiving the same level of attention. In the following sections, we pro-

vide background information about the structure of an ELF binary, the difference between statically

versus dynamically linked binaries, as well as describe various techniques applied in literature for

malware analysis.

10

Figure 2.2: Structure of an ELF binary [3].

2.2.1 The 101 of the ELF File Format

ELF which stands for Executable and Linkable Format is a standard Unix blueprint of how

machine instructions are stored in an executable code and how they should be interpreted by the

operating system. It defines the structure of Linux, Android and BSD executables, libraries, object

files, and core dumps. Because of its flexible nature and its support of multiple CPU types and archi-

tectures, the ELF file type is adopted by embedded Linux malware. In order to analyze Linux/IoT

malware binaries, it is important to understand the ELF file structure, its internal components, and

all the information we can extract at our advantage. A set of specific tools and techniques have been

developed to aid the dissection and analysis processes of ELF files.

The ELF file format has complicated inner workings that cannot all be explained in a single

section in this thesis. Hence, we refer the interested readers to the main ELF and ABI standards [43]

for a complete overview. We only focus here on the essential elements that will complement the

next chapters.

ELF file anatomy. As shown in Figure 2.2, an ELF file generally consists of the following

principal components:

11

(i) ELF header. This part of the ELF file is mandatory. Always located at the beginning, it

contains information that ensures that data is correctly interpreted during linking or execution.

As illustrated in Table 2.1, using the readelf command in Linux, the following information

can be extracted from an ELF binary’s header: ELF file type, architecture, the entry point to

the start of execution, as well as the offsets of the section and program header tables.

(ii) Program headers. Also known as segments, the program headers break down the ELF binary

to suitable chunks to prepare the executable to be loaded into memory. An ELF binary requires

these program headers to run.

(iii) Section header table. Sections are used for linking, relocation and debugging purposes. An

executable file has four main sections, of which .text that contains executable code. This

section is loaded only once since its contents will not change and can be extracted using the

objdump utility in Linux. While segments are essential to create a process, sections on the

other side can be omitted. However, they usually offer better granularity to the inspection of

a program because they can point reverse engineering tools to the code area (.text), to the

data variables (.rodata), the global offset table (.got), among others. Therefore, malicious

actors choose to obfuscate the section header table. However, to our advantage, ELF binaries

are still highly unobfuscated [6, 44], which allows us to extract the code from the program’s

text section.

2.2.2 Static versus Dynamic Binaries

Linking plays a major role in the process of building an executable. The source code is usually

compiled and turned into machine language instructions. The product of compilation (i.e., object

code) is then fed as input to the linker which links the object files together with external libraries

to create a functioning program. ELF binaries are divided into two types: statically linked and dy-

namically linked. A“dynamic” binary depends on external libraries to run properly. Such libraries

contain functions related to opening files or creating a network socket. A statically linked binaries

on the other hand includes all the library dependencies, which makes it bigger, more portable (i.e.

12

Table 2.1: Structure of an ELF header.

Field Description

Magic ELF type declaration
Class Architecture (32-bit or 64-bit)
Data Bit numbering (LSB or MSB)
Version Object file version
Type Object file type (e.g., EXEC)
Machine Expected machine type (e.g., MIPS r3000)
Entry point address Virtual address where the process starts executing
Start of segments Offset of the program header table
Start of sections Offset of the section header table
Flags Processor-specific flags
Header size ELF’s header size
Segments size Size of one entry in the program header table
Number of segments Number of entries in the program header table
Sections size Size of one entry in the section header table
Number of sections Number of entries in the section header table
Section header string
table index

Section header table index associated with the
section name string table

executed correctly on another device without pre-installed dependencies) and harder to reverse en-

gineer (i.e., library functions are difficult to identify). Using the file command as shown in Listing

2.1, we can check if a file is statically or dynamically linked.

2.2.3 Malware Analysis Techniques

We present well-established techniques from the security community that we have used in this

thesis to study IoT malware.

Static Analysis. Static malware analysis refers to collecting information about a malicious ap-

plication without running it. Also known as code-based analysis, it is performed by breaking up

different parts of the binary file without executing it and investigating each component for mali-

ciousness. For instance, as shown in Listing 2.1, it can can be used to identify each binary’s target

architecture (e.g., ARM, MIPS), and linking method (static vs dynamic) based on the file headers.

Often, the binary file needs to be reverse-engineered using disassemblers (e.g., IDAPro [45], obj-

dump) to retrieve the assembly code instructions of the program, control flow graphs (CFGs), or any

13

1 $ f i l e / b i n / f f f 7 9 3 a 5 a 0 5 7 6 a 8 9 6 1 9 9 d 5 6 e e f e d 8 1 2 1
2

3 / b i n / f f f 7 9 3 a 5 a 0 5 7 6 a 8 9 6 1 9 9 d 5 6 e e f e d 8 1 2 1 : ELF 32− b i t MSB e x e c u t a b l e , MIPS , MIPS− I
v e r s i o n 1 (SYSV) , s t a t i c a l l y l i n k e d , s t r i p p e d

Listing 2.1: Example of using the Linux file command to verify whether a binary is statically or
dynamically linked.

1 rm − r f %s ; p k i l l −9 %s ; k i l l a l l −9 %s ;
2 cd / tmp | | cd / v a r / run | | cd / dev / shm | | cd / mnt ;
3 rm − f * ; / b i n / busybox wget h t t p : / / AnonIP / b i n s . sh ;
4 chmod 777 b i n s . sh ; sh b i n s . sh ;
5 / b i n / busybox t f t p − r t f t p . sh −g AnonIP ;

Listing 2.2: Example of readable strings extracted from a malware sample with anonymized IP
addresses (AnonIP).

embedded strings. In fact, as it is correlated with specific functions and actions inside the program,

making sense of the assembly instructions can provide a better visualization of what the malicious

program is doing. Moreover, gaining access to the strings, using the strings command, can deter-

mine whether a sample is packed, but more importantly reveal sensitive information such as the used

malicious domains, targeted IP addresses, attack commands, downloaded payloads, etc. Listing 2.2

represents an example of the extracted strings from a malware sample, which is designed to down-

load and execute a malicious file (bins.sh) from a possible adversarial C&C server (http://AnonIP/).

We notice that the malware is trying to eliminate all running processes (e.g., rm, pkill, killall) in

order to fortify itself, and is trying different commands to download malicious payloads in case one

of them fails, as seen in this consequent instruction using the TFTP protocol (e.g., tftp -r tftp.sh

-g AnonIP). Moreover, infrastructure analysis is a type of analysis that allows to filter and identify

C&C indicators from the malware strings. Indeed, it is possible to uncover adversarial infrastruc-

ture and shared resources, which are used to operate malware-driven cyber attacks. In addition,

an analysis of endpoints and their targets reveals useful insights about the underlying dynamics in

the IoT malware ecosystem. In fact, we leverage such infrastructre analysis in recent contributions

published at the IEEE Networking Letters (2021) [46] and submitted (peer reviewed) at the IEEE

TDSC (2021).

In fact, static analysis allows for a quick, scalable and effective analysis of a malicious file

without the hassle of executing it. However, it can be evaded relatively easily when malware authors

14

deploy various obfuscation techniques. To our advantage in this thesis, IoT malware binaries are

still widely unobfuscated, which makes static analysis our preferred choice of analysis.

Dynamic Analysis. With dynamic analysis, a malicious file is executed in a controlled environ-

ment (e.g., virtual machine) and analyzed to observe its functional and behavioral characteristics.

A full system analysis can consist of collecting a malware’s system calls, function parameters and

network traffic. In fact, dynamic analysis can overcome problems with obfuscation and effectively

detect unknown or zero-day threats.

Yet, the dynamic analysis process is time-consuming and malware analysis environments are

often recognizable [47], which makes the analysis results susceptible to failure. Hence, it is im-

portant to build “life-like” virtual machines that trick a binary into thinking it is running in a real

environment. In fact, we built our own IoT-tailored sandbox for malware analysis, as described in

Section 2.2.4.

Hybrid Analysis. Hybrid techniques combine both static and dynamic malware analysis tech-

niques to cover each other’s shortcomings. Certain actions can be hidden at run-time but may be

detected when unpacking the binary file and analyzing its assembly code. Despite their benefits,

the implementation of such in-depth analysis techniques requires time, expertise and a thorough

analysis of the malware, which is costly and unscalable.

AI-assisted Malware Analysis. AI- and ML-based cybersecurity offers data-driven processes

that can enable security systems to efficiently identify and respond to malware in real time. For

instance, Machine and Deep learning models have been proposed to perform static malware analy-

sis by extracting features from multi-modal views of the malware (e.g, image-based, strings-based

features) [10, 48, 49]. Such next-generation analysis techniques offer several benefits to scalability

and efficiency. Additionally, deep learning methods do not require expensive and bias feature en-

gineering/extraction, compared to machine learning-based models. As such, AI-based techniques

offer a number of benefits, but they still require costly training and testing to adapt to the changing

threat landscape, require labeled data in the case of supervised learning, are exposed to overfitting

and underfitting, and might be hampered by adversarial examples and detection evasion techniques.

15

Figure 2.3: An overview of the multi-architecture dynamic malware analysis pipeline.

2.2.4 IoT Malware Sandboxing Environment

IoT malware employ capabilities to target specific types of IoT devices and perform different

malicious operations. As a result, malware is highly specialized and thus requires a comprehensive

emulation and dynamic analysis platform to explore its behavior. In this thesis, we decide to com-

plement our statically extracted features by dynamically analyzing the communication behavior of

our malware samples and profiling it at the operating level. Hence, we build architecture-specific

virtual machines using the QEMU emulator to execute each sample and collect their network traffic.

Figure 2.3 represents our virtual cross-compilation dynamic malware analysis environment with

bridge networking. We run malware binaries for a period of 30 minutes to capture the generated

network packets at the gateway using TShark. We found that about 95% of malware will engage

in communication with their C&C that either block or loop infinitely. In fact, we were only able to

collect useful traffic information from 0.5% of analyzed samples. These findings reflect the chal-

lenges, documented by earlier works [8, 50], associated with dynamically executing and collecting

IoT malware binaries’ network traffic communication. Complementary techniques and customiza-

tions (e.g., impersonating C&C server) are required to ensure proper execution of device-specific

IoT malware in a controlled environment. Hence, addressing the limitations of large-scale dynamic

analysis of IoT malware is out of scope of this thesis.

2.2.5 Leveraged Dataset

In this thesis, we leveraged a number of resources to obtain a representative dataset for fur-

ther empirical data analysis and experimentation purposes. We utilized well-known online malware

16

Table 2.2: Distribution of malware by family.

Label Count (%)

Mirai 40,974 (55.05)
Gafgyt 3,976 (5.34)
Tsunami 956 (1.28)
Dofloo 464 (0.62)
Others 122 (0.16)

Unknown 2,664 (2.23)
Unseen 24,271 (32.60)

Total 74,429 (100)

repositories such as VirusShare [51] and VirusTotal [9] along with a specialized IoT honeypot (IoT-

POT [6]) to obtain over 90,000 IoT malware samples that were detected between 2018 and 2021. For

consistency purposes, we performed pre-processing steps to filter out corrupted or non-executable

files (e.g., HTML/ASCII files), ending up with 74,429 IoT malware binaries. To label these samples,

we have retrieved their VirusTotal (VT) analysis reports and processed them with AVClass [52],

which determines the most likely family name attributed to malware samples by applying a ma-

jority rule on reported labels from multiple anti-virus engines. Table 2.2 reports the top identified

families, with Mirai and Gafgyt dominating the dataset. Such imbalance in the data across differ-

ent families is a mere reflection of the monopoly inflicted by Mirai and its descendants on the IoT

threat landscape. In fact, the effectiveness of the Mirai family motivates adversaries to reuse/re-

cycle the Mirai source code, with most of the “new” IoT botnets to represent mere modifications

of the Mirai code base. Moreover, the analysis of Internet-scale scanning activities generated by

infected IoT devices confirms the prevalence of Mirai-like malware in the wild [40, 41, 53].

Missing Classes. It is worth noting that for 34% of the collected samples, AVClass [52] failed

to reach a consensus for a common family name, as 2,664 of them were not associated with known

IoT malware families to anti-virus engines (Unknown), and 24,271 were never found in VirusTotal

reports (Unseen). This is an indication that the identified malware binaries can be either new, or have

not been detected yet by anti-virus vendors. In fact, it is unrealistic to assume that security analysts

are aware of all malware families deployed in the wild. Yet, it stands to confirm the effectiveness of

17

Table 2.3: Inconsistent labels assigned to the same variant by 12 out of 62 independent AV engines
on VirusTotal.

File (md5) ff8c3145d910221c6c6168cca0cd85fd

Engine Given Label

Ad-Aware Trojan.Linux.Agent.DML
AhnLab-V3 Linux/Mirai.Gen2
Antiy-AVL Trojan[Backdoor]/Linux.Mirai.b
Arcabit Trojan.Linux.Agent.DML
Avast ELF:Mirai-A [Trj]
Avast-Mobile ELF:Mirai-DN [Trj]
BitDefender Trojan.Linux.Agent.DML
ClamAV Unix.Trojan.Mirai-7100807-0
Cynet Malicious (score: 85)
Cyren E32/Mirai.G.gen!Camelot
DrWeb Linux.Mirai.4934
Emsisoft Trojan.Linux.Agent.DML (B)

honeypots towards a promptly collection of IoT malware samples.

Coarse-grained Labels. Another common oversight is that the labels assigned by AV vendors

are often inconsistent and coarse-grained, and therefore unable to capture the code reuse between

IoT malware and their evolutionary characteristics. For instance, it is still unclear how many variants

of the Mirai botnet have been observed in the wild. Table 2.3 describes the inconsistent labels

assigned to the same variant by 12 out of 62 independent AV engines. In fact, 7 engines labeled

the file as a generic Linux Trojan, while the rest assigned incompatible labels such as Mirai.Gen2,

Mirai-A, Mirai-DN, Mirai.4934, Mirai.G, Mirai-7100807-0. The diversity of the AV market

and the lack of standards for transparent malware family labeling creates a lot of disorganisation

and uncertainties when it comes to identifying a representative and certain malware variant name.

Malware Detection Timeline. To verify that our malware labels are accurate and reliable,

we considered a 5 months time period between the end of our malware data collection and our

performed malware family labelling to avoid collecting incomplete or inaccurate malware family

labels. Specifically, at the time when this research was conducted, the Unseen identified unknown

malware samples were never seen on VirusTotal reports even after 5 months from being detected by

18

IoTPOT. This affirms the effectiveness and ability of specialized IoT honeypots to promptly detect

various IoT-tailored malware.

Note that all the collected IoT malware data is available for research purposes and can be directly

requested from the above-named sources (e.g., IoTPOT [34]). Unfortunately, the restricted sharing

policies instilled by the data providers prevents us from directly sharing the analyzed data with the

research community.

2.3 IoT Malware Detection and Classification

Several works have devised ML/DL methods that leverage a combination of features from dif-

ferent malware characteristics for IoT malware detection and classification.

Grayscale Images. An original way to represent an executable file is to reorganize its byte

code as a grayscale image, like [54] where every byte was interpreted as one pixel in the image.

Considering such malware representation, Ahmadi et al. [55] extracted a set of features from the

grayscale image, such as Haralick features and Local Binary Pattern features, and achieved an

accuracy of 96.90% and 97.24% respectively using the XGBoost classifier. Beppler et al. [56]

evaluated and compared global (GIST) and local (LBP) descriptors using a multitude of classifiers

(e.g., KNN, SVM, DT, RF, CNN). Convolutional Neural networks were also used for classification

of malware represented as images. Gibert at al. [57] developed a deep learning system based on a

CNN that learns visual features from executable files to classify Windows malware into families.

Su et al. [58] proposed a lightweight solution for detecting and classifying IoT DDoS malware and

benign application on IoT devices using a small size convolutional neural network. They achieved

94% accuracy, however their used dataset (500 samples) is very limited in size and diversity, and

their considered image size (64x64) is attributed empirically with no consent about the best one. A

more prudent resizing of 128x128 has been shown to produce lower variation and maintain a high

accuracy rate in all cases [56].

Malware Strings. Extracted malware strings can provide useful indicators associated with a

suspect binary and its functionalities. Several works [59–61] have adopted the use of string infor-

mation as a feature vector for malware classification and signature generation. For instance, Tian

19

et al. [59] leveraged printable strings extracted from Trojans and viruses to perform classification,

and evaluated their approach on a multitude of classifiers (e.g. SVM, RF, Instance Based 1 (IB1),

Adaboost), and showed that IB1 and RF classification methods were the most effective. Alhanah-

nah et al. [60] leveraged N-Gram strings-analysis for correlating and clustering malware samples

based on their strings similarities. In addition, Nguyen et al. [61] proposed a novel approach for

Linux IoT botnet detection based on the combination of Printable String Information (PSI) graph

and CNN classifier. Their evaluation results show that PSI graph CNN classifier achieves an accu-

racy of 92%. Still, to build PSI Graphs, their approach required generating malware Control Flow

Graphs (CFGs), which is a complex task that requires time and domain knowledge. Nevertheless,

to the best of our knowledge, no previous work has treated malware strings as a text classification

problem and leveraged the use of end-to-end learning and NLP techniques for the classification of

IoT malware using such information.

Multimodal Learning. While these approaches use one representation of the data to extract

features that are used for malware classification, in practice, these single-level features might not

always be available for analysis (e.g., due to obfuscation). Thus, efforts are being put to design

models that leverage multiple data modalities from different malware characteristics. Some ap-

proaches like [55] rely on fusing multiple hand-engineered features (e.g., frequency of opcodes,

image representation, entropy statistics, etc.) into a single feature vector that is used as input to a

traditional ML algorithm. On the other hand, other researchers leverage an ensemble of individ-

ual classifiers that process a different modality of data to precisely classify malware [48, 62–64].

Alhanahnah et al. [60] leveraged the benefits of a multi-level approach for malware clustering and

signature generation to detect cross-architecture IoT malware using features such as code statistics

feature, high-level structural similarity, and N-gram string features. Gibert et al. [48] leveraged the

use of multiple features from different modalities of data, combined with deep learning algorithms

to detect/classify Windows malware. Despite the fact that their approach produced high classifi-

cation accuracy, their implemented classifier relies on features (e.g., API function calls, assembly

language instructions) that require rather sophisticated reverse-engineering techniques with deep

learning network models, which tend to be resource consuming. Yet, in this thesis, while we deal

with certain limitations in the context of IoT, we leverage features that can be retrieved without

20

the need to perform expensive pre-processing and feature-engineering tasks. In addition, while our

classification approach produces improved accuracy (99.78) as presented in Section 3.6, our im-

plemented DL models can qualify as a lightweight solution for enhancing the security of the IoT

paradigm through effective malware classification and threat mitigation.

Transfer Learning. Zhao et al. [65] proposed a malware detection method of code texture visu-

alization based on an improved RCNN combining transfer learning, which achieves an accuracy of

92.8%. Bendiab et al. [66] proposed an IoT malware traffic analysis approach using deep learning

and visual representation for fast detection and classification of new malware. They evaluate their

proposed method on a dataset of 1000 pcap files of normal and malware traffic and achieve 94.5%

accuracy rate for detection using ResNet50. Both of the above mentioned works [65, 66] rely on

deep neural networks with hundreds of layers, such as ResNet50 and ImageNet, whose heavy com-

putational cost of multiple layers can be difficult to handle by resource-constrained IoT devices. In

contrary, our multi-level IoT malware classification approach, which achieves an overall accuracy of

99.78, relies on lightweight CNN and LSTM models that transfer their learned features and weights

throughout the proposed architecture, respectively. Moreover, Bendiab et al. [66] rely on a very

small number of pcaps which can hinder the generalizability of their approach and their classifica-

tion results. In addition, relying on IoT malware network traffic has its limitations. It is difficult to

configure a dynamic malware analysis environment that meets the requirements of IoT executables

to function correctly and the collection of a large number of IoT malware network traffic pcap files,

where the malware is actually communicating with its C&C server and revealing its behavior, is still

challenging [8, 50].

