
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

12-2004

Anomaly based intrusion detection for network monitoring using Anomaly based intrusion detection for network monitoring using

a dynamic honeypot. a dynamic honeypot.

Jeff Hieb
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

Recommended Citation Recommended Citation
Hieb, Jeff, "Anomaly based intrusion detection for network monitoring using a dynamic honeypot." (2004).
Electronic Theses and Dissertations. Paper 616.
https://doi.org/10.18297/etd/616

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional
Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator
of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who
has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F616&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/616
mailto:thinkir@louisville.edu

ANOMALY BASED INTRUSION DETECTION FOR NETWORK
MONITORING USING A DYNAMIC HONEYPOT

By

Jeff Hieb
B.S. Furman University, 1992.
B.A. Furman University, 1992.

A Thesis
Submitted to the Faculty of the

Graduate School of the University of Louisville
In Partial Fulfillment of the requirements

For the degree of

Master of Science

Department of Computer Engineering and Computer Science
University of Louisville

Louisville, Kentucky

December 2004

ANOMALY BASED INTRUSION DETECTION FOR NETWORK
MONITORING USING A DYNAMIC HONEYPOT

By

Jeff Hieb
B.S. Furman University, 1992.

A Thesis Approved on

November 10, 2004

By the following Thesis Committee:

Dr. James H. Graham, Thesis Director

Dr. Melvin J. Maron

Dr. Gail W. DePuy

 ii

ACKNOWLEDGEMENTS

 I would like to express my deep appreciation to my advisor, Dr. James Graham,

for his assistance and support prior to and during the pursuit of this research. His

technical guidance, encouragement, and perspective were essential to the completion of

this thesis. I have also enjoyed our many conversations, and the lessons that came with

them.

My deepest gratitude is also extended to the other members of my thesis

committee: Dr. Melvin Maron and Dr. Gail DePuy. Their comments and suggestions

made this a better thesis, and I appreciate their willingness to share their valuable time

and allow me to benefit from their expertise.

 I would also like to express my sincerest appreciation to Dr. Hayden Porter, Dr.

James Edwards, and Dr. David Shaner. My undergraduate years at Furman University

were fulfilling and rewarding in a large part because of these men; and also because of

Duane Twardokus, who has been a great source of encouragement and inspiration for

many years.

Finally I would like to thank my wife, Jennifer, who kept me going when no one

else could. She has encouraged me in all endeavors and been there when ever I needed a

friend; completion of this thesis would not have been possible without her.

 iii

ABSTRACT

ANOMALY BASED INTRUSION DETECTION FOR NETWORK
MONITORING USING A DYNAMIC HONEYPOT

Jeff Hieb

November 10, 2004

 This thesis proposes a network based intrusion detection approach using anomaly

detection and achieving low configuration and maintenance costs. A honeypots is an

emerging security tool that has several beneficial characteristics, one of which is that all

traffic to it is anomalous. A dynamic honeypot reduces the configuration and

maintenance costs of honeypot deployment. An anomaly based intrusion detection

system with low configuration and maintenance costs can be constructed by simply

observing the egress and ingress to a dynamic honeypot.

This thesis explores the design and implementation of a dynamic honeypot using

a variety of publicly available tools. The main contributions of the design consist of a

database containing network relevant information and a dynamic honeypot engine that

generates honeypot configurations from the relevant network information. The thesis

also explores a simple intrusion detection system built around the dynamic honeypot.

These systems were experimentally implemented and preliminary testing identified

anomalous traffic, though in some cases it was not necessarily intrusive. In one instance

the dynamic honeypot based intrusion detection system identified an intrusion, which was

not detected by conventional means.

 iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS... iii
ABSTRACT .. iv
LIST OF FIGURES ... viii

CHAPTER I INTRODUCTION ..1

1.1 Background... 1

1.2 Organization Of Thesis. .. 6

CHAPTER II LITERATURE REVIEW ..7

2.1 Intrusion Detection Systems. .. 7

2.2 Honeypots ... 13

CHAPTER III THEORY AND DESIGN ..21

3.1 Honeypots And Intrusion Detection. .. 21

3.2 Dynamic Honeypots.. 24

3.2.1 Passive Network Analysis... 24

3.2.2 Virtual Honeypot Deployment.. 26

3.3 A Dynamic Honeypot Design... 28

3.4 Intrusion Detection Using A Dynamic Honeypot... 30

CHAPTER IV IMPLEMENTATION..35

4.1 Dynamic Honeypot Implementation... 35

4.1.1 Gathering Network Information ... 36

4.1.2 Generating Honeypot Definitions. .. 43

 v

4.1.3 Deploying The Honeypots .. 47

4.2 Anomaly Based Intrusion Detection... 52

4.2.1 Reporting The Honeypot Traffic .. 53

4.2.2 An Additional Alarm Mechanism Based On Honeypot Traffic 55

CHAPTER V TESTING AND RESULTS ..57

5.1 Testing Network Analysis... 57

5.2 Testing Honeypot Configuration .. 63

5.3 Testing Virtual Honeypot Deployment... 64

5.4 Testing The Intrusion Detection Abilities... 68

5.4.1 Controlled Intrusions .. 70

5.4.2 Real World intrusions ... 74

CHAPTER VI CONCLUSIONS AND FUTURE DIRECTIONS77

6.1 Conclusions... 77

6.2 Directions For Future Research .. 79

REFERENCES ..82

Appendix A..87

Appendix B..99

Appendix C... 101

Appendix D... 103

Appendix E ... 106

Appendix F ... 107

Appendix G... 109

 vi

Appendix H... 111

CURRICULUM VITAE... 135

 vii

LIST OF FIGURES

Figure 1.1. Computer Security related losses for 2004 [62]. .. 1

Figure 1.2. Percentage of companies using various security technologies [62]. 3

Figure 2.1. The IDES Model [28]... 11

Figure 2.2. Honeypot deployment on a DMZ [1] .. 15

Figure 3.1. Sample p0f output.. 26

Figure 3.2. Sample Honeyd configuration... 27

Figure 3.3. Model for a dynamic honeypot design. ... 29

Figure 3.4. Design for dynamic honeypot intrusion detection... 33

Figure 4.1. Host and port table definitions. ... 36

Figure 4.2. Configuration of the development and test network. 39

Figure 4.3. The use of interfaces in the dynamic honeypot. .. 40

Figure 4.4. Contents of the host, ports, and flock tables as a result of passive network
analysis.. 42

Figure 4.5. Honeypots, honeyports, honeyhosts, and scripts table definitions................ 44

Figure 4.6. Definition of default tcp, udp, and icmp actions in Honeyd. 48

Figure 4.7. Adding additional open ports and actions to Honeyd. 50

Figure 4.8. Complete Honeyd style honeypot definition... 50

Figure 4.9. Conditional binding of different honeypots to one IP address in Honeyd. ... 51

Figure 4.10. Complete honeypot definition. .. 51

Figure 5.1. Contents of the host, ports, and flock table following some passive network
analysis.. 58

 viii

Figure 5.2. Additions to the flock, host, and ports tables after external connections to
servers. .. 59

Figure 5.3. Contents of host and ports tables after the internal nmap scan. 60

Figure 5.4. Contents of the host and ports tables after external Nmap scan.................... 62

Figure 5.5. Contents of the honeypots, honeyhosts, and honeyports tables as a result of
configuration. .. 65

Figure 5.6. Connection to the web server from an internal host...................................... 66

Figure 5.7. Connection to the honeypot web server from an internal host. 67

Figure 5.8. Connection to the honeypot web server from external host. 68

Figure 5.9. Connection to various honeypot services from external host........................ 69

Figure 5.10. ACID console for the honeypots prior to any activity. 69

Figure 5.11. ACID listing of alerts after initial test traffic. ... 71

Figure 5.12. ACID view of an individual packet that caused an alert. 72

Figure 5.13. ACID view of an exploit packet. ... 73

Figure 5.14. ACID console after some external traffic is allowed to reach the honeypots.
... 75

Figure 5.15. Listing of the unique alerts generated while exposing the honeypot to the
Internet. ... 76

 ix

CHAPTER I

INTRODUCTION

1.1 Background

 Given the growing dependence of the American economy on information

technology and the proliferation of networks, computers, and connectivity; securing

computer systems is more difficult and more important. Fortunately, industry, the

government, and individuals have begun to practice better computer security. In the 2004

Computer Crime and Security Survey conducted by the Computer Security Institute and

the FBI [62], the reported total loss in dollars was less than that reported in 2003.

Unfortunately, the amount was still over $140,000,000, with over $55,000,000 alone

attributed to viruses.

Figure 1.1. Computer Security related losses for 2004 [62].

 1

 Another area of concern is critical infrastructure and SCADA systems, and it is

difficult to associate a dollar figure with compromises to these systems. Critical

infrastructures and SCADA systems are ubiquitous; they involve everything from water

and power to financial and logistic systems. In a recent article in Information Security

titled “Mission: Critical”, Stephen Barlas and other discuss cyber security and critical

infrastructure [61]. A successful attack on one of these systems could be catastrophic.

Imagine the consequences of a large scale and persistent outage of telecommunications

networks, such an event could create panic and disorder, cripple the government’s

response capabilities, as well as do serious financial damage to a wide variety of

companies. Similar scenarios are true for other critical infrastructures.

“According to SBC communications, the number of telecom vulnerabilities

doubles each year,” and in the financial sector “more than half of IT and security

professionals . . . say they’re unprepared for a cyber attack” [61]. While most agree that

we are better prepared today than a few years ago, cyber security for critical

infrastructures is an ongoing and never ending task that requires the continued

development of newer and better security technologies.

 The objective of computer security is to ensure the confidentiality, integrity, and

availability of data or resources and good security is best achieved through the combined

use of various security technologies. Examples of such technologies include firewalls,

encryption, access control lists, and intrusion detection systems. As part of the CSI/FBI

survey, information about the types of security technologies used was collected and is

shown in figure 1.2. Firewalls and anti-virus software are the predominant security

technologies in use today, being the only two security technologies used by almost every

 2

respondent to the survey, however the use of intrusion detection is increasing. And as

companies are required to be more accountable with respect to the security of sensitive

data in their position, good intrusion detection will soon become a necessity.

Figure 1.2. Percentage of companies using various security
technologies [62].

Early work by Denning on intrusion detection systems identified two separate but

equally valid approaches in detecting intrusions: anomaly detection and misuse detection.

Misuse detection identifies an intrusion using a set of “rules” developed by analyzing

known attacks. Anomaly detection identifies an intrusion based on a deviation from

normal activity. Today’s systems continue to use either anomaly detection or misuse

detection, or some combination of both.

There are a variety of both commercial and public domain intrusion detection

systems, Snort being one of the most well known in the public domain. Snort is also the

basis for the commercial intrusion detection system Sourcefire. Snort, as do many other

intrusion detection systems, uses misuse detection. It depends on a set of rules that

define different types of known intrusion signatures. When the conditions of a rule are

met, Snort generates an alert indicating that it has detected an intrusion.

 3

Maintaining and updating these rules and responding to alerts are ongoing and

time-consuming tasks, and if the rules become out of date, then the intrusion detection

system becomes increasingly less effective. In addition to maintaining the rules,

someone must respond to the alerts. Sometimes signatures may also match valid activity,

meaning that responding to alerts first requires determining whether the alert is the result

of an intrusion or unexpected, but valid, system activity. All of these require highly

trained personnel to carry out.

Another problem faced by current intrusion detection technologies is bandwidth.

As bandwidth continues to increase it becomes more and more difficult to capture and

analyze the volume of information in an acceptable period of time (micro-seconds).

When the bandwidth limits of an intrusion detection system are exceeded, it can fail to

detect an intrusion. Current intrusion detection systems like Snort are effective; however,

it is commonly held that anomaly detection will ultimately prove more valuable and

robust because it has the potential to identify previously unknown intrusions or attacks.

 Honeypots are a new security technology that, while not a replacement for

traditional intrusion detection systems, address some of the weaknesses of intrusion

detection systems. Because their only purpose is to be attacked, all traffic to the

honeypot can be considered an intrusion or an anomaly of some sort. For this reason

there is no need to separate normal traffic from anomalous; this makes any data collected

from a honeypot of high value. Neither are they vulnerable to the bandwidth issue that

more traditional IDSs face.

Honeypots do face several important challenges: 1) honeypots are totally unaware

of attacks not directed at them, 2) they must avoid being fingerprinted because if an

 4

attacker can easily identify honeypots their usefulness will be severely limited, and 3)

like so many security technologies, they require configuring and maintaining by a

knowledgeable person.

 Lance Spitzner has recently put forth a new honeypot concept called a dynamic

honeypot. A dynamic honeypot is a plug and play solution that configures itself to suit

the network environment in which it finds itself. This makes the honeypot much simpler

to use and maintain and improves the likelihood that a network intrusion will include a

visit to one of the honeypots. Dynamic honeypots might also be more difficult to

fingerprint, because they are properly configured and “unique.”

 Honeypots, because of their very nature, excel at detection. What makes them

most attractive in the area of detection is the fact that they implement anomaly detection,

and appear to do so very effectively. An intrusion detection system that uses a dynamic

honeypot could potentially provide anomaly based intrusion detection. Such a system

could be deployed on a production network and require very little maintenance and

configuration. Both anomaly detection and low configuration and maintenance overhead

are desirable characteristics for intrusion detection.

 Dynamic honeypots have yet to receive a lot of research attention, having only

been proposed in September 2003. This thesis will describe the design and

implementation of an experimental dynamic honeypot and a simple intrusion detection

system based upon this honeypot. The dynamic honeypot was able to achieve

autonomous configuration and deployment of honeypots in a variety of simulated

network environments. The intrusion detection system reported various anomalies and in

 5

during one test detected an exploit attempt that was not detected by a conventional

intrusion detection system.

1.2 Organization Of Thesis.

 Chapter two presents a detailed literature review of intrusion detection concepts,

principles and approaches. Chapter three discusses the design of the dynamic honeypot

and an intrusion detection system based upon the honeypot. Chapter four describes the

implementation of the dynamic honeypot and the intrusion detection system. In Chapter

five, testing of the dynamic honeypot and the intrusion detection system are described in

detail. Chapter six presents some conclusions and possible directions for future research.

 6

CHAPTER II

LITERATURE REVIEW

This chapter gives an overview of relevant previous work by other researchers. It

includes sections on intrusion detection systems and honeypots.

2.1 Intrusion Detection Systems.

Since the development of time-sharing systems in the 1960’s the need for

computer security has been recognized and studied [10, 30,36,31,32] and has lead to the

development of a variety of security systems and approaches. Initial systems developed

during the 1960’s and 1970’s focused on prevention by attempting to deny access to

unauthorized resources [10,36]. For example: a user identification and password that

would prevent unauthorized individuals from logging onto the system. For systems with

many users, an access control matrix would prevent valid users from accessing files (or

system resources) to which they had not been granted authorization. Beyond these types

of measures, security officers were charged with assessing the security of the system,

based in part on lengthy logs.

In 1980 Anderson [36] showed that a variety of threats could be addressed by

analyzing audit trails. He began by identifying the following types of intruders or

penetrators: external penetrators, internal penetrators, and misfeasors. External

penetrators were those not authorized to use the computer at all. Internal penetrators

were those who were authorized to use the computer but not authorized to use the

 7

specific data or resource being accessed. This included two sub-categories,

masqueraders, individuals who used someone else’s user id and password, and

clandestine users, individuals who evaded auditing and access control measures.

Misfeasors were individuals who were authorized to use the computer and the specific

resource, but who misused their privilege.

One example given by Anderson was detecting an external penetrator based on

failed login attempts. Anderson went on to outline numerous security related audit trails

and their relation to various threats. He also realized that large amounts of audit data,

while potentially very useful for assessing and monitoring the security of a system, would

overwhelm a security officer. At the same time storage was becoming cheaper, allowing

audit logs to be moved online [45]. So Anderson began to explore automating audit trail

analysis, and described a surveillance system that would collect and processes audit files

and produce a daily report [28,36].

In 1987 Denning presented an abstract model of an Intrusion Detection Expert

System called IDES [24]. IDES was a model of a real-time intrusion-detection expert

system, meaning that it would process audit data as it was generated, and immediately

inform the security officer of an intrusion. It was independent of any particular system,

application, or vulnerability, and served as a general framework for an intrusion detection

expert system. Denning intended IDES to be implemented on a separate, high

performance, system allowing IDES the ability to process audit records in real time

without interfering with the performance of the target system.

Denning’s IDES model was based on the idea that exploiting (or attacking) a

system involves abnormal use of the system and therefore an intrusion could be detected

 8

from abnormal patterns of system use. To do this the IDES generated and updated

profiles that represent normal system use. Audit records were then matched against the

profiles using rule-based pattern matching. An anomaly was generated when the audit

data fail to conform to the profile. This gave IDES the ability to detect a wide variety of

threats, attacks, or intrusions, independent from any knowledge about the specific

vulnerabilities the target system might have.

In 1989 Teresa Lunt [28] elaborated on the IDES model and begin development

of an actual system. Lunt pointed out that Anderson’s approach of detecting an external

penetrator by auditing failed login attempts could be though of as looking for specific

characteristic’s of an intrusion in audit records, where as Denning’s IDES approach

looked for audit records that did not fit normal system/user behavior. The IDES

architecture designed by Lunt included both of these approached in a loosely coupled

system, as seen in figure 2.1. The statistical intrusion detection monitors subjects via

audit records, identifying audit records that fail to fit with in the normal profile for that

subject. The rule-based intrusion detection system examines audit data for known

intrusion scenarios such as failed login attempts. These two approaches continue to

define intrusion detection system approaches today and are typically known as misuse

detection and anomaly detection [46,45].

Misuse detection is usually implemented with a rule-based system developed from

knowledge about the characteristics of previous intrusions. These characteristics or

descriptions are often referred to as signatures. Specific signatures are then matched

against the data, in essence looking for evidence of an intrusion or attack, as in

 9

Anderson’s example of failed login attempts. Another example of this approach,

presented by Ilgun [44], uses state transition signatures.

 Anomaly detection searches for unusual events, often using statistical metrics to

define “unusual.” Anomaly detection begins with one or more “models” of user or

system behavior that are built up over time. These models describe the normal behavior

of the system or user. Deviations from the normal indicate anomalies that are then

assumed to be an intrusion or attack. Different modeling approaches have included

statistical methods [28,14], rule based systems [26], neural networks [27] and other soft-

computing techniques [13].

An important set of concepts related to intrusion detection is false positive and

false negative. False positives are events that the system detects as an intrusion but are in

fact acceptable system events. False negatives are intrusions that the system fails to

recognize. It is important that both of these are kept to a minimum; too many false

positives leads to alarms being ignored, too many false negatives and the IDS isn’t doing

anybody any good.

Both misuse detection and anomaly detection have their advantages and

disadvantages. One of the biggest advantages of anomaly detection is its potential to

detect novel or previously unknown attacks. Another appealing advantage is that once it

is installed and set up anomaly detection requires little additional administrative

maintenance. However, anomaly detection tends to have a very high false positive rate,

often requires extensive training, and can be computationally expensive [45,46]. Misuse

detection, one the other hand, is very efficient at detecting attacks without generating lots

of false positives, and can be more easily used by system managers with less security

 10

expertise. Unfortunately misuse detection cannot detect unknown attacks, meaning it has

a potentially high false negative rate. Additionally, because new attacks are constantly

being release, the signature database must constantly be updated, requiring ongoing

administrative maintenance. Failure to keep signature databases up to date severely

limits the capabilities of misuse detection [45,46].

Rule-Based
Intrusion
Detection

Statistical
Intrusion
Detection

User Interface

Target System

Figure 2.1. The IDES Model [28]

Early systems were all host-based systems (HIDS), meaning that they operated on

only one computer, usually referred to as the target. This reflects the fact that most

computers at that time were large mainframes with terminal connections. As PCs

reached their glory in the late 80’s and 90’s, the paradigm of the single large mainframe

gave way to networks with a variety of desktops and servers comprising LANs and

WANs. The proliferation of the Internet and networking technology reinforced this

trend.

In response to this changing environment, came the idea of a NIDS [10,45], or

network intrusion detection system. Instead of examining events on a specific host, these

 11

systems would try to identify intrusions by monitoring network traffic. Basically NIDS

use the same approach as HIDS, misuse and anomaly detection, but the source of

information on which they operate, called a sensor, is different. Essentially NIDS

examine the communications between computers on a network, as opposed to system

level audit trails. As would be expected false positives and false negatives continued to

be a primary concern [45].

The main advantage of NIDS is that a few well-placed sensors are capable of

monitoring a large network. In addition, their deployment usually has little effect on the

rest of the network, as far as performance is concerned. However, they do not have

access to system level audit logs as do HIDS; and more importantly, for busy networks

they may fail to process all packets. Another problem they face is the fact that they

cannot analyze encrypted packets. While HIDS do not have these weaknesses, in large

networks, with many hosts, a HIDS on every host can be extremely hard to manage [46].

Combining NIDS and HIDS was investigated through the development of

distributed systems and hybrid systems [10,20,30]. Such approaches centralize the

analysis component, with host-based sensors and network based sensors feeding into a

single analysis engine. While maximizing the advantages of HIDS and NIDS, it creates a

single point of failure, which itself might become the target of an attack. Attempts to

address this weakness have included investigations into mobile security agents [25] and

artificial immune system models [12]. These approaches de-centralize control and

operation of distributed intrusion detection systems, but their reliance on some type of

anomaly detection approach means they are still plagued by high false positive rate.

 12

Largely for performance reasons commercial IDS today are primarily based on

misuse detection techniques [45,46]. Snort [55], one of the most popular IDS used today,

is an excellent example. Snort is a network intrusion detection system that matches

packets collected from the network against a set of rules or signatures. These signatures

are developed from known attacks, and must constantly be updated. One way to improve

the effectiveness of IDS like Snort is to include some type of anomaly detection [45].

2.2 Honeypots

Recently, honeypots have been receiving attention from security professionals

looking for new tools to help them in the fight against the exponentially growing number

of threats. The basic idea of a honeypot is to observe a system that you allow to be

attacked, figure 2.2. Lance Spitzner defines a honeypot as follows: “A honeypot is a

security resource whose value lies in being probed, attacked, or compromised” [1]. Since

honeypots have no production value, no resource or person should be communicating

with them, and therefore any activity arriving at a honeypot is likely to be a probe, scan,

or attack. Their value comes from their potential ability to capture scans, probes, attacks,

and other malicious activity.

There are three types of honeypots: low interaction, medium interaction, and high

interaction [1]. In order to collect information a honeypot must interact with the attacker,

and the level of interaction refers to the degree of interaction the honeypot has with a

potential attacker. A low interaction honeypot provides minimal service, like an open

port. A medium interaction honeypot simulates basic interactions like asking for a login

and password, but providing no actual service to log into. High interaction honeypots

 13

offer a fully functioning service or operating system, which can potentially be

compromised.

There are two important categories of honeypots, production honeypots and

research honeypots [1]. Production honeypots are honeypots that are used to protect an

organization or an organization’s operational network. Research honeypots, on the other

hand, are used for research and intelligence gathering, and are not part of any commercial

security mechanism. Production honeypots tend to be low-interaction and research

honeypots tend to be high-interaction. Finally honeynets [53] are elaborate networks of

multiple high-interaction honeypots and sophisticated monitoring software, and they are

used almost exclusively for research.

The first documentation relating to honeypots occurred in the early 1990’s in the

works of Clifford Stoll, and Bill Cheswick. [33,34]. Neither describe their systems or

techniques as “honeypots” but the central ideas of honeypots can be clearly seen in their

work. These publications, while not technical, contributed significantly to a growing

interest in honeypots and the development of numerous solutions. The first available

honeypot solution, Deception Toolkit or DK, was released in 1997 [1]. DK is a

collection of PERL scripts and C code that emulate various Unix vulnerabilities and then

log the behavior and actions of an attack or attacker. CyberCop Sting, in 1998, was the

first commercial honeypot, and introduced for the first time, virtual systems bound to a

single host.

The idea of virtual honeypots made honeypot technology more affordable and

available to a wider audience and encouraged development of better implementations.

One of these is Honeyd, a robust open source honeypot solution developed by Niels

 14

Provos [6,56]. Honeyd has the ability to emulate different operating systems at the IP

layer and run scripts attached to specific ports using stdin and stdout. Instead of being

limited to one IP address, Honeyd has the ability to bind to multiple IP address, making it

able to create virtual honeypots that emulate multiple systems with different operating

systems and applications and map them to unused IP addresses. It is a very powerful

honeypot solution [50] version 0.8 was released in 2003, and included significant

improvements.

Figure 2.2. Honeypot deployment on a DMZ [1]

Initially, honeynets were just a network containing one or more honeypots [53],

the next generation of honeynets, known as Gen II honeypots by the Honeynet project,

were adapted from captured rootkits [52]. These honeypots are kernel modules, and

provide superior clandestine monitoring capabilities for high-interaction honeypots.

 15

Sebek is the most well known Gen II honeypot, and is a Linux kernel module. Sebek

hooks all sys_read calls and covertly transports them to a remote monitor. This allows

the host based monitoring of a compromised system without the attackers awareness.

With the success of early honeypots like Bof and Specter, more investigation into

their potential uses in security has been done. Their potential use in prevention lies in

distracting hackers or wasting their valuable time and resources attacking honeypots

instead of production systems. The Labrea Tar pit honeypot is designed to prevent

attacks by maintaining an, artificially slow, open connection to non-existent services [1].

Honeypots have also been explored as a means of detecting and preventing a DDoS

attack and capturing forensic data [26,41].

Honeypots have even greater potential when it comes to detection. Levine et al

[16] deployed a honeynet at Georgia tech that they used to detect exploited systems

across their enterprise network. They successfully identified a system within the network

that they suspected had been infected by a worm. In addition to identifying the infected

system, they were able to provide the IT department with enough data to develop a

signature for the previously unknown exploit [16]. They also identified an account

whose password had been compromised by analyzing traffic to a backdoor installed on

one of the honeypots from a system in the production part of the network.

Honeypots have also been shown to be effective against Internet worms. Laurent

Oudot [7] demonstrated how MSBlast could be detected and captured using Honeyd and

some simple scripts. He also showed how worm propagation can be slowed using

Honeyd to attract the worms attention and then respond very slowly to its requests.

Using scripts, Oudot demonstrated how a honeypot could even launch a counter attack

 16

against a worm outbreak, either by isolating services or network segments, or by abusing

the same vulnerability the worm used and then trying to kill the worm process.

Detection and identification of new threats is one of the most important areas in

security. In July of 2002 the Honeynet project caught a previously unknown dtscpd

exploit “in the wild” in one of their honeypots [1]. Identifying the new exploit and

understanding it were carried out by researchers, but the fact that a honeypot was able to

capture a new exploit points strongly towards their potential use in helping IDS identify

new attacks. Zang et al [23] drew similar conclusions in their description of honeypots as

a supplemental active defense system for network security. However, current

investigations into integrating honeypots with IDS have primarily used honeypots to

extend a detected intrusion’s session [41,43] by rerouting an attacker (once identified) to

a honeypot.

While not yet in wide use, according to NIST [46], honeypots are now considered

to be part of the intrusion detection product line. According to NIST, as part of an IDS,

honeypots serve as decoy systems that divert an attacker away from critical resources,

collect information about attackers, and encourage the attacker to stay on the system long

enough for administrators to respond.

Another advantage of honeypots is their ability to provide correlated high value

data [1,15,39]. All of the data captured in a honeypot is relevant security data, as

opposed to many other security related logs (such as firewall logs) where the majority of

the data may pertain to normal network operations. In addition, honeypots can provide

easier and more extensive monitoring of attacker’s actions, and can potentially detect

insider threats [5].

 17

There are three significant disadvantages of using production honeypots. The

most highly debated of these pertains to the unclear legal implication of using such

devices [46,51]. Some argue that honeypots violate entrapment laws; while other argue

they violate forth amendment rights. These concerns can be lessened through the use of

banners, however the issues remain unclear and as yet untested in court. There is also the

more important legal concern that your honeypot maybe compromised, and then used to

attack systems other than your own.

Another potential disadvantage of production honeypots is that if they are

detected they lose much of their value, and may even be used against you. This was not a

problem early on, but as honeypots have grown in use, tools and techniques for detecting

and/or fingerprinting honeypots have become available and openly discussed [3,37].

While making the use of honeypots more difficult, the fact that attackers are spending the

effort to develop such tools and techniques is an indication that they consider honeypots a

legitimate security measure.

A final disadvantage of honeypots is the fact that a high level of expertise is

needed to configure and maintain these systems [3,46]. Initial configuration includes:

determining the number and location of honeypots, what means will be used to attract

traffic to the honeypot(s), determining the level of interaction, choosing an operating

system (actual of virtual), deciding what services should be available or emulated, and

how data is to be captured. On going maintenance includes keeping the honeypots secure

and making sure that the honeypots continue to adequately mirror the production

environment. Improper configuration can also lead to detection, making these issues

doubly important.

 18

Lance Spitzner has recently addressed some of the disadvantages associated with

honeypots in his proposed concept of a dynamic honeypot [2]. A dynamic honeypot is a

plug and play solution that automatically determines how many honeypots to deploy,

how to deploy them and what they should look like. A dynamic honeypot could address,

at least in part, both the problem of a lack of resources for configuration, and the problem

of detection (which in some, potentially many, cases is directly related to configuration).

By learning and monitoring networks, dynamic honeypots could reduce the amount of

configuration and maintenance needed, and potentially decrease the chance that attackers

would easily detect a honeypot.

Such a dynamic honeypot would learn about the network, and then deploy

honeypots to appropriately blend in with the rest of the network. In addition it could also

continue to monitor the network and update the honeypots based on changes it sees in the

network. For example, if a network has all Windows systems, only Windows honeypots

will be deployed. Later, if a Linux machine is added, miraculously Linux honeypots are

deployed. The goal according to Lance Spitzner is “an appliance, a solution you simply

plug into your network, it deploys the proper number and configuration of honeypots, and

adapts to any changes in your networks.” [2]

Some initial attempts have been made to implement a dynamic honeypot [49,57].

Both of these attempts have used Honeyd [[6] as the honeypot engine, and p0f [8,9] for

passive network analysis. One problem these approaches have discovered is that passive

network analysis (via p0f) is not 100% accurate. Both attempts met with success, but

lacked a specific context in which the dynamic honeypot was to be used.

 19

Not all responses to honeypot technology have been positive, Rong and Yang [40]

argue that the potential misuses of honeypot technology by black hats present a threat to

consumer trust in e-commerce (among other things) and therefore the use of honeypots

should proceed with caution.

Initially honeypots were an esoteric security phenomenon, and largely deployed

for intelligence gathering. Lance Spitzner and the Honeynet group have used them to

gather a great deal of information about black hats [1]. Their effectiveness at intelligence

gathering has lead to a desire to incorporate them into production systems [32,38]. While

the use of honeypots in production security systems is still in its infancy, honeypots are

already beginning to show up in commercial security software [19].

A recent paper by Kuwate, Sarj, and Masri, [63] explores the design and

development of a dynamic honeypot. The design is based on Lance Spitzner and the

Honeynet Organization’s proposed concept of a dynamic honeypot [2]. They sight

minimizing configuration and supervision as an important motivation for the

development of a dynamic honeypot. While they do indicate that the dynamic honeypot

can be used for intrusion detection, that functionality was not explored in the paper.

 20

CHAPTER III

THEORY AND DESIGN

3.1 Honeypots And Intrusion Detection.

 There are several aspects of honeypots that make them attractive for intrusion

detection. Most notable is the fact that they innately implement anomaly detection,

which has continued to be both desirable and illusive. Given that most systems generate

lengthy logs everyday, the high value/high correlation aspects of the data generated by

honeypots is also attractive. There are several ways honeypots can be used as part of

production intrusion detection systems.

One approach is to use honeypots as a resource to which to divert malicious

activity [43,46]. This is useful both in consuming attacker’s resources and in potentially

gaining further knowledge about the attacker [59] and possibly the attack. While this

approach can be effective, it could be considered something like a jail to which offenders

are sent after they are caught (and perhaps interrogated). When used this way it is up to

some other systems to identify the malicious traffic, or intrusions. The drawback of this

approach is that it does not take advantage of the native ability of honeypots to do

anomaly detection.

 Another approach is to use honeypots for intelligence gathering, deploying

honeypots, then extracting from the honeypot data signatures to be used by the

production intrusion detection system [59]. This approach does make use of some of the

anomaly detection ability of honeypots, in a more “research” oriented approach.

 21

However, no automated means exists of converting the raw honeypot data into usable

signatures. Therefore, use of such an approach requires a great deal of man-hours from

highly skilled personel. Since there is no necessary correlation between the honeypot and

the production system, it is possible (or likely, depending on how the honeypot was

deployed) that this approach would produce some or many irrelevant signatures.

In order for a honeypots to genuinely carryout intrusion detection, they must be

placed appropriately within a production network (rather than being isolated from it).

Once deployed, any interaction with the honeypot can be considered anomalous, and

therefore intrusive. This approach uses the intrinsic anomaly detection ability of

honeypots to implement intrusion detection. This approach might also be called behavior

based, since it is based on the behavior of systems on the network as they interact with

the honeypot.

The advantage of such an approach is the honeypot’s ability to detect previously

unknown attacks, and minimize false negatives. However, it is possible for an intrusion

to never interact with a honeypot (good deployment should minimize this possibility).

This is one of the drawbacks to honeypots and why identification of honeypots makes

them virtually useless. Therefore the objective of a honeypot based intrusion detection

system is not to replace existing IDS, but instead to compliment current IDS, like snort,

by providing independent, anomaly based, intrusion detection. In addition a honeypot

based intrusion detection system can provide additional data that can be used for

incidence response. Precisely what that data will consist of depends on the level of

interaction of the honeypot.

 22

Recall that low interaction honeypots can generally only capture transaction level

data, the source and destination of an attack, but that high-level of interaction honeypots

can capture more detailed information ranging from the application layer session data

(which might include commands and exploits) to the contents of files uploaded to a

victim machine. Therefore, a behavior based or anomaly based IDS using a low

interaction honeypot will at most identify the network address and port from which an

intrusion occurred or is occurring. But a higher interaction honeypot will potential

capture more detailed information.

As far as simple detection is concerned, a low-interaction honeypot is just as good

as a high-interaction honeypot. A very simple port monitor listening on unused

(undesignated) IP addresses can detect a connection attempt, indicating an intrusion of

some sort. However, little else could be learned from such a honeypot based IDS. Since

the objective is to provide detection and a resource for incidence response more

information would be helpful, making a high-level interaction honeypots a more

attractive choice.

 All other things being equal, a high-level interaction honeypot is obviously the

best choice for use with a behavior based IDS. However there are other elements that

must be taken into account. All honeypots have some risk associated with them, but

high-interaction honeypots have significantly more than low-interaction honeypots, and

an intrusion detection system should ideally not increase the amount of risk associated

with the network it is trying to protect. High interaction honeypots that are used in bait

and switch techniques present little additional risk because they are isolated from the

 23

production part of the network. A high interaction honeypot within the production part of

the network could pose a serious security risk.

Another important issue to consider is configuration and maintenance. Honeypots

require a great deal of effort to configure and maintain, with high interaction honeypots

being the most difficult to configure and maintain. Usually a high interaction honeypot is

an actual system (or virtual machine) to which an attacker is given full access. However,

even low interaction honeypots take significant effort to deploy and maintain properly. If

the overhead of configuring and maintaining the honeypots is too great then it will not be

practical to deploy them as part of an intrusion detection system. This issue can be

addressed by using a dynamic honeypot.

3.2 Dynamic Honeypots

Recall Lance Spitzner’s description of a dynamic honeypot [2] as a plug and play

solution, capable of determining how many honeypots to deploy, what they should look

like, and deploying them. Furthermore, once deployed, the dynamic honeypot continues

to monitor the network for changes, maintaining the honeypot deployments and keeping

them up to date relative to changes in the network. There are a number of significant

challenges to developing such a system; fortunately there already are existing tools that

address some of these problems.

3.2.1 Passive Network Analysis.

The most significant challenge facing the dynamic honeypot is how it is learns

about the network in which it has been placed. With out such knowledge a dynamic

honeypot is not possible. There are several approaches that could be used here such as

 24

actively probing the network, using something like Nmap, to determine what systems are

up and what they are running. There are some disadvantages to this approach: you might

miss something that is fire walled, you introduce more traffic onto the network, probing

may cause a system to shutdown unexpectedly, and finally the result of the probe is a

static picture of the network, meaning it will have to be preformed on a regular basis to

keep the knowledge base up to date.

A better approach, advocated by Spitzner, would be to use passive OS

fingerprinting. Passive OS fingerprinting is similar to probing. It maps and identifying

systems on a network, but instead of sending out packets and examining the response,

passive fingerprinting examines captured packets and compares them to a database of

signatures. This approach is much less intrusive and can be carried out continuously to

provide a real-time mapping of the network.

Passive network analysis operates by examining packets from actual or legitimate

sessions instead of generating packets that are apart of its own session. The values of

certain fields, from the TCP header for example, are then compared to known values for

specific operating systems. These known values are called fingerprints. Based on the

fingerprint database, the operating system type for the host that generated the packet can

be established.

 P0F is a free open source a passive OS fingerprinting tool written by Michal

Zalewski, and can be used to carry out passive network analysis for the dynamic

honeypot. It uses numerous different metrics for fingerprint identification that are

supposed to give it a high degree of accuracy. There are actually three modes of

operation: incoming connection fingerprinting, outgoing connection fingerprinting, and

 25

outgoing connection refused fingerprinting, corresponding to the SYN, SYN/ACK, and

RST parts of the TCP handshake. P0f operates on single packets, and generated the

following output, shown in figure 3.1, when run on a test LAN.

<Sun Mar 28 22:47:19 2004> 192.168.1.101:6000 - Linux recent 2.4 (2)
 -> 192.168.1.100:44003 (distance 0, link: ethernet/modem)
<Sun Mar 28 22:51:37 2004> 192.168.1.23:5000 - Windows 2000 Professional
 -> 192.168.1.100:57615 (distance 0, link: ethernet/modem)

Figure 3.1. Sample p0f output.

In this example, the host 192.168.1.101 has been fingerprinted as “Linux recent 2.4 (2)”,

and the host 192.168.1.23 has been fingerprinted as “Windows 2000.”

3.2.2 Virtual Honeypot Deployment

Another challenge for the dynamic honeypot is that to be truly effective, the

dynamic honeypot will be deploying multiple honeypots. While individual machines

could be used for each honeypot and deployed throughout the network, this is obviously

impractical on many levels and could hardly be construed as plug and play. Instead, a

much more desirable solution would be for a single appliance to deploy multiple virtual

honeypots on a network’s unused IP addresses. The open source solution Honeyd [6] has

exactly this ability.

 Honeyd is a very powerful, very configurable honeypot solution. Configuration is

done through a configuration file, specified in the command line. Honeyd allows for the

definition of various “personalities” which are then bound to an IP address. The OS

simulation for each personality is based on the NMAP finger print file, giving Honeyd

the ability to emulate over 500 different operating systems. For each personality port

actions are defined for TCP, UDP, and ICMP.

 26

The response options for ports are open, block, reset. Block does not respond to a

connection attempt, reset closes a connection attempt, and open creates a connection.

When a port is open incoming data is allowed, but not captured by Honeyd. Honeyd

sends out no application data and the connection remains open till closed by the source.

In addition to these options, an executable can be attached to a specific protocol and port.

This creates an open port with incoming data forwarded to the executable and output

from the executable forwarded to the source through using I/O redirection and standard

I/O. In the example listed in figure 3.2, test.sh is a script that just echoes back to the

sender whatever it receives.

#Sample Configuration
create windows
set personality windows “Windows NT SP4 – SP5”
set windows default tcp action block
set windows default udp action reset
set windows default icmp action block
set windows tcp port 137 action open
add windows tcp port 1006 “scripts/test.sh”
bind 192.168.1.110 windows

 Figure 3.2. Sample Honeyd configuration.

 You can specify to Honeyd on the command line an IP range on which to operate.

If none is specified it will attempt to respond to any packet it sees. Individual

personalities are bound to specific IP addresses, as seen in the above example: bind

192.168.1.110 windows. There must be a default personality defined as well, which is

used for connection attempts to IP addresses for which no specific personality has been

bound.

Unless traffic is specifically routed to Honeyd, arpd must be used to attract traffic

to the honeypot. Arpd responds to unused IP addresses (the range of which is given in

the command line) with the system’s MAC address, which means any traffic not destined

for an actual host will end up at the system running arpd and therefore be seen by

 27

Honeyd. For example arpd 192.168.1.0/24 will respond to the arp protocol “who-has”

for any address between 192.168.1.1-192.168.1.255 for which no other system responds.

 Honeyd also has some dynamic capabilities that can be accessed through the

configuration file. This gives Honeyd the ability to create different virtual honeypots

based on the source’s IP address, operating system, or time of day. These dynamic

honeypots are then bound to an IP address, and respond with different templates based on

the condition given in the configuration.

3.3 A Dynamic Honeypot Design

The initial dynamic honeypot design takes into account the functionality of p0f

and Honeyd. Recall that the goal of the dynamic honeypot it to determine how many

honeypots to deploy, where to deploy them and what they should look like to blend in

with the surrounding environment. Figure 3.3 shows the basic elements needed for a

dynamic honeypot.

The passive network analysis module carries out passive network analysis,

specifically OS fingerprinting. It will sniff packets directly off the wire and place the

results into the dynamic honeypot database, the collection of information about the

network that represents what the dynamic honeypot has learned about the network. It

will use p0f to passively fingerprint systems based on packets sniffed from the network.

This must include a set of IP addresses and the operating systems associated with them,

as well as a list of open ports associated with each host. This information will be stored

in the dynamic honeypot database.

 28

Network Bridge

In
te

rn
al

 N
et

w
or

k
Se

gm
en

t

Network
Data

Extraction

p0f

Dynamic
Honeypot
Database

Honeyd Dynamic
Honeypot

configuration
engine

Figure 3.3. Model for a dynamic honeypot design.

The honeypot deployment module will deploy the virtual honeypots, based on

some given configuration. It will be able to simulate a variety of different OS and deploy

honeypots on multiple IP addresses from a single network connection. This module will

consist almost entirely of Honeyd, with the virtual honeypot definitions taking the form

of Honeyd style configuration templates and bindings

The configuration module will use the data from the network mapping storage to

create the virtual honeypot definitions. A virtual honeypot definition will consist of an IP

address, an OS, and a set of open ports. Configuration will be achieved by grouping the

existing hosts together based on their OS type and the distance between their IP

addresses. Each group of hosts will then have an associated honeypot that has the same

(or similar) OS as the group members. The open ports on that honeypot will include all

 29

open ports of each host in the group. Finally the IP address of the honeypot must be

similar to those of the group, but cannot be an IP address already in use. In order to

maintain consistency with the current network, the honeypot definitions will be updated

at regular intervals.

3.4 Intrusion Detection Using A Dynamic Honeypot

Having designed a dynamic honeypot, we now return to using it to carry out

intrusion detection. Once deployed, the network interface on which the dynamic

honeypot is listening will be sniffed. Ideally any and all traffic seen will constitute an

intrusion. In reality it is likely that even if there are no intrusions (insider threat and

internal compromised host count as an intrusion), there may be traffic to the honeypot.

Such benign traffic would still reflect some error in the network somewhere, and

reporting it should help administrators identify the source of the problem. It is therefore

reasonable to capture all the traffic using some kind of packet sniffer, and for all traffic to

merit some kind of alarm, if not a red alert. In addition it might be useful to look for

known intrusion signatures since these may have eluded the defenses elsewhere.

We have yet to resolve the issue of what level of interaction the honeypot is to be.

Honeyd is generally a low to medium interaction honeypot, capable of port monitoring or

passing payload data to a script or executable. However Honeyd can also use the “proxy”

action to pass a connection to another system entirely. By using the proxy action for a

port it is possible for Honeyd to achieve a high-level of interaction, by proxying to an

actual system. While that system could be one of various high-interaction honeypots

(isolated from the rest of the network), it could also be an actual host in the production

 30

network. The issue that must first be addressed is how this might impact the security of

the existing network.

Using the dynamic template ability it is possible to have the honeypots react

differently depending on whether the connection host is apart of the internal or external

network. This makes it possible to use a higher level of interaction for internal hosts, or a

lower level of interaction for external hosts. In this way the dynamic honeypot can use

hosts on the internal network as high-interaction proxies when connecting systems are

located with in the internal network, and use just simple open ports or scripts to emulate

services when the connection host is apart of the external network.

This does not add unreasonable additional risk even though the honeypot is

redirecting traffic to a production system. Since the source is coming from the internal

network, whichever host the honeypot proxies is also directly reachable from the source.

Therefore the honeypot does not introduce additional risk by using proxies for internal

sources only. Forwarding external hosts to internal host would represent a serious

increase in the risk for the internal network, and must be avoided.

This approach may decrease the amount of time it takes for an internally

compromised machine to find additional hosts to compromise, but in so doing it should

also significantly decrease the period of time before such an event is noticed. In addition,

the honeypot will capture the entire session, and isolate it from any production host. This

should aid in incidence response and potentially provide good forensic evidence that can

be easily preserved without disturbing any production hosts. In addition efforts to secure

and maintain the production systems at the same time secures and maintains the high-

interaction honeypots.

 31

Using low interaction honeypots for external hosts also makes good sense. They

are the most secure kind of honeypot, and therefore the least likely to be compromised. If

the source of an intrusion is from the external network, then the primary goal of the

honeypot based IDS is to identify the intrusion, which a low-interaction honeypot can do

adequately. Scripts or executables could be used to emulate various services, and the

dynamic honeypot will facilitate them being associated with the appropriate ports.

However, they are not absolutely necessary and do pose certain risks. Very simple

emulators lack realism, and are probably easily fingerprinted, even by automated attacks.

More complex emulators, while much more realistic, have greater potential to be

compromised, and introduce unwanted additional risk. Using just the port listening

capabilities of Honeyd will capture any and all payloads pushed to the honeypot. While

this type of connection lacks realism, it hardly gives itself away sense it does not respond

at all.

It is also makes sense to treat the internal and external networks differently from

the perspective of intrusion detection. Connection from an external host is a good

indication of a mis-configured firewall or border security measure. Connection from an

internal host is likely indication of an insider threat or a compromised host on the internal

network.

To use the dynamic honeypot to carry out intrusion detection once the dynamic

honeypot has been deployed, the interface on which the honeypot is listening must be

sniffed. This traffic is the high value data that will be used for intrusion detection. Since

all traffic to a honeypot is anomalous the need to identify anomalous events vs. normal

traffic is eliminated. Therefore a simple reporting mechanism that presents the raw

 32

traffic data would be sufficient for intrusion detection. However, additional processing of

the traffic data is also possible.

Additional processing could take the form of applying a set of rules to the honeypot

data. These rules would define an intrusion in terms of honeypot traffic. An alarm or

alert that an intrusion has occurred would be generated when the conditions of one of the

rules was met. For example: if the majority of the traffic is coming from a single host, or

if an individual host is interacting with multiple honeypots on the same port. A potential

set of rules was developed, and is listed in appendix D. A layout of the dynamic

honeypot intrusion detection system is listed in figure 3.4.

Network Bridge

In
te

rn
al

 N
et

w
or

k
Se

gm
en

t

Network
Data

Extraction

p0f

Dynamic
Honeypot
Database

Honeyd

Snort

Dynamic
Honeypot

configuration
engine

Alert
Database

Web interface to
alerts provided by

ACID

Figure 3.4. Design for dynamic honeypot intrusion
detection.

 The network interface on which the dynamic honeypot listens is the internal

interface, the same interface to which production systems are physically connected. The

 33

sniffer captures all packets bound for the honeypots and logs them. Snort is excellent for

packet capture and has become the sniffer of choice for many honeypot deployments.

Once packets are captured they are passed to the log/alert/alarm mechanisms. All packets

will be logged for future reference, incidence response, and forensics. The alert and

alarm mechanisms generate the output of the intrusion detection system. Since it has

been established that all traffic to the honeypots is anomalous and potentially indicative

of an intrusion, one of these mechanisms will output all traffic to the honeypots. Another

mechanism will perform some additional analysis of the traffic by apply some rules to the

honeypot traffic.

 34

CHAPTER IV

IMPLEMENTATION

 An intrusion detection system based on a dynamic honeypot was implemented for

a small LAN. This first required the implementation of a dynamic honeypot. Once

deployed, the dynamic honeypot was used to carryout anomaly based intrusion detection

by monitoring all traffic coming into the dynamic honeypot[s]. The dynamic honeypot

was developed using C++ on Red Hat’s Fedora core 2 Linux distribution, kernel 2.6. The

LAN consisted of a Belkin router, a Linksys router, three Linux systems, a Windows

2000 system, and a Windows XP system connected to the Internet through a high-speed

cable modem.

4.1 Dynamic Honeypot Implementation

There are three key elements that must be addressed by the implementation:

gathering information about the network, generating honeypot definitions from gathered

information, and finally deploying the honeypots. This dynamic honeypot

implementation was an integration of some existing solutions with the implementation of

a solution that generates honeypot definition from network information. Existing tools,

specifically p0f and Honeyd, were used rather than re-implementing these partial

solutions. Since there did not exist a publicly available tool for generating honeypot

 35

definitions from network information, this part of the dynamic honeypot was

implemented from scratch.

4.1.1 Gathering Network Information

Recall that it was determined that p0f would be used to carryout passive network

analysis. Since passive network analysis will be an ongoing process, storing the results in

some type of database will facilitate sharing that information with other parts of the

dynamic honeypot. MySQL was chosen as the database, and several tables were created

to store the various information. One table, called host, holds the IP address, operating

system fingerprint, the number times this host has been fingerprinted as this operating

system, and the time the last fingerprint was made. Another table, called ports, has fields

IP address and port number that contain all the open ports for each host, associated by IP

address. The configuration of these tables is given in figure 4.1; the field service and app

of the ports table are not used in this implementation.

mysql> desc host;
+--------+------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------+------------------+------+-----+---------+-------+
ipaddr	int(10) unsigned		PRI	0	
os	varchar(255)		PRI		
count	int(11)	YES		NULL	
last	datetime	YES		NULL	
+--------+------------------+------+-----+---------+-------+
4 rows in set (0.00 sec)

mysql> desc ports;
+---------+------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------+------------------+------+-----+---------+-------+
ipaddr	int(10) unsigned		PRI	0	
port	smallint(6)		PRI	0	
service	text	YES		NULL	
app	text	YES		NULL	
+---------+------------------+------+-----+---------+-------+
4 rows in set (0.00 sec)

Figure 4.1. Host and port table definitions.

 36

Since p0f lacks a native MySQL interface, the output was piped into a secondary

program that extracted the relevant data and inserted it into the database. Both the SYN

and SYN/ACK modes of p0f were used. This was necessary since a server might never

initiate a connection, and would subsequently not be fingerprinted by the SYN mode of

p0f. When p0f cannot fingerprint a particular packet, it labels its operating system as

‘UNKNOWN’ followed by the associated fingerprinting values for that packet. It is

possible to suppress this feature using the –U option, which was used in this

implementation.

Unfortunately p0f is not 100% accurate or deterministic. It is possible that one

packet generated by a host will be fingerprinted as Windows NT, while another might be

“Windows XP” (or potentially Linux 2.2, but this is much less likely). P0f also appends

additional data separated by a comma or inside parenthesis, for example ‘(2)’ for a

second fingerprint for the same operating system. To simplify matters slightly once a

comma, parenthesis, or bracket was encountered in the operating system string, the

remainder of the string (including the symbol) was truncated. This effectively produced

OS labels like Windows XP, Linux 2.1-2.4, where the main operating system type, i.e.

Windows, Linux, AIX, BSD, etc. was listed first. This approach allowed a single host, or

IP address, to have more than one associated operating system fingerprint.

Recall that a dynamic honeypot will need to decide what port should be open on

each honeypot. Therefore the passive network analysis module needs to generate a set of

open ports for each host. The output of p0f does included port numbers; however these

could just as likely be ephemeral ports or open ports. It makes no sense to have open

ephemeral ports, and including them in a honeypot definition could potentially give away

 37

the honeypot. Unfortunately there is not enough information in the p0f output to

distinguish between a server port and an ephemeral or client port.

For TCP packets, the SYN/ACK flag combination indicates that the source host is

listening on that TCP port. Thus tcpdump can be used to find server ports, at least for

TCP. This was achieved by selecting only those packets where byte 13 in the TCP

header has value 18 (10010, 0x12). This can be achieved using tcpdump with the

following options:

tcpdump –nn ‘TCP[13] == 18’

Determining listening ports for UDP and ICMP will be more difficult, so for this project

we will focus on TCP only (this is hardly unreasonable since TCP is by far the most

commonly used protocol). Once the packets have been selected, then extracting the

source address and port is simple, and the result can be inserted into the honeypot

database.

The dynamic honeypot will want to fingerprint as many possible systems on the

local network as possible. A single interface on the local network, even running in

promiscuous mode, is not sufficient to capture all the traffic even on small network, and

for larger networks would be even more inadequate. Some kind of interface must be used

that makes sure that all network traffic can be seen by p0f. Two possibilities for

improving the scope of the traffic available to p0f are using a spanning port or a bridge.