Other features. Recent works have applied deep learning methods on more complex malware

representations such as control flow graphs. Yan et al. [67] used machine learning techniques to

classify malware programs represented as their control flow graphs. Their MAGIC framework

achieves high accuracy (99.25%). Nevertheless, their approach is shown to be coarse to detect the

malicious programs with a high false negative rate. For instance, some DDoS samples or worms

may share the same graph structure as benign software. Our model addresses this by preventing

the co-adaptation of the subnetworks to a specific feature type. Therefore, even if two different

binaries may share the same characteristics from one modality, our classifier would still achieve

21

good performance by learning distinctive feature from the other data modality, hence resulting in

less false negative rate. Alasmary et al. [68] proposed an adversarial machine learning detection

system for IoT malware based on control flow graph feature representations. Both [67, 68] chose

to extract complex and time-consuming features for their analysis, while we leveraged the coupled

nature of IoT malware [44], their general lack of obfuscation [6, 44], their lack of diversity [41, 53]

and therefore, the ability of deep learning methods to automatically extract a set of descriptive

static features from their images and strings without relying on feature-engineering and domain’s

knowledge. We show that our multi-fusion approach (§3.3) is feasible, accurate and performs well

on the used image- and strings-based features in the context of IoT, as shown in Sections 3.6.1 and

3.6.2. Yet, Alasmary’s approach [68] is robust against Adversarial Examples (AEs) and eliminates

the model’s vulnerability to AEs. We consider complementing in the future our effective multi-level

classifier with an AEs detection component to make it robust against adversarial attacks (see Section

3.7.2).

2.4 Malware Evolution and Lineage Inference

Malware is constantly evolving to adapt to survival needs, bug fixes, and feature additions.

Lineage studies are most useful when applied to malware as version information is usually not

available [69, 70]. The first empirical attempt to reconstruct a digital phylogeny dates back to 1995

when Hull et al [71] studied the Stoned computer virus. Inspired by the evolution of species and

molecules, Goldberg et al. [72] and iLINE [69] produced malware phylogeny trees using a directed

acyclic graph (DAG). Dumitras et al. [73] studied malware evolution to find new variants of well-

known malware and provided a general blueprint for addressing malware lineage using a combina-

tion of static and dynamic features, and time-related information. Karim et al. [74] reconstructed

phylogeny trees using a code fragment permutation-based technique to understand how new mal-

ware is related to previously seen malware. Lindorfer et al. [75] investigated the malware evolution

process by mapping API calls to disassembled code in order to identify mutations in the malware

family. Calleja et al. [76] identified code reuse between benign software and different Windows

malware families observed over a period of 40+ years. Their observations ranged from common

22

utility functions to anti-detection routines to credentials for brute-forcing attacks.

Binary Code Similarity. Moreover, several techniques for binary similarity gained momentum

as they can be applied for malware lineage inference. In a recent survey, Haq et al. [70] highlighted

the strengths and weaknesses of 61 approaches on binary code similarity, including those used for

malware evolution [69, 75, 77, 78]. BEAGLE was proposed by Lindorfer et al. [75] to study mal-

ware evolution by comparing binary code in terms of API calls extracted using behavioral analysis.

Huang et al. [77] identified code reuse in two Windows malware families by computing the sim-

ilarity between functions extracted from binaries at the instruction, basic block and CFG levels,

while Jang et al. [69] have combined low-level binary features, code-level basic blocks and binary

execution traces for lineage construction. Khoo et al. [79] proposed a matching approach based on

n-grams computed on instruction mnemonics and graphlets. Existing solutions have been designed

around computing CFGs and matching procedures that cannot be adapted to compute a constant

size signature of a binary on which a similarity measure can be applied. They also cannot be imme-

diately extended to cross-platform similarity and therefore cannot be applied on Linux-based IoT

malware. Cozzi et al. [44] took this opportunity to identify code similarities between IoT malware

families using function-level binary diffing. However, they resorted to popular off-the-shelf binary

diffing tools not tailored for IoT, which required a substantial amount of manual adjustments and

validation.

Works based on embeddings. Recent advancements in machine learning techniques have seen

effective applications in binary code similarity. Ding et al. [80] have recently proposed an assem-

bly clone search approach named Asm2Vec, which learns a vector representation of the sequence of

instructions executed on a certain path of the CFG. While it outperformed several state of-the-art so-

lutions in the field of binary similarity, Asm2Vec is not directly applicable for semantic clones across

architecture as it only generates single-platform embeddings, and it has the performance overhead

of performing random walks on CFGs. In another work, Xu et al. [81] proposed Gemini, a neural

network-based approach to compute binary function embeddings based on an annotated CFG, a

graph containing manually selected features. However, their annotation approach based on manual

feature selection can introduce human bias, by preferring, for instance, arithmetic instructions over

others. In InnerEye [82], Zuo et al. apply the idea of Neural Machine Translation (NMT) to find

23

similar CFG blocks. However, it is not clear how such embeddings are a representation of entire

functions. Secondly, the used LSTM architecture is burdened by long term dependencies/memoriza-

tion, hence does not cope well with long sequences of instructions [83]. DeepBinDiff [84] has been

proposed to find differences between two binaries by leveraging deep neural networks and greedy

graph matching. Yet, DeepBinDiff requires call symbols and strings which would be stripped away

or obfuscated in statically linked malware, hence it is a single architecture solution.

2.5 Concept Drift in Machine Learning-based Security Applications

In the context of data-driven machine learning applications, the dataset used for training a model

plays a major role as its properties define the model’s behavior. In many situations, it is assumed

that the distribution of the data is stationary (i.e., not changing over time), specially when the same

data used to train a model is later used during production. However, the environments in which

the models are deployed are usually dynamically changing over time. Such changes can include,

but are not limited to, attackers constantly modifying their attack vectors. As a result, this change

in the data distribution of a machine learning model, called concept drift [85], makes it difficult

to generalize existing learning models that were trained with older data to new, previously-unseen

behaviors.

Being a widespread problem in the security community, detecting concept drift is critical in

many real-world security applications, such as anomaly detection, fraud detection, malware clas-

sification, or intrusion detection. To address it, Gama et al. [86] proposed a performance-based

statistical technique aimed at tracking changes in the error rate of a model. Bifet et al. [87] pre-

sented ADWIN, a new algorithm for retraining according to the rate of change observed from the data

in a specific time window. However, both these drift detectors operate in a supervised environment

and require access to labelled ground truth data for retraining which are difficult to obtain in secu-

rity applications. More importantly, periodic retraining requires knowing when the model should

be retrained which is difficult, and delayed retraining can leave an outdated model vulnerable to

new attacks. Other related works have relied on the prediction decisions of a learning model as a

by-product of the classification process [10,88, 89]. However, it is likely that a drifting data sample

24

(e.g., malware variant) that does not belong to any class will be assigned with high confidence to the

wrong class (i.e., closed-world assumption). More recent works [90, 91] have mitigated such bias

by computing a non-conformity probabilistic measure between the new sample and each of the ex-

isting classes to determine its fitness in each class. Although useful, these approaches cannot draw

concrete conclusion on drifting (evolving) samples and lose their effectiveness on high dimensional

data. Pendlebury et al. [92] present Tesseract to identify temporal and spatial bias associated

with incorrect training splits and unrealistic assumptions in dataset distribution, as well as quantify

the impact of errors on classifier performance. They particularly focus on Android malware and

evaluate two well-known Android malware classifiers, DREBIN [93] and MAMADROID [94] against

concept drift. We follow their methodology to observe our classifier’s prediction qualities against

evolving Mirai samples in Section 4.5.2. Besides, the authors of CADE [95] have recently attempted

to develop an unsupervised concept drift malware detection method by using neural networks. They

specifically used an auto-encoder coupled with a contrastive loss to compress the data and learn an

effective distance measure between samples of different classes. While their resulting distance func-

tion can efficiently detect and rank drifting malware samples from distinct classes, their approach is

not tailored to in-class drifting samples, which is more relevant in the context of IoT.

25

Chapter 3

A Multi-Dimensional Deep Learning

Framework for IoT Malware

Classification and Family Attribution

3.1 Overview

Internet of Things (IoT) devices have been integrated in different aspects of our everyday activ-

ities. These Internet-connected devices are mainly used to improve user experiences by facilitating

information sharing, monitoring, and communication. Despite their benefits, the rising number

of IoT-tailored malware, which aim at utilizing compromised IoT devices (e.g., weak authentica-

tion) towards coordinating large-scale cyber attacks, has posed a major threat to the overall Internet

ecosystem [2,96]. For instance, the Mirai botnet was leveraged in the famous cyber attack on Dyn

(major US DNS service provider) in October 2016 [2], resulting in one of the largest recorded DDoS

attacks on the Internet. More importantly, the release of the Mirai source code fueled the rapid evo-

lution of more advanced and sophisticated Mirai-like malware such as Hajime [12], Satori [13],

The work has been published in: IEEE Transactions on Network and Service Management (Volume: 18, Issue: 2,
June 2021) [10].

26

and BrickerBot [14], to name a few.

It is imperative to evaluate the security of the IoT paradigm as well as develop rigorous mitiga-

tion approaches against the spread of IoT malware. These tasks are challenging in the context of IoT

due to the lack of empirical data about existing IoT malware and the lack of knowledge about the

behavioral characteristics of malware-infected IoT devices. To overcome these challenges, a num-

ber of IoT specialized honeypots have been deployed to obtain detailed information about existing

IoT malware, including the malware executable/binary [7, 34].

Additionally, static malware analysis techniques can be used to build a better understanding

about IoT malware, while extracting features that can improve attack mitigation by developing ef-

ficient malware classification techniques using machine/deep learning algorithms. For instance, a

number of strings-based features have been utilized to devise ML/DL methods for malware clas-

sification/clustering [59–61]. Moreover, image-based techniques, which extract features from the

image representation of malware binaries, have been effectively used in different contexts [54–58].

Finally, models that leverage a combination of features (e.g., CFGs, statistical features, etc.) from

different malware characteristics have been proposed for malware classification [48, 55, 60, 62–64].

To this end, we propose a multi-level approach that leverages a combination of static features

along with DL techniques for effective IoT malware classification and family attribution. Our ob-

jective is threefold: (i) to leverage IoT-specific properties such as the lack of widely deployed so-

phisticated malware obfuscation [6, 44] for extracting static features from different representation

of the IoT malware binaries that are not empirically feasible in other contexts (e.g., widely obfus-

cated Windows PE or Android malware) [97], (ii) to leverage deep learning methods capabilities

to automatically extract static features without relying on expensive feature-engineering, and (iii)

improving the overall classification accuracy by building a multi-dimensional DL architecture that

utilizes different representations of the target IoT malware binaries.

To achieve our objectives, we leverage about 70,000 real instances of IoT malware binaries/ex-

ecutables obtained from VirusTotal [9], VirusShare [51], and a specialized IoT honeypot (IoT-

POT [8]) over a period of 20 months (September 2018–May 2020). We utilize AVClass [52] to

investigate IoT malware family labels as perceived from VirusTotal reports while identifying about

27

26,000 IoT malware samples that were “unknown” or “unseen” by major antivirus vendors. Ad-

ditionally, motivated by the lack of malware obfuscation in the IoT context, we devise string- and

image-based analysis techniques using convolutional neural network (CNN) and long short-term

memory recurrent neural network (LSTM), respectively. Consequently, we implement our multi-

level DL architecture by fusing the learned features from each sub-component through a neural

network classifier. Finally, we perform a series of experiments using about 10,000 IoT malware

samples from four different predominant families and evaluate the effectiveness of our approach in

comparison to state-of-the-art approaches that implement single-level strings-based and/or image-

based classifiers.

3.2 Contributions

To this end, this work makes the following main contributions:

• Given the challenges associated with IoT malware classification and family attribution, in this

paper, we are among the first to introduce a holistic, multi-level approach for analyzing IoT

malware by combining the benefits of static malware analysis with deep learning classification

techniques. More importantly, despite the fact that IoT malware families tend to be similar in

terms of implementation and overall behaviors [44], our results show that the proposed multi-

level approach can be used to perform effective and efficient classification by considering

granular characteristics from the analyzed malware binaries.

• We implement the proposed approach by utilizing DL methods to automatically extract static-

based features to overcome the challenges associated with feature-engineering methods. More-

over, we evaluate the multi-level deep learning model with 10,234 recently collected IoT

malware executable binaries. The results indicate a significantly improved classification ac-

curacy (accuracy=99.78% and F1-score=99.57%), as compared to classifiers that rely on a

single modality of data.

• To the best of our knowledge, we are among the first to obtain and analyze a large and rep-

resentative sample of real IoT malware executables, which contains a variety of IoT malware

28

variants detected in recent years. While our analysis results indicate the effectiveness of the

proposed classification approach for attributing malware samples to known families, we also

leverage the multi-level classifier to predict the labels of 24,271 unknown malware samples

that have not been detected/labeled by major AV vendors. Moreover, while our extended

strings-based similarity analysis corroborates the labeling outcomes, we uncover indications

of new Mirai variants related to the Covid-19 pandemic, which highlights the rapid evolu-

tion of IoT malware found in the wild.

3.3 Multimodal Deep Learning Framework

In this work, we propose a multi-dimensional DL malware classification approach that can

detect and attribute malware executable binaries to known IoT malware families. Our aim is to

develop and evaluate a classification approach that automatically learns static features from multiple

representation of the malware binary, while improving the overall classification accuracy through

combining multiple modalities. In particular, we attempt to answer the following research questions

(RQs):

(1) How can we utilize static malware analysis techniques to develop an effective multi-level

classifier for IoT malware family attribution? Does a multi-level deep-learning approach

that combines learned characteristics of malware from various data representation yield a

higher classification performance compared to single modality DL algorithms?

(2) How can we benefit from next-generation malware analysis techniques to overcome the chal-

lenges associated with feature-engineering? How effective is the proposed multi-level deep

learning approach as compared to state-of-the-art ML approaches that utilize various com-

binations of features and feature engineering techniques?

(3) How to leverage the developed multi-level classifier to detect new or unknown malware sam-

ples given the information about existing malware families?

The architecture of our multi-level deep learning framework for IoT malware classification is

29

Words
(n = 50,000)

Word Embeddings
(100 x n)

Sp
atial D

ro
p

o
u

t
(α

=0
.2

)

LSTM
(n=100)

LSTM2

LSTMn

. . .

STR-LSTM

. . .

. . .

. . .

. . .
w1

w2

wn-2

wn-1

1 2 99

. . .Strings
Reports

Malware Images
(128 x 128 x 1) Conv2D

(64 filters)

MaxPooling2D
pool size(2, 2)

D
ro

p
o

u
t (α

=0
.2

5
)

Flatten

Dense(128)

. . .

. . .

Dense(100)

D
ro

p
o

u
t (α

=0
.5

)

IMG-CNN

Feature Fusion
(input_shape=200)

. . .

So
ftm

ax

Label

LSTM1

100

100

V
ecto

rizer

Dense(1000)

Feature Fusion & Classification

Dense(2)

. . .

D
ro

p
o

u
t (α

=0
.2

)

Figure 3.1: Overview of the Multi-Level Deep Learning Malware Classification System.

shown in Figure 3.1. In the proposed framework, the input is an ELF executable binary for Linux-

based systems, while the classification outcome represent the IoT malware family label. The clas-

sification module consists of 3 main components: (1) image-based component, (2) string-based

component, and (3) the feature fusion and classification component. The strings- and image-based

components extract/learn corresponding features from different representation of the malware. Con-

sequently, the final component is responsible for fusing the learned features into a shared representa-

tion, which is used to produce the final classification outcome. An in-depth analysis of the different

sub-components and features types chosen, is provided in the next sections.

Leveraged Dataset. In this work, our dataset consists of a total of 74,429 IoT malware binaries

collected between 2018-09-14 and 2020-05-25, representing 18 different malware families labelled

by using AVClass [52] and VirusTotal [9]. More information about the collection and labelling

process, and the data cleaning steps is provided in the Background Section 2.2.5.

3.4 Feature Modalities

3.4.1 Image-based Component

In this work, we use the approach proposed by Nataraj et al. [54] to visualize malware binary

files as grayscale images. In particular, a malware binary can be read byte-by-byte as a vector of 8

30

(a) Tsunami
1

(b) Hajime 1 (c) Gafgyt 1

(d) Tsunami
2

(e) Hajime 2 (f) Gafgyt 2

Figure 3.2: Grayscale images of malware samples belonging to the Tsunami, Hajime and Gafgyt
Families.

Binary to 8-bit
vector

8-bit vector to
Grayscale image

148 232 234 …

199 1 187 …

94 194 4 …

… … … …

Malware Binary

94 E8 EA …

C7 01 BB …

5E C2 04 …

… … … …

Grayscale Image

011100110101
100101011010
10100001

Figure 3.3: Process of visualizing a malware as a grayscale image.

bit unsigned integers and then organized into a 2D array (Figure 3.3). This can be visualized as a

gray scale image whose pixel values range from 0 to 255 (0: black, 255: white). As illustrated in

Figures 3.2(a–f), we can clearly observe the high resemblance between the image representation of

two different malware samples that belong to the same malware family, respectively.

The literature has demonstrated the effectiveness of malware classification techniques using

malware image representation. Therefore, as depicted in Figure 3.1, the image-based component

takes the bytes representation of a malware grayscale image as input. In our specific implementa-

tion, we adopt CNN and LSTM neural networks for our image-based classification algorithms. Ad-

ditionally, we perform hyper-parameter tuning to select the best combinations of hyper-parameters.

We evaluate the performance of both algorithms and present the optimal architecture, which was

selected for our final multi-level model in Section 3.6.1, respectively.

31

3.4.2 String-based Component

In addition to the image representation, we utilize reverse-engineering techniques to extract

meaningful strings from the binary code. Specifically, we utilize the strings utility in Linux to

extract printable strings with three or more bytes. Additionally, we are interested in identifying

strings that exhibit similar contextual information, which can help towards grouping IoT malware

samples according to the occurrences of the same strings. Such embedded strings can provide clues

about the suspect malware and its functionalities (e.g., attack commands, IP addresses, filenames,

unique strings, etc.). A detailed example of extracted strings showing an analyzed malware trying

to download and execute a malicious file from a possible adversarial C&C server, is illustrated in

Listing 2.2 in the Background Section 2.2.3.

Given the extracted strings files, we utilize natural language processing (NLP) techniques to

tokenize the top 50,000 most common words in each file. A naive approach to convert words

to vectors is to assign each word with a “one-hot vector", which means that the vector would be

all zeros except one unique index for each word. However, this type of word representation can

introduce substantial data sparsity. Instead, we adopt a continuous vector space representation of

the extracted words (embeddings) that allows semantically similar words to be mapped to nearby

points, thus encoding useful information about the words’ actual meaning/use in the text. Word

embeddings are usually joint with neural network models for document classification. Accordingly,

we implement CNN and LSTM models for our text/strings classification. Consequently, we perform

10-fold cross validation to evaluate/compare the effectiveness of the implemented models. The

optimal architecture, which was configured following a grid search over the hyper-parameters of

the networks, is presented in Section 3.6.2.

Malware Obfuscation. It is a common technique deployed by malware writers to hide all or

parts of their implementation while avoiding rapid analysis and detection by conventional static

and signature-based techniques [98]. We leverage FLOSS [99] tool to investigate the presence of

obfuscated malware strings in the analyzed samples. Interestingly, we found that the obfuscated

IoT samples were mainly packed by off-the-shelf tools such as UPX [100], which can be easily de-

obfuscated. Indeed, our analysis confirms the lack of sophisticated malware obfuscation in IoT by

32

extracting and de-obfuscating strings from the majority (about 76%) of the IoT binaries. To maintain

consistency, we decide to use malware samples that were successfully de-obfuscated throughout

our analysis, while discarding the remaining samples from further analysis. Note that although our

proposed approach does not consider obfuscated malware binaries, it is still effective in the context

of IoT, where it can be leveraged to analyze a significant portion of the detected IoT malware

samples in the wild.

3.5 Fusion Component and Classification

As illustrated in Figure 3.1, each sub-component in our framework extracts features from a

different representation of malware, i.e., a different data modality. The fusion component is respon-

sible for combining the learned features from multiple sub-component into a shared representation,

which is used to enable final classification outcomes. It this work, we aim at demonstrating the

effectiveness of applying intelligent fusion of different modalities of features to achieve better clas-

sification outcomes, as compared to using single-level classifiers.

To achieve this, we perform per-component pre-training before the final feature fusion and clas-

sification. This step is done to avoid overfitting a subset of features that belong to one data modality

over the others [48]. Additionally, we pre-trained each component separately while optimizing their

hyper-parameters to initialize each component in the multimodal neural network with the optimal

learned pre-trained weights, respectively. This is an idea borrowed from transfer learning and fea-

ture fusion, where the knowledge and the features learned by each model are transferred into the

multimodal neural network to save training time, while converging faster towards better classifi-

cation results [48, 101]. During the process of transferring knowledge, the following important

questions must be answered:

What to transfer & when to transfer: We must comprehend which part of the knowledge

learned can be transferred from the source to the target in order to improve the performance of the

target task. We should aim at utilizing feature fusion to improve the target classification results and

not degrade them. For that reason, we must first pre-train our sub-component deep learning models

and record their performance, and then proceed towards fusing the most relevant learned features

33

by each sub-component to compare the classification results with the multi-level model.