A spanning port receives all the traffic flowing through a router or a switch, allowing p0f

to see traffic to all systems connect to the switch or router. A bridge connects to network

segments, and all traffic between the two segments must cross the bridge, allowing p0f to

see traffic to all systems connected through the bridge.

 38

The bridge was chosen for several reasons: It doesn’t rely on someone to

correctly identify (and configure) the spanning port on a network switch. It allows the

dynamic honeypot to become a device that you physically place in front of the network

on which you want it to operate. It operates at the link layer, making it a stealth device,

meaning that not only can it not be seen; neither is it necessary to make any changes to

routers or host [60]. Finally, it could eventually carryout intrusion prevention since it has

control over what flows in and out of the local network. Figure 4.2 shows the

construction of the LAN. The Belkin router and its systems are the internal or

productions network on which the dynamic honeypot will be deployed. The Windows

XP system is a part of the external network, and interacts with the dynamic honeypot and

the internal network the same as a remote host on the Internet.

Internet Dynamic Honeypot
Linksys Router

Belkin Router

Linux Server Linux Workstation
Windows 2000Windows XP

Bridge Bridge

Local interface connection

Figure 4.2. Configuration of the development and test
network.

Using a bridge will require two additional interfaces. The bridge will use two

interfaces, and the third interface will be connected to the internal network as if it were

any other normal host. The bridge will be connected between the top-level router/switch

for the internal network, and the perimeter connection from the ISP or a firewall. The

 39

honeypots will be deployed through the interface that is connected to the internal

network, as seen in figure 4.3.

Another issue that must be addressed at some point is differentiating between the

local network, on which we want to deploy honeypots, and the external network. While

it is clear in figure 4.3 that network interface 1 is the WAN connection and interface 2 is

the LAN connection, this is not inherently obvious from the perspective of the bridge.

Interface 1 and 2 could be switched and have no effect on how the bridge performs or

how it views packets. The dynamic honeypot must have some means of deciding which

IP address (seen on the bridge) are apart of the local network, and which are not.

LAN
Internal Network

WAN
Internet

Network
interface 1

Network
interface 2

Bridge

Network
interface 3

Dynamic Honeypot

Figure 4.3. The use of interfaces in the dynamic honeypot.

This does not necessarily have to be addressed during passive network analysis; it

could be addressed when the honeypots are being configured. In this case the dynamic

honeypot would be trying to fingerprint every host on the internal and external network.

While this might provide some useful incidence response information, at this point it is

superfluous, and undesirable. Instead, it would be better during passive network analysis

to filter out everything but systems on the local network. It would appear that this should

be very easy to do because of the bridge.

 40

Unfortunately there is really no simple method of determining direction of flow

on the bridge. However, if the mac address of the internal switch or router were known,

then traffic could be filtered at the link layer. This was achieved by filtering traffic on the

bridge based on the address and mask of the local network interface (network interface 3)

and extracting the source’s mac address. Assuming that the bridge connects to some type

of router, filtering at the link layer for packets whose link layer source is this mac address

will filter out all hosts not apart of the local network. For this implementation a single

router, switch, or hub will be assumed. (It is possible that there might be additional

devices all directly connected to the bridge, which would simply mean filtering for all

these devices’ mac addresses as well.)

 Since it may happen that some hosts are not fingerprinted at all, and it is

important that honeypots are not assigned an IP address already in use, it would be

advantageous to have a separate list of all hosts on the internal network, even if they have

not been fingerprinted. This was achieved by adding another table to the database, called

flock, which consists of two fields, an IP address, and a timestamp. Values are inserted

into the table by extracting the relevant IP address from a continuous tcpdump stream that

implements the appropriate link layer filter. The processes that insert the operating

system data and port data can first check to make sure that the host is in the internal

network using this list. In addition, honeypots can consult this table to make sure they

are not binding to an IP address already in use.

 Tcpdump and p0f are launched in daemon mode and their output is piped into an

executable that extracts the relative data and inserts it into the database. This processes

continues indefinitely, and the timestamps in the flock and host tables are used by the

 41

dynamic honeypot to select only up to date information. This process results in the three

tables flock, host, and ports being filled. A sample result is shown in figure 4.4. This

part of the dynamic honeypot will run independently for a period of time, so that the

database is adequately populated.

mysql> select inet_ntoa(ipaddr) as ipaddr,os,count,last from host;
+--------------+-----------------------+-------+---------------------+
| ipaddr | os | count | last |
+--------------+-----------------------+-------+---------------------+
192.168.2.16	Linux 2.4/2.6	118	2004-09-07 12:33:09
192.168.2.22	Windows 2000 SP2+	94	2004-09-07 11:06:24
192.168.2.62	Linux 2.4/2.6	27	2004-09-07 11:51:25
192.168.2.40	Linux 2.4/2.6	18	2004-09-07 12:39:43
+--------------+-----------------------+-------+---------------------+
4 rows in set (0.03 sec)

mysql> select inet_ntoa(ipaddr) as ipaddr,port from ports;
+--------------+------+
| ipaddr | port |
+--------------+------+
192.168.2.16	22
192.168.2.16	443
192.168.2.16	1241
192.168.2.16	3306
192.168.2.22	135
192.168.2.22	139
192.168.2.22	445
192.168.2.22	1025
192.168.2.40	22
192.168.2.40	80
192.168.2.40	111
192.168.2.40	443
192.168.2.62	22
192.168.2.62	111
192.168.2.62	3306
192.168.2.62	6000
+--------------+------+
16 rows in set (0.02 sec)

mysql> select inet_ntoa(ipaddr) as ipaddr,time from flock;
+--------------+--------------+
| ipaddr | time |
+--------------+--------------+
192.168.2.16	040907130248
192.168.1.98	040908100631
192.168.2.22	040907130248
192.168.2.62	040907120331
192.168.2.40	040907130248
192.168.2.1	040907130248
+--------------+--------------+

Figure 4.4. Contents of the host, ports, and flock tables as a
result of passive network analysis

 42

4.1.2 Generating Honeypot Definitions.

Once the host table and port tables have been populated the processes of

configuring the honeypots begins. Based on the values in host and ports, the dynamic

honeypot must make the following determinations:

• How many honeypots to deploy?
• What the OS personality each honeypot should have?
• What the IP address of each honeypot will be?
• What TCP ports should be open?

To make these determinations a simple rule based approach was taken that addresses

each problem incrementally. A very simple set of rules was developed and is listed in

appendix C. These rules were then implemented in a C++ program that interfaces with

the dynamic honeypot database.

The information needed to define each honeypot will be stored in the dynamic

honeypot database. Three tables, honeypots, honeyhosts, and honeyports will be used.

The table honeypots will have the following fields: honeypot id, IP address and operating

system. The honeypot id is a unique integer identifier for each honeypot, the IP address

and operating system will be the operating system personality for the honeypot, and the

IP address will be the IP address to which the honeypot is bound. The honeyports table

will have fields: honeypot id, port, and proxy. A description of each table is given in

figure 4.5.

To establish the number of honeypots to deploy, all hosts are partitioned into

groups, and a honeypot is created for each group. Two characteristics will be used in

determining group membership for each actual host: 1) the distance between the IP

addresses of the hosts in the group and 2) the similarity between the operating systems as

determined by p0f during passive network analysis. Each host is evaluated individually

 43

to determine the group to which it will belong. If there does not exist a group to which

the host belongs, a new group is created and the host is placed in that group.

Initially there are no groups, so the first host is placed in a new group. Then each

successive host is analyzed to see if it is a member of an already existing group using a

membership function that returns the group to which that host belongs, or –1 if it does not

belong to any group. The membership function examines the IP address distance

between the current host and hosts in other groups and the operating system type of the

current host and the operating systems type of hosts in other groups.

mysql> desc honeypots;
+--------+------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------+------------------+------+-----+---------+-------+
hpid	int(11)		PRI	0	
ipaddr	int(10) unsigned	YES		NULL	
os	varchar(255)	YES		NULL	
+--------+------------------+------+-----+---------+-------+
3 rows in set (0.00 sec)

mysql> desc honeyhosts;
+--------+------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------+------------------+------+-----+---------+-------+
| hpid | int(11) | | PRI | 0 | |
| ipaddr | int(10) unsigned | | PRI | 0 | |
+--------+------------------+------+-----+---------+-------+
2 rows in set (0.00 sec)

mysql> desc honeyports;
+--------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------+-------------+------+-----+---------+-------+
hpid	int(11)		PRI	0	
port	smallint(6)		PRI	0	
proxy	varchar(40)	YES		NULL	
script	varchar(80)	YES		NULL	
+--------+-------------+------+-----+---------+-------+
4 rows in set (0.01 sec)

mysql> desc scripts;
+--------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------+--------------+------+-----+---------+-------+
port	smallint(6)		PRI	0	
script	varchar(255)		PRI		
os	varchar(40)	YES		NULL	
+--------+--------------+------+-----+---------+-------+
3 rows in set (0.00 sec)

Figure 4.5. Honeypots, honeyports, honeyhosts, and scripts
table definitions.

 44

In order for two hosts to be members of the same group the distance between their

IP addresses must be less than a predetermined threshold. This distance threshold is a

percentage of the average distance between the actual hosts, which is determined by

dividing the total address space by the number of hosts. The result of such a function

forces more densely populated networks to be more discriminating in their group

selection and vice versa. The size of the address space is determined by finding the

highest order bit that differs among the hosts, the address space then being 2 to that

power.

This approach actually generates an address space that is possibly much smaller

than the actual address space, but yields a more useful average distance. For example,

given the host addresses: 192.168.1.16, 192.168.1.22, and 192.168.1.40 on a

192.168.1.0/24 subnet, the actual address space is 255 giving an average distance of 85,

which is much greater than the distance between any of the hosts. However, only 6 bits

are used to distinguish the hosts, yielding an address space of 64 and an average distance

of approximately 21, which is closer to the observed distances. Were there to be an

additional host at 192.168.1.250 this would result in an average distance of 64, making it

more likely the initial hosts would be grouped together. The threshold distance used for

membership is a percentage of the average distance, initially set at 75%. In theory, a

higher percentage should produce fewer groups and subsequently fewer honeypots, and

vice versa.

 The comparison between two operating system strings is based on the general

operating system class, such as Linux, or Windows. This will always be the initial

substring that contains no white space. Since all the values are stored in the MySQL

 45

database, the LIKE function can be used in conjunction with a select statement for

comparison. The LIKE function is not case sensitive; in addition the ‘%’ is appended to

the string so that it will match to any other operating systems type that begins with that

general class. For example LIKE ‘Linux%’ will match with any other operating system

type that begins with Linux, e.g.: Linux 2.4, or Linux 1.9.

 While there is no reason that a host cannot be a member of more that one group, it

was decided that each host should only belong to one group. Therefore, if a host meets

the membership requirements for more than one existing group, the distance threshold is

divided by 2 and the membership function is called again. This processes is repeated

recursively till the host belongs to only one or zero groups. In the case of zero, the host

will be considered a member of one of the groups from the previous match. At the end of

this process, each host on the network will be associated with some group, called the

honeypot group.

 Next, each honeypot group needs to be assigned an operating system. Honeyd

uses the Nmap fingerprint database to simulate different operating system TCP/IP

implementations, so the operating system needs to be selected from possible Nmap

operating system fingerprints. All possible Nmap fingerprint names are placed in a table

called osfinger. For each group, the operating system with the highest count is selected

from all the hosts in that group. Then the operating system type is extracted and all

possible Nmap fingerprints are selected that match the operating system type. Further

matching continues by successively appending an additional character from the original

operating system fingerprint string until no matches are found or the end of the string is

reached, and the result of the previous comparison is used as the final match. For

 46

example: LIKE ‘Linux 1%’, LIKE ‘Linux 1.%’, and LIKE ‘Linux 1.2%’ would be

generated from the operating system string ‘Linux 1.2’. This process should result in a

limited set of potential candidates from which the personality is chosen at random.

 Next, an unused IP address must be selected for each group, this will be the IP

address of the honeypot associated with that group. It would be desirable for the IP

address to closely resemble the IP addresses of the hosts in the group. Therefore the rule

for selecting an IP address begins by identifying only those bits that are not the same for

each host. For groups that only have one host, the zero bits of the subnet mask from the

local interface will be used. A candidate IP address is generated by flipping one or more

of these bits in the IP address of one of the hosts in the group. To become the group’s IP

address, the candidate IP address must not already be in use by any of the physical

systems on the network, including the dynamic honeypot systems, or by any other group.

 For each honeypot group, the open or listening ports (TCP only for this

implementation) come from the hosts associated with that honeypot. Recall that during

passive network analysis the dynamic honeypot is populating a table listing the open

ports associated with each host. For each honeypot group, its open ports are all the open

ports associated with any host that is a member of the group. These ports are determined

by selecting all elements from the ports table whose IP address is in the current honeypot

group.

4.1.3 Deploying The Honeypots

 Recall that we have already decided that Honeyd will be used to deploy virtual

honeypots. Therefore the dynamic honeypot will create a configuration file for Honeyd

based on the results of determinations it has made previously and stored in the dynamic

 47

honeypot database. When Honeyd is launched it will read this file and deploy the

honeypots, see figure 3.2 in section 3 for a sample configuration.

Recall that the dynamic honeypot will respond differently depending on whether

the source of the connection is coming from the internal or external network. To achieve

this each group or honeypot will have two definitions, one to be used when the source is

external, and one to be used when the source is internal. Each Honeyd honeypot

definition must be given a distinct name when it is created, so the honeypot id number

(hpid) will be placed between ‘honeypot’ and either ‘external’ or ‘internal’ depending on

which is appropriate. The first line of a Honeyd configuration is “create name”, where

‘name’ is the name of that definition. Using the naming convention above the dynamic

honeypot will begin the configuration definition will lines like ‘create

honeypot20internal’ and ‘create honeypot20external’.

 Each definition, external or internal, will use the same personality, which has

already been determined and stored in the honeypots table. For example: set

honeypot20internal personality “Windows 2000 SP2” and set honeypot20external

personality “Windows 2000 SP2”. They will both also use the same default port actions,

blocking by default TCP and UDP ports, but leaving ICMP open. Figure 4.6 shows these

elements from a sample configuration generated by the dyamic honeypot.

set honeypot20extern default tcp action block
set honeypot20extern default udp action block
set honeypot20extern default icmp action open

Figure 4.6. Definition of default tcp, udp, and icmp actions
in Honeyd.

Once the default setting have been given, the actions for individual ports can be given.

This is where the open ports for each honeypot group come into play.

 48

 For the external definition an open port can simply be declared as open, which

will cause Honeyd to complete the connection handshake, but make no response to any

incoming data. Recall from the previous discussion that Honeyd also allows scripts or

executables to be attached to an open port using standard I/O. These scripts will be

exposed to the external network, so some degree of caution is merited in their use.

Complex scripts might contain unknown vulnerabilities flows, and so are avoided here.

However, simple scripts that give at least some sense of realism are appropriate. For

example, port 22 is typically SSH, and when a client opens an SHH connection, the

server responds with a banner like: “SSH-1.99-OpenSSH_3.3p1.” A script to send such a

banner is trivial to implement and since it processes no input, it will be very difficult if

not impossible to exploit (never say never).

 Simple scripts for SSH, FTP, and MySQL were written to provide the appropriate

server responses. However not all servers push initial data on their own, for example,

HTTP and NET BIOS. But some simple emulation scripts for HTTP do exist, which

respond with the HTTP/1.1 400 Bad request. iis.sh [56], by Fabian Bieker, is one such

script, and was chosen for its simplicity. NET BIOS, being proprietary, is less

understood, and no scripts will be used to simulate it.

 To attach the scripts to the Honeyd definition, another table, called scripts, was

created. It has two fields port and script, where port is the port number for that script, 22

for SSH etc. Script contains the full path to the executable, and any necessary arguments.

Honeyd supports the following tokens for variable expansion: ipsrc, ipdst, sport, and

dport. This allows the source address and destination address to be passed as argument to

the scripts, which can use them to annotate the log files to which they write. The script

 49

table can be accessed when the honeypot definition is being created, and if a script is

available it will be used, otherwise the keyword open will be used. A sample definition is

given in figure 4.7.

add honeypot30extern tcp port 22 "./scripts/ssh.sh $ipsrc $sport"
add honeypot30extern tcp port 111 open
add honeypot30extern tcp port 3306 "./scripts/mysql.sh $ipsrc $sport"
add honeypot30extern tcp port 6000 open

Figure 4.7. Adding additional open ports and actions to
Honeyd.

 For the internal definition, each open port will have a proxy to some internal host.

This is exactly the information stored in the ports table when it is used to determine the

open ports for each honeypot group. Therefore when the honeyports table is being

created, besides inserting port numbers, a proxy for each port is also inserted into the

proxy field. An example of a complete definition is shown in figure 4.8.

create honeypot20intern
set honeypot20intern personality "Windows 2000 SP2"
set honeypot20intern default tcp action block
set honeypot20intern default udp action block
set honeypot20intern default icmp action open
add honeypot20intern tcp port 135 proxy 192.168.2.22:135
add honeypot20intern tcp port 139 proxy 192.168.2.22:139
add honeypot20intern tcp port 445 proxy 192.168.2.22:445
add honeypot20intern tcp port 1025 proxy 192.168.2.22:1025

Figure 4.8. Complete Honeyd style honeypot definition.

 Using the dynamic feature of Honeyd, both the internal and external definition for

each honeypot can be bound to the same IP address, which has already been selected.

This requires the creation of a third honeypot definition, whose name must be unique.

The naming convention used is ‘honeypot’ followed by the honeypot id, for example

create dynamic honeypot20. The previous internal and external honeypot definitions are

conditionally bound to this dynamic template, as shown in figure 4.9. The condition

source ip = 192.168.2.0/26 is determined from the IP address and subnet mask of the

local interface at the time the dynamic honeypot is launched.

 50

dynamic honeypot20
add honeypot20 use honeypot20intern if source ip = 192.168.2.0/26
add honeypot20 otherwise use honeypot20extern
bind 192.168.2.23 honeypot20

Figure 4.9. Conditional binding of different honeypots to
one IP address in Honeyd.

 Each honeypot group then has three definitions associated with it: an internal

definition, and external definition, and a dynamic template that determines when to use

the internal and external definitions. A complete set of definitions for one honeypot is

shown in figure 4.10.

create honeypot20intern
set honeypot20intern personality "Windows 2000 SP2"
set honeypot20intern default tcp action block
set honeypot20intern default udp action block
set honeypot20intern default icmp action open
add honeypot20intern tcp port 135 proxy 192.168.2.22:135
add honeypot20intern tcp port 139 proxy 192.168.2.22:139
add honeypot20intern tcp port 445 proxy 192.168.2.22:445
add honeypot20intern tcp port 1025 proxy 192.168.2.22:1025
create honeypot20extern
set honeypot20extern personality "Windows 2000 SP2"
set honeypot20extern default tcp action block
set honeypot20extern default udp action block
set honeypot20extern default icmp action open
add honeypot20extern tcp port 135 open
add honeypot20extern tcp port 139 open
add honeypot20extern tcp port 445 open
add honeypot20extern tcp port 1025 open
dynamic honeypot20
add honeypot20 use honeypot20intern if source ip = 192.168.2.0/26
add honeypot20 otherwise use honeypot20extern
bind 192.168.2.23 honeypot20

Figure 4.10. Complete honeypot definition.

Once the configuration file has been written, the dynamic honeypot can launch

Honeyd to deploy the virtual honeypots. Honeyd reads the configuration file and deploys

the honeypots. The dynamic honeypot must also launch aprd to enable the binding of

honeypots to unused IP space on the subnet. During this process passive analysis is still

going on in the background, so the process can be repeated at regular intervals to keep the

dynamic honeypot up to date with changes in the network. Prior to updating the

 51

definitions, the dynamic honeypot removes any honeypots that have been fingerprinted as

actual hosts.

4.2 Anomaly Based Intrusion Detection

Recall from figure 3.2, that to implement intrusion detection a sniffer will be

deployed to capture traffic coming into the dynamic honeypot. The discussion of the

design in section 3.3 identified two approaches for generating intrusion alerts based on

the honeypot traffic. Since all the traffic is anomalous, by definition of a honeypot, an

intrusion alert can defined as any interaction with the honeypot. To implement this

approach, the output of the intrusion detection system is simply a listing of the traffic to

the honeypot. The second approach involved generating alerts based on some data

analysis of the honeypot traffic. Applying a set of rules was proposed as one data

analysis technique, and a potential set of rules was developed and is listed in appendix D.

In this case intrusion alerts will be generated by a set of rules applied to the honeypot

traffic.

 Snort was selected to capture the traffic to the honeypots. Snort is an open source

network based intrusion detection system that can also be used for packet capture. It is

commonly used by the Honeynet project to capture honeypot traffic, and it was deployed

to listen on the same interface as Honeyd. A MySQL database was chosen to be the

repository of sniffed packets, and Snort is capable of inserting the captured traffic directly

into the database. The database will store the alerts, generated by Snort, representing all

the traffic to the honeypot. Snort was also configured to log every packet to a tcpdump

file.

 52

Snort is packet based, that is, it operates on single packet at a time. To each

packet it captures it applies rules. To configure Snort to log everything the following rule

was used:

Log ip any any <> any any

This tells Snort to log any IP based packet from any host on any port to any host on any

port. The log output was configured to be a tcpdump file.

4.2.1 Reporting The Honeypot Traffic

To implement the intrusion detection approach, where an intrusion is any interaction with

the honeypot, a similar alert rule can be added to Snort.

alert ip any any -> any any

Since Snort is sniffing the local interface on which Honeyd is deployed, alerts

should only occur for the honeypots. However, the above rule generates alerts for ports

which are not open on any of the honeypots, and it is possible that it may even alert on IP

addresses not bound to any specific honeypot because of how arpd operates. A better

rule would limit itself to the established honeypots and their ports.

This is achieved by having the dynamic honeypot define a variable HOME_NET

to be a list of the honeypot IP addresses. This variable definition is written to a separate

file that is included in the snort configuration file. Unfortunately Snort does not presently

have the ability to define multiple ports as a variable (only port ranges or single ports).

Any time the dynamic honeypot updates the HOME_NET variable, it sends a signal to

Snort, telling it to re-read its configuration file. This keeps HOME_NET up to date

within Snort. It is now possible to write a rule that captures only traffic destined for one

of the honeypots:

 53

alert tcp any -> $HOME_NET any

Using the TCP qualifier makes the rule only apply when a connection or

connection attempt is made using TCP, which is the only protocol of concern for this

implementation. This rule will still alert on traffic to non-honeypot ports (i.e., port scans,

etc.) and on traffic that is not a part of an established connection. The flow preprocessor

can be used to further address some of these issues, especially since this implementation

is only concerned with TCP. Using the flow preprocessor the above rule can be limited

to established connections flowing to the server.

Alert tcp any -> $HOME_NET any (msg:”honeypot traffic”;
flow:to_server,established;)

 This rule will cause Snort to generate an alert called “honeypot traffic”, for each

TCP packet that is part of an established connection to one of the honeypots. Snort was

configured to place these alerts in a MySQL database. This rule implements the simplest

form of honeypot based intrusion detection, where all traffic is considered anomalous.

The contents of the database are viewed using ACID.

 The ACID main console displays, among other things, the total number of alerts,

unique alerts, source and destination addresses, source and destination ports, and a bar

graph indicating the percentage of TCP, UDP and ICMP traffic. From the main console a

single click can produce a listing of all the alerts, only the most recent, or any number of

additional options. From within a listing, clicking on an individual alert brings up a

detailed description of the package that caused the alert including both a hex and ASCII

version of the payload.

 54

4.2.2 An Additional Alarm Mechanism Based On Honeypot Traffic

 An additional alarm mechanism that analyzed the honeypot traffic data was

suggested during design, and some preliminary rules were developed and are listed in

appendix D. There are two categories of rules, transaction rules and session rules. The

transaction rules use only the source and destination IP addresses and ports as inputs.

The rules are intended to provide an analysis of the current honeypot traffic, and identify

suspicious traffic patterns. The session rules apply to the content of the honeypot traffic.

These rules implement conventional intrusion detection by identifying known attacks, or

in the case of rule #4, that conventional intrusion detection failed to generate any alarms

for a specific session with one of the honeypots.

 Since the session rules have much in common with conventional intrusion

detection, Snort was used to implement this functionality. Snort was configured to use its

default rules set along with the previously discussed log and alert rules. This applies

conventional intrusion detection techniques to the honeypot traffic. Any alerts generated

by the default rules will be inserted into the same database as the honeypot traffic alerts,

and will subsequently be viewable through ACID. While rule number 4 is not

implemented, the juxtaposition of alerts from Snort’s default rules and the “honeypot

traffic” alert provide essentially the same result. By looking at the source and destination

of an alert and its surrounding alerts, it should be very clear when a session with one of

the honeypots generates only a “honeypot traffic” alert and no alerts from Snort’s default

rule set.

 The transaction rules are based on statistical information about traffic to the

honeypot. Snort does not have the capability to generate or process this kind of

 55

information. Implementing these rules will require a separate process that can access the

database, and generate the appropriate statistics. Since these rules will use percentages

that have yet to be determined, it was decided not to implement them at this time. Instead

future analysis of collected honeypot traffic may help determine values and additional

metrics that could be used to create and implement real-time intrusion detection using

data analysis of honeypot traffic.

 The dynamic honeypot intrusion detection system as implemented here consists

of a dynamic honeypot that deploys virtual honeypots on a single interface, and a packet

sniffer, Snort, that captures all traffic on the local interface. All traffic is logged to a

tcpdump file. An intrusion alert, called “honeypot traffic,” is issued for any TCP traffic

that is part of an established connection and flowing to a server. In addition Snort’s

default rule set is used to apply conventional intrusion detection techniques to honeypot

traffic. The “honeypot traffic” alert indicates a network anomaly; other alerts, generated

by default rules, indicate network anomalies that match a previously known attack. The

alerts and the packets that caused them are viewed using ACID.

 56

CHAPTER V

TESTING AND RESULTS

 Before testing the intrusion detection capabilities of the dynamic honeypot, the

dynamic honeypot itself was tested. Three key aspects of the dynamic honeypot were

tested: network analysis, honeypot configuration, and honeypot deployment. Once the

dynamic honeypot was tested, its ability to carry out intrusion detection was tested.

These tests included launching an exploit against a honeypot and an actual host, as well

as exposing parts of the test network to the Internet.

5.1 Testing Network Analysis

 The first test of the dynamic honeypot was to tests the performance of its network

analysis. Once the dynamic honeypot was started, the Linux workstation and the

Windows 2000 desktop (see figure 4.2) used a standard browser to connect to and surf

the Internet. Allowing for sufficient time and resources to be used (because of buffers

there is a certain latency between a packet being sniffed of the wire, and the subsequent

insertion into the database) the honeypot database was then independently queried to

examine its contents. The results are shown in figure 5.1.

Both systems (the Linux workstation and the Windows 2000 desktop) were

accurately fingerprinted and inserted into the honeypot database. However, no open ports

(listening ports) were established for either system. Also notice that additional systems,

192.168.2.16 (dynamic honeypot local interface) and 192.168.1.98 (belkin router), were

 57

included in the flock table. These are actual hosts that were a part of the production

network but for whom no operating system fingerprint was identified. Recall that this

was the intended purpose of the flock table, and it was clearly being filled appropriately.

mysql> select inet_NTOA(ipaddr) as ipaddr,os,count,last from host;
+--------------+-------------------+-------+---------------------+
| ipaddr | os | count | last |
+--------------+-------------------+-------+---------------------+
| 192.168.2.22 | Windows 2000 SP2+ | 3 | 2004-09-19 17:57:25 |
| 192.168.2.62 | Linux 2.4/2.6 | 34 | 2004-09-19 18:01:34 |
+--------------+-------------------+-------+---------------------+
2 rows in set (0.00 sec)

mysql> select inet_NTOA(ipaddr) as ipaddr,port from ports;
Empty set (0.00 sec)

mysql> select inet_NTOA(ipaddr) as ipaddr,time from flock;
+--------------+--------------+
| ipaddr | time |
+--------------+--------------+
192.168.2.16	040919175640
192.168.1.98	040919180119
192.168.2.62	040919180119
192.168.2.22	040919180052
+--------------+--------------+
4 rows in set (0.00 sec)

Figure 5.1. Contents of the host, ports, and flock table
following some passive network analysis

 The server had yet to be fingerprinted or identified, so the next test was to connect

to it from the external network. This was done using the Windows XP desktop that, as

seen in figure 4.2, was external to the test LAN. The server was running both HTTP and

FTP services and connections to both of these services were made. Since the Linux

workstation was running MySQL, a connection was also made to this service for

comparison. Once these tests were complete, the database was queried again, and the

results are listed in figure 5.2.

There were now open ports listed in the ports table, 80 (HTTP) and 21(FTP) on

the server (192.168.2.40), and 3306 (MySQL) on the Linux workstation (192.168.2.62).

These were in actuality open or listening ports, and were correctly associated with the

appropriate host. The host table contained an additional entry for the server

 58

(192.168.2.40) that was fingerprinted by the ACK mode of p0f. The server was also

added to the flock table.

mysql> select inet_NTOA(ipaddr) as ipaddr,port from ports;
+--------------+------+
| ipaddr | port |
+--------------+------+
192.168.2.40	21
192.168.2.40	80
192.168.2.62	3306
+--------------+------+
3 rows in set (0.00 sec)

mysql> select inet_NTOA(ipaddr) as ipaddr,os,count,last from host;
+--------------+-------------------+-------+---------------------+
| ipaddr | os | count | last |
+--------------+-------------------+-------+---------------------+
192.168.2.22	Windows 2000 SP2+	3	2004-09-19 17:57:25
192.168.2.62	Linux 2.4/2.6	35	2004-09-19 19:04:21
192.168.2.40	Linux 2.4/2.6	5	2004-09-20 08:44:56
+--------------+-------------------+-------+---------------------+
3 rows in set (0.00 sec)

mysql> select inet_NTOA(ipaddr) as ipaddr,time from flock;
+--------------+--------------+
| ipaddr | time |
+--------------+--------------+
192.168.2.16	040920084215
192.168.1.98	040920084215
192.168.2.62	040920084215
192.168.2.22	040919180052
192.168.2.40	040920084215
+--------------+--------------+
5 rows in set (0.00 sec)

Figure 5.2. Additions to the flock, host, and ports tables
after external connections to servers.

 The Windows XP computer and an iBook running OS X were temporarily

connected to the internal LAN to further test the fingerprinting abilities of the dynamic

honeypot. Both systems were correctly fingerprinted (Windows XP as “Windows XP

Pro SP1” and OS X as “BSD 4.5”). The entries in the os field of the host table in both

figure 5.1 and 5.2 show that the dynamic honeypot was truncating any additional

fingerprint information, and inserting the desired operating system type and some

subsequent version information into the dynamic honeypot database. P0f has far too

many fingerprints to test exhaustively, so it was concluded that the dynamic honeypot

 59

was correctly carrying out passive operating system fingerprinting and inserting the

appropriate information into the honeypot database.

 In addition to operating system fingerprinting, network analysis also includes

determining the open or listening ports for each host. From the ports table in figure 5.2 it

is clear that this processes was started, but that it was not complete. The intention was

for additional open or listening ports to be determined over time by analysis of normal

network traffic. To simulate the opening of TCP connections, the normal network

activity that the dynamic honeypot would use to establish additional open ports, Nmap in

full connect mode was run from the dynamic honeypots local interface:

Nmap –sT –e eth0 192.168.2.0/24 –F

Appendix E lists the results of the Nmap scan. The database was queried again and the

resulting host and ports table are listed in figure 5.3.

mysql> select inet_NTOA(ipaddr) as ipaddr,os,count,last from host;
+--------------+-------------------+-------+---------------------+
| ipaddr | os | count | last |
+--------------+-------------------+-------+---------------------+
192.168.2.22	Windows 2000 SP2+	3	2004-09-19 17:57:25
192.168.2.62	Linux 2.4/2.6	36	2004-09-20 11:06:59
192.168.2.40	Linux 2.4/2.6	5	2004-09-20 08:44:56
+--------------+-------------------+-------+---------------------+
3 rows in set (0.00 sec)

mysql> select inet_NTOA(ipaddr) as ipaddr,port from ports;
+--------------+------+
| ipaddr | port |
+--------------+------+
192.168.2.40	21
192.168.2.40	80
192.168.2.62	3306
+--------------+------+
3 rows in set (0.00 sec)

Figure 5.3. Contents of host and ports tables after the
internal nmap scan.

 From figure 5.3 it is obvious that the dynamic honeypot was unable to determine

any open or listening ports from the TCP traffic generated by Nmap. Since Nmap was

able to identify the open ports, the problem must be the dynamic honeypot. In fact the

problem was that the traffic was not crossing the bridge, and therefore was not seen by

 60

the dynamic honeypot. It was previously determined that using the local interface, in

promiscuous mode, would be insufficient as the only location from which to sniff

packets. To verify that using the local interface in that way would not address the

problem, an additional tcpdump process, listening on the local interface, was piped into

the program that extracts open ports:

Tcpdump –I eth0 ‘tcp[13] == 18’ | port

Nmap was run again, this time from the Linux workstation. This failed to add any

additional open ports to the ports table, proving that the local interface is insufficient for

gathering network information.

 To verify that using tcpdump to extract all the open ports does work, Nmap was

again run, this time from the external Windows XP machine, which forced all the Nmap

traffic across the bridge. The results of the Nmap scan are listed in appendix F. Once the

Nmap scan was complete the dynamic honeypot database was queried again. The

resulting tables are listed in figure 5.4.

This time the dynamic honeypot was able to identify the open ports for each host

on the internal network. In fact the dynamic honeypot identified many of the same open

ports as Nmap. There are some discrepancies, which is to be expected. 192.168.2.1 is

the address of the LAN interface on the belkin router. The open ports listed by Nmap are

likely the result of the belkin’s firewall configuration, which was supposed to be

disabled, since these same open ports show up in the other hosts as well. An attempt to

actually open an ftp connection to 192.168.2.1 failed and confirmed that the belkin router

was behaving somewhat unpredictably. This did not affect the functioning of the

dynamic honeypot, in fact it could be argued that the dynamic honeypot’s passive

network analysis is more accurate than Nmap’s.

 61

mysql> select inet_NTOA(ipaddr) as ipaddr,os,count,last from host;
+--------------+-------------------+-------+---------------------+
| ipaddr | os | count | last |
+--------------+-------------------+-------+---------------------+
192.168.2.22	Windows 2000 SP2+	3	2004-09-19 17:57:25
192.168.2.62	Linux 2.4/2.6	38	2004-09-20 15:07:04
192.168.2.16	Linux 2.4/2.6	256	2004-09-20 10:42:03
192.168.2.40	Linux 2.4/2.6	5	2004-09-20 08:44:56
+--------------+-------------------+-------+---------------------+
4 rows in set (0.00 sec)

mysql> select inet_NTOA(ipaddr) as ipaddr,port from ports;
+--------------+------+
| ipaddr | port |
+--------------+------+
192.168.2.16	22
192.168.2.16	443
192.168.2.16	1241
192.168.2.16	3306
192.168.2.22	135
192.168.2.22	139
192.168.2.22	445
192.168.2.22	1025
192.168.2.40	21
192.168.2.40	22
192.168.2.40	80
192.168.2.40	111
192.168.2.40	443
192.168.2.62	22
192.168.2.62	111
192.168.2.62	3306
192.168.2.62	6000
+--------------+------+
17 rows in set (0.00 sec)

Figure 5.4. Contents of the host and ports tables after
external Nmap scan.

Unfortunately the dynamic honeypot is only able to identify open ports that are

accessed across the bridge, which make it blind to strictly internal network services. In

some situations, a DMZ for example, it is desirable for the dynamic honeypot to emulate

only externally accessible services. In such cases the dynamic honeypot would be

focused specifically on external threats.

But if the dynamic honeypot is to concern itself with all services on all hosts that

are apart of the LAN, then some other solution, in place of or along side of the bridge,

must be used. Some options include using a spanning port, or resorting to using some

active, rather than passive, measures. The passive bridge approach does identify all the

hosts, and was able to fingerprint their operating systems; it is only the identification of

 62

open ports where it proved inadequate. Other viable and straightforward approaches

have been suggested, so this problem was not considered an impediment to continued

testing for the dynamic honeypot.

5.2 Testing Honeypot Configuration

 Having established that the passive network analysis is working somewhat as

expected, and that it’s shortcomings can readily be addressed, the next step was testing

the honeypot configuration. Testing how the dynamic honeypot configures the virtual

honeypots required more than one LAN configuration. Rather than using virtual

machines, or some other modification to the LAN, different LAN configurations were

directly entered into the database. This made it possible to test several network

configurations in a relatively short amount of time.

First the actual LAN configuration, seen in the previous section, was used (some

IP addresses have changed due to a system reset). Once the database was populated,

shown in figure 5.3, and configuration was complete, the dynamic honeypot had created

four honeypot groups, one for each host. This is consistent with what would be expected,

since the total address space used by these host is only 64. For four hosts this produces

an average distance of 16 and a threshold of 12 (threshold is initially set to 75% of the

average distance). Appropriate open ports and proxies were established. The tables

pertaining to the honeypot definitions are listed in figure 5.5.

Once the dynamic honeypot filled these tables it wrote the Honeyd configuration

file based on them, and then started Honeyd. Appendix G shows the Honeyd

configuration file generated from the tables in figure 5.5. Honeyd was successfully

launched, indicating there were no syntactical errors in the configuration file.

 63

 To carry out further tests different network configurations were manually entered

into the database, the dynamic honeypot then configured the honeypots based on these

simulated network configurations. Appendix A lists the relevant tables from the

honeypot database as well as the Honeyd configuration file for these tests. The various

configurations demonstrate the dynamic honeypot’s ability to sensibly configure

honeypots based on passive network analysis. Similar operating systems are grouped

together, but only if they are close enough in IP address space. Each test resulted in a

successful launch of Honeyd.

Tests 2 and 3 both use the same network configuration information, but use a

different percentage to determine the membership threshold. This shows the effect of

using a different percentage of the average distance for the membership threshold. The

result being that the two honeypots from test 2 (20 and 30) were combined into one

honeypot (10) in test 3, which used the same network information as test 2. The dynamic

honeypot also made appropriate choices for IP addresses of the honeypots. For example,

in test 1 the two honeypots with more than one member (20 and 30) both only have even

numbered IP addresses, consistent with the fact that the hosts in each of these groups

have even IP addresses.

5.3 Testing Virtual Honeypot Deployment

From inside the network, the Linux workstation was used to connect to various

actual hosts and their corresponding honeypots. Since the Linux workstation is on the

internal network the dynamic honeypot should proxy any honeypot connection attempts

to an actual host. For example figures 5.6 shows a screen shot of the browser connected

to the web server (192.168.2.40) and figure 5.7 shows a screen shot of the browser

 64

connected to the honeypot associated with the web server (192.168.2.41). Both pages are

the same, indicating the honeypot was acting as a proxy for the server, as was intended.

Similar tests were carried out using SSH, FTP, and netcat, all with similar positive

results.

mysql> select hpid,inet_NTOA(ipaddr) as ipaddr,os from honeypots;
+------+--------------+--+
| hpid | ipaddr | os |
+------+--------------+--+
10	192.168.2.23	Windows 2000 SP2
20	192.168.2.63	Linux 2.4.16 - 2.4.18
30	192.168.2.17	Linux 2.4.16 - 2.4.18
40	192.168.2.41	Linux 2.4.16 - 2.4.18
+------+--------------+--+
4 rows in set (0.00 sec)

mysql> select hpid,inet_NTOA(ipaddr) as ipaddr from honeyhosts;
+------+--------------+
| hpid | ipaddr |
+------+--------------+
10	192.168.2.22
20	192.168.2.62
30	192.168.2.16
40	192.168.2.40
+------+--------------+
4 rows in set (0.00 sec)

mysql> select hpid,port,proxy from honeyports;
+------+------+--------------+
| hpid | port | proxy |
+------+------+--------------+
10	135	192.168.2.22
10	139	192.168.2.22
10	445	192.168.2.22
10	1025	192.168.2.22
20	22	192.168.2.62
20	111	192.168.2.62
20	3306	192.168.2.62
20	6000	192.168.2.62
30	22	192.168.2.16
30	443	192.168.2.16
30	1241	192.168.2.16
30	3306	192.168.2.16
40	21	192.168.2.40
40	22	192.168.2.40
40	80	192.168.2.40
40	111	192.168.2.40
40	443	192.168.2.40
+------+------+--------------+
17 rows in set (0.02 sec)

Figure 5.5. Contents of the honeypots, honeyhosts, and
honeyports tables as a result of configuration.

 From the external network, using the Windows XP machine, the same types of

connections were made. Figure 5.6 is a screen shot of the browser connected to the

honeypot at 192.168.2.41. This time the honeypot is using the iis.sh script and not

 65

proxying to an internal host. As seen in figure 5.8, the script provides some degree of

realism.

Using netcat other connections were made to internal honeypots, figure 5.9 shows

some of these. The honeypots deployed by the dynamic honeypot preformed as

expected. When an internal host connected to one of the honeypot it acted as proxy for

some actual host on the internal network. When an external host connected to one of the

honeypots it functioned as port monitor, and in some cases used very simple scripts to

simulate aspects of a service.

Figure 5.6. Connection to the web server from an internal
host.

During the tests the dynamic honeypot accurately distinguished between internal

and external hosts; however, this may have been an artifact of the network configuration

 66

(the Windows XP system uses a wireless connection to the Linksys router). Considering

the potential risk that would result from on external host being identified by the system as

internal, extensive testing of the mechanism for distinguishing between internal and

external hosts would be needed prior to deployment on a real network.

The dynamic honeypot was deployed on a single subnet, 192.168.2.0. While test

4 in appendix A shows that the dynamic honeypot can handle configuration of multiple

subnets, it has no means of deploying virtual honeypots on another subnet. To be useful

in a production environment the dynamic honeypot will need the ability to deploy

honeypots on multiple subnets. Since multiple other subnets may use NAT, passive

network analysis may need to address this issue as well.

Figure 5.7. Connection to the honeypot web server from an
internal host.

 67

Another problem that was encountered was that aprd, used to attract traffic to the

honeypot can interfere with normal network traffic. The most noticeable interference

came when trying to add an additional host to the LAN. The IP address being handed out

by the DHCP server on the Belkin router was an already in use as a honeypot. Since the

DHCP server new nothing of the assigned IP address the new host was unable to connect

to the network. To overcome this problem, the dynamic honeypot had to be stopped,

allowing the system to connect, and then the dynamic honeypot was started up again.

Figure 5.8. Connection to the honeypot web server from
external host.

5.4 Testing The Intrusion Detection Abilities

 With the dynamic honeypot performing as expected some preliminary testing of

the intrusion detection capabilities of the system were carried out. Recall that Snort was

deployed to monitor the honeypot interface, and configured to alert on any established

TCP connection flowing to the server, as well as when any of its standard rules are

triggered. ACID was configured to provide a GUI to the alerts generated by Snort, which

are stored in a MySQL database. Any alerts generated from the previous testing were

deleted; figure 5.10 shows the main ACID console with no alerts.

 68

Figure 5.9. Connection to various honeypot services from
external host.

Figure 5.10. ACID console for the honeypots prior to any
activity.

 69

 In addition to the Snort sensor deployed on the dynamic honeypot interface, a

Snort sensor was also deployed on the bridge, using only the default rule set. The bridge

sensor was a precautionary measure for times when the LAN was exposed to the Internet,

and also served as a comparison for some of the results of the dynamic honeypot

intrusion detection system.

5.4.1 Controlled Intrusions

 Since the dynamic honeypot treats internal and external hosts differently, a set of

preliminary tests from both the internal and external network was conducted. These

consisted of simple interactions, designed to demonstrate what alarms might look like.

The tests consisted of using Nmap to scan the 192.168.2.0/24 subnet on port 80 only and

connecting to the actual web server and the honeypot web server. In addition to these

tests an actual exploit against the Windows 2000 desktop and its associated honeypot was

launched, and a backdoor was installed on the Windows 2000 desktop using netcat.

 Figure 5.11 shows the ACID listing of all the alerts generated during the tests1.

The ICMP PING NMAP alerts come from the default Snort rules, and are consistent with

the fact that NMAP was used against the network. The honeypot traffic alerts are

generated by the rule that was added to implement anomaly detection using the dynamic

honeypots. These alerts were expected as a result of the tests, and there presence

indicates that the intrusion detection alert mechanism was operating correctly.

Alerts 4 through 9 were generated when the Windows XP system (on the external

network at 192.168.1.100) connected to one of the honeypots (192.168.2.41) with port 80

open. Using ACID it is possible to view the individual packet that caused the alert,

1 2 ICMP alerts and one honeypot traffic alert were deleted so that all the alerts would fit on the screen at
one time

 70

simply by clicking on the ID for that packet. This feature of ACID will make using the

output of the dynamic honeypot intrusion detection system easy to use for incidence

response. Figure 5.12 shows the result of clicking on ID #8-(5-369).

 Alerts 25, 26, and 27 pertain to the exploit that was launched, first against the

honeypot, and then successively against the actual Windows 2000 host. By examining

the packets that caused the alert, at least part of the actual exploit code can be seen.

Interestingly Snort did not generate any other alerts, which means had this attack been

against an actual host, Snort would not have detected it. In fact, the bridge Snort sensor

failed to generate any alarm related to the exploit. Figure 5.13 shows the packet from

alert number 26, with the exploit payload.

Figure 5.11. ACID listing of alerts after initial test traffic.

 71

To simulate some worm activity, the exploit2 was systematically launched from

Linux workstation on the internal network against all hosts on the internal network.

Similar alerts were observed, but this time one of Snorts default rules, NETBIOS

DCERPC IsystemActivator bind attempt, did fire when the exploit was launched against

the honeypot with port 135 (the attack port) open. The “honeypot traffic” rule also fired.

In this case the dynamic honeypot intrusion detection system detected and generated an

alert as a result of an actual exploit attempt against one of its honeypots.

Figure 5.12. ACID view of an individual packet that
caused an alert.

 These initial tests show the potential for intrusion detection using a dynamic

honeypot. Initially non-malicious traffic was used to observe how the dynamic honeypot

2 This exploit was used by the original Blaster worm.

 72

intrusion detection system would respond to anomalous traffic. All of the anomalous

traffic generated an alert. A known exploit attempt launched from the external network

against a honeypot generated an alert, while no alert was generated by the conventional

intrusion detection system deployed on bridge.

Figure 5.13. ACID view of an exploit packet.

 An interesting result came from re-examining the honeypot definitions after the

tests had been conducted. As a result of periodic updating, the dynamic honeypot

reconfigures its honeypots. The new configuration, listed in appendix B, reflected the

open ports created by the attack. One of the honeypots now had port 666 and 17666

open. 666 was the port of the bindshell created by the attack, and 17666 was the port on

which the backdoor was listening.

 73

5.4.2 Real World intrusions

 The next round of testing involved exposing parts of the network to the Internet

and potential real attacks. This was done in two phases, the first phase exposed some of

the honeypots to potential attacks, and the second phase exposed an actual system. Both

tests are in a sense a simulation of a mis-configured firewall. Since the ISP was only

providing one IP address it was necessary to use NAT on both routers. This required a

slight configuration change, but one that is essentially invisible to the dynamic honeypot.

 The first test forwarded some traffic from the Internet to three of the honeypots.

Web and FTP requests will be forwarded to 192.168.2.41, which is the honeypot

associated with the Server. Requests on ports 135 and 139, NET BIOS, were forwarded

to 192.168.2.47, the honeypot associated with the Windows 2000 desktop. Finally, any

requests on port 3306, MySQL, were forwarded to 192.168.2.63, the honeypot associated

with the Linux workstation. The test was run for 12 hours, between 10 am. and 10 pm.

on September 23.

 A total 492 alerts were generated, all on port 80. Figure 5.14 shows the ACID

home page at the conclusion of the test. There were 7 unique alerts, all from the same

source. Figure 5.15 is a listing from ACID of each unique alert. The majority of the

alerts, 351, were generated by the custom honeypot traffic alert rule, the rest are from the

Snort’s default rule set. All of the attacks came from the same source, between 10:30 and

11:15. The attacks largely consisted of directory traversal attempts and cmd.exe

attempts. None of the alerts were generated by legitimate traffic, anecdotal evidence of a

low false positive rate.

 74

Figure 5.14. ACID console after some external traffic is
allowed to reach the honeypots.

 The second test involved exposing some of the actual systems to the Internet.

Since the Windows 2000 Desktop had already been shown to have at least one

vulnerability, it was placed on a DMZ, removing any firewall or NAT protection. The

test was carried out for three days. While there was interaction with the Windows

system, mostly on the UDP messenger service, no successful attacks were launched

against it. It was not possible therefore, to test the intrusion detection abilities of the

dynamic honeypot with this test.

 75

Figure 5.15. Listing of the unique alerts generated while
exposing the honeypot to the Internet.

 76

_ 0 "

ACID Alert Listing ::.m~h AG Malnlenance

[Back I

Added 0 alllll(sj to tna AIIHI cacha

[0 9 :ll I 200 4 1 [11 • 1

... clear ...

~,

--="-------------,>:;;:;;1_ alert s 1-7 of 7 total

, [snort] WEB -liS cmcl.exe access wab-applicati on -att ack 68 (\ 4°;;') ~~ ~~

11:12:19 11:12:35 , hooeypot traff ic IIIClassilied 351 (71"/.] ,.,...~ ,.,...~

10:39:55 11 :12:37 , [.I1IchNIDSlisnortj WEB -MiSe httpd iroctory att empted-roc"" 40 (8";;) ~~ ~~

t raversal 11:12:19 11:12:35 , [cveli lcaili snortj WE8 -IIS un ic ode d ;roctory web-appl ic at ion -at! ac k 15 (3"'/.) ~~ ~~

t rav aI att OO1pt 11:12:19 11 :12:33 , {snort] (httpJnspecl)DOUBLEDECODING one/asslUed 13 (3";;) ~~ ~~

ATIACK 11:12:19 11:12:32 , [cveli lcaili snortj WE8 -IIS un ic ode d ;roctory web-appl ic at ion -at! ac k 3 (1"';') ~~ ~~

t rav aI att OO1pt 11:12:22 11 :12:35 , [cveli lcaili snortj WEB -liS un icode d ;roct<>ry wab-appl ic ati on -att ac k 2 (0";;') ~~ ~~

t raversal att empt 11:12:27 11:12:35

liO!)
~.~ '" '" '" "" ..

CHAPTER VI

CONCLUSIONS AND FUTURE DIRECTIONS

6.1 Conclusions

 Computers and networks are becoming a more central part of our everyday lives,

they providing us with the convenience of e-commerce and e-banking, and the necessities

of electricity and water. In response to this growing dependence are both the difficulty

and the need for better computer security. Good security is best achieved through a

combination of security technologies, policies and procedures. Today firewalls and anti-

virus software are an absolute necessity and intrusion detection systems are becoming

more predominant. It is almost certain that good computer security in the future will rely

on an ever-increasing variety of security technologies that will include new types of

intrusion detection systems.

 In this thesis a novel type of intrusion detection system, based on a dynamic

honeypot, was explored. The dynamic honeypot is a plug and play honeypot solution that

eliminates the need for time consuming configuration and maintenance. Once deployed

on a network, an intrusion detection system can be set up by monitoring traffic to the

honeypot. The intrusion detection system implements anomaly detection since all traffic

to a honeypot is anomalous. Moreover, since the dynamic honeypot requires little

configuration or supervision, neither does intrusion detection.

The dynamic honeypot implementation was successful in deciding how many

honeypots to deploy, what they should look like, and where they should be deployed. It

 77

was discovered that while passive network analysis is effective for identifying hosts on a

network, it was not as effective at identifying the open ports associated with those hosts.

Using virtual honeypot technology, the dynamic honeypot was able to deploy the

honeypots once they were configured. Once deployed, alerts generated by the dynamic

honeypot intrusion detection system were indeed some type of anomaly. Therefore the

dynamic honeypot did appropriately identify intrusive behavior, even if that behavior did

not always take the form of an exploit, exploit attempt, or attack.

Using a dynamic honeypot for intrusion detection and network monitoring was

never intended to replace existing intrusion detection systems. Instead it was designed to

supplement these and other security systems. Therefore it is not necessary that it identify

every intrusion, which it did not, only that it identifies some intrusions that might not be

identified by other security systems, which it did.

Discerning the meaning or significance of the alerts generated by the dynamic

honeypot intrusion detection system is left up to the system administrator. For example,

if a connection is made to a honeypot web server from an internal host, the dynamic

honeypot intrusion detection system, via the ACID console, will report this with one or

more alerts. From the alert the administrator will immediately know the source IP

address of the anomaly. By clicking on the appropriate link she can also see the packet

that caused the alert. In addition there may be other alerts from Snort’s rule set indicating

that the packet matches one of its signatures. From the contents of the packet or a Snort

alert, the administrator begins the process of deciding whether this is some employee,

maliciously or benignly poking around the network; or whether an internal host has been

compromised in some way.