How to transfer: Once the first two questions above have been answered, we can proceed to-

wards identifying ways of transferring the knowledge across different data modalities. Deep learn-

ing models are layered architectures that learn various features at different layers. All the layers are

finally connected to a fully connected layer that is responsible for generating the final output. The

key idea of transferring knowledge is to leverage the pre-trained models’ weighted layers to extract

features, and abandon the models’ final classification layer. Hence, each sub-component will act

as a feature extractor for the final multi-level deep learning model, which will fuse the different

features learned into a joint multi-modal representation.

Feature fusion and classification. As shown in Figure 3.1, the learned representations I of

the image-based component and S of the string-based component are continually generated across

multiple fully connected layers during the training phase. Consequently, the features learned by the

last fully connected layer of each sub-component are fused into a shared multi-modal representation

at the final phase. Note that vector I of size i and vector S of size s are fused into a vector M of

size m, where m = i+ s. This joint multi-modal representation M is then fed into a neural network

with two fully connected layers and a dropout layer. The last fully connected layer is responsible

for classifying a malicious binary as follows: prediction = so f tmax(bc +WcP), where prediction

is a vector of size C (number of classes), and Wc and bc are the weights and biases of the layer.

The softmax function outputs the probability of a malware to belong to any of the malware families

in the training set. The sizes of vectors I and S are determined during the configuration of the

network. Hyperparameter optimization is performed accordingly to set the numbers of hidden units

for yielding the best results (see Section 3.6). It is important to realise that combining a larger

number of features in the final layer will always result in a higher dimensional feature set, which

will negatively affect the overall classification outcomes.

Model Evaluation. To compare the effectiveness of the deployed models, we rely on standard

machine learning measures such as accuracy, precision, recall, and F1-score. Precision is the ratio

of correctly classified IoT malware samples over all the IoT malware samples designated as such

(precision =
tp

tp+ fp
). The recall is the ratio of correctly classified IoT malware samples over the total

number actually existing in the test data (recall = tp
tp+ fn

). While the precision allows the model to

34

designate only the actual relevant samples as relevant, the recall validates the model’s ability to find

all relevant samples within a given dataset. The F1-score combines these two metrics together by

taking the weighted average (i.e., the harmonic mean) of precision and recall (F1= 2. precision.recall
precision+recall).

Finally, we consider the best model according to the macro F1-score, because the accuracy measure

by itself might be misleading when used with imbalanced data, whereas the macro F1-score metric

gives more importance to False Negatives and False Positives.

3.6 Experimental Results

In this section, we use empirical data to evaluate the effectiveness of the implemented classifica-

tion approach, while comparing its outcomes to the single-level modality approaches and the state-

of-the-art ML techniques with feature engineering. To develop our proposed multi-level malware

classification model, we use Keras API to implement the corresponding image- and strings-based

components using both CNN and LSTM models. The objective is to evaluate the effectiveness of

two different implementation of each components using CNN and LSTM, while choosing the final

model that produces the best accuracy and F1-score outcomes.

Additionally, to address the problem of class imbalance within the training dataset, we apply

data resampling to obtain 10,234 malware samples representing four prominent IoT malware fam-

ilies: Mirai (5,927), Gafgyt (3,227), Tsunami (776), and Dofloo (304). Moreover, we scale the

calculated loss for each observation in the models by the appropriate class weight to assign more

significance to the losses associated with the minority classes [102, 103]. To validate the stability

and generalizability of the deployed models to an independent (unknown) dataset, we leverage a

stratified version of k-fold cross validation (k = 10). We calculate the average model score across

multiple validation iterations while preserving the class distribution in the train and test sets for each

evaluation of a given model. Accordingly, the dataset, which consists of 10,234 malware samples,

is divided into k subsets, where the models are trained with k− 1 subsets and tested with the last

subset over k iterations. Further, to select the best model implementation, we perform grid search

using Talos [104], which automates the hyper-parameters tuning and model evaluation processes.

The optimized hyper-parameters are presented in Table 3.1.

35

Table 3.1: Hyper-parameter tuning/selection and 10-fold cross validation performance evaluation
results for the selected DL models.

Parameters Space IMG-CNN STR-CNN IMG-LSTM STR-LSTM Our Model

Num. of filters (f) 32,64 64 32 - - -
Num. of units (u) 2,50,100,128,1000 128, 100 - 128 100 1000, 4
Kernel size (w x w) (2,2),(3,3),(4,4) (3,3) (4,4) - - -
Pool size (p) 2,3 2 2 - - -
Batch size 32,64,128 64 64 64 64 64
Epochs 10,15,20,30 15 10 10 10 10
Activations Relu, Elu Relu Relu Relu - Relu
Dropout (0, 0.2, 0.25, 0.3) 0.25 0.5 0.2 0.2 0.3
Spatial droput (0, 0.1, 0.2) - - - 0.2 -
Validation split (0.1, 0.2, 0.25, 0.3) 0.2 0.2 0.25 0.2 0.2

Accuracy – 0.9722 0.9886 0.9711 0.9840 0.9978
Macro F1 score – 0.9721 0.9851 0.9702 0.9820 0.9957

3.6.1 Evaluating the Image-based Component

We present the analysis of the performance of two deep learning algorithms, CNN and LSTM,

that we designed to classify IoT malware based on their bytes-based image representation. As

shown in Table 3.1, the results of the 10-fold cross validation on the implemented models illustrate

that both models perform significantly well with high accuracy and F1-score outcomes. However,

the CNN implementation of the image-based components yields slightly better outcomes, with about

97.2% for both the classification accuracy and macro F1-score. Note that the optimal architecture

of the CNN was configured after a applying grid search over the hyper-parameters of the network,

as summarized by the results in Table 3.1. The final CNN model, which represents the image-based

component in our proposed multi-level IoT malware classification approach (Figure 3.1), consists

of the following layers:

• Input layer. The input of the network is a 128 ∗ 128 ∗ 1 image array of pixel values in the

range [0−255].

• Convolutional layer. The main building block of a CNN is the convolutional layer. It is

responsible for applying various convolution filters (64) over the pixels to produce a feature

map. Each convolution filter has specific height and width, in our case, 3 x 3, and by design

36

it covers the entire depth of its input. The final output of the convolution layer is a distinct

feature map, put together by stacking all feature maps from multiple convolutions on the

input. The activation function adopted is the relu function [105].

• Pooling layer. After a convolution operation, pooling is performed to reduce the dimension-

ality. This enables us to reduce the number of parameters, which both shortens the training

time and fights overfitting. We apply max pooling which slides a window of size 2∗2 over its

input, and simply takes the max value in the window. After the pooling layer, we perform a

dropout of 2.5% to prevent overfitting. which makes the network perform better.

• Fully-Connected layer. After the convolution and pooling layers, we add fully connected

layers to wrap up the CNN architecture. The output of both convolution and pooling layers

are 3D volumes. Since a fully connected layer expects a 1D vector of numbers, we flatten the

output of the final pooling layer to a vector, which becomes the input to the fully connected

layer. Our first fully connected layer consists of 128 units, followed by a dropout of 0.5

and a second fully connected layer with 100 units. Our last fully connected layer combines

the features learned by the previous layers and applies the softmax function to output the

normalized probability distribution over malware families.

3.6.2 Evaluating the String-based Component

We compare the performance of the CNN and LSTM deep learning models to classify IoT

malware based on the strings extracted from the malware. As presented in Table 3.1, the the

10-fold cross validation and evaluation results of the two algorithms demonstrate significant ac-

curacy and F1-scores for both implementations (about 98%). Nevertheless, it can be observed

that the CNN model implementation produced a relatively higher accuracy (98.86%) and macro F1-

score (98.51%), thus, chosen as our candidate model for implementing the strings-based component

within proposed IoT malware classification model (Figure 3.1).

The optimal architecture of the CNN string-based component, which was configured after a grid

search over the hyper-parameters of the network (Table 3.1), consists of the following layers:

• Embedding Layer. This layer is defined as the first hidden layer of the network. It requires

37

that the input data be integer encoded, so that each word is represented by a unique integer.

It takes as arguments the input dimension, i.e., the size of the vocabulary set to 50,000 words

in our case, the output dimension (i.e., the size of the vector space in which words will be

embedded (100)), and the input length (i.e., input sequences that have 400 words each).

• Convolutional Layer. The CNN’s convolutional layer “scans” text which is organized into a

matrix, with each row representing a word embedding, like it would an image, breaks it down

into features, and judges whether each feature matches the relevant label or not. The chosen

kernel size is 4, and the number of convolutional filters applied is 32. The activation function

adopted is the relu function [105].

• Pooling Layer. A pooling of size 2 is applied to the input. The pooling stage reduces the

dimensionality of the word features and retains only a simple probability score that reflects

how likely they are to match a label.

• Fully-Connected Layer. At the final stage, these scores, flattened, are the inputs to a fully

connected neural layer. The “fully connected” part of the CNN network goes through its

own back-propagation process, to determine the most accurate weights. Each neuron receives

weights that prioritize the most appropriate label. The activation function is softmax for

multi-class classification.

3.6.3 Effectiveness of the Proposed Multi-Level DL Model

To answer our RQ1, we evaluate the effectiveness of the proposed multi-level deep learning

model against the implemented image- and strings-based components, which are trained on each

data modality independently. To do this, we leverage the implemented models for the image- and

strings-based components to deploy our multi-level classifier and evaluate its effectiveness. We pre-

train each component separately while utilizing their top learned features (n = 100 each) as an input

to the feature fusion and classification component, as illustrated in Figure 3.1. The outcomes of the

feature fusion and classification steps demonstrate the effectiveness of our multi-level IoT malware

classification model with significantly high accuracy and F1-score that exceed 99.5%. Additionally,

it is clearly observed that the multi-level model outperforms the DL implementation of the image-

38

0
.9
6

0
.9
2
1

0
.9
6
1

0
.9
2
2

0
.9
4

0
.90
.9
5
5

0
.9
2

0
.9
6
1

0
.9
3

0
.9
4
2

0
.8
9

0
.6
8
3

0
.6
4
3

0
.6
9
4

0
.6
5
4

0
.6
9
4

0
.6
4
9

0
.9
3
5

0
.8
9
5 0
.9
8
9

0
.9
8
5

0
.9
8
5

0
.9
7
9

0
.9
2
3

0
.8
7
2

0
.9
3
9

0
.8
8
8

0
.9
3
1

0
.8
7
4

0

0.2

0.4

0.6

0.8

1

Acc F1-score Acc F1-score Acc F1-score

SVM RF XGBoost

CHART TITLEIMG1 IMG2 STR1 STR2 NGR

Figure 3.4: Evaluation results for the selected feature-engineering approaches.

and string-based components (Table 3.1). Moreover, looking at the results of Table 3.2, which

summarizes previous state-of-the-art classification approaches, showcases the effectiveness of our

approach compared to other related work. A complete overview of these related work is presented

in Section 2.3. Thus, answering our first research question by demonstrating that the multi-level

DL model that learns and combines characteristics of malware from various sources can yield better

classification outcomes as compared to DL classifiers that rely on a single modality of data.

3.6.4 Comparison with Feature Engineering Approaches

To answer our second research question (RQ2), we perform image- and string-based classifi-

cation using a set of diverse features that were extracted from the malware grayscale images and

strings. While there are many possible combination of features and classification models, for the

sake of comparison to our deep learning approaches, we reviewed the state-of-the-art malware clas-

sification approaches from the literature [55, 56, 59, 106] and identified combinations of features/-

models that were more relevant to our experiments.

Image-based features. A malware binary is first converted to an image representation, as

explained in Section 3.4.1, on which texture based features can be used as visual signatures for

each malware family. We extract two sets of features from the grayscale image representation of

39

Ta
bl

e
3.

2:
Su

m
m

ar
y

of
th

e
pr

ev
io

us
st

at
e-

of
-t

he
-a

rt
cl

as
si

fic
at

io
n

ap
pr

oa
ch

es
(N

A
st

an
ds

fo
rN

ot
A

va
ila

bl
e)

.

A
pp

ro
ac

h
Fe

at
ur

e
Ty

pe
C

la
ss

ifi
er

E
nv

.
D

at
as

et
(#

Sa
m

pl
es

)
A

cc
ur

ac
y

Grayscale
Image

N
at

ar
aj

et
al

.[
54

]
G

IS
T

fe
at

ur
es

k-
N

N
W

in
.

A
nu

bi
s

(9
,4

58
)

0.
98

08
A

hm
ad

ie
ta

l.
[5

5]
L

oc
al

B
in

ar
y

Pa
tte

rn
fe

at
ur

es
X

G
B

oo
st

W
in

.
B

IG
(1

0,
86

8)
0.

97
24

G
ib

er
te

ta
l.

[5
7]

12
8

x
12

8
G

ra
ys

ca
le

Im
ag

e
C

N
N

W
in

.
B

IG
(1

0,
86

8)
0.

97
50

Su
et

al
.[

58
]

64
x

64
G

ra
ys

ca
le

Im
ag

e
C

N
N

Io
T

Io
T

PO
T

(5
00

)
0.

94
00

Strings

Ti
an

et
al

.[
59

]
Pr

in
ta

bl
e

St
ri

ng
In

fo
rm

at
io

n
R

an
do

m
Fo

re
st

W
in

.
Z

oo
(1

,3
67

)
0.

97
00

N
gu

ye
n

et
al

.[
61

]
PS

IG
ra

ph
s

C
N

N
Io

T
N

A
(4

,0
02

)
0.

92
40

A
lh

an
ah

na
h

et
al

.[
60

]
St

at
is

tic
al

&
St

ri
ng

fe
at

ur
es

,
M

ul
ti-

st
ag

e
C

lu
st

er
in

g
Io

T
Io

T
PO

T
(5

,1
50

)
0.

95
50

Integrated
Features

Is
la

m
et

al
.[

64
]

FL
F,

PS
I,

A
PI

fe
at

ur
es

SV
M

,R
F,

D
T,

IB
1

W
in

.
N

A
(2

,9
39

)
0.

97
05

A
hm

ad
ie

ta
l.

[5
5]

IM
G

,S
T

R
,1

G
,E

N
T,

A
PI

,e
tc

.
X

G
bo

os
t

W
in

.
B

IG
(1

0,
86

8)
0.

99
77

M
ay

s
et

al
.[

63
]

Im
ag

e
&

O
pc

od
e

N
-G

ra
m

s
E

L
(C

N
N

,N
N

)*
W

in
.

B
IG

(1
0,

86
8)

0.
97

24
G

ib
er

te
ta

l.
[4

8]
A

PI
s,

B
yt

es
&

O
pc

od
e

se
qu

en
ce

M
ul

ti-
le

ve
lD

ee
p

N
N

W
in

.
B

IG
(1

0,
86

8)
0.

99
75

T
hi

sW
or

k
G

ra
ys

ca
le

IM
G

,M
al

w
ar

e
St

ri
ng

s
M

ul
ti-

le
ve

lM
od

el
Io

T
Io

T
PO

T
(3

0,
00

0)
0.

99
78

*E
ns

em
bl

e
L

ea
rn

in
g

40

malware:

• Haralick features (IMG1), which compute a global representation of texture based on the

Gray Level Co-occurrence Matrix, (GLCM), a matrix that counts the co-occurrence of neigh-

boring gray levels in the image [106].

• Local Binary Pattern features (IMG2) instead, compute a local representation of texture

which is constructed by comparing each pixel with its surrounding neighborhood of pixels.

String-based features. The combination of extracted printable strings from malware samples

forms a kind of “digital fingerprint” for each malware family. We leverage the following feature

sets for our comparison approach:

• Histograms related to the frequency distribution of length of strings (STR1) among different

malware samples.

• Bag-of-words (STR2), by generating a global list of all of the strings that occur that are more

than three bytes and their frequency.

• N-grams (NGR), where occurrences of n pairs (n=2) of consecutive strings are counted.

Implemented Classifiers. To perform the classification using the aforementioned features, we

use Support Vector Machine (SVM), Random Forest (RF) and XGBoost, which have been proven to

be consistently effective for implementing image- and string-based classifiers with feature-engineering

[55, 56, 59]. The performance results of our adopted feature-engineering approaches after a 10-fold

cross validation are presented in Figure 3.4. Overall, STR2 features resulted in the highest classifica-

tion outcomes across the deployed models, with an accuracy of about 98.9% and 98.5% when using

the RF and XGBoost classifiers, respectively. Despite such promising results, our implemented

multi-level DL architecture outperforms all the tested implementations in terms of the overall clas-

sification accuracy and F1-score (Table 3.1). More importantly, using feature-engineering comes

with practical limitations, which hamper the overall usability and performance of such approaches

as compared to the end-to-end DL methods. For instance, the size of the Local Binary Pattern

features, which increase exponentially with the number of neighbours, and the high dimensional-

ity of the GLCM matrix used to extract Haralick features, lead to an increase of computational

41

0.5

0.6

0.7

0.8

0.9

1

1
6

0
4

1
2

0
7

1
8

1
0

2
4

1
3

3
0

1
6

3
6

1
9

4
2

2
2

4
8

2
5

5
4

2
8

6
0

3
1

6
6

3
4

7
2

3
7

7
8

4
0

8
4

4
3

9
0

4
6

9
6

4
9

1
0

2
5

2
1

0
8

5
5

1
1

4
5

8
1

2
0

6
1

1
2

6
6

4
1

3
2

6
7

1
3

8
7

0
1

4
4

7
3

1
5

0
7

6
1

5
6

7
9

P
re

d
ic

ti
o

n
 R

es
u

lt

Number of Samples

Samples predicted as Mirai with threshold > 80 % CDF (Mirai)

(a)

0.5

0.6

0.7

0.8

0.9

1

1
2

9
7

5
9

3
8

8
9

1
1

8
5

1
4

8
1

1
7

7
7

2
0

7
3

2
3

6
9

2
6

6
5

2
9

6
1

3
2

5
7

3
5

5
3

3
8

4
9

4
1

4
5

4
4

4
1

4
7

3
7

5
0

3
3

5
3

2
9

5
6

2
5

5
9

2
1

6
2

1
7

6
5

1
3

6
8

0
9

7
1

0
5

7
4

0
1

7
6

9
7

P
re

d
ic

ti
o

n
 R

es
u

lt
s

Number of Samples

Samples predicted as Gafgyt with threshold > 80 % CDF (Gafgyt)

(b)

Figure 3.5: Cumulative distribution function of the samples predicted as (a) Mirai and (b) Gafgyt.

complexity in terms of time and space. Additionally, a drawback of bag-of-words and n-grams

feature-engineering approaches is that they lead to a high dimensional feature vector due to the

large size of strings vocabulary. Besides being tedious and time-consuming, manual feature engi-

neering is problem-specific, error-prone, and limited by human expertise and capabilities. Thus, we

answer our second research question by demonstrating that our multi-level DL approach is in fact

more effective, scalable, usable, and practical, especially when used with a large amount of raw

data.

3.6.5 Label Prediction for Unknown/Unseen Malware

We leverage the proposed multi-level IoT malware classification model in an attempt to iden-

tify the family labels for 24,271 unlabeled (unknown/unseen) malware samples in our dataset. To

do this, we trained our multi-level classifier with 10,234 IoT malware samples from four predom-

inant malware families (Mirai, Gafgyt, Tsunami, and dofloo). Note that despite the lack of

ground truth for the unknown/unseen IoT malware, our supervised learning approach will generate

multi-label classification outcomes which associate the analyzed samples to non-mutually exclusive

malware family labels with a degree of confidence. Accordingly, we assume that a sample with high

predicted class value is likely to belong to that specific known IoT malware family. On the other

hand, a low class prediction value means that the analyzed sample is less likely to belong to that

specific malware family.

The cumulative distribution functions (CDF) for the samples that are predicted as Mirai and

42

Gafgyt are illustrated in Figures 3.5a and 3.5b. It is worth noting that the majority of the samples

within these two groups are in fact labeled with a relatively high prediction accuracy. Nevertheless,

to avoid false positives and achieve a more reasonable/accurate labeling outcome, we consider a

sample to be correctly classified as either of these two classes if and only if it was predicted with a

threshold greater than 80%. Accordingly, for the first group (Figure 3.5a), we classify about 67% of

the samples (10,786 out of 16,214) as Mirai while about 55% of the the malware samples within

the second group (Figure 3.5b) (4,332 out of 7,923) were classified as Gafgyt.

Moreover, our analysis of the Tsunami-labeled malware samples shows that about 80% of them

(108 out 134) were predicted with high confidence (>80%). Interestingly, our classification out-

comes did not associate any of the unknown/unseen malware samples with the Dofloo family. This

might be due to the fact that our unlabeled dataset was mainly obtained from IoTPOT, which is a

specialized IoT honeypot that is designed to interact with Telnet requests (Section 3.7), hence, it

did not capture Dofloo attacks since they target other ports/services (e.g., TCP port 2375) [107].