 78

The system has other potential uses beyond the obvious network monitoring

capability. A dynamic honeypot intrusion detection system might be used in the area of

risk assessment. The passive network analysis component alone can be useful in this

area. It automatically provides a detailed listing of the hosts on the network and which

ports are open. An automated and independent source of this information, such as the

dynamic honeypot with an added GUI that presents the up to date passive network

analysis results, would be valuable in verifying what network administrators claim to be

their network and host configurations. In addition, the alert mechanism could provide to

those carrying out risk analysis clandestine information about potential holes in the

perimeter defenses and insider threats.

Another very interesting potential use could be for the collection of forensic data.

A dynamic honeypot could be placed on an organizations network, and configured such

that its logs, etc., meet all legal requirement for admissible evidence. In addition those

logs, etc., could be structured such that finding relevant forensic data was very

straightforward. If a serious security event occurred it would (hopefully) include

interaction with a honeypot. In such situation evidence would quickly and readily be

available, and have very little recovery cost. In addition, assuming there was sufficient

evidence, the IT department could focus on repairing any damage without being

concerned over destroying evidence.

6.2 Directions For Future Research

Because it has the ability to detect previously unknown attacks, anomaly based

intrusion detection is highly desirable. However it is proving difficult to effectively

implement. While the dynamic honeypot based intrusion detection system described in

 79

this thesis does not provide network wide, comprehensive intrusion detection, it does

provide anomaly based intrusion detection. Rather than simply reporting any traffic to

the honeypot as an intrusion, intelligent data analysis techniques could be applied to the

anomalous traffic. This idea was proposed earlier, but not explored, and is an avenue of

future research with great possibilities.

 There are several directions such research might take. The simplest direction,

mentioned previously, would be to develop a set of rules that could be applied to the

captured honeypot traffic. This approach could be a real-time system, where the rules

processed honeypot traffic as it was captured and generated an ongoing report. Or a

collection of honeypot traffic could be analyzed, after it was captured, generating a static

periodic report. In either case the rules would provide high-level threat evaluation data,

and make recommendations for incidence response.

 Another avenue of exploration is the development of a system that analyzes the

captured honeypot traffic in an attempt to write detection rules for a conventional

intrusion detection system. For example, say Snort is deployed as a NIDS, and then a

dynamic honeypot intrusion detection system deployment captures traffic to the

honeypot, analyzes it, and generates additional detection rules for Snort. These rules

could be automatically added the running NIDS. This could potentially create a self-

learning comprehensive intrusion detection system.

Another potential direction for further research would be to explore combining

the honeypot configurations, the hosts, which host are associated with which honeypot,

and the honeypot traffic into a comprehensive graphical reporting mechanism. As was

shown in one of the tests, passive network analysis picked up on the bindshell and

 80

backdoor created by the RPCDOM exploit. Having this information in an easy to read

and understand format that shows all the relevant associations could provide valuable

information to a network administrator, especially for a large network.

 81

REFERENCES

[1] L. Spitzner, Honeypots Tracking Hackers, Addison-Wesley, Boston, 2003.

[2] L. Spitzner, “Dynamic Honeypots”
http://www.securityfocus.com/infocus/1731

[3] L. Spitzner, “Problems and Challenges with Honeypots”
http://www.securityfocus.com/infocus/1757

[4] L. Spitzner, “Know Your Enemy:Passive Fingerprinting”
http://honeynet.org/papers/finger/

[5] Spitzner, L, “Honeypots: catching the insider threat”, Computer Security
Applications Conference, 2003. Proceedings. 19th Annual , 2003 Pages:170 - 179

[6] Provos, Niels, “A Virtual Honeypot Framework”, CITI Technical Report 03-1,
October 21, 2003, (Center for Information Technology Integration, University of
Michigan)

[7] Laurent Oudot, “Fighting Internet Worms With Honeypots”
http://wwwsecuirtyfocus.com/infocus/1740

[8] http://lcamtuf.coredump.cx/p0f.shtml

[9] M. Zalewski and William Stearns. “Passive OS Fingerprinting Tool”,
www.stearns.org/p0f/README.

[10] J. Sherif, T. Dearmond, “ Intrusion Detection: Systems and Models” Proceedings
of the Eleventh IEEE International Workshop on Enabling technologies:
Infrastructure for Collaborative Enterprises (WETICE’02) (2002).

[11] D. Schwartz, S. Stoecklin, and E. Yilmaz. “A Case-Based Approach to Network
Intrusion Detection”, Proceedings on the Fifth International conference on
Information Fusion, vol.2 8-11, july 2002.

[12] P. Harmer, P. Williams, G. Gunsch, G. Lamont. “An artificial Immune system
Architecture for Computer Secutity Applications”, IEEE Transactions on
Evolutionary Computation, vol. 6, no 3., June 2002.

 82

http://www.securityfocus.com/infocus/1731
http://www.securityfocus.com/infocus/1757
http://honeynet.org/papers/finger/
http://wwwsecuirtyfocus.com/infocus/1740
http://lcamtuf.coredump.cx/p0f.shtml
http://www.stearns.org/p0f/README

[13] J. Copeland, R. Garcia, “Real-time Anomaly Detection using Soft-computing
techniques” SoutheastCon 2001. Proceedings. IEEE , 30 March-1 April 2001
Pages:105 – 108.

[14] B. Gao, H. Ma, Y. Yang, “HMMS (Hidden Markov Models) Based on Anomaly
Intrusion Detection Method” Proceedings of the First international conference on
Machine Learning and Cybernetics, November 4-5, 2002. 381-385.

[15] Lance Spitzner, “The Honeynet Project: Trapping the Hackers”, IEEE Security
and Privacy, March/April 2003, vol. 1, number 2, 15-23.

[16] B. McCarty, “Botnets: Big and Bigger”, IEEE Security and Privacy, July/.Aug.
87-90.

[17] D. Forte, “Part 1: Deploying Honeypots: Project background and implications,”
Network Security, Vol. 2003, Issue 7, July 2003, 13-14.

[18] D. Forte, “Part II: Honeypots in Detail: the Variations,” Network Security, Vol.
2003, Issue 7, July 2003, 14-15.

[19] “Symantec push honeypot as add-on to IDS,” Network Security, vol. 2003, Issue
7, July 2003, 2-3.

[20] M. Botha, R. Von Solms, K. Perry, E. Loubser, G. Yamoyany, “The Utilization of
Artificial intelligence in a Hybrid Intrusion Detection System,” Proceedings of
SAICSIT, 2002, pages 149-155.

[21] J. Levine, R. LaBella, H. Owen, D. Contis, B. Culver, “The use of Honeynets to
Detect Exploited Systems Across Large Enterprise Networks,” Proceedings of the
IEEE Workshop on Information Assurance, West Point, NY, June, 2003, 92 – 99.

[23] F. Zang, S. Zhou, Z. Quin, J. Liu, “Honeypot: a Supplemented Active Defense
System for Network Security,” Proceedings of the Fourth International
Conference on Parallel and Distributed Computing, Applications and
Technologies, August 27-29, 2003, 231-235.

[24] D. Denning, “An Intrusion Detection Model,” IEEE Transactions on Software
Engineering, 13, 2, 222-232, 1967.

[25] D. Dasgupta, H. Brian, “Mobil Security Agents for Network Traffic Analysis,”
DARPA Information Survivability Conference & Exposition II, 2001. DISCEX
'01. Proceedings , Volume: 2 , 12-14 June 2001
Pages:332 - 340 vol.2

[26] F. Carrettoni, S. Castano, G. Martella, P. Samarati, “RETISS: A Real Time
Security System For Threat Detection Using Fuzzy Logic,” Proceedings of the

 83

25th Annual 1991 IEEE International Carnahan Conference on Security
Technology, 1-3 Oct. 1991
Pages:161 – 167.

[27] H. Debar, M. Becker, D. Siboni, “A Neural Network Component for an Intrusion
Detection System,” Proceedings of the IEEE Computer Society Symposium on
Research in Security and Privacy, 1992., 4-6 May 1992
240 – 250.

[28] T. Lunt, R. Jagannathan, R. Lee, A. Whitehurst, “Knowledge-Based Intrusion
Detection” Proceedings of the Annual AI Systems in Government Conference,
Washington D.C., March 27-31, 1989, 102-107.

[29] Skoudis, Ed. 2002. Counter Hack. New Jersey: Prentice Hall.

[30] E. Hamed, “An Agent Based Intrusion Detection System Using Fuzzy Logic For
Computer System Threat Evaluation,” Phd. Dissertation, University of Louisville,
Louisville, Kentucky, 2001.

[31] W. Stallings. 2003. Network Security Essentials, New Jersey, Prentice Hall.

[32] M. Bishop. 2002. Computer Security, New York, Addison-Wesley.

[33] C. Stoll, The Cuckoo’s Egg: Tracking a Spy Through the Maze of Computer
Espionage. NewYork, Pocket Books, 1990.

[34] W. Cheswick “An Evening with Berferd In Which a Cracker is Lured, Endured,
and Studied,” CD-ROM accompanying: L. Spitzner, Honeypots Tracking
Hackers, Addison-Wesley, Boston, 2003.

[36] Anderson, J. P. “Computer Security Threat Monitoring and Surveillance.”
Technical Report, James P. Anderson Co., Fort Washington, Pennsylvania, 1980.

[37] N. Karwetz, “Anti-Honeypot Technology,” IEEE Security and Privacy,
January/February 2004, 76-79.

[38] “Honeypots-Not just sticking to research,” Network Security, Vol 2002, Issue 10,
October 2002, p. 20.

[39] A. Chuakin, “Honeynets: High Value Security Data,” Network Security, Vol.
2003, Issue 8, August 2003, 11-15.

[40] C. Rong, G. Yang, “Honeypots in Balckhat Mode and its Implications,”
PDCAT’2003, Proceedings of the Fourth International Conference, August 27-29,
2003, 185-188.

 84

[41] N. Weiler, “Honeypots for Distributed Denial of Service Attacks,” Proceedings of
the Eleventh IEEE International Workshop on Enabling Technologies:
Infrastructure for collaborative Entrerprises, 2002.

[42] A. Hofmann, C. Schmitz, B. Sick, “Rule Extraction from Neural Networks for
Intrusion Detection in Computer Networks,” Proceedings of IEEE International
Conference on Systems, Man and Cybernetics, v2, 2003, p 1259 – 1265.

[43] S. Yeldi, S. Gupta, T. Ganacharya, S. Doshi, D. Bahirat, R. Ingle, A.
Roychowdhary, “Enhancing Network Intrusion Detection System with
Honeypot,” IEEE Conference on Convergent Technologies for the Asia-Pacific
Region, Oct 15-17 2003, TENCON v 4, Bangalore, pp 1521-1526.

[44] K. Ilgun, R. Kemmer, P. Porras, “State transition Analysis: A Rule-Based
Intrusion Detection Approach,” IEEE Transactions on Software Engineering, v
21, no. 3, March 1995, pp 181-199.

[45] R. Kemmerer, G. Vigna, “Intrusion Detection: A brief History and Overview,”
Computer, v 35, n SUPPL, 2002 pp27-30.

[46] R. Bace, P. Mell, “Special Publication on Intrusion Detection Systems,” Tech.
Report SP 800-31, National Institute of Standards and Technology, Gaithersburg,
Md. Nov 2001.

[47] R. Chinchani, S. Upadhyaya, K. Kwait, “Towards a Scaleable Implementation of
a User Level Anomaly Detection System,” IEEE Proceedings on Military
Communications Conference MILCOM v2, oct 7-10 2002, California, pp.1503-
1508.

[48] J. McGibney, “Intrusion Detection Systems and Honeypots,”
http://www.seinit.org/documents/SEINIT_4_INET04_IDS.pdf

[49] www.enseirb.fr/~malfre/dynamic_honeypot

[50] R. Bauman “Honeyd – A low involvement Honeypot in Action,”
http://security.rbaumann.net/papers.php?sel=5

[51] L. Spitzner, “Honeypots are they Illegal?”
http://www.securityfocus.com/infocus/1703

[52] L. Spizner “Know your enemy: Gen II Honeynets,”
http://honeynet.org/papers/index.html

[53] L. Spitzner, “Know your enemy: Honeynets,”
http://honeynet.org/papers/index.html

 85

http://www.seinit.org/documents/SEINIT_4_INET04_IDS.pdf
http://www.enseirb.fr/~malfre/dynamic_honeypot
http://security.rbaumann.net/papers.php?sel=5
http://www.securityfocus.com/infocus/1703
http://honeynet.org/papers/index.html
http://honeynet.org/papers/index.html

[54] J. Corey, “Local honeypot indentification,” http://phrack.nl/phrack62/p62-
0x07.txt

[55] http://www.snort.org

[56] http://www.honeyd.org

[57] J. Hieb, “Towards a Dynamic Honeypot Solution”

[58] Y. Mai, R. Upadrashta, X. Su, “J-Honeypot: A java-based network deception tool
with monitoring and intrusion detection”, ITCC v.1, Las Vegas, Nevada, April 5-
7 2004.

[59] H. Aljifri, “IP Traceback: A New Denial-of-Service Deterrent?” IEEE Secuirty &
Privacy, MAY/JUNE 2003 24-31.

[60] M. Tanase, “Transparent, Bridging and In-line Firewall Devices”,
http://www.securityfoucus.com/infocus/1737.

[61] S. Barlas, A. Earls, M. Fitzgerald, J. Ledford, D. McCafferty, “Mission:Critical”,
Information Security, September 2004 pg. 26.

[62] L. Gordon, M. Loeb, W. Lucyshyn, R. Richardson, “2004 CSI/FBI Computer
Crime and Security Survey”, Computer Security Institute, http://www.gocsi.com.

[63] I. Kuwatly, M. Sraj, Z. Masri, “A Dynamic Honeypot Design for Intrusion
Detection,” http://webfea.fea.aub.edu.lb/proceesings/2004/SRC-ECE-04.pdf.

 86

http://phrack.nl/phrack62/p62-0x07.txt
http://phrack.nl/phrack62/p62-0x07.txt
http://www.snort.org/
http://www.honeyd.org/
http://www.securityfoucus.com/infocus/1737
http://www.gocsi.com/
http://webfea.fea.aub.edu.lb/proceesings/2004/SRC-ECE-04.pdf

Appendix A

 The contents of several tables in the honeypot database indicating various

network configurations, and the honeyd configuration file generated by the dynamic

honeypot for that network configuration. The membership threshold used to determine

host groupings is stated for each test as a percentage of the average distance between the

hosts.

Test 1, using 75% of average distance for the threshold:

Honeypot database tables:

mysql> select inet_NTOA(ipaddr) as ipaddr,os,count,last from host;
+---------------+-------------------+-------+---------------------+
| ipaddr | os | count | last |
+---------------+-------------------+-------+---------------------+
192.168.2.22	Windows 2000 SP2+	3	2004-09-19 17:57:25
192.168.2.62	Linux 2.4/2.6	43	2004-09-21 11:14:37
192.168.2.16	Linux 2.4/2.6	282	2004-09-21 11:15:27
192.168.2.40	Linux 2.4/2.6	5	2004-09-20 08:44:56
192.168.2.202	AIX 4.3.2	25	2004-09-21 12:05:23
192.168.2.200	AIX 4.3.3-5.2	23	2004-09-21 11:56:23
+---------------+-------------------+-------+---------------------+
6 rows in set (0.00 sec)

mysql> select inet_NTOA(ipaddr) as ipaddr,port from ports;
+---------------+------+
| ipaddr | port |
+---------------+------+
192.168.2.16	22
192.168.2.16	443
192.168.2.16	1241
192.168.2.16	3306
192.168.2.22	135
192.168.2.22	139
192.168.2.22	445
192.168.2.22	1025
192.168.2.23	135
192.168.2.23	139
192.168.2.23	1414
192.168.2.40	21
192.168.2.40	22
192.168.2.40	80
192.168.2.40	111
192.168.2.40	443
192.168.2.62	22
192.168.2.62	111
192.168.2.62	3306
192.168.2.62	6000
192.168.2.200	22
192.168.2.200	80
192.168.2.200	443
192.168.2.202	22
192.168.2.202	80
192.168.2.202	443
+---------------+------+
26 rows in set (0.02 sec)

 87

mysql> select hpid,inet_NTOA(ipaddr) as ipaddr from honeyhosts;
+------+---------------+
| hpid | ipaddr |
+------+---------------+
10	192.168.2.22
20	192.168.2.40
20	192.168.2.62
30	192.168.2.16
40	192.168.2.200
40	192.168.2.202
+------+---------------+
6 rows in set (0.00 sec)

mysql> select hpid,inet_NTOA(ipaddr) as ipaddr,os from honeypots;
+------+---------------+------------------------------------+
| hpid | ipaddr | os |
+------+---------------+------------------------------------+
10	192.168.2.23	Windows 2000 SP2
20	192.168.2.32	Linux 2.4.16 - 2.4.18
30	192.168.2.17	Linux 2.4.16 - 2.4.18
40	192.168.2.194	AIX 4.3.2.0-4.3.3.0 on an IBM RS/*
+------+---------------+------------------------------------+
4 rows in set (0.00 sec)

mysql> select hpid,port,proxy from honeyports;
+------+------+---------------+
| hpid | port | proxy |
+------+------+---------------+
10	135	192.168.2.22
10	139	192.168.2.22
10	445	192.168.2.22
10	1025	192.168.2.22
20	21	192.168.2.40
20	22	192.168.2.62
20	80	192.168.2.40
20	111	192.168.2.62
20	443	192.168.2.40
20	3306	192.168.2.62
20	6000	192.168.2.62
30	22	192.168.2.16
30	443	192.168.2.16
30	1241	192.168.2.16
30	3306	192.168.2.16
40	22	192.168.2.202
40	80	192.168.2.202
40	443	192.168.2.202
+------+------+---------------+
18 rows in set (0.00 sec)

Honeyd configuration file used by the dynamic honeypot.

create default
set default personality "Windows NT4 / Win95 / Win98"
set default default tcp action block
set default default udp action block
set default default icmp action block

create honeypot10intern
set honeypot10intern personality "Windows 2000 SP2"
set honeypot10intern default tcp action block
set honeypot10intern default udp action block
set honeypot10intern default icmp action open
add honeypot10intern tcp port 135 proxy 192.168.2.22:135
add honeypot10intern tcp port 139 proxy 192.168.2.22:139
add honeypot10intern tcp port 445 proxy 192.168.2.22:445
add honeypot10intern tcp port 1025 proxy 192.168.2.22:1025
create honeypot10extern
set honeypot10extern personality "Windows 2000 SP2"
set honeypot10extern default tcp action block

 88

set honeypot10extern default udp action block
set honeypot10extern default icmp action open
add honeypot10extern tcp port 135 open
add honeypot10extern tcp port 139 open
add honeypot10extern tcp port 445 open
add honeypot10extern tcp port 1025 open
dynamic honeypot10
add honeypot10 use honeypot10intern if source ip = 192.168.2.0/24
add honeypot10 otherwise use honeypot10extern
bind 192.168.2.23 honeypot10
create honeypot20intern
set honeypot20intern personality "Linux 2.4.16 - 2.4.18"
set honeypot20intern default tcp action block
set honeypot20intern default udp action block
set honeypot20intern default icmp action open
add honeypot20intern tcp port 21 proxy 192.168.2.40:21
add honeypot20intern tcp port 22 proxy 192.168.2.62:22
add honeypot20intern tcp port 80 proxy 192.168.2.40:80
add honeypot20intern tcp port 111 proxy 192.168.2.62:111
add honeypot20intern tcp port 443 proxy 192.168.2.40:443
add honeypot20intern tcp port 3306 proxy 192.168.2.62:3306
add honeypot20intern tcp port 6000 proxy 192.168.2.62:6000
create honeypot20extern
set honeypot20extern personality "Linux 2.4.16 - 2.4.18"
set honeypot20extern default tcp action block
set honeypot20extern default udp action block
set honeypot20extern default icmp action open
add honeypot20extern tcp port 21 "./scripts/ftp.sh $ipsrc $sport"
add honeypot20extern tcp port 22 "./scripts/ssh.sh $ipsrc $sport"
add honeypot20extern tcp port 80 "./scripts/iis.sh $ipsrc $sport"
add honeypot20extern tcp port 111 open
add honeypot20extern tcp port 443 open
add honeypot20extern tcp port 3306 "./scripts/mysql.sh $ipsrc $sport"
add honeypot20extern tcp port 6000 open
dynamic honeypot20
add honeypot20 use honeypot20intern if source ip = 192.168.2.0/24
add honeypot20 otherwise use honeypot20extern
bind 192.168.2.32 honeypot20
create honeypot30intern
set honeypot30intern personality "Linux 2.4.16 - 2.4.18"
set honeypot30intern default tcp action block
set honeypot30intern default udp action block
set honeypot30intern default icmp action open
add honeypot30intern tcp port 22 proxy 192.168.2.16:22
add honeypot30intern tcp port 443 proxy 192.168.2.16:443
add honeypot30intern tcp port 1241 proxy 192.168.2.16:1241
add honeypot30intern tcp port 3306 proxy 192.168.2.16:3306
create honeypot30extern
set honeypot30extern personality "Linux 2.4.16 - 2.4.18"
set honeypot30extern default tcp action block
set honeypot30extern default udp action block
set honeypot30extern default icmp action open
add honeypot30extern tcp port 22 "./scripts/ssh.sh $ipsrc $sport"
add honeypot30extern tcp port 443 open
add honeypot30extern tcp port 1241 open
add honeypot30extern tcp port 3306 "./scripts/mysql.sh $ipsrc $sport"
dynamic honeypot30
add honeypot30 use honeypot30intern if source ip = 192.168.2.0/24
add honeypot30 otherwise use honeypot30extern
bind 192.168.2.17 honeypot30
create honeypot40intern
set honeypot40intern personality "AIX 4.3.3.0 on an IBM RS/*"
set honeypot40intern default tcp action block
set honeypot40intern default udp action block
set honeypot40intern default icmp action open
create honeypot40extern
set honeypot40extern personality "AIX 4.3.3.0 on an IBM RS/*"
set honeypot40extern default tcp action block
set honeypot40extern default udp action block
set honeypot40extern default icmp action open
dynamic honeypot40

 89

add honeypot40 use honeypot40intern if source ip = 192.168.2.0/24
add honeypot40 otherwise use honeypot40extern
bind 192.168.2.201 honeypot40

Test 2, using 75% of average distance for threshold:

Honeypot database tables:

mysql> select inet_NTOA(ipaddr) as ipaddr,os,count,last from host;
+---------------+--------------------+-------+---------------------+
| ipaddr | os | count | last |
+---------------+--------------------+-------+---------------------+
192.168.2.22	Windows 2000 SP2+	3	2004-09-19 17:57:25
192.168.2.62	Linux 2.4/2.6	43	2004-09-21 11:14:37
192.168.2.16	Linux 2.4/2.6	282	2004-09-21 11:15:27
192.168.2.40	Linux 2.4/2.6	5	2004-09-20 08:44:56
192.168.2.202	AIX 4.3.2	25	2004-09-21 12:05:23
192.168.2.200	AIX 4.3.3-5.2	23	2004-09-21 11:56:23
192.168.2.23	Windows XP Pro SP1	22	2004-09-21 12:40:18
+---------------+--------------------+-------+---------------------+
7 rows in set (0.00 sec)

mysql> select inet_NTOA(ipaddr) as ipaddr,port from ports;
+---------------+------+
| ipaddr | port |
+---------------+------+
192.168.2.16	22
192.168.2.16	443
192.168.2.16	1241
192.168.2.16	3306
192.168.2.22	135
192.168.2.22	139
192.168.2.22	445
192.168.2.22	1025
192.168.2.23	135
192.168.2.23	139
192.168.2.23	1414
192.168.2.40	21
192.168.2.40	22
192.168.2.40	80
192.168.2.40	111
192.168.2.40	443
192.168.2.62	22
192.168.2.62	111
192.168.2.62	3306
192.168.2.62	6000
192.168.2.200	22
192.168.2.200	80
192.168.2.200	443
192.168.2.202	22
192.168.2.202	80
192.168.2.202	443
+---------------+------+
26 rows in set (0.01 sec)

mysql> select hpid,inet_NTOA(ipaddr) as ipaddr from honeyhosts;
+------+---------------+
| hpid | ipaddr |
+------+---------------+
10	192.168.2.22
10	192.168.2.23
20	192.168.2.40
20	192.168.2.62
30	192.168.2.16
40	192.168.2.200
40	192.168.2.202
+------+---------------+
7 rows in set (0.00 sec)

 90

mysql> select hpid,inet_NTOA(ipaddr) as ipaddr,os from honeypots;
+------+---------------+--+
| hpid | ipaddr | os |
+------+---------------+--+
10	192.168.2.20	Windows XP Professional RC1+ through final release
20	192.168.2.32	Linux 2.4.16 - 2.4.18
30	192.168.2.17	Linux 2.4.16 - 2.4.18
40	192.168.2.194	AIX 4.3.2.0-4.3.3.0 on an IBM RS/*
+------+---------------+--+
4 rows in set (0.00 sec)

mysql> select hpid,port,proxy from honeyports;
+------+------+---------------+
| hpid | port | proxy |
+------+------+---------------+
10	135	192.168.2.23
10	139	192.168.2.23
10	445	192.168.2.22
10	1025	192.168.2.22
10	1414	192.168.2.23
20	21	192.168.2.40
20	22	192.168.2.62
20	80	192.168.2.40
20	111	192.168.2.62
20	443	192.168.2.40
20	3306	192.168.2.62
20	6000	192.168.2.62
30	22	192.168.2.16
30	443	192.168.2.16
30	1241	192.168.2.16
30	3306	192.168.2.16
40	22	192.168.2.202
40	80	192.168.2.202
40	443	192.168.2.202
+------+------+---------------+
19 rows in set (0.01 sec)

Honeyd configuration file used by the dynamic honeypot

create default
set default personality "Windows NT4 / Win95 / Win98"
set default default tcp action block
set default default udp action block
set default default icmp action block

create honeypot10intern
set honeypot10intern personality "Windows XP Professional RC1+ through final release"
set honeypot10intern default tcp action block
set honeypot10intern default udp action block
set honeypot10intern default icmp action open
add honeypot10intern tcp port 135 proxy 192.168.2.23:135
add honeypot10intern tcp port 139 proxy 192.168.2.23:139
add honeypot10intern tcp port 445 proxy 192.168.2.22:445
add honeypot10intern tcp port 1025 proxy 192.168.2.22:1025
add honeypot10intern tcp port 1414 proxy 192.168.2.23:1414
create honeypot10extern
set honeypot10extern personality "Windows XP Professional RC1+ through final release"
set honeypot10extern default tcp action block
set honeypot10extern default udp action block
set honeypot10extern default icmp action open
add honeypot10extern tcp port 135 open
add honeypot10extern tcp port 139 open
add honeypot10extern tcp port 445 open
add honeypot10extern tcp port 1025 open
add honeypot10extern tcp port 1414 open
dynamic honeypot10
add honeypot10 use honeypot10intern if source ip = 192.168.2.0/24
add honeypot10 otherwise use honeypot10extern
bind 192.168.2.20 honeypot10
create honeypot20intern

 91

set honeypot20intern personality "Linux 2.4.16 - 2.4.18"
set honeypot20intern default tcp action block
set honeypot20intern default udp action block
set honeypot20intern default icmp action open
add honeypot20intern tcp port 21 proxy 192.168.2.40:21
add honeypot20intern tcp port 22 proxy 192.168.2.62:22
add honeypot20intern tcp port 80 proxy 192.168.2.40:80
add honeypot20intern tcp port 111 proxy 192.168.2.62:111
add honeypot20intern tcp port 443 proxy 192.168.2.40:443
add honeypot20intern tcp port 3306 proxy 192.168.2.62:3306
add honeypot20intern tcp port 6000 proxy 192.168.2.62:6000
create honeypot20extern
set honeypot20extern personality "Linux 2.4.16 - 2.4.18"
set honeypot20extern default tcp action block
set honeypot20extern default udp action block
set honeypot20extern default icmp action open
add honeypot20extern tcp port 21 "./scripts/ftp.sh $ipsrc $sport"
add honeypot20extern tcp port 22 "./scripts/ssh.sh $ipsrc $sport"
add honeypot20extern tcp port 80 "./scripts/iis.sh $ipsrc $sport"
add honeypot20extern tcp port 111 open
add honeypot20extern tcp port 443 open
add honeypot20extern tcp port 3306 "./scripts/mysql.sh $ipsrc $sport"
add honeypot20extern tcp port 6000 open
dynamic honeypot20
add honeypot20 use honeypot20intern if source ip = 192.168.2.0/24
add honeypot20 otherwise use honeypot20extern
bind 192.168.2.32 honeypot20
create honeypot30intern
set honeypot30intern personality "Linux 2.4.16 - 2.4.18"
set honeypot30intern default tcp action block
set honeypot30intern default udp action block
set honeypot30intern default icmp action open
add honeypot30intern tcp port 22 proxy 192.168.2.16:22
add honeypot30intern tcp port 443 proxy 192.168.2.16:443
add honeypot30intern tcp port 1241 proxy 192.168.2.16:1241
add honeypot30intern tcp port 3306 proxy 192.168.2.16:3306
create honeypot30extern
set honeypot30extern personality "Linux 2.4.16 - 2.4.18"
set honeypot30extern default tcp action block
set honeypot30extern default udp action block
set honeypot30extern default icmp action open
add honeypot30extern tcp port 22 "./scripts/ssh.sh $ipsrc $sport"
add honeypot30extern tcp port 443 open
add honeypot30extern tcp port 1241 open
add honeypot30extern tcp port 3306 "./scripts/mysql.sh $ipsrc $sport"
dynamic honeypot30
add honeypot30 use honeypot30intern if source ip = 192.168.2.0/24
add honeypot30 otherwise use honeypot30extern
bind 192.168.2.17 honeypot30
create honeypot40intern
set honeypot40intern personality "AIX 4.3.2.0-4.3.3.0 on an IBM RS/*"
set honeypot40intern default tcp action block
set honeypot40intern default udp action block
set honeypot40intern default icmp action open
add honeypot40intern tcp port 22 proxy 192.168.2.202:22
add honeypot40intern tcp port 80 proxy 192.168.2.202:80
add honeypot40intern tcp port 443 proxy 192.168.2.202:443
create honeypot40extern
set honeypot40extern personality "AIX 4.3.2.0-4.3.3.0 on an IBM RS/*"
set honeypot40extern default tcp action block
set honeypot40extern default udp action block
set honeypot40extern default icmp action open
add honeypot40extern tcp port 22 "./scripts/ssh.sh $ipsrc $sport"
add honeypot40extern tcp port 80 "./scripts/iis.sh $ipsrc $sport"
add honeypot40extern tcp port 443 open
dynamic honeypot40
add honeypot40 use honeypot40intern if source ip = 192.168.2.0/24
add honeypot40 otherwise use honeypot40extern
bind 192.168.2.194 honeypot40

 92

Test 3 using 99% of average distance for threshold:

Honeypot database tables:

mysql> select inet_NTOA(ipaddr) as ipaddr,os,count,last from host;
+---------------+--------------------+-------+---------------------+
| ipaddr | os | count | last |
+---------------+--------------------+-------+---------------------+
192.168.2.22	Windows 2000 SP2+	3	2004-09-19 17:57:25
192.168.2.62	Linux 2.4/2.6	44	2004-09-21 13:14:40
192.168.2.16	Linux 2.4/2.6	282	2004-09-21 11:15:27
192.168.2.40	Linux 2.4/2.6	5	2004-09-20 08:44:56
192.168.2.202	AIX 4.3.2	25	2004-09-21 12:05:23
192.168.2.200	AIX 4.3.3-5.2	23	2004-09-21 11:56:23
192.168.2.23	Windows XP Pro SP1	22	2004-09-21 12:40:18
+---------------+--------------------+-------+---------------------+
7 rows in set (0.00 sec)

mysql> select inet_NTOA(ipaddr) as ipaddr,port from ports;
+---------------+------+
| ipaddr | port |
+---------------+------+
192.168.2.16	22
192.168.2.16	443
192.168.2.16	1241
192.168.2.16	3306
192.168.2.22	135
192.168.2.22	139
192.168.2.22	445
192.168.2.22	1025
192.168.2.23	135
192.168.2.23	139
192.168.2.23	1414
192.168.2.40	21
192.168.2.40	22
192.168.2.40	80
192.168.2.40	111
192.168.2.40	443
192.168.2.62	22
192.168.2.62	111
192.168.2.62	3306
192.168.2.62	6000
192.168.2.200	22
192.168.2.200	80
192.168.2.200	443
192.168.2.202	22
192.168.2.202	80
192.168.2.202	443
+---------------+------+
26 rows in set (0.00 sec)

mysql> select hpid,inet_NTOA(ipaddr) as ipaddr from honeyhosts;
+------+---------------+
| hpid | ipaddr |
+------+---------------+
10	192.168.2.16
10	192.168.2.40
10	192.168.2.62
20	192.168.2.22
20	192.168.2.23
30	192.168.2.200
30	192.168.2.202
+------+---------------+
7 rows in set (0.00 sec)

mysql> select hpid,inet_NTOA(ipaddr) as ipaddr,os from honeypots;
+------+---------------+--+
| hpid | ipaddr | os |
+------+---------------+--+

 93

10	192.168.2.46	Linux 2.4.16 - 2.4.18
20	192.168.2.21	Windows XP Professional RC1+ through final release
30	192.168.2.194	AIX 4.3.2.0-4.3.3.0 on an IBM RS/*
+------+---------------+--+
3 rows in set (0.00 sec)

mysql> select hpid,port,proxy from honeyports;
+------+------+---------------+
| hpid | port | proxy |
+------+------+---------------+
10	22	192.168.2.62
10	443	192.168.2.40
10	1241	192.168.2.16
10	3306	192.168.2.62
10	21	192.168.2.40
10	80	192.168.2.40
10	111	192.168.2.62
10	6000	192.168.2.62
20	135	192.168.2.23
20	139	192.168.2.23
20	445	192.168.2.22
20	1025	192.168.2.22
20	1414	192.168.2.23
30	22	192.168.2.202
30	80	192.168.2.202
30	443	192.168.2.202
+------+------+---------------+
16 rows in set (0.01 sec)

Honeyd configuration file used by the dynamic honeypot.

create default
set default personality "Windows NT4 / Win95 / Win98"
set default default tcp action block
set default default udp action block
set default default icmp action block

create honeypot10intern
set honeypot10intern personality "Linux 2.4.16 - 2.4.18"
set honeypot10intern default tcp action block
set honeypot10intern default udp action block
set honeypot10intern default icmp action open
add honeypot10intern tcp port 21 proxy 192.168.2.40:21
add honeypot10intern tcp port 22 proxy 192.168.2.62:22
add honeypot10intern tcp port 80 proxy 192.168.2.40:80
add honeypot10intern tcp port 111 proxy 192.168.2.62:111
add honeypot10intern tcp port 443 proxy 192.168.2.40:443
add honeypot10intern tcp port 1241 proxy 192.168.2.16:1241
add honeypot10intern tcp port 3306 proxy 192.168.2.62:3306
add honeypot10intern tcp port 6000 proxy 192.168.2.62:6000
create honeypot10extern
set honeypot10extern personality "Linux 2.4.16 - 2.4.18"
set honeypot10extern default tcp action block
set honeypot10extern default udp action block
set honeypot10extern default icmp action open
add honeypot10extern tcp port 21 "./scripts/ftp.sh $ipsrc $sport"
add honeypot10extern tcp port 22 "./scripts/ssh.sh $ipsrc $sport"
add honeypot10extern tcp port 80 "./scripts/iis.sh $ipsrc $sport"
add honeypot10extern tcp port 111 open
add honeypot10extern tcp port 443 open
add honeypot10extern tcp port 1241 open
add honeypot10extern tcp port 3306 "./scripts/mysql.sh $ipsrc $sport"
add honeypot10extern tcp port 6000 open
dynamic honeypot10
add honeypot10 use honeypot10intern if source ip = 192.168.2.0/24
add honeypot10 otherwise use honeypot10extern
bind 192.168.2.46 honeypot10
create honeypot20intern
set honeypot20intern personality "Windows XP Professional RC1+ through final release"
set honeypot20intern default tcp action block

 94

set honeypot20intern default udp action block
set honeypot20intern default icmp action open
add honeypot20intern tcp port 135 proxy 192.168.2.23:135
add honeypot20intern tcp port 139 proxy 192.168.2.23:139
add honeypot20intern tcp port 445 proxy 192.168.2.22:445
add honeypot20intern tcp port 1025 proxy 192.168.2.22:1025
add honeypot20intern tcp port 1414 proxy 192.168.2.23:1414
create honeypot20extern
set honeypot20extern personality "Windows XP Professional RC1+ through final release"
set honeypot20extern default tcp action block
set honeypot20extern default udp action block
set honeypot20extern default icmp action open
add honeypot20extern tcp port 135 open
add honeypot20extern tcp port 139 open
add honeypot20extern tcp port 445 open
add honeypot20extern tcp port 1025 open
add honeypot20extern tcp port 1414 open
dynamic honeypot20
add honeypot20 use honeypot20intern if source ip = 192.168.2.0/24
add honeypot20 otherwise use honeypot20extern
bind 192.168.2.21 honeypot20
create honeypot30intern
set honeypot30intern personality "AIX 4.3.2.0-4.3.3.0 on an IBM RS/*"
set honeypot30intern default tcp action block
set honeypot30intern default udp action block
set honeypot30intern default icmp action open
add honeypot30intern tcp port 22 proxy 192.168.2.202:22
add honeypot30intern tcp port 80 proxy 192.168.2.202:80
add honeypot30intern tcp port 443 proxy 192.168.2.202:443
create honeypot30extern
set honeypot30extern personality "AIX 4.3.2.0-4.3.3.0 on an IBM RS/*"
set honeypot30extern default tcp action block
set honeypot30extern default udp action block
set honeypot30extern default icmp action open
add honeypot30extern tcp port 22 "./scripts/ssh.sh $ipsrc $sport"
add honeypot30extern tcp port 80 "./scripts/iis.sh $ipsrc $sport"
add honeypot30extern tcp port 443 open
dynamic honeypot30
add honeypot30 use honeypot30intern if source ip = 192.168.2.0/24
add honeypot30 otherwise use honeypot30extern
bind 192.168.2.194 honeypot30

Test 4, using 75% of the average distance as the threshold:

Honeypot database tables:

mysql> select inet_NTOA(ipaddr) as ipaddr,os,count,last from host;
+---------------+--------------------+-------+---------------------+
| ipaddr | os | count | last |
+---------------+--------------------+-------+---------------------+
192.168.2.22	Windows 2000 SP2+	3	2004-09-19 17:57:25
192.168.2.62	Linux 2.4/2.6	44	2004-09-21 13:14:40
192.168.2.16	Linux 2.4/2.6	282	2004-09-21 11:15:27
192.168.2.40	Linux 2.4/2.6	5	2004-09-20 08:44:56
192.168.2.202	AIX 4.3.2	25	2004-09-21 12:05:23
192.168.2.200	AIX 4.3.3-5.2	23	2004-09-21 11:56:23
192.168.2.23	Windows XP Pro SP1	22	2004-09-21 12:40:18
192.168.3.100	OpenBSD 3.3-3.4	22	2004-09-21 13:39:18
192.168.3.102	OpenBSD 3.3-3.4	22	2004-09-21 13:39:28
192.168.3.104	OpenBSD 3.3-3.4	22	2004-09-21 13:39:32
+---------------+--------------------+-------+---------------------+
10 rows in set (0.00 sec)

mysql> select inet_NTOA(ipaddr) as ipaddr,port from ports;
+---------------+------+
| ipaddr | port |
+---------------+------+
| 192.168.2.16 | 22 |
| 192.168.2.16 | 443 |

 95

192.168.2.16	1241
192.168.2.16	3306
192.168.2.22	135
192.168.2.22	139
192.168.2.22	445
192.168.2.22	1025
192.168.2.23	135
192.168.2.23	139
192.168.2.23	1414
192.168.2.40	21
192.168.2.40	22
192.168.2.40	80
192.168.2.40	111
192.168.2.40	443
192.168.2.62	22
192.168.2.62	111
192.168.2.62	3306
192.168.2.62	6000
192.168.2.200	22
192.168.2.200	80
192.168.2.200	443
192.168.2.202	22
192.168.2.202	80
192.168.2.202	443
192.168.3.100	21
192.168.3.100	80
192.168.3.102	21
192.168.3.102	80
192.168.3.104	21
192.168.3.104	80
+---------------+------+
32 rows in set (0.01 sec)

mysql> select hpid,inet_NTOA(ipaddr) as ipaddr from honeyhosts;
+------+---------------+
| hpid | ipaddr |
+------+---------------+
10	192.168.2.16
10	192.168.2.40
10	192.168.2.62
20	192.168.2.22
20	192.168.2.23
30	192.168.2.200
30	192.168.2.202
40	192.168.3.100
40	192.168.3.102
40	192.168.3.104
+------+---------------+
10 rows in set (0.00 sec)

mysql> select hpid,inet_NTOA(ipaddr) as ipaddr,os from honeypots;
+------+---------------+--+
| hpid | ipaddr | os |
+------+---------------+--+
10	192.168.2.46	Linux 2.4.16 - 2.4.18
20	192.168.2.21	Windows XP Professional RC1+ through final release
30	192.168.2.194	AIX 4.3.2.0-4.3.3.0 on an IBM RS/*
40	192.168.3.108	OpenBSD 3.0 (x86 or SPARC)
+------+---------------+--+
4 rows in set (0.00 sec)

mysql> select hpid,port,proxy from honeyports;
+------+------+---------------+
| hpid | port | proxy |
+------+------+---------------+
10	22	192.168.2.62
10	443	192.168.2.40
10	1241	192.168.2.16
10	3306	192.168.2.62
10	21	192.168.2.40
10	80	192.168.2.40

 96

10	111	192.168.2.62
10	6000	192.168.2.62
20	135	192.168.2.23
20	139	192.168.2.23
20	445	192.168.2.22
20	1025	192.168.2.22
20	1414	192.168.2.23
30	22	192.168.2.202
30	80	192.168.2.202
30	443	192.168.2.202
40	21	192.168.3.104
40	80	192.168.3.104
+------+------+---------------+
18 rows in set (0.01 sec)

Honeyd configuration file used by the dynamic honeypot.

mysql> notee
create default
set default personality "Windows NT4 / Win95 / Win98"
set default default tcp action block
set default default udp action block
set default default icmp action block

create honeypot10intern
set honeypot10intern personality "Linux 2.4.16 - 2.4.18"
set honeypot10intern default tcp action block
set honeypot10intern default udp action block
set honeypot10intern default icmp action open
add honeypot10intern tcp port 21 proxy 192.168.2.40:21
add honeypot10intern tcp port 22 proxy 192.168.2.62:22
add honeypot10intern tcp port 80 proxy 192.168.2.40:80
add honeypot10intern tcp port 111 proxy 192.168.2.62:111
add honeypot10intern tcp port 443 proxy 192.168.2.40:443
add honeypot10intern tcp port 1241 proxy 192.168.2.16:1241
add honeypot10intern tcp port 3306 proxy 192.168.2.62:3306
add honeypot10intern tcp port 6000 proxy 192.168.2.62:6000
create honeypot10extern
set honeypot10extern personality "Linux 2.4.16 - 2.4.18"
set honeypot10extern default tcp action block
set honeypot10extern default udp action block
set honeypot10extern default icmp action open
add honeypot10extern tcp port 21 "./scripts/ftp.sh $ipsrc $sport"
add honeypot10extern tcp port 22 "./scripts/ssh.sh $ipsrc $sport"
add honeypot10extern tcp port 80 "./scripts/iis.sh $ipsrc $sport"
add honeypot10extern tcp port 111 open
add honeypot10extern tcp port 443 open
add honeypot10extern tcp port 1241 open
add honeypot10extern tcp port 3306 "./scripts/mysql.sh $ipsrc $sport"
add honeypot10extern tcp port 6000 open
dynamic honeypot10
add honeypot10 use honeypot10intern if source ip = 192.168.2.0/23
add honeypot10 otherwise use honeypot10extern
bind 192.168.2.46 honeypot10
create honeypot20intern
set honeypot20intern personality "Windows XP Professional RC1+ through final release"
set honeypot20intern default tcp action block
set honeypot20intern default udp action block
set honeypot20intern default icmp action open
add honeypot20intern tcp port 135 proxy 192.168.2.23:135
add honeypot20intern tcp port 139 proxy 192.168.2.23:139
add honeypot20intern tcp port 445 proxy 192.168.2.22:445
add honeypot20intern tcp port 1025 proxy 192.168.2.22:1025
add honeypot20intern tcp port 1414 proxy 192.168.2.23:1414
create honeypot20extern
set honeypot20extern personality "Windows XP Professional RC1+ through final release"
set honeypot20extern default tcp action block
set honeypot20extern default udp action block
set honeypot20extern default icmp action open
add honeypot20extern tcp port 135 open

 97

add honeypot20extern tcp port 139 open
add honeypot20extern tcp port 445 open
add honeypot20extern tcp port 1025 open
add honeypot20extern tcp port 1414 open
dynamic honeypot20
add honeypot20 use honeypot20intern if source ip = 192.168.2.0/23
add honeypot20 otherwise use honeypot20extern
bind 192.168.2.21 honeypot20
create honeypot30intern
set honeypot30intern personality "AIX 4.3.2.0-4.3.3.0 on an IBM RS/*"
set honeypot30intern default tcp action block
set honeypot30intern default udp action block
set honeypot30intern default icmp action open
add honeypot30intern tcp port 22 proxy 192.168.2.202:22
add honeypot30intern tcp port 80 proxy 192.168.2.202:80
add honeypot30intern tcp port 443 proxy 192.168.2.202:443
create honeypot30extern
set honeypot30extern personality "AIX 4.3.2.0-4.3.3.0 on an IBM RS/*"
set honeypot30extern default tcp action block
set honeypot30extern default udp action block
set honeypot30extern default icmp action open
add honeypot30extern tcp port 22 "./scripts/ssh.sh $ipsrc $sport"
add honeypot30extern tcp port 80 "./scripts/iis.sh $ipsrc $sport"
add honeypot30extern tcp port 443 open
dynamic honeypot30
add honeypot30 use honeypot30intern if source ip = 192.168.2.0/23
add honeypot30 otherwise use honeypot30extern
bind 192.168.2.194 honeypot30
create honeypot40intern
set honeypot40intern personality "OpenBSD 3.0 (x86 or SPARC)"
set honeypot40intern default tcp action block
set honeypot40intern default udp action block
set honeypot40intern default icmp action open
add honeypot40intern tcp port 21 proxy 192.168.3.104:21
add honeypot40intern tcp port 80 proxy 192.168.3.104:80
create honeypot40extern
set honeypot40extern personality "OpenBSD 3.0 (x86 or SPARC)"
set honeypot40extern default tcp action block
set honeypot40extern default udp action block
set honeypot40extern default icmp action open
add honeypot40extern tcp port 21 "./scripts/ftp.sh $ipsrc $sport"
add honeypot40extern tcp port 80 "./scripts/iis.sh $ipsrc $sport"
dynamic honeypot40
add honeypot40 use honeypot40intern if source ip = 192.168.2.0/23
add honeypot40 otherwise use honeypot40extern
bind 192.168.3.108 honeypot40

 98

Appendix B

A honeyd configuration file generated during testing.

create default
set default personality "Windows NT4 / Win95 / Win98"
set default default tcp action block
set default default udp action block
set default default icmp action block

create honeypot10intern
set honeypot10intern personality "Linux 2.4.16 - 2.4.18"
set honeypot10intern default tcp action block
set honeypot10intern default udp action block
set honeypot10intern default icmp action open
add honeypot10intern tcp port 22 proxy 192.168.2.16:22
add honeypot10intern tcp port 111 proxy 192.168.2.16:111
add honeypot10intern tcp port 443 proxy 192.168.2.16:443
add honeypot10intern tcp port 1241 proxy 192.168.2.16:1241
add honeypot10intern tcp port 3306 proxy 192.168.2.16:3306
add honeypot10intern tcp port 32767 proxy 192.168.2.16:32767
create honeypot10extern
set honeypot10extern personality "Linux 2.4.16 - 2.4.18"
set honeypot10extern default tcp action block
set honeypot10extern default udp action block
set honeypot10extern default icmp action open
add honeypot10extern tcp port 22 "./scripts/ssh.sh $ipsrc $sport"
add honeypot10extern tcp port 111 open
add honeypot10extern tcp port 443 open
add honeypot10extern tcp port 1241 open
add honeypot10extern tcp port 3306 "./scripts/mysql.sh $ipsrc $sport"
add honeypot10extern tcp port 32767 open
dynamic honeypot10
add honeypot10 use honeypot10intern if source ip = 192.168.2.0/26
add honeypot10 otherwise use honeypot10extern
bind 192.168.2.17 honeypot10
create honeypot20intern
set honeypot20intern personality "Linux 1.0.9"
set honeypot20intern default tcp action block
set honeypot20intern default udp action block
set honeypot20intern default icmp action open
add honeypot20intern tcp port 21 proxy 192.168.2.40:21
add honeypot20intern tcp port 22 proxy 192.168.2.40:22
add honeypot20intern tcp port 80 proxy 192.168.2.40:80
add honeypot20intern tcp port 111 proxy 192.168.2.40:111
add honeypot20intern tcp port 443 proxy 192.168.2.40:443
add honeypot20intern tcp port 28839 proxy 192.168.2.40:28839
add honeypot20intern tcp port 32767 proxy 192.168.2.40:32767
create honeypot20extern
set honeypot20extern personality "Linux 1.0.9"
set honeypot20extern default tcp action block
set honeypot20extern default udp action block
set honeypot20extern default icmp action open
add honeypot20extern tcp port 21 "./scripts/ftp.sh $ipsrc $sport"
add honeypot20extern tcp port 22 "./scripts/ssh.sh $ipsrc $sport"
add honeypot20extern tcp port 80 "./scripts/iis.sh $ipsrc $sport"
add honeypot20extern tcp port 111 open
add honeypot20extern tcp port 443 open
add honeypot20extern tcp port 28839 open
add honeypot20extern tcp port 32767 open
dynamic honeypot20
add honeypot20 use honeypot20intern if source ip = 192.168.2.0/26
add honeypot20 otherwise use honeypot20extern
bind 192.168.2.41 honeypot20
create honeypot30intern
set honeypot30intern personality "Windows 2000 Professional"
set honeypot30intern default tcp action block

 99

set honeypot30intern default udp action block
set honeypot30intern default icmp action open
add honeypot30intern tcp port 135 proxy 192.168.2.46:135
add honeypot30intern tcp port 139 proxy 192.168.2.46:139
add honeypot30intern tcp port 445 proxy 192.168.2.46:445
add honeypot30intern tcp port 666 proxy 192.168.2.46:666
add honeypot30intern tcp port 667 proxy 192.168.2.46:667
add honeypot30intern tcp port 700 proxy 192.168.2.46:700
add honeypot30intern tcp port 1025 proxy 192.168.2.46:1025
add honeypot30intern tcp port 17666 proxy 192.168.2.46:17666
create honeypot30extern
set honeypot30extern personality "Windows 2000 Professional"
set honeypot30extern default tcp action block
set honeypot30extern default udp action block
set honeypot30extern default icmp action open
add honeypot30extern tcp port 135 open
add honeypot30extern tcp port 139 open
add honeypot30extern tcp port 445 open
add honeypot30extern tcp port 666 open
add honeypot30extern tcp port 667 open
add honeypot30extern tcp port 700 open
add honeypot30extern tcp port 1025 open
add honeypot30extern tcp port 17666 open
dynamic honeypot30
add honeypot30 use honeypot30intern if source ip = 192.168.2.0/26
add honeypot30 otherwise use honeypot30extern
bind 192.168.2.47 honeypot30
create honeypot40intern
set honeypot40intern personality "Linux 2.4.16 - 2.4.18"
set honeypot40intern default tcp action block
set honeypot40intern default udp action block
set honeypot40intern default icmp action open
add honeypot40intern tcp port 22 proxy 192.168.2.62:22
add honeypot40intern tcp port 111 proxy 192.168.2.62:111
add honeypot40intern tcp port 3306 proxy 192.168.2.62:3306
add honeypot40intern tcp port 6000 proxy 192.168.2.62:6000
create honeypot40extern
set honeypot40extern personality "Linux 2.4.16 - 2.4.18"
set honeypot40extern default tcp action block
set honeypot40extern default udp action block
set honeypot40extern default icmp action open
add honeypot40extern tcp port 22 "./scripts/ssh.sh $ipsrc $sport"
add honeypot40extern tcp port 111 open
add honeypot40extern tcp port 3306 "./scripts/mysql.sh $ipsrc $sport"
add honeypot40extern tcp port 6000 open
dynamic honeypot40
add honeypot40 use honeypot40intern if source ip = 192.168.2.0/26
add honeypot40 otherwise use honeypot40extern
bind 192.168.2.63 honeypot40

 100

Appendix C

This appendix contains the dynamic honeypot configuration rules.

There will be four steps to configuring the honeypots and a database to hold

information about the each host: its IP-address, its operating-system, and its open-ports.