Additionally, it is possible that the Dofloo malware is not actively circulating in the wild due to the

specificity of its implementation and targeted vulnerabilities, which have been addressed, respec-

tively. Confirming this however, is beyond the scope of current work and will be considered for

future work.

Results Validation. It is important to realize that obtaining the ground truth in terms of malware

family labels for the unknown/unseen malware samples is a challenging task since these samples

have not been detected or known by major antivirus vendors. To overcome these challenges, we

perform a targeted text similarity analysis on the extracted strings from a random sample of IoT

malware that were classified by our multi-level model with high confidence (i.e., > 80%). We

use regular expressions to obtain special textual indicators associated with known malware families

while correlating the strings extracted from the unknown malware samples to those known ones

through the strings-based similarity analysis. Our assumption is that malware samples from the

same family are likely to share string-based indicators that reflect their underlying implementations,

functionalities, targeted services, adversarial IP addresses, and command instructions.

Note that the Mirai family consists of the largest number of malware samples in our dataset.

Therefore, we validate the outcomes of our classifier by manually inspecting 10,786 Mirai-labeled

43

malware samples and performing text-based similarity analysis on them to associate them with

known Mirai samples. To do this, we leveraged known Mirai samples to identify adversarial IP

addresses that might be associated with possible C&C servers or targeted victims. Additionally,

we identify other possible Mirai indicators such as pre-configured default usernames and pass-

words that are used during brute-force attacks, commands sequences for communication with the

C&C server, Internet scanning/probing instructions and commands, DDoS attack commands, and

downloaded malicious payloads/scripts, to name a few.

Our analysis of the Mirai-labeled samples resulted in identifying 3,378 unique IP addresses,

among which, about 67% were matching IP addresses extracted from known Mirai samples. While

common adversarial IP addresses across different malware samples can associate those samples to

the same adversary (e.g., bot master), it might not necessarily mean that they belong to the same

malware family. Therefore, we look for additional Mirai-specific string indicators within the an-

alyzed samples [2, 108]. Interestingly, about 95% of the Mirai-labeled samples contained one or

more instances of Mirai-specific strings such as “POST /cdn-cgi/”, “/dev/misc/watchdog/”,

“.mdebug.abi32”, “LCOGQGPTGP”, and “CFOKLKQVPCVMP”, to name a few. We also found similar

commands that are used by Mirai to check for “wget” or “tftp” installations before using them to

downloading and executing further scripts and attack payload from designated servers. Since Mirai

is designed to launch DDoS attacks, we also found attack methods such as “attack_udp_dns”,

“attack_udp_vse”, “attack_tcp_stomp”, “attack_tcp_syn”, and “attack_tcp_ack”, in

the analyzed malware strings.

Despite that our validation approach using strings similarities was tested with one IoT malware

family (Mirai), our findings shed light on common string/textual indicators that can be used to

attribute unknown malware samples to those from known families.These findings can be used to

answer our final research question (RQ3), while demonstrating high levels of confidence in the

classification outcomes with respect to labeling unseen/unknown IoT malware samples.

Undecisive Labels. In addition to the unknown malware samples that were classified with high

confidence, a total of 4,773 samples were labeled with a relatively low prediction values (≤70%),

meaning that their labeling is positively indecisive. Since the model can only predict four family

labels, an indecisive and low prediction result may indicate that these samples might belong to other

44

known malware families, or are possibly new variants/families, which were not incorporated in

training the classifier. Additionally, such results could be due to deployed binary obfuscation and/or

possible corrupt files, which hide or scramble the binary contents and lead to possible misclassifica-

tion outcomes. To overcome these challenges, one can investigate various malware de-obfuscation

techniques, while extracting meaningful information that can be used for further similarity analysis

in correlation to samples from known malware families.

3.7 Discussion

In this paper, we use next-generation techniques, combining multimodal end-to-end learning

and malware features from multiple sources (e.g., static malware analysis), to classify IoT malware

executables and attribute them to known families. Yet, while some previous works that rely on

transfer learning [65, 66] and a variety of complex features such as control flow graphs [61, 67, 68],

API function calls [48, 55], have been shown to be effective in classifying malware samples, these

solutions mainly rely on the ability of domain experts to extract meaningful features. Additionally,

these approaches often rely on deep neural networks with hundreds of layers, such as ResNet50 and

ImageNet, which are computationally heavy and thus, difficult to handle by resource-constrained

IoT devices. While this is proven to be an expensive task, we leverage multiple deep learning mod-

els to implement a lightweight multimodal learning approach that provides a better or comparable

classification accuracy, while enabling scalable and timely classification without any pre-processing

or feature engineering.

In addition, we demonstrate the effectiveness of our proposed multi-level model in preventing

the co-adaptation of the sub-networks to a specific feature type, therefore making the network less

sensitive to the loss of one or more channels of information. Our intuition is that in a real world

scenario, it is not possible to rely on one malware characteristic, as some features might be difficult

to obtain (e.g., due to obfuscation), or insufficient to differentiate between two malware variants.

This is indeed the case with IoT malware, where a significant amount of malware samples in the wild

are found to share similar implementations and functionalities due to wide code-reuse, as observed

in the case of Mirai and the consequent IoT malware that were based on Mirai’s source code [44].

45

Another advantage of our proposed classification framework is in its modular architecture,

which can be complemented by new features from other data modalities to make it adaptable to

new contexts (e.g., ransomware). Moreover, such adaptability to various contexts can positively

support the generalizability of our approach and the obtained findings. To prove this, further ex-

perimentation using various types of malware is required, which can be considered for future work.

Moreover, we show the generalizability of our approach to unknown samples and its ability to pre-

dict the labels of unseen malware (see Section 3.6.5).

A main outcome of this work is to draw attention to the limitations of existing malware detection

and labeling outcomes provided by major antivirus vendors. Specifically, we identify a considerable

number of IoT malware samples, which have not been detected or labeled by the antivirus vendors.

Consequently, we demonstrate the effectiveness of our proposed IoT malware classification ap-

proach to address this limitation, while predicting reliable family labels for such unknown/unseen

samples. In addition, our findings show that the majority of those new/unlabelled malware samples

were in fact associated with predominant malware families such as Mirai and Gafgyt. These find-

ings highlight a common practice among IoT malware authors, who often rely on reusing/tweaking

existing malware implementations to create new malware instances that can be used to target new

vulnerabilities in a timely manner.

In line with that, our extended analysis of the new/unknown IoT malware samples unveiled

Covid-19 themed Mirai variants, which included different string indicators such as “/bin/busybox

CORONA” command, or “Total lockdown is the solution”. More importantly, considering

that this work was conducted during the Covid-19 pandemic, the identification of such covid-

related IoT malware samples shed light on the rapid evolution of IoT malware, which are designed

to abuse global events to their advantage. Therefore, this work contributes to the cybersecurity re-

search by providing means for timely classification of new/unknown IoT malware while attributing

them to known families (when applicable).

Finally, it is important to realize that addressing threats associated with the emerging IoT mal-

ware is essential for the security of the Internet ecosystem. Moreover, the deployment of next-

generation 5G networks and technologies will enable large-scale deployment of IoT devices to

support everyday activities of consumers and service providers. Therefore, given the insecurity of

46

the IoT paradigm, the projected increase in the deployed IoT devices will without a doubt amplify

the threats associated with IoT malware and IoT-driven cyber attacks. To mitigate such threats in

the context of future networks, we envision the integration of our next-generation malware analy-

sis and classification approaches within the intermediate cloud-based monitoring and management

systems, to support accurate and real-time malware detection, classification, and attack mitigation,

and thus, contributing towards the overall security of the 5G networks.

3.7.1 Limitations

A main limitation of this work is to collect a diverse and representatives dataset of a IoT malware

samples, which is a challenging task. Indeed, relying on a single source for data might hinder the

diversity and generalizability of the obtained IoT malware dataset. Nevertheless, while we leveraged

IoTPOT [8] as our main source of data collection, it is worth noting that IoTPOT is considered as

one of the most reliable sources of IoT malware data, while providing access to a large number of

diverse and recent IoT malware samples. It has also been shown to be more effective than other

honeypots (e.g. Honeyd [109]) at capturing various IoT-tailored attacks. In addition, the analysis

of Internet-scale scanning activities generated by compromised IoT devices [40, 41, 53] confirms

the prevalence of Mirai-like malware attacks/samples in the wild, which are the most dominant

variants in the IoTPOT dataset. Additionally, to address the diversity of the data and collect a more

representative dataset, we extended our data collection to obtain further IoT malware samples from

well-known threat repositories such as VirusTotal and VirusShare. Accordingly, our final dataset

contained a representative dataset with more than 70,000 IoT malware samples belonging to four

predominant families (Mirai, Gafgyt, Tsunami, and Dofloo).

Another limitation of this work is that we did not consider obfuscated IoT malware samples in

the implementation of our proposed malware classification approach. It is important to note that

malware authors are inclined to intentionally conceal their identity and therefore use obfuscation

techniques to hide data in a malicious executable binary [98]. Therefore, such factors must be con-

sidered while building a robust malware classification model, which can also deal with obfuscated

samples. Nonetheless, our analysis of the IoT malware samples showed that the majority of them

did not employ sophisticated obfuscation, thus, were de-obfuscated using off-the-shelf tools (e.g.,

47

UPX). Therefore, our proposed model is still capable of performing effective classification with

respect to the majority of IoT malware samples, while attributing them to known families with high

degree of confidence.

3.7.2 Future Work

The continuous evolution of malware variants/families might negatively impact the prediction

outcomes of deployed ML classification models over time (concept drift). In the context of IoT,

the release of the Mirai source code to the public enabled adversaries to reuse the code while

creating new Mirai-like malware variants by incorporating new exploits to the existing code [44].

Hence, creating a corpus of malware samples with new versions to share similarities with older

versions, respectively. Nevertheless, these similarities are assumed to degrade slowly, while causing

the malware population to drift over time. Accordingly, we believe that the prediction quality of

malware detectors and classifiers will eventually decay in the future as malware evolution might

result in completely new variants [92]. As a result, we study the aforementioned issue of concept

drift in our next thesis contribution as presented in Section 4.

Another interesting future research direction is to investigate the problems associated with ad-

versarial ML, where an attacker is assumed to manipulate data and craft adversarial examples us-

ing different techniques (e.g., manipulation of static feature) to deceive the detection/classification

model [98,110]. While our proposed framework achieves accurate classification of IoT malware, we

believe that future research is required to examine the robustness of our multi-level approach against

adversarial ML techniques and detection evasion methods. For instance, improving interpretabil-

ity can increase our multimodel’s robustness to adversarial attacks, by revealing and understanding

which features give more weights to the model’s performance, and therefore by crafting AEs gen-

erated based on these features-level manipulation.

48

3.8 Summary and Concluding Remarks

In this work, we utilized DL architectures to implement and evaluate a novel approach for clas-

sifying IoT malware by combining multi-dimensional features extracted from strings- and image-

based representations of the executable binaries. Moreover, we addressed the main challenges as-

sociated with feature selection/engineering by implementing an end-to-end DL approach that can

automatically extract and meaningfully combine features from different representation of the an-

alyzed IoT malware binaries. Our experimental results using 10,234 IoT malware samples from

four prominent families demonstrated the effectiveness of our classification approach, with a sig-

nificantly improved accuracy (99.78%), as compared to conventional single-level approaches. In

addition, we demonstrated the capability of the implemented model towards classifying new IoT

malware binaries, which were mainly attributed to few known families (e.g., Mirai and Gafgyt).

Finally, considering the projected increase in the number of deployed IoT devices, and the pivotal

role of these insecure devices in the operation and infrastructure of next-generation 5G networks,

this work provides a major step towards the development of practical data-driven tools/techniques

for effective IoT threat detection and mitigation, thus, contributing to the security of the IoT ecosys-

tem.

49

Chapter 4

EVOLIoT: A Self-Supervised

Contrastive Learning Framework for

Detecting and Characterizing Evolving

IoT Malware Variants

4.1 Overview

The recent growth in the number of IoT devices has motivated the rise of IoT-tailored malware

that enable cyber-attacks as part of coordinated and monetized large-scale botnets [7]. The public

release of the source code of some of the main IoT malware families such as the Mirai [2], has

forever shaped the IoT threat landscape. Specifically, the effectiveness of Mirai, and the ability to

add new exploits to the codebase has paved the way for more advanced and sophisticated Mirai-

like malware variants such as Hajime [111] and Satori [112], to name a few. The increasing number

of detected IoT malware and the threat associated with the IoT-driven cyberattacks has pushed the

security community to focus their effort on deploying specialized honeypots [34, 36, 38] to detect

This work has been submitted to ACM ASIACCS 2022.

50

IoT malware/botnet and investigate their inner operations [2, 6, 7]. This is essential for develop-

ing rigorous mitigation approaches against the spread of IoT malware strains by building effective

learning-based malware detectors and classifiers [10, 58, 113].

Despite such effort, the complex relationship and similarities in terms of code reuse among

malware variants bring several challenges for malware analysis including labeling, provenance,

triage, lineage analysis, as well as family and authorship attribution. In fact, it is unclear what makes

each group of malware distinct, what links together popular families, or how the same malware

family evolves over time. This is also reflected by the labels assigned by anti-virus (AV) vendors,

which are often inconsistent and coarse-grained, and often unable to capture the code reuse between

IoT malware and their evolutionary characteristics.

More importantly, the rapid evolution of the IoT threat landscape along with the characteris-

tics of newly detected IoT malware variants in terms of their massive code reuse and underlying

relationship [6, 44], is most likely to cause the performance of classifiers to degrade with time,

as old malware campaigns are typically retired/updated while new ones are developed [85]. This

change in the data distribution of a machine learning model is called concept drift [85], which

makes it challenging to generalize existing learning models that were trained with older data to new,

previously-unseen samples.

In order to build sustainable models for IoT malware classification, it is important to identify

when the model shows signs of aging, by which it fails to effectively recognize new variants and

adapt to potential changes in the data, especially when accounting for in-class evolution of IoT

malware families. Thus, to build an effective and robust classifier, we must aim at detecting drifting

IoT variants within the same malware family (i.e., in-class evolution) and consequently, interpret

the meaning behind the drift to identify which mutations distinguish one variant from another. Note

that previous research relied on the prediction decisions of a learning model as a by-product of the

classification process [10,88,89]. However, it is likely that a drifting sample that does not belong to

any class will be assigned with high confidence to the wrong class (i.e., closed-world assumption),

which has been previously validated.

To mitigate this confidence bias, calibrated probability predictors (e.g., Venn-Abers Predic-

tors [91]) as well as statistical non-conformity measures [90] have been proposed. Although useful,

51

these approaches cannot draw concrete conclusion on drifting/evolving samples and lose their ef-

fectiveness on high dimensional data. A more recent work by Yang et al. [95], used an auto-encoder

coupled with a contrastive loss to compress the data and learn an effective distance between samples

of different classes. While their resulting distance function can efficiently detect and rank drifting

samples from distinct classes, their approach is not tailored to in-class drifting samples, which is

more relevant in the context of IoT. Alternatively, a plethora of works studied the evolution of mal-

ware binaries by computing the similarity between functions extracted from the decompiled binary

code (e.g., instructions), basic blocks, control flow graphs (CFGs) [77, 80–82, 84], and execution

traces [69, 114]. While they provide invaluable insights, none of them is applied on Linux-based

IoT malware. Cozzi et al. [44] took this opportunity to identify code similarities between IoT mal-

ware families using function-level binary diffing using off-the-shelf tools that are not tailored for

IoT. Additionally, their approach required a substantial amount of manual adjustments, which ham-

pers its scalability and feasibility for real-time threat detection and analysis.

In this work, we aim at filling this gap by detecting evolving IoT variants and understanding their

evolutionary trajectories, in a systematic and scalable way tailored to the peculiarities of IoT mal-

ware. We propose EVOLIoT, a self-supervised contrastive learning approach based on pre-trained

language models such as BERT [11], which effectively learns and compares semantically mean-

ingful representations of binary code, without the need for expensive target labels. This presents

an immense advantage to the problem of scarcity of labeled data (e.g., emerging IoT malware) in

security applications. In fact, the proposed contrastive objective views the evolution of IoT malware

binaries as a natural language augmentation strategy, and show how it can be used as a representa-

tion learning objective which maximizes the mutual information between malware sequences and

their conserved malicious function. As such, EVOLIoT identifies evolved samples by constructing

a “positive” pair through feeding the same sample to the encoder twice to get two embeddings that

only differ in hidden dropout masks found in the Transformers [115]. As such, the model learns

to predict positive pairs among other embeddings (i.e., negative pairs). In other words, EVOLIoT

learns to encourage “disagreement” across evolutionary views by contrasting the rest of the embed-

dings, and thus, learn to discriminate between samples coming from the same class, by maximizing

the distance to drifting embeddings instead of minimizing it.

52

4.2 Contributions

To this end, we make the following main contributions:

• We leverage the power of contrastive learning to address concept drift and the limitations

of inter-family IoT malware classification due to the evolution of IoT malware. We present

EVOLIoT, a robust and effective contrastive method that learns and compares semantically

meaningful representations of IoT malware binaries without the need for expensive target

labels.

• We are among the first to address the limitations of inter-family classification and attribution

of IoT malware binaries using contrastive learning. We propose to view the evolution of IoT

malware binaries as a desirable choice of augmentation to construct “views” for contrastive

learning in a security application, from both a theoretical and technical point of view. We

illustrate that our contrastive learning objective, which is based on evolutionary augmenta-

tion, directly encourages representational invariance to shared features across positive views

while at the same time, encouraging disagreement across views by dealing with same-class

augmentations as negative to each other.

• Motivated by the number of IoT samples, their diverse target architectures and their general

lack of obfuscation, we adopt a cross-architecture code-based analysis that can capture a

binary’s malicious intent and evolutionary essence. Our framework leverages the cutting-

edge BERT architecture [11] to deeply infer the underlying code semantics regardless of

the binary’s instruction set architecture (ISA). We also consider a well-balanced instruction

normalization strategy that strikes a balance between too-coarse grained and too-fined grained

normalization, to conserve as much contextual information as possible for cross-architecture

syntactic variations while maintaining efficient computation.

• We evaluate our approach using a large corpus of IoT malware binaries that were detected

over a course of 3 years. We leverage an interpretable strings-based analysis to detect and

validate more than 50 variants belonging to the top 3 IoT malware families: Mirai, Gafgyt,

Tsunami. Our analysis highlights the constant evolution of variations among each family

53

from different perspectives such as the added target exploits and 0-day vulnerabilities, TOR-

enabled botnet communication, and botnet behaviors (e.g., detection evasion), to name a few.

• We extensively evaluate our proposed method on three applications, by leveraging EVOLIoT

as a semantic search engine for finding semantically similar variant queries, and testing the ef-

fect of our balanced normalization process and our cross-architecture embeddings in reducing

out-of-vocabulary instructions and preserving semantics, respectively.

• We make our ground truth dataset with identified fine-grained labels, as well as the full list of

identified evolutionary trajectories (e.g., exploits, variants) available1 to researchers to support

future work.

4.3 Background and Problem Scope

In what follows, we elaborate on the problem of concept drift in the context of security applica-

tions (e.g., malware evolution) and highlight the power of attentive and self-supervised methods as

effective solutions.

4.3.1 Concept Drift (In-Class Evolution)

Concept drift has been used to describe the problem of the changing relation between the input

data and the target variable over time [85].

In cybersecurity, these changes apply to the malware development and data generation process

where attackers are constantly modifying their attack vectors, trying to bypass defenders’ solutions

[116]. Moreover, the evolution of malware is another problem related to this challenge, where the

process of defining and improving variants results in new types of attacks. Concept drift in a multi-

class classification setting usually involves drifting samples from previously unseen families (new

class), or drifting samples from an existing class but with changing behavioral patterns (in-class

evolution).

In this paper, we focus on the problem of in-class evolution, which is understudied in literature

and more relevant in the context of IoT malware. Specifically, we examined the in-class evolution of
1https://github.com/IoTMalw/EVOLIoT

54

0 3 6 9 12 15
Testing Period (month)

0.5

0.6

0.7

0.8

0.9

F1
-s

co
re

F1 (Mirai)
Training period

Figure 4.1: The impact of drifting samples on the classification accuracy for samples of the Mirai
family (trained/tested MLP classifier with a 3 months sliding window).

samples from the Mirai family over one year by training an MLP classifier on samples detected in

the first 3 months while testing with previously-unseen samples detected in the following 3 months

intervals, respectively. As illustrated in Figure 4.1, we capture the impact of the drifting samples

through examining the degrading accuracy of the MLP classifier over time (detailed in Section

4.5.2).