There is also a table in the database to associate hosts with groups. Each group will

become one honeypot and has an operating-system-fingerprint, an IP-address, and a set of

open-ports. The database also contains a list of all valid values for the operating-system-

fingerprint. There is a comparison function called similar, that compares two hosts and

returns true if they are similar to one another. It is based on the IP-address and the

operating-system of each host. There is another comparison function called like, the

compares an operating-system and an operating-system-fingerprint, and returns true if

they are alike. It is based on simple string comparison.

Rules are listed in order of priority, meaning that the rule that appears earliest in

the list has the highest priority. The rule with highest priority is the rule to be applied. In

cases where the one rule’s conditions are a superset of another’s, the rule whose

conditions are the super set will be used. Initially there are no groups, and the step is

group-hosts.

 101

Rules

1.1 If the step is group-host
 there is a host, A, that is not a member of a group
 there is a host, B, that is a member of group, X
 A is similar to B.
 Then A is a member of group X
1.2 If the step is group-host
 there is a host, A, that is not a member of a group.
 then create a new group Y, A is a member of group Y.
1.3 If the step is group-host
 Then step is select-os.
2.1 If the step is select-os
 group X does not have an operating-system-fingerprint
 M is a valid operating-system-fingerprint
 host A is in group X
 the operating-system of A is like M
 Then the operating-system-fingerprint of X is M
2.2 If the step is select-os
 Then the step is select-ip
3.1 If the step is select-ip
 group X does not have an IP-address
 host A is a member of group X
 Q is the IP-address of A with one bit changed
 Q is not an IP address of any host
 Q is not an IP-address of any group
 Then the IP-address of group X is Q
3.2 If the step is select-ip
 Then the step is select-ports
4.1 If the step is select-ports
 group X does not have any open-ports
 P is all open-ports of any host that is a member of group X
 Then the open-ports of group X is P
4.2 If the step is select-ports
 Then stop

 102

Appendix D

Possible alarm rules for the dynamic honeypot based intrusion detection system.

Operation:

A sensor will capture all traffic to the dynamic honeypots, and each packet to a

honeypot will be considered an anomalous event. Each event will have a source,

destination, etc. All events will be stored in a database. The following rules will operate

on a subset of these events, called the active_events. Active_events are all events that

have occurred since a specified period of time in the past, i.e.: active_events are all

events that have occurred in the last 24 hours. The current_event is the event most

recently generated.

Rules:

Basic Rules or transaction level rules:

#1.1

If the total number of active_events exceeds the threshold max_events, then generate a

high number of anomalies alarm (“There has been a significant increase in the traffic to

your honeypots”).

#1.2

If the total number of active_events exceeds the threshold max_events, and one source is

associated with more than X% of all active_events then generate a high traffic one source

alarm (“there has been a significant increase in the traffic to your honeypots, the majority

of which originated with <src>”).

#1.3

If the total number of active-events exceeds the threshold max_events, and one

destination address is more than X% of all events then generate high traffic one

destination alarm (“there has been a significant increase in the traffic to your honeypots,

Y% of which has been with <dst>”).

#1.4

If the total number of active_events exceeds the threshold max_events and one dest port

is more than X% of all events then generate high traffic single port alarm(“there has been

 103

significant increase in the traffic to your honeypots, Y% of which was directed at port

<des port>, potentially scanning for a new vulnerability”).

#1.5

If the total number of active_events exceeds the threshold max_events and one source is

associated with more then X% of all active_events and one destination is associated with

more than XX % of all active_events generate high traffic persistent attacker alarm

(“there has been significant increase in the traffic to your honeypots, Y% of which came

from <src> and YY% went to <dest>”).

#1.6

If any active_event is from the external network then generate perimeter penetration

alarm (“Packet(s) from the external network <net_id> have reached a honeypot: <list of

relevant events>”). (**depending on the network architecture and firewall rules, this rule

might not apply and can be disabled)

#1.7

If the total number of active_events having the same source is greater than X, and the

percent of these with the same destination port is greater than Y then generate scanning

for vulnerability alarm (“Source <src> appears to be scanning for a specific vulnerability

on port <dest port>, <list relevant events>”).

 104

Session rules:

Trigger:

If current_event is part of a legitimate session (currently only TCP) and this is the last

packet in the session, or penultimate packet in the session, then extract the entire session

stream, remember the source and destination, check against rules (yields alerts), calculate

bytes/packet, and activate session rules.

Check against rules: Run only this session through a signature based IDS and capture the

output as alerts. If such an IDS is deployed on the network use the same rules.

Calculate bytes/packet: Calculate the total number of bytes transmitted, and the total

number of packets used to transmit that data, and determine the bytes/packet (possible

fragmentation).

#2.1

IF alerts != null then generate known threat detected alarm (“the following session

occurred between source and destination at <time>. One or more potential threats was

identified <print alarms> <print session>”).

#2.2

IF alerts != null and bytes/packet is < X then generate known exploit and tcp

fragmentation detected alarm (“The following session between src and dest occurred at

<time>. The bytes transmitted per package was unusually low (<val>), and one or more

potential threats was identified. <print alarms> <print session>”).

#2.3

IF session port = http and alerts == null and URI != / , /index.htm, …etc., then generate

suspicious http session alarm (“the following http session occurred between <src> and

<dest> at <time>. It is not a normally recognized convention, but failed to sound any

defined IDS alarms.”).

#2.4

IF alerts == null then generate supicious session alarm (“the following session occurred

between <src> and one of your honeypots (<dest>) at <time>. It failed to trigger any

defined IDS alarms.”).

 105

Appendix E

Output of nmap scan of the network, prior to honeypot deployment. The scan is

preformed from outside the network.

Nmap –sT –e eth0 192.168.2.0/24 –F

Starting nmap 3.50 (http://www.insecure.org/nmap/) at 2004-09-20 11:56 EDT
Host 192.168.2.0 seems to be a subnet broadcast address (returned 3 extra pings).
Skipping host.
Interesting ports on 192.168.2.1:
(The 1214 ports scanned but not shown below are in state: filtered)
PORT STATE SERVICE
53/tcp closed domain
80/tcp open http
515/tcp open printer

Interesting ports on 192.168.2.16:
(The 1213 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
22/tcp open ssh
443/tcp open https
1241/tcp open nessus
3306/tcp open mysql

Interesting ports on 192.168.2.22:
(The 1213 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
135/tcp open msrpc
139/tcp open netbios-ssn
445/tcp open microsoft-ds
1025/tcp open NFS-or-IIS

Interesting ports on 192.168.2.40:
(The 1212 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
21/tcp open ftp
22/tcp open ssh
80/tcp open http
111/tcp open rpcbind
443/tcp open https

Interesting ports on 192.168.2.62:
(The 1213 ports scanned but not shown below are in state: closed)
PORT STATE SERVICE
22/tcp open ssh
111/tcp open rpcbind
3306/tcp open mysql
6000/tcp open X11

Host 192.168.2.255 seems to be a subnet broadcast address (returned 3 extra pings).
Skipping host.
Nmap run completed -- 256 IP addresses (5 hosts up) scanned in 60.636 seconds

 106

Appendix F

Results of an nmap scan of the network, preformed from outside the network.

Nmap –sT 192.168.2.0/24 –F

Starting nmap 3.50 (http://www.insecure.org/nmap) at 2004-09-20 16:20 Eastern Standard
Time
Host 192.168.2.0 seems to be a subnet broadcast address (returned 1 extra pings).
Skipping host.
Interesting ports on 192.168.2.1:
(The 1210 ports scanned but not shown below are in state: filtered)
PORT STATE SERVICE
21/tcp open ftp
25/tcp open smtp
110/tcp open pop3
389/tcp open ldap
515/tcp open printer
1002/tcp open windows-icfw
1720/tcp open H.323/Q.931

Interesting ports on 192.168.2.16:
(The 1209 ports scanned but not shown below are in state: filtered)
PORT STATE SERVICE
21/tcp open ftp
22/tcp open ssh
25/tcp open smtp
110/tcp open pop3
389/tcp open ldap
1002/tcp open windows-icfw
1241/tcp open nessus
1720/tcp open H.323/Q.931

Interesting ports on 192.168.2.22:
(The 1210 ports scanned but not shown below are in state: filtered)
PORT STATE SERVICE
21/tcp open ftp
25/tcp open smtp
110/tcp open pop3
139/tcp open netbios-ssn
389/tcp open ldap
1002/tcp open windows-icfw
1720/tcp open H.323/Q.931

Interesting ports on 192.168.2.40:
(The 1208 ports scanned but not shown below are in state: filtered)
PORT STATE SERVICE
21/tcp open ftp
22/tcp open ssh
25/tcp open smtp
80/tcp open http
110/tcp open pop3
389/tcp open ldap
443/tcp open https
1002/tcp open windows-icfw
1720/tcp open H.323/Q.931

Interesting ports on 192.168.2.62:
(The 1209 ports scanned but not shown below are in state: filtered)
PORT STATE SERVICE
21/tcp open ftp
22/tcp open ssh
25/tcp open smtp
110/tcp open pop3
111/tcp open rpcbind

 107

389/tcp open ldap
1002/tcp open windows-icfw
1720/tcp open H.323/Q.931

Host 192.168.2.255 seems to be a subnet broadcast address (returned 3 extra pings).
Skipping host.
Nmap run completed -- 256 IP addresses (5 hosts up) scanned in 2141.656 seconds Nmap run
completed -- 256 IP addresses (4 hosts up) scanned in 1667.297 seconds

 108

Appendix G

Initial honeyd configuration file generated by the dynamic honeypot.

create default
set default personality "Windows NT4 / Win95 / Win98"
set default default tcp action block
set default default udp action block
set default default icmp action block

create honeypot10intern
set honeypot10intern personality "Linux 2.4.16 - 2.4.18"
set honeypot10intern default tcp action block
set honeypot10intern default udp action block
set honeypot10intern default icmp action open
add honeypot10intern tcp port 22 proxy 192.168.2.16:22
add honeypot10intern tcp port 443 proxy 192.168.2.16:443
add honeypot10intern tcp port 1241 proxy 192.168.2.16:1241
add honeypot10intern tcp port 3306 proxy 192.168.2.16:3306
create honeypot10extern
set honeypot10extern personality "Linux 2.4.16 - 2.4.18"
set honeypot10extern default tcp action block
set honeypot10extern default udp action block
set honeypot10extern default icmp action open
add honeypot10extern tcp port 22 "./scripts/ssh.sh $ipsrc $sport"
add honeypot10extern tcp port 443 open
add honeypot10extern tcp port 1241 open
add honeypot10extern tcp port 3306 "./scripts/mysql.sh $ipsrc $sport"
dynamic honeypot10
add honeypot10 use honeypot10intern if source ip = 192.168.2.0/26
add honeypot10 otherwise use honeypot10extern
bind 192.168.2.17 honeypot10
create honeypot20intern
set honeypot20intern personality "Windows 2000 SP2"
set honeypot20intern default tcp action block
set honeypot20intern default udp action block
set honeypot20intern default icmp action open
add honeypot20intern tcp port 135 proxy 192.168.2.22:135
add honeypot20intern tcp port 139 proxy 192.168.2.22:139
add honeypot20intern tcp port 445 proxy 192.168.2.22:445
add honeypot20intern tcp port 1025 proxy 192.168.2.22:1025
create honeypot20extern
set honeypot20extern personality "Windows 2000 SP2"
set honeypot20extern default tcp action block
set honeypot20extern default udp action block
set honeypot20extern default icmp action open
add honeypot20extern tcp port 135 open
add honeypot20extern tcp port 139 open
add honeypot20extern tcp port 445 open
add honeypot20extern tcp port 1025 open
dynamic honeypot20
add honeypot20 use honeypot20intern if source ip = 192.168.2.0/26
add honeypot20 otherwise use honeypot20extern
bind 192.168.2.23 honeypot20
create honeypot30intern
set honeypot30intern personality "Linux 2.4.16 - 2.4.18"
set honeypot30intern default tcp action block
set honeypot30intern default udp action block
set honeypot30intern default icmp action open
add honeypot30intern tcp port 21 proxy 192.168.2.40:21
add honeypot30intern tcp port 22 proxy 192.168.2.40:22
add honeypot30intern tcp port 80 proxy 192.168.2.40:80
add honeypot30intern tcp port 111 proxy 192.168.2.40:111
add honeypot30intern tcp port 443 proxy 192.168.2.40:443
create honeypot30extern
set honeypot30extern personality "Linux 2.4.16 - 2.4.18"
set honeypot30extern default tcp action block

 109

set honeypot30extern default udp action block
set honeypot30extern default icmp action open
add honeypot30extern tcp port 21 "./scripts/ftp.sh $ipsrc $sport"
add honeypot30extern tcp port 22 "./scripts/ssh.sh $ipsrc $sport"
add honeypot30extern tcp port 80 "./scripts/iis.sh $ipsrc $sport"
add honeypot30extern tcp port 111 open
add honeypot30extern tcp port 443 open
dynamic honeypot30
add honeypot30 use honeypot30intern if source ip = 192.168.2.0/26
add honeypot30 otherwise use honeypot30extern
bind 192.168.2.41 honeypot30
create honeypot40intern
set honeypot40intern personality "Linux 2.4.16 - 2.4.18"
set honeypot40intern default tcp action block
set honeypot40intern default udp action block
set honeypot40intern default icmp action open
add honeypot40intern tcp port 22 proxy 192.168.2.62:22
add honeypot40intern tcp port 111 proxy 192.168.2.62:111
add honeypot40intern tcp port 3306 proxy 192.168.2.62:3306
add honeypot40intern tcp port 6000 proxy 192.168.2.62:6000
create honeypot40extern
set honeypot40extern personality "Linux 2.4.16 - 2.4.18"
set honeypot40extern default tcp action block
set honeypot40extern default udp action block
set honeypot40extern default icmp action open
add honeypot40extern tcp port 22 "./scripts/ssh.sh $ipsrc $sport"
add honeypot40extern tcp port 111 open
add honeypot40extern tcp port 3306 "./scripts/mysql.sh $ipsrc $sport"
add honeypot40extern tcp port 6000 open
dynamic honeypot40
add honeypot40 use honeypot40intern if source ip = 192.168.2.0/26
add honeypot40 otherwise use honeypot40extern
bind 192.168.2.63 honeypot40

 110

Appendix H

Source Code listings

#include<cstdlib>
#include<iostream>
#include</usr/include/mysql/mysql.h>
#ifndef DBIF
#include"datetime.h"

/*
dbif.h
written by Jeff Hieb, July 2004

This is the class definition for the class dbif
class dbif is a database interface class for
a MySQL database.
*/

class dbif {
 MYSQL *mysql; //data base handle
 MYSQL_RES *result;//stores query results
 public:
 unsigned int num_rows;//number of rows in result
 unsigned int num_fields;//number of fiels in result
 dbif();
 // connect to the database using these parms.
 void connect(char * host,
 char * user,
 char * pass,
 char * name,
 unsigned int port,
 char * socket,
 unsigned int flags);
 // disconnect from the database
 void disconnect();
 // query the database using supplied query
 void query(char * query);
 // return the current row of the results
 MYSQL_ROW get_row();
 // return the row number row from results
 MYSQL_ROW get_row(unsigned int row);
 void print_results();
 // insert host information into the
 // dynamic honeypot database
 void dyhpinsert(datetime time,char * ipaddr, char*os);
 // insert port information into the
 // dynamic honeypot database
 void portinsert(char *ip,char * port);
 // return true if ip is in the flock table.
 bool isflock(char * ip);
};

#define DBIF
#endif

 111

#include"dbif.h"
/*
dbif.cpp
written by jeff hieb, July 2004

dbif class method implementations
*/

using namespace std;

dbif::dbif() {
 mysql = NULL;
 result = NULL;
 num_rows = 0;
 num_fields = 0;
}

void dbif::connect(char * host,
 char * user,
 char * pass,
 char * name,
 unsigned int port,
 char * socket,
 unsigned int flags)
{
if ((mysql = mysql_init(NULL)) == NULL) {
 cout << "failed to inititialize\n";
 exit(0);
 }
if (mysql_real_connect(mysql,host,user,pass,name,port,socket,flags) == NULL){
 cout << "connection failed " << mysql_error(mysql);
 exit (0);
 }
}

void dbif::query(char * query)
{
// first free any previous results.
mysql_free_result(result);
// prefrom query, checking for errors
if(mysql_query(mysql, query) == 0) {
 result = mysql_store_result(mysql);
 if (result != NULL) {
 // set number of rows
 num_rows = mysql_num_rows(result);
 // set number of fields
 num_fields = mysql_field_count(mysql);
 }
 }
else { // if an error occured, notify and exit
 cout << query << "\n";
 cout << "Query failed: " << mysql_error(mysql) << "\n";
 exit (0);
 }
}

MYSQL_ROW dbif::get_row() {
return mysql_fetch_row(result);
}

MYSQL_ROW dbif::get_row(unsigned int row) {
if (row < num_rows)
 return mysql_fetch_row(result);
else
 return NULL;
}

 112

void dbif::print_results() {
unsigned int f;
MYSQL_ROW row;
if (result != NULL) {
 while ((row = mysql_fetch_row(result)) != NULL) {
 f= 0;
 while (f<mysql_num_fields(result)) {
 if (f>0) cout << "\t";
 cout << row[f];
 f++;
 }
 cout << "\n";
 }
 }
else {
 cout << "empty result set\n";
 }
}
bool dbif::isflock(char * ip)
{
char buf[255];

sprintf(buf,"select * from flock where ipaddr = INET_ATON('%s')",ip);
query(buf);
if (num_rows > 0)
 return true;
return false;
}

void dbif::dyhpinsert(datetime time,char* ipaddr,char* os)
{

char buf[255];

// see if there is already an entry for this host
sprintf(buf,"select count from host where ipaddr=INET_ATON('%s') and os='%s'",ipaddr,os);
query(buf);

// if no then insert a new entry, with count = 1
if (num_rows == 0) {
 sprintf(buf,"insert into host
values(INET_ATON('%s'),'%s',1,'%s')",ipaddr,os,time.asMysqlString());
 query(buf);
 }
// if yes, update the count field.
else {
 sprintf(buf,"update host set count=count+1,last='%s' where ipaddr =
INET_ATON('%s') and os = '%s'",time.asMysqlString(),ipaddr,os);
 query(buf);
 }
}

void dbif::portinsert(char* ip,char* port)
{

char buf[255];

sprintf(buf,"select * from ports where ipaddr=INET_ATON('%s') and port='%s'",ip,port);
query(buf);

if (num_rows == 0) {
 sprintf(buf,"insert into ports values(INET_ATON('%s'),%s,NULL,NULL)",ip,port);
 query(buf);
 }
}

void dbif::disconnect()
{
mysql_close(mysql);
}

 113

/*
datetime.h

written by Jeff Hieb July, 2004.

This is class definition file for the class datetime

*/

#ifndef MYDATETIME

#include<ctime>
#include<cstdlib>
#include<string>

class datetime {
 struct tm time; // system time
 public:
 // standard constructor, sets time to current time
 datetime();
 // constructor, sets time to mysqlstring
 datetime(char* mysqlstring);
 // set time of first operator equal to
 // time of second operator
 datetime operator = (datetime op2);
 // returns true if both datetime objects
 // have the same time
 friend bool operator==(datetime op1,datetime op2);
 // returns true if first datetime object
 // is earlier than the second datetime object
 friend bool operator<(datetime op1,datetime op2);
 // returns time as a MySQL string
 char* datetime::asMysqlString();
 // subtracts x hours from time.
 void datetime::minusHours(int x);
};

#define MYDATETIME

#endif

 114

#include"datetime.h"
#include<iostream>
datetime::datetime(){
 time_t theTime;
std::time(&theTime);
 time = (*localtime(&theTime));
 }

datetime::datetime(char *mysqlstring) {
 char temp[10];
 int yr,mo,da,hr,mi,se;
 mysqlstring[4]=' ';
 mysqlstring[7]=' ';
 mysqlstring[10]=' ';
 mysqlstring[13]=' ';
 mysqlstring[16]=' ';

 sscanf(mysqlstring,"%d %d %d %d %d %d",&yr,&mo,&da,&hr,&mi,&se);
 time.tm_year = yr-1900;
 time.tm_mon = mo - 1;
 time.tm_mday = da;
 time.tm_hour = hr;
 time.tm_min = mi;
 time.tm_sec = se;
 }
datetime datetime::operator=(datetime op2) {
 time = op2.time;
 return *this;
}

bool operator==(datetime op1,datetime op2) {
 if ((op1.time.tm_year == op2.time.tm_year) &&
 (op1.time.tm_mon == op2.time.tm_year) &&
 (op1.time.tm_mday == op2.time.tm_mday) &&
 (op1.time.tm_hour == op2.time.tm_hour) &&
 (op1.time.tm_min == op2.time.tm_min) &&
 (op1.time.tm_sec == op2.time.tm_sec))
 return true;
 return false;
}

bool operator<(datetime op1, datetime op2) {
double result;
op1.time.tm_isdst = op2.time.tm_isdst;
result = difftime(mktime(&(op2.time)),mktime(&(op1.time)));
if (result > 0)
 return true;
return false;
}

char * datetime::asMysqlString() {
 char buf[80];
 char * ret;
 sprintf(buf,"%d-%d-%d %d:%d:%d",time.tm_year + 1900,\
 time.tm_mon + 1,time.tm_mday,time.tm_hour, \
 time.tm_min, time.tm_sec);
 ret = (char *)malloc(strlen(buf) + 1);
 strcpy(ret,buf);
 return ret;
}
void datetime::minusHours(int x){
 if (time.tm_hour > x)
 time.tm_hour -= x;
 else {
 x -= time.tm_hour;
 time.tm_hour = 23;
 if (time.tm_mday > 1) {
 time.tm_mday --;
 }
 else {

 115

 switch (time.tm_mon) {
 case 0:
 time.tm_year --;
 time.tm_mon = 11;
 time.tm_mday = 31;
 break;
 case 2:
 time.tm_mon = 1;
 time.tm_mday = 28;
 break;
 case 1:
 case 3:
 case 5:
 case 7:
 case 8:
 case 10:
 time.tm_mon--;
 time.tm_mday = 31;
 break;
 default:
 time.tm_mon--;
 time.tm_mday = 30;
 }
 }
 minusHours(x);
 }
 }

 116

#include<iostream>
#include<fstream>
#include<cstdlib>
#include"datetime.h"
#include"dbif.h"
/*
passive.cpp
written by jeff hieb, july 2004

extract host IP address, date and operating system
from p0f output and place it in the dynamic honeypot data base.
*/
using namespace std;

datetime gettime(char * buffer)
{
char month[4];
char monthnum[3];
char date[20];
int i;

month[0] = buffer[5];month[1] = buffer[6];month[2]=buffer[7];month[3]='\0';
if (strcasecmp(month,"Jan") == 0){ monthnum[0] = '0'; monthnum[1] = '1';}
if (strcasecmp(month,"Feb") == 0){ monthnum[0] = '0'; monthnum[1] = '2';}
if (strcasecmp(month,"Mar") == 0){ monthnum[0] = '0'; monthnum[1] = '3';}
if (strcasecmp(month,"Apr") == 0){ monthnum[0] = '0'; monthnum[1] = '4';}
if (strcasecmp(month,"May") == 0){ monthnum[0] = '0'; monthnum[1] = '5';}
if (strcasecmp(month,"Jun") == 0){ monthnum[0] = '0'; monthnum[1] = '6';}
if (strcasecmp(month,"Jul") == 0){ monthnum[0] = '0'; monthnum[1] = '7';}
if (strcasecmp(month,"Aug") == 0){ monthnum[0] = '0'; monthnum[1] = '8';}
if (strcasecmp(month,"Sep") == 0){ monthnum[0] = '0'; monthnum[1] = '9';}
if (strcasecmp(month,"Oct") == 0){ monthnum[0] = '1'; monthnum[1] = '0';}
if (strcasecmp(month,"Nov") == 0){ monthnum[0] = '1'; monthnum[1] = '1';}
if (strcasecmp(month,"Dec") == 0){ monthnum[0] = '1'; monthnum[1] = '2';}

for (i=0;i<4;i++)
 date[i]=buffer[21+i];
date[4] = ' ';
date[5] = monthnum[0];
date[6] = monthnum[1];
date[7] = ' ';
date[8]= buffer[9];
date[9]=buffer[10];
date[10] = ' ';
for (i=11;i<19;i++)
 date[i] = buffer[i+1];
date[19] = '\0';

return datetime((char*)date);
}

void getip(char* buffer, char *addr)
{
int i;
for (i=0;i<20;i++)
 addr[i] = '\0';

for (i = 27;i<45;i++){
 if(buffer[i] == ':') break;
 addr[i -27] = buffer[i];
 }
addr[i] = '\0';
}

char * getos(char * buffer)
{
char temp[80];
char *temp2;
int i;
temp2 = index(buffer, '-') + 2;

 117

for (i = 0;i < 80;i++)
 {
 if (temp2[i] == '(' || temp2[i] == ',' || temp2[i] == '[' || i > strlen(temp2)) {
 temp[i] = '\0';break;
 }
 temp[i] = temp2[i];
 }
temp2 = (char*)malloc(strlen(temp) + 1);
strcpy(temp2,temp);
return temp2;
}

void getipport(char* buffer,char*ip,char*port)
{
int i,j;
for (i=0;i<20;i++)
 ip[i] = '\0';
i = 0;
for(j=0;j<4;j++)
 {
 while(isdigit(buffer[i])) ip[i]=buffer[i++];
 ip[i++]='.';
 }
ip[--i]='\0';
j=++i;
while(isdigit(buffer[i])) port[i-j]=buffer[i++];
port[i-j] = '\0';

}

int main() {

char buf[255];
datetime time;
char ip[20];
char *os;
int c;
char *ipport;
char port[16];
dbif hpdb;

hpdb.connect("localhost","p0f","xyz","dyhp_db",3306,NULL,0);

cin.getline(buf,255);
while (cin) {
 if (buf[0] == '<'){
 time = gettime(buf);
 getip(buf, ip);
 os = getos(buf);
 if (hpdb.isflock(ip))
 {
 hpdb.dyhpinsert(time,ip,os);
 }

 free(os);
 }
 cin.getline(buf,255);
 }

return 0;
}

 118

#include<iostream>
#include<fstream>
#include<cstdlib>
#include"datetime.h"
#include"dbif.h"
/*
port.cpp
written by jeff hieb, july 2004

extract port number and IP address from tcpdump data and
insert into dynamic honeypot database.
*/
using namespace std;

void getipport(char* buffer,char*ip,char*port)
{
int i,j;
for (i=0;i<20;i++)
 ip[i] = '\0';
i = 0;
for(j=0;j<4;j++)
 {
 while(isdigit(buffer[i])) ip[i]=buffer[i++];
 ip[i++]='.';
 }
ip[--i]='\0';
j=++i;
while(isdigit(buffer[i])) port[i-j]=buffer[i++];
port[i-j] = '\0';