In fact, previously proposed ML-based solutions for detecting concept drift [85] are not neces-

sarily suitable for security applications as they mainly rely on the collection of new sets of well-

prepared and labelled data to statistically assess model behaviors [87,91,117]. However, in the con-

text of cybersecurity, new attacks/data are usually unknown thus, it is almost impractical to assume

that the incoming data is sufficiently labeled for (re)training classification models. Moreover, data

labelling is usually time-consuming, expensive, and requires expertise. Instead, we focus on a more

practical scenario that leverages contrastive learning, as explained in the following sub-section.

4.3.2 Contrastive Learning (CL)

Contrastive learning is a type of Self-supervised Learning (SSL), which allows the model to

learn sentence-level semantics by comparison. In general, SSL has emerged as a powerful method

for learning effective representations without the need for expensive target labels [11]. This presents

an immense advantage to the problem of scarcity of labeled, clean data (e.g., malware) in cyber

security applications. Moreover, it helps a model gain more generalization ability by learning from

55

large amounts of unlabeled data, in contrast to a supervised model which learns only from what is

available in the training data.

To this end, we rely on contrastive learning, which works by pulling semantically close neigh-

bors together and pushing apart non-neighbors. Recent progress on self-supervised contrastive

methods has proven its effectiveness in learning good data representations for instance discrimi-

nation and semantic similarity tasks in various domains such as computer vision [4, 118], audio

processing [119], and computational biology [120, 121]. Hence, we explore the idea of contrastive

learning to learn semantically-aware binary code representations of IoT malware variants to detect

their mutations and evolution (Section 4.4). Moreover, to effectively learn sentence embeddings

from unlabeled data, we incorporate pre-trained Attention and Transformer language models such

as BERT [11], as described in the following sub-section.

4.3.3 Attentive Transformer Language Model

BERT’s model architecture is a multi-layer bi-directional Transformer encoder based on the

original implementation described in [122], which provides rich vector representations of a natu-

ral language by capturing the contextual meanings of words and sentences using a multi-head self

attention mechanism [123]. It consists of two main processes: (a) a pre-training phase, based on

masked language model (MLM) and next sentence prediction (NSP) strategies to build a generic

model that considers context and orders of words and sentences in a large data corpus; (b) a fine-

tuning process that applies the pre-trained model to a specific downstream task. Sentence-BERT

(SBERT) [124], proposed as a modification of the pre-trained BERT network, uses siamese and

triplet network structures to derive semantically meaningful sentence embeddings that can be effi-

ciently compared using cosine-similarity. In this work, we demonstrate that a contrastive objective,

coupled with pre-trained language models such as BERT [11], can be extremely effective in learning

sentence embeddings from unlabeled data.

4.3.4 Problem Scope and Insights

The widespread use of packing and obfuscation made static analysis generally inadequate in the

malware domain [125]. However, to our advantage, the current number of samples and the general

56

lack of sophisticated obfuscation in IoT binaries enable code-based analysis [6, 44]. Conveniently,

modelling the binary code of an executable can provide a precise reflection of its malicious in-

tent and evolutionary essence, especially in terms of code reuse and added functionalities. Hence,

identifying evolving malware strains can be equivalent to a binary similarity comparison problem,

where two samples have syntactically or semantically (dis)similar feature vectors. Specifically, the

equivalent semantics of a binary code can be defined as a sequence of instructions that carries out

an identical task from a logical function in the original source. Yet, the realm of IoT presents a few

challenges:

(1) Multiple efforts are in place to ensure that IoT malware samples can run on devices with

diverse hardware architectures and system configurations. Meaning, two binaries compiled

from the same source code for different architectures (e.g., ARM, MIPS) can present syntac-

tically different instructions.

(2) In contrast to previous work [77, 81, 84, 126, 127], the code equivalence problem cannot be

resolved at the function-level due to the tangled relationships of similarities and code reuse

between IoT malware binaries. In fact, “stolen” code components from a function or a set of

functions can be inserted into other code, that is, borrowed code is not necessarily a function.

(3) Identifying the start of functions within binary code is a common problem in the context of

static malware analysis. In fact, the performance of well-known analysis tools such as IDA

Pro has been shown to deteriorate significantly (drops to 60%) when identifying the start of

functions in stripped binaries [45], whereas it works consistently for correctly identifying

instructions and basic blocks.

In fact, the key to identifying differing IoT malware variants is to explain their evolutionary

trajectories regardless of their target instruction set architectures (ISAs). Therefore, considering

the above-mentioned challenges, determining the similarity between two malware variants requires

a precise and efficient cross-architecture embedding model, which can capture the semantics and

dependencies of instructions.

While previous solutions failed to procure such results, we proceed by regarding instructions as

words and basic blocks as sentences. Particularly, we present a new method to train such sentence

57

Embeddings

Quality

Feature Extraction & Pre-Processing

Target

Binaries

Disassembler Assembly Instructions

Instruction

Normalization

IA1, IA2, ..., IAn, IB1, IB2, ..., IBm, IC1, …

Instruction Embedding Model

Tokenization + Masking

Segmentation

Positional Encoding

Transformer Encoder (k layers)

E[CLS] | EI1| E[MASK]| … | EIn| E[SEP]
A

EI1’| EI2’ |…| E[MASK]| EIm |E[SEP]
B

EA | EA | EA | … | EA | EA

EB | EB | EB | … | EB | EB

Contrastive

Objective

maximize

similarity minimize similarity

+

-

Intermediate embeddings

(next layer)

Intermediate embeddings

(previous layer)XA

X’A X’B

X’B

X’BX’A

X’A

+

-

Understanding Evolution

Extract

Strings

Strings Analysis

Evaluation

Normalization

Feed Forward Feed Forward

Add & Norm

Multi-Head Attention

Add & Norm

XB

x k

Detect Drift

Explain

Drift

Figure 4.2: An overview of the proposed EVOLIoT framework/approach and its various stages.

embeddings without relying on training data, and by leveraging Sentence-Transformer and con-

trastive learning. The idea is to consider the evolution of IoT binaries as an augmentation strategy,

and hence encode the same instance twice to form a positive pair. The distance between these two

embeddings will be minimized, while the distance to other embeddings of the other sentences in

the same batch will be maximized (i.e., they serve as negative pairs). An overview of our proposed

approach is detailed in Section 4.4.

4.4 Approach

In this work, we propose a new approach to address the problems of concept drift and inter-

family IoT malware classification by leveraging contrastive learning. We have two main objectives:

(i) Detecting in-class evolving/drifting IoT malware binaries, and (ii) interpreting the meaning be-

hind the drift. To achieve our objectives, we follow a multi-stage methodology, as illustrated in

Figure 4.2. In particular, we detect drifting IoT binaries by extracting a feature modality from the

malware binaries (e.g., assembly code), normalizing all instructions, learning a vector to represent

the semantic meaning of the assembly code of the executable binary, and then deriving an effective

distance function to measure the dissimilarity of samples. Second, the goal of interpreting the drift

is to identify the causes of the drift (e.g., added functionalities, behavior changes, etc.) and link the

detection decision to semantically meaningful features.

In what follows, we provide further details about each stage of the proposed methodology (Fig-

ure 4.2).

58

4.4.1 Feature Extraction & Pre-Processing

We start our analysis by extracting and normalizing important features (e.g., assembly instruc-

tions) that carry enough information to effectively differentiate a drifting sample from another.

Binary Code Representation. Formally, the assembly code of an executable is a set of assem-

bly functions. An assembly function f is in turn a set of basic blocks each containing a sequence

of assembly instructions, denoted by I f : (i1, i2, i3, ..., im), where m is the number of instructions in

the function. These sequences of machine instructions are analogous to a natural language, which

implies the possibility of utilizing effective techniques in an NLP domain such as BERT for a binary

task. In fact, the authors of InnerEye [82] apply the idea of Neural Machine Translation (NMT) to

a binary function similarity comparison task by regarding instructions as words and basic blocks as

sentences.

We start by extracting a set of essential artifacts 1 (e.g., feature modalities) from our malware

samples (Table 2.2), using commercially popular static binary analysis tools. We leverage IDA

Pro [128] to extract basic blocks of assembly instructions.

Assembly Instruction Normalization. Following that, we perform Instruction Normaliza-

tion to map instructions to various tokens, which are leveraged by most deep learning methods to

generate input sequences for their training phase. Hence, we propose a well-balanced instruction

normalization 2 that is neither too generic nor too specific, to avoid an out-of-vocabulary (OOV)

problem, while capturing code semantics with tokens that hold rich information.

In fact, various approaches [80,82,84,126] have adopted mechanical conversions where the most

common one is replacing every immediate operand with a single notation such as immval, without

a thorough consideration of their contextual meanings. Such a coarse-grained normalization ren-

ders every call instruction identical, hence loses a considerable amount of contextual information.

However, retaining immediate values [126] can raise an OOV problem due to a massive number of

unseen instructions (tokens).

Conveniently, to maintain contextual and semantic information, good word embeddings must

59

rely on an individualized normalization strategy where binary code semantics are expressed as pre-

cisely as possible while using a reasonable number of tokens. For instance, it is important to dif-

ferentiate between immediate values because an immediate can represent either a call invocation,

a memory reference to jump to, a string reference, a statically-allocated variable, etc. Therefore,

erasing such differences makes an embedding rarely distinguishable from another.

To this end, combining successful normalization strategies from the literature, we make sure to:

(i) differentiate between a jump and a call destination, a string value, or a memory reference, (ii)

consider different sizes in a 32-bit register [84], (iii) keep stack pointers or base pointers intact [126]

while preserving pointer expressions to maintain memory access information. Finally, Opcodes are

not normalized and are retained as they are.

4.4.2 Instruction Embedding Model

To this end, we leverage a pre-trained language model, namely BERT [11], to encode the nor-

malized assembly instructions 3 and then fine-tune all the parameters using the contrastive learning

objective (§4.4.3). Note that BERT takes as input a token “sequence” which can either be single

sentence or a pair of sentences packed together. We consider a sentence to be a block of assembly

instructions. Such input representation allows BERT to handle a variety of down-stream tasks and

thereby later serves our contrastive objective (§4.4.3).

We start from pre-trained checkpoints of BERT:

• We include a special token at the beginning of every sequence ([CLS]) to indicate the start of

a sequence. In addition, we differentiate sentence pairs packed together into a single sequence

by separating them with a special token ([SEP]). For instance, ([CLS] W1W2 [MASK] ...

Wn [SEP] W1W2 ... [MASK] Wm), where W is a word in a sentence.

• We adopt BERT’s original masked language model (MLM), which masks a percentage (e.g.,

15 %) of the input tokens at random, and then predicts those masked tokens during pre-

training. An advantage of masking is forcing the transformer to remember the context repre-

sentation for every input token while hiding the words that it will be asked to predict at the

final layer.

60

• BERT includes a next-sentence prediction (NSP) task which allows it to learn relationships

between sentences by predicting if the next sentence in a pair is the true next or not. However,

the semantics of a function should be considered location-independent from that of its adja-

cent functions. As such, attackers can copy/borrow a certain function from another source

code and add it anywhere in their code. Therefore, we do not use the NSP task of BERT.

4.4.3 Contrastive Objective

In this section, we present the contrastive embedding framework 4 behind EVOLIoT, which

can produce superior “sentence” embeddings (i.e., assembly instructions feature vectors) from in-

coming unlabeled malware data, and learn how to compare them to identify differing variants within

the same family. The idea of contrastive learning is to learn a good representation of unlabeled data

by distinguishing similar samples from the others. It assumes a set D = {x+k } including paired

examples xi and x j which are semantically related, also referred to as positive pairs. Then, a neu-

ral network base encoder f (.) extracts representation vectors from the data examples, denoted as

zi = f (xi) and z j = f (x j). As described in §4.4.2, we adopt the pre-trained language model BERT

as our encoder. Moreover, the contrastive objective is to identify x j in the set of negative exam-

ples {x−k }k 6=i for a given xi. Let sim(zi,z j) =
zᵀi z j

||zi||.||z j|| be the cosine similarity between two feature

vectors, the contrastive loss is defined as [4]:

`i, j =− log
exp(sim(zi,z j)/ τ)

∑zk∈Z− exp(sim(zi,zk)/ τ)
, (4.1)

where τ ∈R denotes a temperature hyper-parameter (τ = 0.05) to adjust the scaling of the similarity

scores, and Z− := {zk}k 6=i. This loss, which is computed across all positive pairs (i, j) and (j, i) in a

mini-batch, brings the anchor and positive samples together while driving the anchor and negative

samples apart.

Evolution as Choice of “Views”. The critical question that follows is how to select “views” of

the input, i.e., how to construct (xi,x j) positive pairs. In visual representations, Chen et al. [4] con-

structed such positive pairs xi = T1(x) and x j = T2(x) by taking two independent augmentations or

“views” of a query image x from a pre-defined family of transformations T , where T1,T2 ∼ T . Some

61

x

Common Ancestor

xi x j Progeny

zi z j Representation

t ∼T t ∼
T

f (.) f (.)

Minimize agreement

Figure 4.3: Re-casting SimCLR [4] as a phylogenetic tree where augmentations are the evolved
malware variants.

frequently used image transformations are rotation, cropping or flipping. Recently, language and

sentence representations have adopted augmentation techniques such as word deletion, substitution,

and reordering [129, 130]. Moreover, in most cases, (xi,x j) are collected from supervised datasets.

However, when it comes to malware binaries, data augmentation is inherently difficult because of

their distinct nature, and incoming malware data is mostly unlabeled.

In this work, we consider the evolution of IoT binaries over the years as a theoretically and

technically desirable augmentation strategy to construct “views” of the input. As described in Figure

4.3, IoT malware variants can be considered as “evolutionary augmented views” of a common

ancestor x (e.g., first Mirai variant to appear), while T can denote possible evolutionary trajectories

characterized by changing features and mutations (Figure 4.3). Much as xi and x j can be seen as

two malware variants sampled from the same family at different times. For instance, xi can be a

variant of the Mirai family that have appeared in 2018, while x j can be a variant of the same family

that have appeared in 2020.

The key idea is that properties of the ancestral sequence will be preserved in both descendants

(i.e., views). Therefore, by training a contrastive encoder to project them to nearby locations in the

latent space, their proximity is ensured to correspond to similar malicious functions, even without

explicit labels.

In general, contrastive learning encourages “agreement” between important features across evo-

lutionary views. In contrast, our contrastive objective aims at identifying factors that contribute

62

instead to the “disagreement” between evolutionary views. In particular, while the existing con-

trastive schemes act by pulling all augmented samples toward the original sample, we suggest to

additionally push the samples with shifting transformations away from the original. Namely, instead

of considering evolved variants as positive to each other, we attempt to consider them as negative

if they belong to the same malware family. The aim is to learn robust semantic representations that

can capture small input variations between variants belonging to the same class.

Learning a good alignment for positive pairs. Considering the unsupervised nature of our

dataset, an effective solution is to take a collection of input samples {xi}N
i=1 and use x+i = xi. The key

idea is that the evolutionary trajectories or mutations within the same malware family are unknown,

specially since ELF binaries do not contain a timestamp of when they were compiled as opposed to

generic malware. Therefore, one might rely on public forum discussions or on the VirusTotal first

submission time as ground truth. However, online discussions are time-consuming and difficult to

track and might not contain accurate or reliable information. On the other hand, anti-virus engines’

scan time of the binaries might not coincide with the time they actually appeared in the wild, as

malware can go a long time before being detected.

Hence, one way to identify the evolved samples is to construct two different embeddings as

“positive pairs” by feeding the same sample twice to the encoder and getting two embeddings that

only differ in hidden dropout masks, found in Transformers [115]. We denote zh
i = fθ (xi,h), where

h is random mask for dropout. Thus, the distance between these two embeddings will be minimized,

while the other embeddings in the same batch will serve as “negative” examples, and the model will

predict the positive one among negatives. By contrasting the rest of the embeddings, the model will

learn to discriminate between samples coming from the same class, by maximizing the distance to

the shifting embeddings instead of minimizing it.

Predicting the input sentence itself with only dropout used as noise has been shown to greatly

outperform training objectives such as predicting next sentences, discrete data augmentation (e.g.,

word deletion and replacement) and even matches supervised training objectives [115]. We verify

the effectiveness of our contrastive objective for the detection of in-class evolution in our experi-

mental results in Section 4.5.3, by observing how samples that are closer to each other, form tighter

groups in the latent space, making it easier to separate/distance them from other variants, as well as

63

by comparing with previous works.

4.4.4 Understanding Evolutionary Changes

In this section, we try to elaborate on theinterpretability by comprehending what has caused a

sample to drift from its neighbors over time. Once our contrastive module has identified groups

of evolving variants, it will output a label for each sample, representing the cluster to which it

belongs. Given the fact that the model’s performance is very tightly coupled with the representations

used (i.e., assembly instructions), and while such raw features are very informative for the learning

model, there are often not very human-interpretable by themselves.

Therefore, to understand the evolutionary characteristics of evolving IoT malware, we perform

a strings-based similarity analysis on the binary samples, which would allow us to attribute the

variant changes to more interpretable features. As such, we utilized reverse-engineering techniques

and static malware analysis to extract meaningful strings that provide clues about the suspect mal-

ware and its functionalities (e.g., attack commands, target devices, malicious payloads, C&C IP

addresses, unique strings, etc.). In particular, we use regular expressions to obtain special textual

indicators such as IP addresses associated with possible adversarial hosts, and distinctive keywords

associated with unique variants or known malicious commands to search for target devices, ex-

ploited vulnerabilities and attack operations. Listing 2.2 represents an example of the extracted

strings from a malware sample, which is designed to download and execute a malicious file (bins.sh)

from a possible adversarial C&C server (http://AnonIP/).

We also focus on studying the relationships and cross-family agreement between samples, which

might be a reflection of reused coding practices among IoT malware families, or a case of mislabel-

ing by anti-virus engines which is quite probable [52, 131].

4.4.5 Evaluation of Instruction Embeddings

We evaluate the quality of our generated cross-architecture code embeddings in terms of their

ability to preserve useful semantics information as compared to other baselines. Our qualitative

analysis consists of showing that our code embedder can be efficiently used as a semantic search

64

Search

Engine

Search

Query
Encoder Query Vector

Sentence

Embeddings

Search

Results Most similar variants

Figure 4.4: Overview of our semantic code search engine.

engine, as shown in Figure 4.4, for finding known variants in our unsupervised dataset with high pre-

cision, as well as learning semantic information about syntactically different instructions. In addi-

tion, we assess the effect of our well-balanced normalization process in reducing out-of-vocabulary

instructions when presented with previously unseen and diverse instructions sets. All evaluation

results are presented in Section 4.5.5.

4.5 Results

In this section, we examine the impact of the rapid evolution of IoT malware on the performance

of classifiers over time, followed by an assessment of the impact of contrastive learning on the

detection of in-class drifting IoT malware binaries.

4.5.1 Data Collection

In this paper, we leverage well-known online malware repositories such as VirusShare [51] and

VirusTotal [9] along with a specialized IoT honeypot (IoTPOT [6]) to obtain 74,429 IoT malware

samples that were detected between 2018 and 2021. Detailed information about the collection

process, data cleaning steps, as well as a general description of the dataset is provided in the Back-

ground Section 2.2.5.

65

4.5.2 Observing Concept Drift

In a real-life setting, it is unwise to assume that the data is independent and identically dis-

tributed (i.i.d.) [85], therefore, it is most likely that the model will become obsolete when the dis-

tribution of incoming data at test-time is different from that of training data. In order to confirm the

presence of evolving samples in our dataset, we observe whether such samples impact the accuracy

of classifiers. Particularly, we analyse the performance change (i.e., decrease) of a model over time

when predicting newly collected data.

To do this, we adopt a sliding time window approach [132] where we begin by splitting the

dataset into a training subset Tr with a time window size Wr, and a testing subset Ts with a time

window size Ws. For a realistic setting, we enforce the following constraints: (1) Ws >Wr to evaluate

the long-term performance and robustness to decay of the classifier, (2) every window size is split

into equal time slots of size z, to allow for a considerable and equal number of samples in each

test window [ti, ti + z], (3) all the samples in Tr must be precedent to the ones in Ts; violating this

constraint will bias the evaluation by including future knowledge in the classifier, and (4) all the

evaluations must assume that labels yi of the samples si ∈ Ts are unknown, even though we have

their labels.

Figure 4.1 captures the performance of a classifier C trained on Tr and tested for each time

frame [ti, ti + z] of the testing set Ts. We chose a multilayer perceptron (MLP), which is a class of

feed-forward artificial neural network (ANN), as our classifier C. Our Tr consists of a random set

of samples that have been first scanned by AV engines during the first three months of the year

2018. We first test our classifier on a smaller set of samples which the classifier has not been trained

on. Then we test it on samples which have been scanned during subsequent intervals of three

months until 2019. As observed in Figure 4.1, the classifier performs well when tested with data

that appeared during the same time interval (training period), with an average accuracy above 96%.

Subsequently, when we start adding previously-unseen testing samples that have appeared in later

months, the overall accuracy significantly drops to below 50%. This is indicative of the changing

nature of variants within the same class, and as such, it is necessary to detect such drifting samples.

It is important to note that several mitigation approaches [90, 92] have been proposed to reduce

66

the performance decay of classifiers when tested on previously-unseen or drifting data, such as

retraining on different timestamps, or quarantining drifting samples and retraining the classifier

solely on them. Moreover, as our objective is not to test the robustness of classifiers over time nor

propose mitigation approaches, we will leave further evaluation of various classifiers and different

datasets for future work.

4.5.3 Impact of Contrastive Objective

To examine the impact of using contrastive learning to identify drifting variants within the same

class, we first evaluate the quality of the obtained clusters of variants. A good clustering method

will produce high quality clusters in which the intra-cluster similarity is low and the inter-cluster

similarity is high. The Silhouette index is a measure of how similar an object is to its own cluster

(cohesion) compared to other clusters (separation) [133]. A score s ∈ [−1,1] is calculated for

each object, where ‘1’ indicates that this is a perfectly clustered object. Values near 0 indicate

overlapping clusters while negative values generally indicate that a sample has been assigned to the

wrong cluster.

Given an object xi of a cluster C, the silhouette score is calculated using the following equation:

s(xi) =
b(xi)−a(xi)

max{a(xi),b(xi)}
, (4.2)

where a(xi) is the average distance or dissimilarity of an object xi to all other objects in the same

cluster, and b(xi) is the minimum average dissimilarity of xi to all other clusters that are not its

cluster. The final index is obtained by averaging the scores for all objects in the dataset. Figure 4.5

is a diagrammatic representation of the above-mentioned silhouette coefficient formula.

C1

C2

b(xi) a(xi)

Figure 4.5: A diagrammatic representation of the silhouette coefficient formula s(xi). C1 and C2 are
clusters.

67

Figure 4.6: t-SNE visualization of learned representations on 6,000 randomly selected Mirai sam-
ples with (a) Standard embedding, and (b) Contrastive Embedding.

To illustrate the impact of contrastive learning objective, we compare the learned represen-

tations on 6,000 randomly selected Mirai samples using Standard and the proposed Contrastive

Embedding. As shown in Figure 4.6, we empirically visualize the representations learned by our

contrastive module and their distinctive separation in the latent space. We use t-SNE [134], which is

a non-linear dimensionality reduction technique for visualizing data in a low 2-dimensional space.

We observe that the contrastive loss leads to better variants separation, making it easier to distance

samples from others. In fact, the contrastive objective leads to better data clustering than the stan-

dard embedding model, with a high average silhouette score (about 0.89) for the total number of

identified clusters. Moreover, we observe fewer overlapping samples when comparing Figures 4.6.a

and 4.6.b and a clearer distinction between them. It is interesting to see the dense pink cluster in

Figure 4.6.a further dissected when the contrastive objective is applied in Figure 4.6.b. In fact, our

strings-based analysis in Section 4.5.4 confirms the presence of two similar variants in this cluster

that only differ by one additional exploit targeting GPON routers. This demonstrastes the effective-

ness of EVOLIoT in distinguishing fine-grained modifications in evolved variants.

Comparison with State-Of-Art (CADE [95]). We conduct an experiment to evaluate the per-

formance of the open-sourced CADE [95] when applied to our IoT malware samples. The authors’

68

Table 4.1: Drifting detection results on the Drebin and IoT malware datasets when comparing
CADE with a baseline vanilla autoencoder (AE).

Method
Drebin (Avg) IoT (Avg)

Precision Recall F1 Norm. Effort Precision Recall F1 Norm. Effort Insp. Count

Vanilla AE 0.63 0.88 0.72 1.48 0.53 0.99 0.69 2.54 22050

CADE 0.96 0.96 0.96 1.00 0.84 0.80 0.82 1.35 9941

objective is to detect and interpret drifting samples from previously unseen malware families by

similarly leveraging the power of contrastive learning. By design, CADE uses an auto-encoder

augmented with contrastive loss to learn compressed representation of the training data. The first

term of their contrastive loss minimizes the reconstruction loss of the auto-encoder while the second

term minimizes the Euclidean distance between two samples in the latent space, if they are from the

same class. To evaluate the drifting sample detection module, the authors pick one of the families

as the previously unseen family, while the other families are split into training and testing sets. In

this respect, we select three IoT malware families (Mirai, Gafgyt, Tsunami) to form a balanced

dataset of their assembly code artifacts, and pick one of the 3 families as the unseen. As such, the

unseen family is not available during training and the goal is to correctly identify samples belonging

to the hidden family as drifting samples in the testing time. Given a ranked list of detected samples,

CADE calculates three evaluation metrics: precision, recall and F1 score. In addition to these met-

rics, CADE ranks drifting samples based on their distance to the nearest centroids to focus on those

that are furthest away.

As shown in Table 4.1, CADE is compared with a baseline vanilla autoencoder (AE) without

contrastive loss. Additionally, we evaluate the performance of CADE when applied to IoT malware

samples. For each experiment (choice of previously unseen family), we report the highest F1 score

for each model. The “inspecting effort” is a metric that refers to the total number of inspected

samples to reach the reported F1 score, normalized by the number of true drifting samples in the

testing set. A higher inspecting effort means that more analysis is required to manually verify if a

sample truly belongs to the unseen family in the testing set.

For each evaluation metric, we report the mean value across all settings, as well as the normal-

ized inspecting effort. As summarized in Table 4.1, for the IoT malware dataset, the number of

69

samples (“inspection count”) that need to be validated by security analysts as truly belonging to

the previously unseen family is very high (compared to 600 inspected on Drebin by the authors),

yet still lower with CADE, which confirms the importance of contrastive learning. Moreover, the

obtained results strongly suggest that CADE performs well in most settings (i.e., using the Drebin

dataset), but not as well when applied to the IoT malware dataset. This is a limitation of CADE,

especially when testing their technique on malware mutations/variants within the same family. As

such, CADE is primarily focused on Type A concept drift (i.e., introduction of a new class in a

multi-class setting), while we address its limitations in identifying drifting samples that are from

existing classes (i.e., Type B: in-class evolution).

Further Comparison. Several invaluable works have been proposed for clustering IoT malware

families using static and dynamic features [46], as well as for dissecting and in-depth studying a

singular family such as Mirai [2, 7]. Yet, to the best of our knowledge, we are among the first to

detect in-class drifting IoT malware binaries and study their mutations over time. In fact, Cozzi

et al. [44] proposed a code-level clustering and function similarity solution to draw the lineage of

IoT malware families. By design, the authors leveraged a popular off-the-shelf binary diffing tool

to perform a detailed code similarity analysis on 93k samples that have appeared between 2015

and 2018, and discovered shared components across different families. While a direct comparison

between our works is not feasible, it is clear that their approach is sophisticated and limited by

the stripped nature of IoT malware binaries, and by the scalability and direct application of binary

diffing tools to IoT binaries.

Moreover, multiple approaches on binary code similarity have been proposed to study malware

lineage inference [44,69,75,77,78], however they are only applied in the context in which they were

developed and not on Linux-based IoT malware. If they do, they only support the MIPS and ARM

architectures. In addition, most proposed solutions compute similarity between binaries from their

execution traces [69, 114], which are too-coarse grained for variant identification, or at the function

or CFG levels [44,77,80,81,126], which depend on the ability of finding the start of functions. This

is inherently difficult in the context of IoT due to the stripped nature of binaries. Cozzi et al. [44]

try to circumvent this by propagating known symbols in unstripped binaries to stripped binaries.

70

4.5.4 Characterizing Variant Changes

Using our contrastive objective, we identified 44 variants of Mirai and 11 variants of Gafgyt,

as highlighted in Figure 4.7. However, it is still unclear how the same family evolved over time, what

makes these variants different, and whether or not samples from different families are connected.

To answer these questions, we take a step further by extracting and investigating their strings, which

will shed more light on the common/differing characteristics of the identified variants.

Given the extracted strings, we perform a string-based similarity analysis on the identified mal-

ware samples. As illustrated in figure 4.7, we draw the connectivity plot for 10,000 Mirai and

3,000 Gafgyt samples. The darker edges are indicators of a high similarity between the samples.

By looking at the detection time of the samples, we noticed that the older Mirai variants are likely to

share more resemblance and appear at dense and more central areas, whereas newer Mirai variants

are growing apart and appear farther at the edges. In addition, it is clearly observed that the Mirai

variants are more closely connected, forming more visibly connected regions. On the other hand,

Gafgyt samples seem to be less connected (lower similarities) and thus, placed further apart. We

proceed by understanding these differences and the threats associated with each identified cluster of

variants.

Among the three most populated and closely related Mirai clusters (#1, #2 and #3), we found

7,124 samples, that were first scanned in 2018, exploiting two vulnerabilities affecting GPON

routers. When these two vulnerabilities are used in conjunction, they enable the execution of com-

mands sent by an authorized remote attacker to a vulnerable device. What makes these kindred

clusters separate, is their expansion to target a vulnerability in Huawei HG532 routers (#2) and Net-

gear routers (#3). As such, among samples in Cluster #9, we found 97 attributed to the Apep botnet,

which aside from dictionary attacks via telnet, also spread through infected Huawei routers, which

explains why they are closely-connected to Cluster #2. By investigating further, we also uncovered

samples belonging to the Xjno variant in the same cluster, using the same command & control URL

as the Apep variant. This stands to confirm that EVOLIoT identifies fine-grained characteristics

shared among different samples.

In addition, we found 1,917 samples spread across Clusters #5 and #11, taking advantage of a

71

Figure 4.7: A weighted graph constructed using UMAP [5] representing the connectivity between
the strings embeddings of (a) 10,000 Mirai and (b) 3,000 Gafgyt samples with highlighted nodes
that represent 11 variants identified by EVOLIoT (§4.5.4).

ThinkPhP vulnerability which allows them to breach web servers using the PHP frameworks via

dictionary attacks on default credentials to gain remote access to them. Among those in Cluster

#11, we detected a more recently scanned variant, using a new exploit to infect Huawei devices

with malware named after the recent Covid pandemic. Moreover, we found 7 samples belonging to

the Miori variant in Cluster #8 spreading through a remote code execution in ThinkPHP. They start

by contacting other IP addresses using Telnet, while also listening on port 42352 for commands

from their C2 servers. Next, they verify whether a targeted device was successfully infected by

sending the command “/bin/busybox MIORI”. Interestingly, we found one evolved Miori sample

in Cluster #11 also downloading a new malicious payload named “corona3.sh” and killing a list

of competing botnets to ensure persistence. As such, by grouping together covid-related samples in

Cluster #11, EVOLIoT sheds light on the rapid evolution of IoT malware towards exploiting global

events for malware propagation and distribution. Additionally, Cluster #22 contains complementary

samples to Cluster #5, belonging to the Yowai variant and spreading using the same ThinkPHP

exploit, however, we found references to commands for killing competing botnets that might have

infected the targeted device. Among their kill list are the names of 58 variants and the majority are

72

unknown to us. This proves the existence of a multitude of (unknown) IoT variants that attackers

are familiar with, which gives them a bigger advantage over the control of the next wave of cyber

attacks.

Furthermore, while 70 samples belonging to the Omni variant were found in Cluster #1 targeting

GPON routers, samples belonging to the same variant were found in a further away cluster, #27.

This is because they are leveraging a total of 11 vulnerabilities associated with multiple target de-

vices. While the identified vulnerabilities are publicly known, this is the first variant using all 11

exploits in conjunction. This evolved campaign of Omni variants is preventing further infection of

infected devices by dropping packets received on 15 different ports using the iptables command. In-

terestingly enough, this variant shares the same IP address for downloading payloads and reporting

to the C&C server with 194 Gafgyt samples, which explains why they are nearly clustered. This is

either a case of mislabeling or an indication that the same bot master is controlling two independent

IoT campaigns concurrently. By looking closely at them, we found that they share the same exploits

as the Mirai Omni variant except for an OS command injection in the UPnP SOAP interface which

renders 5 types of D-Link routers vulnerable. However, newer samples of this Gafgyt variant de-

tected in 2019 have incorporated a command injection exploit targeting D-Link DSL-2750B routers.

As such, while Mirai and Gafgyt might not share the same codebase, they still exploit and target

common devices, using similar attack methods and reporting to the same C2.

Moreover, we performed the same analysis on some Mirai samples that have been clustered on

the edges, further than the rest, and found that they have been first scanned by VirusTotal between

2020 and 2021. We found 38 samples in Cluster #19 that seem to be spreading by hijacking a

vulnerability in digital video recorders (DVR) provided by KGUARD, as well as connecting to

their C2 via the Tor-Proxy protocol using 7 different ports. We found embedded URLs with the

".onion" extension. Out of curiosity, we looked at Cluster #29 represented by the singly connected

node in Figure 4.7.a, and found indications of the string “aurora”. EVOLIoT has pushed it further

than other Mirai variants because it is spreading using a 0day vulnerability in the Ruijie (NBR700)

routers. Interestingly, that same vulnerability is being exploited by an older Mirai variant which has

appeared two months earlier, which explains the single connection edge. However, the vulnerability

exploit payload in the aurora variant uses many empty variables with confusing names to distract

73

security analysts. It additionally has a mechanism to check whether it is running in a sandbox

environment, by verifying the path and filename where the sample is located. This is an indication

that Mirai variants are growing to be more resilient. In addition, while the sample is not packed,

a lot of sensitive information are hidden and seem to be encrypted using a different algorithm than

Mirai’s simple XOR encryption.

4.5.5 Evaluation

To evaluate the quality of our instructions embeddings, we first assess the effectiveness of our

model in learning code semantics by finding semantically similar samples in our dataset, compared

to other approaches. Then, we evaluate the quality of our cross-architecture instructions in pre-

serving semantics versus syntactics. Finally, we assess the power of normalization in reducing the

instructions vocabulary size while capturing code semantics with tokens that hold rich information.

Semantic-Search Engine. To evaluate the quality of our obtained embeddings, our first task

aims at finding the most semantically related code from a collection of candidate codes. This would

allow us to verify the effectiveness of our model in learning code semantics information. As such,

we relied on our strings-based analysis §4.5.4 to build our own ground truth data for evaluation.

This dataset consists of a 587 samples of Mirai belonging to 6 different variants: Omni (70), Apep

(97), Yowai (37), Satori (72), Dark (91), Josho (220). To identify samples that belong to the same

variant class, we randomly pick a sample per variant class to encode it using our embedding model

and retrieve all other semantically similar code embeddings in our dataset. To do so, we leverage

FAISS [135] with Approximate Nearest Neighbor. FAISS uses principal component analysis to

reduce the number of dimensions in the vectors, to reduce the computation when comparing a query

vector against already embedded vectors. Next, it partitions the data into similar clusters to compare

the query vector against these partition/cluster centroids. Once the nearest centroid is found, only

full vectors within that centroid are compared to the query, and all others are ignored. Hence, the

complexity of the required search area is significantly reduced.

We evaluate the performance of our search engine with varying retrieval thresholds to inspect

whether true positives are ranked at the top. We sort the returned results and evaluate each of them

in sequence. We collect recall and precision at top-k position (k = 10). Recall is the fraction of the

74

documents that are relevant to the query that are successfully retrieved, while the precision is the

fraction of the documents retrieved that are relevant to the user’s information need. It is trivial to

achieve recall of 100% by returning all documents in response to any query. Therefore, recall alone

is not enough but one needs to measure the number of non-relevant documents also, for example by

computing the precision. In fact, since each query can have multiple relevant results, we use Mean

Average Precision (MAP) as the metric to evaluate the code search on our embeddings dataset. The

mean average precision for a set of queries is the mean of the average precision scores for each

query, which can be calculated as MAP =
∑

Q
q=1 AveP(q)

Q , where Q is the number of queries in the set

and AveP(q) is the average precision for a given query q. We use 4 baselines for comparison of the

evolution results (Word2vec [136], Doc2vec [137], Code2vec [138], and Bi-LSTM [139]).

We use the following baselines for comparison:

• Word2vec [136] is a popular technique to learn word embeddings using shallow neural net-

works. The continuous bag-of-words model (CBOW) is a method of word2vec that uses

words around a target word as context. In our case, we compare by considering each token

(opcode or operand) as word and instructions around each token as its context. DeepBin-

Diff [84] and Asm2vec [80] both leveraged a variation of word2vec based on CBOW and

Paragraph Vector Distributed Memory (PV-DM) respectively, to learn embeddings of assem-

bly functions represented as a control flow graphs (CFGs).

• Doc2vec [137] creates a numeric representation of a document of words, regardless of its

length. Distributed Bag of Words (DBOW) is doc2vec algorithm where the paragraph vectors

are obtained by training a neural network on the task of predicting a probability distribution of

words in a paragraph given a randomly-sampled word from the paragraph. Here, a paragraph

represents a code snippet or a basic block of assembly instructions.

• Code2vec [138] is a model that learns distributed representations of code called code embed-

dings, to evaluate its performance against the task of semantically searching code snippets. It

decomposes code fragments to a collection of paths using Abstract Syntax Trees (ASTs) and

learns the atomic representation of aggregated paths.

• Bi-LSTM [139] is a bidirectional sequence processing model that consists of two LSTMs:

75

Table 4.2: Results of the semantic search retrieval using different baselines as code embedders.

Model Performance (MAP)

Word2vec 0.36
Doc2vec 0.39
Code2vec 0.57
Bi-LSTM 0.74
EVOLIoT 0.89

one taking the input in a forward direction, and the other in a backwards direction. Bi-LSTMs

effectively increase the amount of information available and hence improve the context of a

word. We treat code simply as sequences of tokens and use the neural machine translation

(NMT) baseline (i.e. a 2-layer Bi-LSTM) proposed in [82] for a cross-architecture basic-

block comparison.

It is important to note that several other solutions [77, 80, 126] have been proposed to analyze bi-

nary code similarity and semantic code retrieval, however, we cannot directly compare them to our

approach since they mainly rely on the availability of the source code along with binary functions

and/or extracted control flow graphs, which are not considered in our approach.

Besides the above-mentioned baselines that rely on code embeddings, we also manually select

features to compare with basic-block feature-based machine learning classifiers such as Gemini [81]

and Genius [140]. We compare our embedding model to the SVM classifier using 16 manually

selected features (as detailed in Table 4.3 from binary disassembly (e.g., number of instructions,

average basic blocks, etc.). We leverage an ELF binary analysis service developed by [6] which

evaluates ELF binaries in a multi-architecture sandboxing environment using static and dynamic

malware analysis techniques to extract these features.

As shown in Table 4.2, we were able to efficiently retrieve, validate, and label using our semantic

search engine, previously unknown variants in our dataset with a mean average precision of 89%.

This confirms that our embedding model generate semantically similar/relevant code embeddings,

and outperforms different baselines. Moreover, our model outperforms the SVM classifier trained

on the manually selected features, and achieves much higher AUC values, as illustrated in Figure

4.8. This is because manually selected features cause significant information loss in terms of the

76

Table 4.3: List of manually extracted features from binaries disassembly using Padawan ELF tool
[6].

Feature Description

average_bytes_function Average size in bytes of a function
average_basic_blocks Average number of basic blocks with respect to functions
average_cyclomatic_complexity Average cyclomatic complexity with respect to functions
average_location Average lines of code with respect to functions
branch_instruction Number of branch instructions
bytes_function Total size in bytes of the functions
call_instructions Numberof call instructions
function_location Percentage of instructions belonging to functions
indirect_branch_instruction Number of indirect branch instructions
max_basic_blocks Max basic blocks
max_cyclomatic_complexity Max cyclomatic complexity
num_funcs Number of functions detected
percent_load_covered Percentage of covered load segment
percent_text_covered Percentage of covered text section
syscall_instructions Number of syscall instructions

contained instructions and the dependencies between these instructions, while our model precisely

encodes and preserves the block semantics across different variants.

Cross-Architecture Instruction Embeddings. In this section, we present our results from

qualitatively analyzing the instruction embeddings for different architectures. Zuo et al. [82] have

shown that instructions compiled for the same architecture cluster together while those compiled

from a different architecture cluster far from each other. This is due to the syntactic variations that

an architecture introduces, which creates further challenges in the context of IoT due to the diverse

nature of cross-platform devices.

Our objective is to evaluate the quality of our cross-architecture instruction embedding model,

by picking variants that have been clustered together for their semantic relationship, and analyzing

their target architectures. For our embedding model to be effective, two semantically similar yet

syntactically different binaries should still be clustered closely in the space. As such, we first use

t-SNE [122] to plot the instruction embeddings in a two-dimensional plane. As shown in Figure 4.9,

our analysis of clusters 1, 3, and 14 show that semantically related samples are clustered together

even if they have different target instruction architectures. In fact, cluster 1 contains semantically

77

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Our model, AUC=90.3%
SVM, AUC=63.6%

Figure 4.8: Comparing ROC and AUC performance results.

similar samples targeting a variety of CPU architectures, while clusters 3 and 14 are only reserved to

the top two most popular architectures among IoT devices. Such variability is explained by evolving

samples that are expanding the pool of potential devices which can be compromised.

Effectiveness of Well-balanced Normalization. A preprocessing normalization step is applied

to avoid an out-of-vocabulary problem, while preserving code semantics instructions with tokens

that hold rich information. To evaluate the impact of instructions normalization, we seek to under-

stand whether the instructions vocabulary size is affected with or without pre-processing. As such,

we disassembled 4,385 Mirai variants that have been scanned in 2019 and counted the total number

of assembly instructions: 80,299,331. Then, we divided the corpus in 10 equal sized parts to see

how the vocabulary size grows in terms of the percentage of analyzed corpus. As clearly observed

in Figure 4.10, the vocabulary size grows significantly and relatively fast without pre-processing,

while remains relatively small when pre-processing is applied.

As shown by the analysis results, EVOLIoT can be leveraged as a semantic search engine for

finding semantically similar variants while outperforming previous approaches, in addition to pre-

serving semantics in cross-architecture embeddings and reducing out-of-vocabulary instructions.

78

1

14 3

Figure 4.9: Visualization of syntactically different yet semantically similar embeddings belonging
to clusters 1, 3, and 14.

4.6 Limitations and Future Work

This work has a number of limitations, which may hamper the generalizability and the validity

of the reported findings. For instance, we rely on the fact that IoT malware samples are still largely

unobfuscated as compared to generic malware. However, we were unable to extract useful strings

from around 23% of the analyzed samples. Despite that, our analysis showed that the majority of

these samples did not employ sophisticated obfuscation, thus, can be de-obfuscated using off-the-

shelf tools (e.g., UPX [100]). Furthermore, due to the lack of fine-grained IoT malware labels and

lack of well-designed ground truth datasets for evaluation, we built our own ground truth to evaluate

the proposed semantic search engine (§4.5.5). As such, while the dataset might be relatively small

and not representative, it represents a reliable dataset since the samples were carefully examined

and labelled manually through our strings-based analysis. For future work, we intend to address

the above mentioned limitations by investigating different techniques for malware deobfuscation

and unpacking to account for a more representative sample of IoT malware while extending the

work to non-IoT malware space, which observes more obfuscation. Further, we will combine our

79

0 10 20 30 40 50 60 70 80 90 100
Percentage of corpus used (%)

0

2

4

6

V
oc

ab
ul

ar
y

si
ze

 (x
10

^5
) 1e5

without pre-processing
with pre-processing

Figure 4.10: Visualization of the growth of the vocabulary size when the corpus size increases.

manual analysis with information obtained from online threat repositories to obtain a more repre-

sentative ground truth that can improve our evaluation outcomes. Finally, the unveiling of diverse

IoT malware variants inspires us to study in future work the competition and coordination among

IoT botnets in the wild, which is still underexplored in literature.

4.7 Summary and Concluding Remarks

In this work, we present a robust, accurate, and semantic-aware assembly instructions represen-

tation generator, EVOLIoT, which leverages the evolution of IoT binaries as effective augmentation

strategy for contrastive learning. Our approach achieves both efficiency and accuracy for cross-

architecture assembly instructions search without relying on any expensive (e.g., CFG) or manually

selected features. Additionally, we addressed the problem of in-class concept drift by detecting

evolving IoT malware variants and interpreting the reason behind their drift. Further, we compre-

hensively evaluate the effectiveness and robustness of our proposed approach with a large corpus of

IoT malware data. Our findings shed light on the evolving IoT threat landscape characterized by the

ever-lasting Mirai variant, which is spreading by using new undisclosed vulnerabilities, persisting

80

by killing other bots and looking out for sandbox environments, encrypting its communication using

Tor proxies, and incorporating encryption algorithms.

81

Chapter 5

Conclusion and Future Work

Despite their benefits, the insecurity of the Internet of Things (IoT) devices has turned them

into attractive targets for orchestrated large-scale cyber attacks (e.g., DDoS). The rising number

of malware-driven cyber attacks in recent years poses a major threat to the IoT realm. Moreover,

the complex relationship and similarities in terms of code reuse among IoT malware variants bring

several challenges for malware analysis including labeling, provenance, triage, lineage analysis, as

well as family and authorship attribution.

We dedicate this thesis to overcome the limitations of malware family attribution and inter-

family classification due to the evolutionary nature of IoT malware. Considering the peculiarities of

the IoT paradigm and the various challenges associated with it, we successfully achieved the latter

by employing deep-learning based approaches and static malware analysis techniques. In particular,

we addressed the lack of empirical data about IoT malware by obtaining malware binaries collected

by an IoT-tailored honeypot.

Consequently, we are among the first to introduce a holistic, multi-level approach for analyzing

malware by combining the benefits of static malware analysis with deep learning classification tech-

niques. While our analysis results indicate the effectiveness of our proposed classification model for

attributing malware samples to known families, we also leverage the multi-level classifier to predict

the labels of unknown malware samples that have not been detected/labeled by major AV vendors.

In addition to building an effective learning based-malware classifier against the spread of IoT

malware, we extend this thesis to build a better understanding of emerging IoT malware variants.

82

Specifically, we identify when the model shows signs of aging by which it fails to effectively rec-

ognize new variants. Furthermore, we utilize reverse-engineering and static malware analysis tech-

niques to build a cross-architecture code-based analysis that can capture a binary’s malicious and

evolutionary essence. Particularly, we leverage the power of contrastive learning and the cutting-

edge BERT Transformer model to deeply infer and compare the underlying fine-grained code se-

mantics of a binary without the need for expensive target labels. This is essential in a security

application where access to labeled data (e.g., malware) is challenging. Subsequently, we leverage

our interpretable strings-based analysis to address the evolution of IoT malware binaries by corre-

lating the observed drifting variants into groups with common malicious objectives and functional

differences.

As for future work, we aim to utilize our drift detector and explanation module as building

blocks to preparing a robust learning-based application for the open-world environment. Moreover,

our multi-level classifier is designed based on the assumption that the training set does not contain

mislabeled samples (or adversarial samples). Hence, we defer to future work robustifying our sys-

tem against poisoned malicious labels. Furthermore, the evolving nature of IoT malware sheds light

on the growing number of obfuscation and encryption in the IoT malware space, which motivates to

investigate in the future different techniques for malware deobfuscation and unpacking to account

for any hidden information that might hinder our analysis. Finally, the unveiling of evolving/drifting

IoT malware variants inspires us to put some effort in studying the competition and coordination

among IoT botnets in the wild, to understand the ongoing battle over the Internet of Things fought

by Mirai and its many siblings.

83

Bibliography

[1] M. S. C. Release, “https://krebsonsecurity.com/2016/10/

source-code-for-iot-botnet-mirai-released/,” 2016.

[2] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran, Z. Durumeric,

J. A. Halderman, L. Invernizzi, M. Kallitsis et al., “Understanding the mirai botnet,” in

USENIX Security, 2017.

[3] S. U. Pascual. (2007, October) Layout of an elf file. Retrieved from https://commons.

wikimedia.org/wiki/File:Elf-layout--en.svg.

[4] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for contrastive

learning of visual representations,” in International conference on machine learning. PMLR,

2020, pp. 1597–1607.

[5] L. McInnes, J. Healy, and J. Melville, “Umap: Uniform manifold approximation and projec-

tion for dimension reduction,” arXiv preprint arXiv:1802.03426, 2018.

[6] E. Cozzi, M. Graziano, Y. Fratantonio, and D. Balzarotti, “Understanding linux malware,” in

2018 IEEE symposium on security and privacy (SP). IEEE, 2018, pp. 161–175.

[7] P.-A. Vervier and Y. Shen, “Before toasters rise up: A view into the emerging iot threat

landscape,” in International Symposium on Research in Attacks, Intrusions, and Defenses.

Springer, 2018, pp. 556–576.

84

https://krebsonsecurity.com/2016/10/source-code-for-iot-botnet-mirai-released/
https://krebsonsecurity.com/2016/10/source-code-for-iot-botnet-mirai-released/
https://commons.wikimedia.org/wiki/File:Elf-layout--en.svg
https://commons.wikimedia.org/wiki/File:Elf-layout--en.svg

[8] Y. M. P. Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama, and C. Rossow, “IoTPOT:

Analysing the Rise of IoT Compromises,” in 9th USENIX Workshop on Offensive Technolo-

gies (WOOT 15), Washington, D.C, USA, 2015.

[9] “VirusTotal.” [Online]. Available: https://www.virustotal.com/

[10] M. Dib, S. Torabi, E. Bou-Harb, and C. Assi, “A multi-dimensional deep learning framework

for iot malware classification and family attribution,” IEEE Transactions on Network and

Service Management, 2021.

[11] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional

transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018.

[12] C. Cimpanu. (2018, March) Hajime Botnet Makes a Comeback With Massive Scan

for MikroTik Routers. Retrieved from https://www.bleepingcomputer.com/news/security/

hajime-botnet-makes-a-comeback-with-massive-scan-for-mikrotik-routers/.

[13] J. Vijayan. (2018, January) Satori Botnet Malware Now Can Infect Even More

IoT Devices. Retrieved from https://www.darkreading.com/vulnerabilities-threats/

satori-botnet-malware-now-can-infect-even-more-iot-devices.

[14] Z. Whittaker. (2017, April) Homeland Security warns of ’BrickerBot’ malware that de-

stroys unsecured internet-connected devices. Retrieved from https://www.zdnet.com/article/

homeland-security-warns-of-brickerbot-malware-that-destroys-unsecured-internet-connected-devices/.

[15] P. Muncaster. (2014, October) Massive Qbot Botnet strikes 500,000 Machines

Through WordPress. Retrieved from https://www.infosecurity-magazine.com/news/

massive-qbot-strikes-500000-pcs/.

[16] A. Anubhav. (2017, July) Agile QBot Variant Adds NbotLoader Netgear Bug in Its New

Update. Retrieved from https://blog.newskysecurity.com/agile-122bf2f4e2f3.

[17] ——. (2018, January) Masuta : Satori CreatorsâĂŹ Second Botnet Weaponizes

A New Router Exploit. Retrieved from https://blog.newskysecurity.com/

masuta-satori-creators-second-botnet-weaponizes-a-new-router-exploit-2ddc51cc52a7.

85

https://www.virustotal.com/
https://www.bleepingcomputer.com/news/security/hajime-botnet-makes-a-comeback-with-massive-scan-for-mikrotik-routers/
https://www.bleepingcomputer.com/news/security/hajime-botnet-makes-a-comeback-with-massive-scan-for-mikrotik-routers/
https://www.darkreading.com/vulnerabilities-threats/satori-botnet-malware-now-can-infect-even-more-iot-devices
https://www.darkreading.com/vulnerabilities-threats/satori-botnet-malware-now-can-infect-even-more-iot-devices
https://www.zdnet.com/article/homeland-security-warns-of-brickerbot-malware-that-destroys-unsecured-internet-connected-devices/
https://www.zdnet.com/article/homeland-security-warns-of-brickerbot-malware-that-destroys-unsecured-internet-connected-devices/
https://www.infosecurity-magazine.com/news/massive-qbot-strikes-500000-pcs/
https://www.infosecurity-magazine.com/news/massive-qbot-strikes-500000-pcs/
https://blog.newskysecurity.com/agile-122bf2f4e2f3
https://blog.newskysecurity.com/masuta-satori-creators-second-botnet-weaponizes-a-new-router-exploit-2ddc51cc52a7
https://blog.newskysecurity.com/masuta-satori-creators-second-botnet-weaponizes-a-new-router-exploit-2ddc51cc52a7

[18] N. Neshenko, E. Bou-Harb, J. Crichigno, G. Kaddoum, and N. Ghani, “Demystifying iot

security: An exhaustive survey on iot vulnerabilities and a first empirical look on internet-

scale iot exploitations,” IEEE Communications Surveys & Tutorials, vol. 21, no. 3, pp. 2702–

2733, 2019.

[19] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “Ddos in the iot: Mirai and other bot-

nets,” Computer, vol. 50, no. 7, pp. 80–84, 2017.

[20] H. P. Enterprise, “Internet of things research study,” Internet of Things Research Study, 2015.

[21] L. Markowsky and G. Markowsky, “Scanning for vulnerable devices in the internet of things,”

in 2015 IEEE 8th International Conference on Intelligent Data Acquisition and Advanced

Computing Systems: Technology and Applications (IDAACS), vol. 1. IEEE, 2015, pp. 463–

467.

[22] A. Cui and S. J. Stolfo, “A quantitative analysis of the insecurity of embedded network de-

vices: results of a wide-area scan,” in Proceedings of the 26th Annual Computer Security

Applications Conference, 2010, pp. 97–106.

[23] O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose, “Sok: Security evaluation of home-

based iot deployments,” in 2019 IEEE symposium on security and privacy (sp). IEEE, 2019,

pp. 1362–1380.

[24] S. Farahani, ZigBee wireless networks and transceivers. newnes, 2011.

[25] V. Sachidananda, S. Siboni, A. Shabtai, J. Toh, S. Bhairav, and Y. Elovici, “Let the cat out of

the bag: A holistic approach towards security analysis of the internet of things,” in Proceed-

ings of the 3rd ACM International Workshop on IoT Privacy, Trust, and Security, 2017, pp.

3–10.

[26] F. Loi, A. Sivanathan, H. H. Gharakheili, A. Radford, and V. Sivaraman, “Systematically

evaluating security and privacy for consumer iot devices,” in Proceedings of the 2017 Work-

shop on Internet of Things Security and Privacy, 2017, pp. 1–6.

86

[27] C. Cimpanu. (2017, February) A Hacker Just Pwned Over 150,000 Printers Left

Exposed Online . Retrieved from https://www.bleepingcomputer.com/news/security/

a-hacker-just-pwned-over-150-000-printers-left-exposed-online/.

[28] A. Tekeoglu and A. Ş. Tosun, “A testbed for security and privacy analysis of iot devices,” in

2016 IEEE 13th International Conference on Mobile Ad Hoc and Sensor Systems (MASS).

IEEE, 2016, pp. 343–348.

[29] D. Lodge. (2016, January) Steal your Wi-Fi key from your doorbell?

IoT WTF! Retrieved from https://www.pentestpartners.com/security-blog/

steal-your-wi-fi-key-from-your-doorbell-iot-wtf/.

[30] S. Morgenroth. (2017, April) How I Hacked my Smart TV from My Bed via

a Command Injection. Retrieved from https://www.netsparker.com/blog/web-security/

hacking-smart-tv-command-injection/.

[31] G. Hernandez, O. Arias, D. Buentello, and Y. Jin, “Smart nest thermostat: A smart spy in

your home,” Black Hat USA, no. 2015, 2014.

[32] A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti, “A large-scale analysis of the security

of embedded firmwares,” in 23rd {USENIX} Security Symposium ({USENIX} Security 14),

2014, pp. 95–110.

[33] C. Konstantinou and M. Maniatakos, “Impact of firmware modification attacks on power sys-

tems field devices,” in 2015 IEEE International Conference on Smart Grid Communications

(SmartGridComm). IEEE, 2015, pp. 283–288.

[34] Y. M. P. Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama, and C. Rossow, “Iotpot: A

novel honeypot for revealing current iot threats,” Journal of Information Processing, vol. 24,

no. 3, pp. 522–533, 2016.

[35] J. D. Guarnizo, A. Tambe, S. S. Bhunia, M. Ochoa, N. O. Tippenhauer, A. Shabtai, and

Y. Elovici, “Siphon: Towards scalable high-interaction physical honeypots,” in Proceedings

of the 3rd ACM Workshop on Cyber-Physical System Security, 2017, pp. 57–68.

87

https://www.bleepingcomputer.com/news/security/a-hacker-just-pwned-over-150-000-printers-left-exposed-online/
https://www.bleepingcomputer.com/news/security/a-hacker-just-pwned-over-150-000-printers-left-exposed-online/
https://www.pentestpartners.com/security-blog/steal-your-wi-fi-key-from-your-doorbell-iot-wtf/
https://www.pentestpartners.com/security-blog/steal-your-wi-fi-key-from-your-doorbell-iot-wtf/
https://www.netsparker.com/blog/web-security/hacking-smart-tv-command-injection/
https://www.netsparker.com/blog/web-security/hacking-smart-tv-command-injection/

[36] U. D. Gandhi, P. M. Kumar, R. Varatharajan, G. Manogaran, R. Sundarasekar, and S. Kadu,

“Hiotpot: surveillance on iot devices against recent threats,” Wireless personal communica-

tions, vol. 103, no. 2, pp. 1179–1194, 2018.

[37] S. Dowling, M. Schukat, and H. Melvin, “A zigbee honeypot to assess iot cyberattack be-

haviour,” in 2017 28th Irish signals and systems conference (ISSC). IEEE, 2017, pp. 1–6.

[38] T. Luo, Z. Xu, X. Jin, Y. Jia, and X. Ouyang, “Iotcandyjar: Towards an intelligent-interaction

honeypot for iot devices,” Black Hat, pp. 1–11, 2017.

[39] A. Costin and J. Zaddach, “Iot malware: comprehensive survey, analysis framework and case

studies,” BlackHat USA, 2018.

[40] H. Griffioen and C. Doerr, “Examining mirai’s battle over the internet of things,” in Pro-

ceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security,

2020, pp. 743–756.

[41] S. Torabi, E. Bou-Harb, C. Assi, E. B. Karbab, A. Boukhtouta, and M. Debbabi, “Infer-

ring and investigating iot-generated scanning campaigns targeting a large network telescope,”

IEEE Transactions on Dependable and Secure Computing, 2020.

[42] D. Lee. (2014, September) Shellshock: ’Deadly serious’ new vulnerability found. Retrieved

from https://www.bbc.com/news/technology-29361794.

[43] L. Foundation. (2001, April) Elf and abi standards. Retrieved from https://refspecs.

linuxfoundation.org/.

[44] E. Cozzi, P.-A. Vervier, M. Dell’Amico, Y. Shen, L. Bilge, and D. Balzarotti, “The tangled

genealogy of iot malware,” in Annual Computer Security Applications Conference, 2020, pp.

1–16.

[45] A. Darki, M. Faloutsos, N. Abu-Ghazaleh, M. Sridharan et al., “Idapro for iot malware anal-

ysis?” in 12th USENIX Workshop on Cyber Security Experimentation and Test (CSET19),

2019.

88

https://www.bbc.com/news/technology-29361794
https://refspecs.linuxfoundation.org/
https://refspecs.linuxfoundation.org/

[46] S. Torabi, M. Dib, E. Bou-Harb, C. Assi, and M. Debbabi, “A strings-based similarity anal-

ysis approach for characterizing iot malware and inferring their underlying relationships,”

IEEE Networking Letters, vol. 3, no. 3, pp. 161–165, 2021.

[47] A. Afianian, S. Niksefat, B. Sadeghiyan, and D. Baptiste, “Malware dynamic analysis evasion

techniques: A survey,” ACM Computing Surveys (CSUR), vol. 52, no. 6, pp. 1–28, 2019.

[48] D. Gibert, C. Mateu, and J. Planes, “HYDRA: A Multimodal Deep Learning Framework for

Malware Classification,” Computers & Security, p. 101873, 2020.

[49] C. Jindal, C. Salls, H. Aghakhani, K. Long, C. Kruegel, and G. Vigna, “Neurlux: Dynamic

Malware Analysis Without Feature Engineering,” in Proceedings of the 35th Annual Com-

puter Security Applications Conference, San Juan, PR, USA, 2019, pp. 444–455.

[50] A. Darki and M. Faloutsos, “Riotman: a systematic analysis of iot malware behavior,” in

Proceedings of the 16th International Conference on emerging Networking EXperiments and

Technologies, 2020, pp. 169–182.

[51] “VirusShare.” [Online]. Available: https://virusshare.com/

[52] M. Sebastián, R. Rivera, P. Kotzias, and J. Caballero, “Avclass: A tool for massive mal-

ware labeling,” in International symposium on research in attacks, intrusions, and defenses.

Springer, 2016, pp. 230–253.

[53] M. S. Pour, A. Mangino, K. Friday, M. Rathbun, E. Bou-Harb, F. Iqbal, S. Samtani,

J. Crichigno, and N. Ghani, “On data-driven curation, learning, and analysis for inferring

evolving internet-of-things (iot) botnets in the wild,” Computers & Security, vol. 91, p.

101707, 2020.

[54] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath, “Malware Images: Visualization

and Automatic Classification,” in Proceedings of the 8th Int. Symposium on Visualization for

Cyber Security, 2011, pp. 1–7.

89

https://virusshare.com/

[55] M. Ahmadi, D. Ulyanov, S. Semenov, M. Trofimov, and G. Giacinto, “Novel Feature Extrac-

tion, Selection and Fusion for Effective Malware Family Classification,” in Proceedings of

the Sixth ACM Conf. on Data and Application Security and Privacy, 2016, pp. 183–194.

[56] T. Beppler, M. Botacin, F. J. Ceschin, L. E. Oliveira, and A. Grégio, “L (a) ying in (test) bed,”

in International Conference on Information Security. Springer, 2019, pp. 381–401.

[57] D. Gibert, C. Mateu, J. Planes, and R. Vicens, “Using convolutional neural networks for

classification of malware represented as images,” J. of Computer Virology and Hacking Tech-

niques, vol. 15, no. 1, pp. 15–28, 2019.

[58] J. Su, D. V. Vasconcellos, S. Prasad, D. Sgandurra, Y. Feng, and K. Sakurai, “Lightweight

classification of iot malware based on image recognition,” in 2018 IEEE 42Nd annual com-

puter software and applications conference (COMPSAC), vol. 2. IEEE, 2018, pp. 664–669.

[59] R. Tian, L. Batten, R. Islam, and S. Versteeg, “An Automated Classification System Based

on the Strings of Trojan and Virus Families,” in 4th Int. Conf. on Malicious and Unwanted

Software (MALWARE). Montreal, QC, Canada: IEEE, 2009, pp. 23–30.

[60] M. Alhanahnah, Q. Lin, Q. Yan, N. Zhang, and Z. Chen, “Efficient signature generation for

classifying cross-architecture iot malware,” in 2018 IEEE Conference on Communications

and Network Security (CNS). IEEE, 2018, pp. 1–9.

[61] H.-T. Nguyen, Q.-D. Ngo, and V.-H. Le, “Iot botnet detection approach based on psi graph

and dgcnn classifier,” in 2018 IEEE International Conference on Information Communication

and Signal Processing (ICICSP). IEEE, 2018, pp. 118–122.

[62] Y. Zhang, Q. Huang, X. Ma, Z. Yang, and J. Jiang, “Using Multi-features and En-

semble Learning Method for Imbalanced Malware Classification,” in IEEE Trustcom/Big-

DataSE/ISPA, Tianjin, China, 2016, pp. 965–973.

[63] M. Mays, N. Drabinsky, and S. Brandle, “Feature Selection for Malware Classification,” in

MAICS, Fort Wayne, IN, USA, 2017, pp. 165–170.

90

[64] R. Islam, R. Tian, L. M. Batten, and S. Versteeg, “Classification of malware based on inte-

grated static and dynamic features,” J. of Network and Computer Applications, vol. 36, no. 2,

pp. 646–656, 2013.

[65] Y. Zhao, W. Cui, S. Geng, B. Bo, Y. Feng, and W. Zhang, “A malware detection method

of code texture visualization based on an improved faster rcnn combining transfer learning,”

IEEE Access, vol. 8, pp. 166 630–166 641, 2020.

[66] G. Bendiab, S. Shiaeles, A. Alruban, and N. Kolokotronis, “Iot malware network traffic clas-

sification using visual representation and deep learning,” in 2020 6th IEEE Conference on

Network Softwarization (NetSoft). IEEE, 2020, pp. 444–449.

[67] J. Yan, G. Yan, and D. Jin, “Classifying malware represented as control flow graphs using

deep graph convolutional neural network,” in 2019 49th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN). IEEE, 2019, pp. 52–63.

[68] H. Alasmary, A. Abusnaina, R. Jang, M. Abuhamad, A. Anwar, D. NYANG, and D. Mo-

haisen, “Soteria: Detecting adversarial examples in control flow graph-based malware clas-

sifiers,” in 40th IEEE International Conference on Distributed Computing Systems, ICDCS,

2020, pp. 1296–1305.

[69] J. Jang, M. Woo, and D. Brumley, “Towards automatic software lineage inference,” in 22nd

USENIX Security Symposium (USENIX Security 13), 2013, pp. 81–96.

[70] I. U. Haq and J. Caballero, “A survey of binary code similarity,” arXiv preprint

arXiv:1909.11424, 2019.

[71] D. Hull, “Computer viruses: naming and classification, part ii,” in Virus Bulletin Conference,

1995.

[72] L. A. Goldberg, P. W. Goldberg, C. A. Phillips, and G. B. Sorkin, “Constructing computer

virus phylogenies,” Journal of Algorithms, vol. 26, no. 1, pp. 188–208, 1998.

[73] T. Dumitras and I. Neamtiu, “Experimental challenges in cyber security: A story of prove-

nance and lineage for malware.” CSET, vol. 11, pp. 2011–9, 2011.

91

[74] M. E. Karim, A. Walenstein, A. Lakhotia, and L. Parida, “Malware phylogeny generation

using permutations of code,” Journal in Computer Virology, vol. 1, no. 1, pp. 13–23, 2005.

[75] M. Lindorfer, A. Di Federico, F. Maggi, P. M. Comparetti, and S. Zanero, “Lines of mali-

cious code: Insights into the malicious software industry,” in Proceedings of the 28th Annual

Computer Security Applications Conference, 2012, pp. 349–358.

[76] A. Calleja, J. Tapiador, and J. Caballero, “The malsource dataset: Quantifying complexity

and code reuse in malware development,” IEEE Transactions on Information Forensics and

Security, vol. 14, no. 12, pp. 3175–3190, 2018.

[77] H. Huang, A. M. Youssef, and M. Debbabi, “Binsequence: fast, accurate and scalable binary

code reuse detection,” in Proceedings of the 2017 ACM on Asia Conference on Computer and

Communications Security, 2017, pp. 155–166.

[78] J. Ming, D. Xu, and D. Wu, “Memoized semantics-based binary diffing with application to

malware lineage inference,” in IFIP International Information Security and Privacy Confer-

ence. Springer, 2015, pp. 416–430.

[79] W. M. Khoo, A. Mycroft, and R. Anderson, “Rendezvous: A search engine for binary code,”

in 2013 10th Working Conference on Mining Software Repositories (MSR). IEEE, 2013, pp.

329–338.

[80] S. H. Ding, B. C. Fung, and P. Charland, “Asm2vec: Boosting static representation robustness

for binary clone search against code obfuscation and compiler optimization,” in IEEE Symp.

on Security and Privacy (SP). IEEE, 2019, pp. 472–489.

[81] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, “Neural network-based graph embed-

ding for cross-platform binary code similarity detection,” in Proceedings of the 2017 ACM

SIGSAC Conference on Computer and Communications Security, 2017, pp. 363–376.

[82] F. Zuo, X. Li, P. Young, L. Luo, Q. Zeng, and Z. Zhang, “Neural machine translation inspired

binary code similarity comparison beyond function pairs,” arXiv preprint arXiv:1808.04706,

2018.

92

[83] Z. Lin, M. Feng, C. N. d. Santos, M. Yu, B. Xiang, B. Zhou, and Y. Bengio, “A structured

self-attentive sentence embedding,” arXiv preprint arXiv:1703.03130, 2017.

[84] Y. Duan, X. Li, J. Wang, and H. Yin, “Deepbindiff: Learning program-wide code represen-

tations for binary diffing,” in Network and Distributed System Security Symposium, 2020.

[85] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A survey on concept

drift adaptation,” ACM computing surveys (CSUR), vol. 46, no. 4, pp. 1–37, 2014.

[86] J. Gama, P. Medas, G. Castillo, and P. Rodrigues, “Learning with drift detection,” in Brazilian

symposium on artificial intelligence. Springer, 2004, pp. 286–295.

[87] A. Bifet and R. Gavalda, “Learning from time-changing data with adaptive windowing,” in

Proceedings of the 2007 SIAM international conference on data mining. SIAM, 2007, pp.

443–448.

[88] D. Hendrycks and K. Gimpel, “A baseline for detecting misclassified and out-of-distribution

examples in neural networks,” arXiv preprint arXiv:1610.02136, 2016.

[89] K. Rieck, T. Holz, C. Willems, P. Düssel, and P. Laskov, “Learning and classification of

malware behavior,” in International Conference on Detection of Intrusions and Malware,

and Vulnerability Assessment. Springer, 2008, pp. 108–125.

[90] R. Jordaney, K. Sharad, S. K. Dash, Z. Wang, D. Papini, I. Nouretdinov, and L. Cavallaro,

“Transcend: Detecting concept drift in malware classification models,” in 26th {USENIX}

Security Symposium ({USENIX} Security 17), 2017, pp. 625–642.

[91] A. Deo, S. K. Dash, G. Suarez-Tangil, V. Vovk, and L. Cavallaro, “Prescience: Probabilistic

guidance on the retraining conundrum for malware detection,” in Proceedings of the 2016

ACM Workshop on Artificial Intelligence and Security, 2016, pp. 71–82.

[92] F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, and L. Cavallaro, “{TESSERACT}: Elimi-

nating experimental bias in malware classification across space and time,” in 28th {USENIX}

Security Symposium ({USENIX} Security 19), 2019, pp. 729–746.

93

[93] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and C. Siemens, “Drebin:

Effective and explainable detection of android malware in your pocket.” in Ndss, vol. 14,

2014, pp. 23–26.

[94] E. Mariconti, L. Onwuzurike, P. Andriotis, E. De Cristofaro, G. Ross, and G. Stringhini,

“Mamadroid: Detecting android malware by building markov chains of behavioral models,”

arXiv preprint arXiv:1612.04433, 2016.

[95] L. Yang, W. Guo, Q. Hao, A. Ciptadi, A. Ahmadzadeh, X. Xing, and G. Wang, “Cade:

Detecting and explaining concept drift samples for security applications,” in 30th USENIX

Security Symposium (USENIX Security 21), 2021.

[96] M. Nawir, A. Amir, N. Yaakob, and O. B. Lynn, “Internet of Things (IoT): Taxonomy of

Security Attacks,” in 3rd Int. Conf. on Electronic Design (ICED). Phuket, Thailand: IEEE,

2016, pp. 321–326.

[97] T. Brosch and M. Morgenstern, “Runtime packers: The hidden problem,” Black Hat USA,

2006.

[98] I. You and K. Yim, “Malware Obfuscation Techniques: A Brief Survey,” in 2010 Int. Conf.

on Broadband, Wireless Computing, Communication and Applications. Los Alamitos, CA,

USA: IEEE, 2010, pp. 297–300.

[99] FireEye Labs Obfuscated String Solver, “FLOSS,” Retrieved from

https://github.com/fireeye/flare-floss, 2016.

[100] M. F. Oberhumer, “UPX the Ultimate Packer for eXecutables,” http://upx. sourceforge. net/,

2004.

[101] M. Raghu, C. Zhang, J. Kleinberg, and S. Bengio, “Transfusion: Understanding transfer

learning for medical imaging,” arXiv preprint arXiv:1902.07208, 2019.

[102] N. Thai-Nghe, Z. Gantner, and L. Schmidt-Thieme, “Cost-Sensitive Learning Methods for

Imbalanced Data,” in The 2010 Int. joint conference on neural networks (IJCNN). Piscat-

away, NJ, USA: IEEE, 2010, pp. 1–8.

94

[103] B. Krawczyk, “Learning from imbalanced data: open challenges and future directions,”

Progress in Artificial Intelligence, vol. 5, no. 4, pp. 221–232, 2016.

[104] Autonomio, “Talos,” Retrieved from http://github.com/autonomio/talos, 2019.

[105] A. F. Agarap, “Deep learning using rectified linear units (relu),” arXiv preprint

arXiv:1803.08375, 2018.

[106] R. M. Haralick, K. Shanmugam, and I. H. Dinstein, “Textural features for image classifica-

tion,” IEEE Transactions on systems, man, and cybernetics, no. 6, pp. 610–621, 1973.

[107] S. Gatlan, “Exposed Docker APIs Abused by DDoS, Cryptojacking Botnet Mal-

ware,” June 2019. [Online]. Available: https://www.bleepingcomputer.com/news/security/

exposed-docker-apis-abused-by-ddos-cryptojacking-botnet-malware/

[108] N. Ben Said, F. Biondi, V. Bontchev, O. Decourbe, T. Given-Wilson, A. Legay, and

J. Quilbeuf, “Detection of Mirai by Syntactic and Semantic Analysis,” Nov. 2017, preprint.

[Online]. Available: https://hal.inria.fr/hal-01629040

[109] N. Provos et al., “A virtual honeypot framework.” in USENIX Security Symposium, vol. 173,

no. 2004, 2004, pp. 1–14.

[110] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. D. Tygar, “Adversarial machine

learning,” in Proceedings of the 4th ACM workshop on Security and artificial intelligence,

2011, pp. 43–58.

[111] S. Edwards and I. Profetis, “Hajime: Analysis of a decentralized internet worm for iot de-

vices,” Rapidity Networks, vol. 16, pp. 1–18, 2016.

[112] V. J., “Satori Botnet Malware Now Can Infect Even More IoT De-

vices,” Retrieved from https://www.darkreading.com/vulnerabilities---threats/

satori-botnet-malware-now-can-infect-even-more-iot-devices/d/d-id/1330875, 2018.

[113] Q.-D. Ngo, H.-T. Nguyen, V.-H. Le, and D.-H. Nguyen, “A survey of iot malware and detec-

tion methods based on static features,” ICT Express, vol. 6, no. 4, pp. 280–286, 2020.

95

https://www.bleepingcomputer.com/news/security/exposed-docker-apis-abused-by-ddos-cryptojacking-botnet-malware/
https://www.bleepingcomputer.com/news/security/exposed-docker-apis-abused-by-ddos-cryptojacking-botnet-malware/
https://hal.inria.fr/hal-01629040
https://www.darkreading.com/vulnerabilities---threats/satori-botnet-malware-now-can-infect-even-more-iot-devices/d/d-id/1330875
https://www.darkreading.com/vulnerabilities---threats/satori-botnet-malware-now-can-infect-even-more-iot-devices/d/d-id/1330875

[114] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda, “Scalable, behavior-

based malware clustering.” in NDSS, vol. 9. Citeseer, 2009, pp. 8–11.

[115] T. Gao, X. Yao, and D. Chen, “Simcse: Simple contrastive learning of sentence embeddings,”

arXiv preprint arXiv:2104.08821, 2021.

[116] F. Ceschin, M. Botacin, H. M. Gomes, L. S. Oliveira, and A. Grégio, “Shallow security: On

the creation of adversarial variants to evade machine learning-based malware detectors,” in

Proceedings of the 3rd Reversing and Offensive-oriented Trends Symposium, 2019, pp. 1–9.

[117] D. M. dos Reis, P. Flach, S. Matwin, and G. Batista, “Fast unsupervised online drift detection

using incremental kolmogorov-smirnov test,” in Proc. of the 22nd ACM SIGKDD Int. Conf.

on Knowledge Discovery and Data Mining, 2016, pp. 1545–1554.

[118] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast for unsupervised visual

representation learning,” in Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, 2020, pp. 9729–9738.

[119] A. v. d. Oord, Y. Li, and O. Vinyals, “Representation learning with contrastive predictive

coding,” arXiv preprint arXiv:1807.03748, 2018.

[120] K. K. Yang, Z. Wu, C. N. Bedbrook, and F. H. Arnold, “Learned protein embeddings for

machine learning,” Bioinformatics, vol. 34, no. 15, pp. 2642–2648, 2018.

[121] A. X. Lu, H. Zhang, M. Ghassemi, and A. M. Moses, “Self-supervised contrastive learning

of protein representations by mutual information maximization,” BioRxiv, 2020.

[122] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and

I. Polosukhin, “Attention is all you need,” in Advances in neural information processing

systems, 2017, pp. 5998–6008.

[123] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning to align

and translate,” arXiv:1409.0473, 2014.

[124] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using siamese bert-

networks,” arXiv preprint arXiv:1908.10084, 2019.

96

[125] A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for malware detection,” in

Twenty-Third Annual Computer Security Applications Conference (ACSAC 2007). IEEE,

2007, pp. 421–430.

[126] L. Massarelli, G. A. Di Luna, F. Petroni, R. Baldoni, and L. Querzoni, “Safe: Self-attentive

function embeddings for binary similarity,” in International Conference on Detection of In-

trusions and Malware, and Vulnerability Assessment. Springer, 2019, pp. 309–329.

[127] S. Eschweiler, K. Yakdan, and E. Gerhards-Padilla, “discovre: Efficient cross-architecture

identification of bugs in binary code.” in NDSS, vol. 52, 2016, pp. 58–79.

[128] Hex-Rays. (2005) IDA Pro Disassembler. https://www.hexrays.com/products/ida/.

[129] Z. Wu, S. Wang, J. Gu, M. Khabsa, F. Sun, and H. Ma, “Clear: Contrastive learning for

sentence representation,” arXiv preprint arXiv:2012.15466, 2020.

[130] Y. Meng, C. Xiong, P. Bajaj, S. Tiwary, P. Bennett, J. Han, and X. Song, “Coco-lm:

Correcting and contrasting text sequences for language model pretraining,” arXiv preprint

arXiv:2102.08473, 2021.

[131] A. Mohaisen and O. Alrawi, “Av-meter: An evaluation of antivirus scans and labels,” in In-

ternational conference on detection of intrusions and malware, and vulnerability assessment.

Springer, 2014, pp. 112–131.

[132] J. Costa, C. Silva, M. Antunes, and B. Ribeiro, “Concept drift awareness in twitter streams,”

in 2014 13th International Conference on Machine Learning and Applications. IEEE, 2014,

pp. 294–299.

[133] F. Iglesias, T. Zseby, and A. Zimek, “Absolute cluster validity,” IEEE transactions on pattern

analysis and machine intelligence, vol. 42, no. 9, pp. 2096–2112, 2019.

[134] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal of machine learning

research, vol. 9, no. 11, 2008.

[135] J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search with gpus,” arXiv

preprint arXiv:1702.08734, 2017.

97

https://www.hexrays.com/products/ida/

[136] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed representations of

words and phrases and their compositionality,” in Advances in neural information processing

systems, 2013, pp. 3111–3119.

[137] Q. Le and T. Mikolov, “Distributed representations of sentences and documents,” in Interna-

tional conference on machine learning. PMLR, 2014, pp. 1188–1196.

[138] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: Learning distributed representa-

tions of code,” Proceedings of the ACM on Programming Languages, 2019.

[139] K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic representations from tree-

structured long short-term memory networks,” arXiv:1503.00075, 2015.

[140] Q. Feng, R. Zhou, C. Xu, Y. Cheng, B. Testa, and H. Yin, “Scalable graph-based bug search

for firmware images,” in Proceedings of the 2016 ACM SIGSAC Conference on Computer

and Communications Security, 2016, pp. 480–491.

98

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Problem Scope and Motivation
	Objectives and Research Questions
	Contributions
	A Multi-Dimensional Deep Learning Framework for IoT Malware Classification and Family Attribution
	EVOLIoT: A Self-Supervised Contrastive Learning Framework for Detecting and Characterizing Evolving IoT Malware Variants

	Thesis Organization

	Background and Related Work
	IoT Threat Landscape
	Demystifying IoT Cyber Attacks
	IoT Security and Vulnerability Assessment
	IoT Malware Data Collection
	IoT Malware Landscape

	IoT Malware Analysis
	The 101 of the ELF File Format
	Static versus Dynamic Binaries
	Malware Analysis Techniques
	IoT Malware Sandboxing Environment
	Leveraged Dataset

	IoT Malware Detection and Classification
	Malware Evolution and Lineage Inference
	Concept Drift in Machine Learning-based Security Applications

	A Multi-Dimensional Deep Learning Framework for IoT Malware Classification and Family Attribution
	Overview
	Contributions
	Multimodal Deep Learning Framework
	Feature Modalities
	Image-based Component
	String-based Component

	Fusion Component and Classification
	Experimental Results
	Evaluating the Image-based Component
	Evaluating the String-based Component
	Effectiveness of the Proposed Multi-Level DL Model
	Comparison with Feature Engineering Approaches
	Label Prediction for Unknown/Unseen Malware

	Discussion
	Limitations
	Future Work

	Summary and Concluding Remarks

	EVOLIoT: A Self-Supervised Contrastive Learning Framework for Detecting and Characterizing Evolving IoT Malware Variants
	Overview
	Contributions
	Background and Problem Scope
	Concept Drift (In-Class Evolution)
	Contrastive Learning (CL)
	Attentive Transformer Language Model
	Problem Scope and Insights

	Approach
	Feature Extraction & Pre-Processing
	Instruction Embedding Model
	Contrastive Objective
	Understanding Evolutionary Changes
	Evaluation of Instruction Embeddings

	Results
	Data Collection
	Observing Concept Drift
	Impact of Contrastive Objective
	Characterizing Variant Changes
	Evaluation

	Limitations and Future Work
	Summary and Concluding Remarks

	Conclusion and Future Work
	Bibliography