}

int main() {

char buf[255];
datetime time;
char ip[20];
char *os;
int c;
char *ipport;
char port[16];
dbif hpdb;

hpdb.connect("localhost","p0f","xyz","dyhp_db",3306,NULL,0);

cin.getline(buf,255);
while (cin) {
 ipport = index(buf,'P') +2;
 getipport(ipport,ip,port);
 if (hpdb.isflock(ip))
 {
 hpdb.portinsert(ip,port);
 }
 cin.getline(buf,255);
 }

return 0;
}

 119

#include<iostream>
#include<fstream>
#include<cstdlib>
#include"datetime.h"
#include"dbif.h"
/*
flock.cpp
writen by jeff hieb, july 2004

recieve ip addresses from standard input and place them
in the flock table.
*/

using namespace std;

int main() {

char buf[255];
datetime time;
char ip[20];
char *os;
int c;
char *ipport;
char port[16];
dbif hpdb;

hpdb.connect("localhost","p0f","xyz","dyhp_db",3306,NULL,0);
cin >> ip;
while (cin) {
 if (strcmp(ip,"0.0.0.0") != 0)
 {
 sprintf(buf,"replace into flock values (INET_ATON('%s'),null)",ip);
 hpdb.query(buf);
 }
 cin >> ip;
}

return 0;
}

 120

/*
main.cpp
written by Jeff Hieb, July 2004

created the dynamic honeypot object,
calles update, and lauched Honeyd, Snort, and Arpd
waits and loops
*/

#include<netinet/in.h>
#include<arpa/inet.h>
#include<cstdlib>
#include"dynhp.h"

using namespace std;

int get_honeydpid()
// get the processes id of honeyd
{
ifstream fp;
fp.open("/var/run/honeyd.pid");

int pid;
fp >> pid;
fp.close();
return pid;
}

int get_snortpid()
// get the process id of Snort
{
ifstream fp;
fp.open("/var/run/snort_eth0.pid");

int pid;

fp >> pid;

fp.close();
return pid;
}

int get_arpdpid()
// get the process id of arpd
{
ifstream fp;

fp.open("/var/run/arpd.pid");

int pid;

fp >> pid;

fp.close();
return pid;
}

void config_snort(dynhp * thehp)
// write the addtional snort configuration file
// "dynhp.config" that contains the variable
// $HOME_NET, a list of the honeypot IP addresses
{
uint32_t * hpips;
int * hpports;
int numips,numports;
ofstream sensor;
struct in_addr ip;

 121

hpips = thehp->get_hp_ip(numips);
hpports = thehp->get_hp_ports(numports);
sensor.open("dynhp.config");
sensor << "VAR HOME_NET [";
ip.s_addr = ntohl(hpips[0]);
sensor << inet_ntoa(ip);
for(int i =1;i<numips;i++)
 {
 ip.s_addr = ntohl(hpips[i]);
 sensor << "," << inet_ntoa(ip);
 }
sensor << "]\n";
sensor << "VAR HP_PORTS ";
for(int i = 0;i<numports;i++)
 {
 sensor << hpports[i] << " ";
 }
sensor << "\n";
sensor.close();
delete [] hpips;
delete [] hpports;
}

int main (int argc, char *argv)
{
int honeydpid,snortpid,arpdpid;
char command1[40], command2[40], command3[40];
char test[40];

// create the dynamic honeypot object,
// IP address is hard coded, could be passed through command line
dynhp mydynhp("192.168.2.16");

while(true){

// update the honeypot definitions
mydynhp.update();
// configure snort
config_snort(&mydynhp);
// write the honeyd config file
mydynhp.write_config();

// start aprd, snort, and honeyd
system("arpd");
system("snort -D -l ./hplogs -c snorthp.conf");
system("honeyd -l /home/sysjeff/dynhp/hplogs/honeyd.log -p nmap-os-fingerprints -f
honeyd.conf");

// wait one day

system("sleep 24h");

// get process ids
arpdpid = get_arpdpid();
honeydpid = get_honeydpid();
snortpid = get_snortpid();

sprintf(command1,"kill %d",honeydpid);
sprintf(command2,"kill %d",snortpid);
sprintf(command3,"kill %d",arpdpid);

// clean up
mydynhp.rm_hp_hosts();

// kill services
system(command1);
system(command2);
system(command3);
} // end of while
}

 122

/*
dynhp.h
written by jeff hieb, july 2004

this is the definition file for the class dynhp
dynhp is the main dynhp engine.
*/

#include<iostream>
#include<fstream>
#include<cstdlib>
#include"dbif.h"
#include<netinet/in.h>
#include<arpa/inet.h>
#include<iostream>
#include<fstream>
using namespace std;

class dynhp {
 unsigned long addr_sp_size;// based on hosts IP address
 int num_hosts;
 int density ;// % of average distance to be used for threshold
 int threshold;// man IP address distance between to hosts
 // in the same group
 long interval;// number of seconds prior to current time
 // beyond which hosts information
 // should not be considered
 int hostbits; // number of bits used to distinguish hosts.
 char *ip; // IP address of the local interface
 char net[20]; // network address
 char buf[255];// buffer used by various methods.
 MYSQL_ROW row;
 dbif database;// dynamic honeypot database interface
 ofstream config;// file stream for writting configuraiton files
 void calc_net();// calculate the network address
 void selectip(int hpid);
 void selectos(int hpid);
 void selectport(int hpid);
public:
 dynhp();
 ~dynhp();
 dynhp(char * theNet);
 void get_addr_sp_size();
 void get_num_hosts();
 void calc_threshold();
 int is_in_honeypot(uint32_t ip);
 // return the honeypot id for the address ip
 // or -1 if not in a honeypot group
 void update();
 // update configuration information
 void rm_hp_hosts();
 // delete any honeypot data from the
 // hosts tables
 void configurehpip();
 void configurehpos();
 void configurehpport();
 void write_config();
 void write_config(int hpid);
 int member(uint32_t ip);
 // return the honeypot group to which ip
 // belongs, or -1 if none is found
 int recurmem(uint32_t ip,char*os,int t,int hpid);
 // recursive membership, restrict ip
 // distance till 1 or 0 groups
 void add_host(uint32_t ip, int hpid);
 void mk_new_hp(uint32_t ip);
 uint32_t *get_hp_ip(int & num);
 int *get_hp_ports(int & num);
};

 123

/*
dynhp.cpp
written by jeff hieb, July 2004

these are the method implementations
for the class dynhp, the dynamic honeypot engine
*/
#include"dynhp.h"

using namespace std;

dynhp::dynhp()
// default constructor, use IP = 0.0.0.0, and net = 0.0.0.0
{
ip = new char[strlen("0.0.0.0") +1];
strcpy(net,"0.0.0.0");
density = 25; // default setting, translates to 75%
database.connect("localhost","p0f","xyz","dyhp_db",3306,NULL,0);
interval = 10 * 1000000;//period of time, in seconds that
 //hosts are considered active.
}

dynhp::dynhp(char * theIP)
// constructor, theIP is the IP address from the interface that
// honeyd will listen on
{
ip = new char[strlen(theIP) +1];
strcpy(ip,theIP);
density = 25;
database.connect("localhost","p0f","xyz","dyhp_db",3306,NULL,0);
interval = 10 * 1000000;
}

dynhp::~dynhp()
{
rm_hp_hosts();

database.query("delete from honeyhosts");
database.query("delete from honeypots");
database.query("delete from honeyports");
}

void dynhp::get_addr_sp_size()
// determine the address space size
{
int i,j;
uint32_t a,b,x,y,mask;
bool flag = false;
MYSQL_ROW cursor;
mask = 0x80000000;

// get all the IP addresses of the hosts
sprintf(buf,"select ipaddr from host");
database.query(buf);
if (database.num_rows < 2)
 exit (0);
cursor = database.get_row();
if (cursor == NULL) exit(0);
a = atoll(cursor[0]);
// loop until a bit is found that is the same for all IP addresses
// j is that bit, or until all 32 bits have been examined.
for (j = 0; j< 32; j++)
 {
 x = a<<j & mask;
 for (i = 1; i<database.num_rows;i++)
 {
 cursor = database.get_row(i);
 b=atoll(cursor[0]);

 124

 if (x != (b<<j & mask))
 {
 flag = true;
 break;
 }
 }
 if (flag) break;
 }
hostbits = j; // j is the number of bits used to distingish the hosts
 // addr_sp_size is the total number of hosts
 // possible using only j bits
addr_sp_size = (unsigned long) pow((double)2,(31-j)+1);

}

void dynhp::get_num_hosts()
{
sprintf(buf,"select count(distinct ipaddr) from host where last > now() - %d",interval);
database.query(buf);
row = database.get_row();
if (row == NULL)
 exit(0);
num_hosts = atoi(row[0]);
}

void dynhp::calc_threshold()
// determine the threshold value,
// from the address space size an the number of hosts.
{
int avg_dist;
double local_d;
double mydensity;

avg_dist = addr_sp_size / num_hosts;
density = density % 100;
mydensity = (double)(100- density);
local_d = mydensity / 100;
threshold = (int)(local_d * avg_dist);

}

void dynhp::calc_net()
{
struct in_addr ipaddr;
uint32_t temp;
char * out;

ipaddr.s_addr = inet_addr(ip);
ipaddr.s_addr = ntohl(ipaddr.s_addr);
temp = (uint32_t) (pow((double)2,(32 -hostbits)) - 1);
ipaddr.s_addr = ipaddr.s_addr & (~temp);
ipaddr.s_addr = ntohl(ipaddr.s_addr);
sprintf(net,"%s/%d",inet_ntoa(ipaddr),hostbits);
}

int dynhp::is_in_honeypot(uint32_t ip)
{

int a;
sprintf(buf,"select hpid from honeyhosts where ipaddr = %u",ip);
database.query(buf);
if (database.num_rows > 0)
 {
 row = database.get_row();
 a = atoi(row[0]);
 }
else a = -1;

return a;

 125

}

void dynhp::rm_hp_hosts()
// remove any honeypots that have fingerprinted and
// inserted into the host table
{

int c,i;
uint32_t *iplist;

sprintf(buf,"select distinct ipaddr from honeypots");
database.query(buf);
c=database.num_rows;
if (c==0) return;
iplist = new uint32_t[c];

for (i = 0;i<c;i++)
 {
 row = database.get_row();
 iplist[i] = atoll(row[0]);
 }
for (i = 0;i<c;i++)
 {
 sprintf(buf,"delete from flock where ipaddr = %u",iplist[i]);
 database.query(buf);
 sprintf(buf,"delete from host where ipaddr = %u",iplist[i]);
 database.query(buf);
 }
delete [] iplist;

}

void dynhp::update()
// update the honeypot configurations
{
int i,j;
int c;
int hpid,hpid_temp;
uint32_t ip,*iplist;

// clear any previous work
rm_hp_hosts();

database.query("delete from honeyhosts");
database.query("delete from honeypots");
database.query("delete from honeyports");

// set up the parameters
get_addr_sp_size();
get_num_hosts();
calc_threshold();
calc_net();

// get all the relevant hosts from the host table
// and put them in an array called iplist
sprintf(buf,"select distinct ipaddr from host where last > now() - %d order by ipaddr",
interval);
database.query(buf);
c = database.num_rows;
iplist = new uint32_t[c];
for (i = 0;i<c;i++)
 {
 row = database.get_row();
 iplist[i] = atoll(row[0]);
 }
// partition the hosts into groups
for (i=0;i<c;i++)
 {

 126

 ip = iplist[i];
 hpid = member(ip);
 if (hpid == -1)
 {
 mk_new_hp(ip);
 }
 else
 {
 add_host(ip,hpid);
 }
 }

delete [] iplist;
// configure the honeypots
configurehpip();
configurehpos();
configurehpport();

}

int dynhp::member(uint32_t ip)
// determine the group to which the host ip belongs
// and retrun it, if no group is identified, return -1
{
char ostype[80];
int hpid;
int x,y,i;

// get the most common operating system finger print
// for this IP address
sprintf(buf,"select os from host where ipaddr = %u order by count desc",ip);
database.query(buf);
if (database.num_rows == 0) return -1;
row = database.get_row();
i=0;
// parse out the intial word, to be the operating system type
while(isalnum(row[0][i]) && i < 40)
 {
 ostype[i]=row[0][i];
 i++;
 }
ostype[i]='%';
ostype[i+1]='\0';

// find all honeypot groups (hpid) with hosts whose IP address
// is within threshold, and
// whose os is stringwise similar to the operating system type
sprintf(buf,"select t1.hpid from honeypots as t1,honeyhosts as t2,host as t3 where
t1.hpid = t2.hpid and t2.ipaddr = t3.ipaddr and t2.ipaddr between %u and %u and t3.os
like '%s'",ip-threshold,ip+threshold,ostype);
database.query(buf);

// if none return -1
if (database.num_rows==0) return -1;
// if only one honeypot group, return this group id
if (database.num_rows==1)
 {
 row = database.get_row();
 return atoi(row[0]);
 }
// if there is more than one group, reduce the threshold by one half
// and continue recursively till one group can be identified.
if (database.num_rows > 1)
 {
 row = database.get_row();
 hpid = atoi(row[0]);
 return recurmem(ip,ostype,(int)threshold/2,hpid);
 }
}

 127

int dynhp::recurmem(uint32_t ip, char * os, int t, int hpid)
// recursive memebership function
{
int l_hpid;

sprintf(buf,"select t1.hpid from honeypots as t1,honeyhosts as t2,host as t3 where
t1.hpid = t2.hpid and t2.ipaddr = t3.ipaddr and t2.ipaddr between %u and %u and t2.ipaddr
!= %u and t3.os like '%s'",ip,ip-t,ip+t,os);
database.query(buf);

if (database.num_rows == 1)
 {
 row = database.get_row();
 return atoi(row[0]);
 }
else if (database.num_rows == 0)
 {
 return hpid;
 }
else {
 return recurmem(ip,os,(int)t/2,hpid);
 }
}

void dynhp::add_host(uint32_t ip, int hpid)
// associates ip to hpid.
{
sprintf(buf,"insert into honeyhosts values(%d,%u)",hpid,ip);
database.query(buf);
}

void dynhp::mk_new_hp(uint32_t ip)
// create a new honeypot group
{

int hpid;

database.query("select hpid from honeypots order by hpid");
if (database.num_rows == 0)
 hpid = 10;
else {
 row = database.get_row(database.num_rows - 1);
 hpid = atoi(row[0]) + 10;
 }
sprintf(buf,"insert into honeypots values (%d,NULL,NULL)",hpid);
database.query(buf);
add_host(ip,hpid);
}

uint32_t * dynhp::get_hp_ip(int & num)
// return an array of IP addresses that contains
// all the honeypot IP addresses
{
uint32_t * iplist;
int c;
database.query("select ipaddr from honeypots where ipaddr is not NULL");
c = database.num_rows;
iplist = new uint32_t[c];
for (int i = 0;i<c;i++)
 {
 row = database.get_row();
 iplist[i] = atoll(row[0]);
 }
num = c;
return iplist;
}

int * dynhp::get_hp_ports(int & num)

 128

// return an array that contains all the
// open ports on all the honeypots
{

int c,*portlist;
database.query("select distinct port from honeyports");
c = database.num_rows;
portlist = new int[c];
for (int i = 0;i<c;i++)
 {
 row = database.get_row();
 portlist[i] = atoi(row[0]);
 }
num = c;
return portlist;
}

void dynhp::configurehpip()
// establish the IP address for each honeypot
{

int *hpid,c;
database.query("select hpid from honeypots where ipaddr is NULL");
c = database.num_rows;
hpid = new int[c];
for(int i =0;i<c;i++)
 {
 row = database.get_row();
 hpid[i] = atoi(row[0]);
 }
for(int i = 0;i<c;i++)
 {
 selectip(hpid[i]);
 }
delete [] hpid;

}

void dynhp::selectip(int hpid)
// determine the ip address for the honeypot indicated by hpid
{
int i,j;
uint32_t *iplist,a,b,x,y,newip;
bool flag = false;
int lowbit;
int offset;
unsigned int val;

// get all the host IP addresses associated with this honeypot
sprintf(buf,"select ipaddr from honeyhosts where hpid = %d",hpid);
database.query(buf);
int c = database.num_rows;
if (c == 0) return;

// put them in an array
iplist = new uint32_t[c];
for (i=0;i<c;i++)
 {
 row = database.get_row();
 iplist[i] = atoll(row[0]);
 }

// find the first (low order) bit that is not the
// same for each host. j is the bit number

 129

if (c == 1) flag = true;
for (j = 0; j<=hostbits; j++)
 {
 x = iplist[0]>>j & 01;
 for (i = 1; i<c;i++)
 {
 b=iplist[i];
 if (x != (b<<j & 01))
 {
 flag = true;
 break;
 }
 }
 if (flag) break;
 }
// set the low bit to be j
lowbit = j;
// generate a random number between one and c, the number of hosts
offset = (int)(c *(rand()/(RAND_MAX + 1.0)));
// continue to flip successively higher bits of each host
// till and IP address is found that is not in use,
for (j=lowbit;j<hostbits;j++)
 {
 val = 0;
 for (int k=lowbit;k<j;k++)
 {
 val += (unsigned int)pow((double)2,k);
 for (i=0;i<c;i++)
 {
 // get new IP address
 newip = (~(~iplist[(i+offset) % c] ^ val));
 // see if it is in use (from flock table)
 sprintf(buf,"select ipaddr from flock where ipaddr = %u",newip);
 database.query(buf);
 // if not in use, store it in the database
 // and exit
 if (database.num_rows == 0){
 sprintf(buf,"update honeypots set ipaddr = %u where hpid =
%d",newip,hpid);
 database.query(buf);
 return;
 }
 }
 }
 }
delete [] iplist;
}

void dynhp::configurehpos()
// determine the operating system finger print for each honeypot
{

int *hpid,c;
database.query("select hpid from honeypots where os is NULL");
c = database.num_rows;
hpid = new int[c];

for(int i =0;i<c;i++)
 {
 row = database.get_row();
 hpid[i] = atoi(row[0]);
 }

for(int i = 0;i<c;i++)
 {

 selectos(hpid[i]);
 }

 130

delete [] hpid;
}

void dynhp::selectos(int hpid)
// determine the operating system finger print for the honeypot
// indicated by hpid
{

char * os_type,*os_temp;
char os_finger[255];
int os_len;

// get the operating systems for each host that is
// a memeber of the honeypot group hpid
sprintf(buf,"select h.os from host h,honeyhosts t, honeypots p where t.ipaddr = h.ipaddr
and t.hpid = p.hpid and p.hpid = '%d' and h.os != 'UNKNOWN' order by h.count desc",hpid);
database.query(buf);

// parse out the operating system type
// begin string comparision to possible dynamic honeypot
// operating system fingerprints, stored in table osfinger
if (database.num_rows > 0)
 {
 row = database.get_row();
 os_len = strlen(row[0]) + 1;
 os_type = new char[os_len];
 os_temp = new char[os_len];
 for (int i=0;i<os_len;i++) os_temp[i] = '\0';
 strcpy(os_type,row[0]);
 strncpy(os_temp,row[0],3);
 sprintf(buf,"select name from osfinger where name like '%s%%'",os_temp);
 database.query(buf);
 // if more than one fingerprint is identified
 // then use more of the operating system string to
 // narrow the possibilities
 if (database.num_rows >0)
 {
 row = database.get_row();
 strcpy(os_finger,row[0]);
 for (int j = 3; j<os_len;j++)
 {
 os_temp[j] = os_type[j];
 sprintf(buf,"select name from osfinger where name like
'%s%%'",os_temp);
 database.query(buf);
 if (database.num_rows==0)
 break;
 row = database.get_row();
 strcpy(os_finger,row[0]);
 }
 sprintf(buf,"update honeypots set os = '%s' where hpid =
'%d'",os_finger,hpid);
 database.query(buf);
 }
 delete [] os_type;
 delete [] os_temp;
 }
}

void dynhp::configurehpport()
// determine the open ports for each honeypot group
{

int *hpid,c;
sprintf(buf,"delete from honeyports");
database.query(buf);

database.query("select hpid from honeypots");
c = database.num_rows;
hpid = new int[c];

 131

for(int i =0;i<c;i++)
 {
 row = database.get_row();
 hpid[i] = atoi(row[0]);
 }
for(int i = 0;i<c;i++)
 {
 selectport(hpid[i]);
 }

delete [] hpid;
}

void dynhp::selectport(int hpid)
// determine the open ports for the honeypot group hpid.
{

int *p;
uint32_t *ip;

sprintf(buf,"select distinct p.port, p.ipaddr from ports p,honeypots h, honeyhosts k
where p.ipaddr = k.ipaddr and k.hpid = h.hpid and h.hpid = %d",hpid);

database.query(buf);
int c = database.num_rows;
p = new int[c];
ip = new uint32_t[c];

for (int j = 0;j<c;j++)
 {
 row = database.get_row();
 p[j] = atoi(row[0]);
 ip[j] = atoll(row[1]);
 }

for (int i = 0;i<c; i++)
 {
 sprintf(buf,"replace into honeyports values
(%d,%d,INET_NTOA(%u),NULL)",hpid,p[i],ip[i]);
 database.query(buf);
 }
}

void dynhp::write_config()
// white the honeyd configuration file "honeyd.conf"
// using the dynamic honeypot database.
{

int c;
int *hpid;

config.open("honeyd.conf");
config << "create default\n";
config << "set default personality \"Windows NT4 / Win95 / Win98\"\n";
config << "set default default tcp action block\n";
config << "set default default udp action block\n";
config << "set default default icmp action block\n\n";

database.query("select hpid from honeypots where ipaddr is not NULL and os is not NULL");
c = database.num_rows;
hpid = new int[c];
for(int i =0;i<c;i++)
 {
 row = database.get_row();
 hpid[i] = atoi(row[0]);
 }
for(int j=0;j<c;j++)
 {
 write_config(hpid[j]);

 132

 }

config.close();
}

void dynhp::write_config(int hpid)
{
int c,i;
char * per,*ip;
int * ports;
char **proxys;

sprintf(buf,"select ipaddr from honeyhosts where hpid = %d",hpid);
database.query(buf);
if (database.num_rows == 0) return;

sprintf(buf,"select os,INET_NTOA(ipaddr) from honeypots where hpid = %d ",hpid);
database.query(buf);

c = database.num_rows;
if (c == 0) return;

row = database.get_row();

per = new char[strlen(row[0]) + 1];
ip = new char[strlen(row[1]) +1];
strcpy(per, row[0]);
strcpy(ip,row[1]);

sprintf(buf,"select port,proxy from honeypots p,honeyports k where p.hpid = %d and p.hpid
= k.hpid",hpid);
database.query(buf);
c=database.num_rows;
ports = new int[c];
proxys = new char*[c];

for(i=0;i<c;i++)
 {
 row = database.get_row();
 ports[i] = atoi(row[0]);
 proxys[i] = new char[strlen(row[1]) + 1];
 strcpy(proxys[i],row[1]);
 }

config << "create honeypot" << hpid << "intern\n";
config << "set honeypot" << hpid << "intern" << " personality \"" << per << "\"\n";
config << "set honeypot" << hpid << "intern" << " default tcp action block\n";
config << "set honeypot" << hpid << "intern" << " default udp action block\n";
config << "set honeypot" << hpid << "intern" << " default icmp action open\n";
for (i=0;i<c; i++)
 {
 row = database.get_row(i);
 config << "add honeypot" << hpid << "intern tcp port " << ports[i];
 config << " proxy " << proxys[i] << ":" << ports[i] << "\n";
 }

config << "create honeypot" << hpid << "extern\n";
config << "set honeypot" << hpid << "extern" << " personality \"" << per << "\"\n";
config << "set honeypot" << hpid << "extern" << " default tcp action block\n";
config << "set honeypot" << hpid << "extern" << " default udp action block\n";
config << "set honeypot" << hpid << "extern" << " default icmp action open\n";
for (i=0;i<c; i++)
 {
 row = database.get_row(i);
 config << "add honeypot" << hpid << "extern tcp port " << ports[i];
 sprintf(buf,"select script from scripts where port = %d",ports[i]);
 database.query(buf);
 if (database.num_rows > 0) {

 133

 row = database.get_row();
 config << " \"" << row[0] << "\"\n";
 }
 else {
 config << " open\n";
 }
 }

config << "dynamic honeypot" << hpid << "\n";
config << "add honeypot" << hpid << " use honeypot" << hpid;
config << "intern if source ip = " << net << "\n";
config << "add honeypot" << hpid << " otherwise use honeypot" << hpid;
config << "extern\n";
config << "bind " << ip << " honeypot" << hpid << "\n";

 134

CURRICULUM VITAE

Jeffrey L. Hieb

497 Sacree Rd. j_hieb@insightbb.com
Shelbyville, Kentucky 40065 (502) 418-6106

EDUCATION

Masters of Science, Computer Engineering and Computer Science, Expected December 2004
 University of Louisville, Louisville, Kentucky
Thesis: Anomaly Based Intrusion Detection For Network Monitoring Using a Dymamic Honeypot
Advisor: Dr. James Graham

 Bachelor of Science, Computer Science, June 1992
 Furman University, Greenville, South Carolina

 Bachelor of Arts, Philosophy, June 1992
 Furman University, Greenville, South Carolina

HONORS/AFFILIATIONS

 Phi Beta Kappa
 Upsilon Pi Epsilon

Furman Advantage Research Fellow, Data Structures in C++, 1991
Furman Advantage Teaching Assistant, Introduction to Computer Science, 1991
Furman Advantage Research Fellow, Object Oriented Programming Design, 1989

RESEARCH INTERESTS

• Computer Security
• Artificial Intelligence
• Cognitive Science

PUBLICATIONS

Improving the SmallTalk Browser: A Case Study in SmallTalk Development, Proceedings of 28th
Annual Southeast Regional Conference of ACM

WORK EXPERIENCE

Plant Supervisor / Plant Manager, 1992 – 2002
 Hieb Concrete Products Inc., Shelbyville, Kentucky.

 135

	Anomaly based intrusion detection for network monitoring using a dynamic honeypot.
	Recommended Citation

	ACKNOWLEDGEMENTS
	ABSTRACT
	LIST OF FIGURES
	CHAPTER I��INTRODUCTION
	1.1Background
	1.2Organization Of Thesis.

	CHAPTER II��LITERATURE REVIEW
	2.1Intrusion Detection Systems.
	2.2Honeypots

	CHAPTER III��THEORY AND DESIGN
	3.1Honeypots And Intrusion Detection.
	3.2Dynamic Honeypots
	3.2.1Passive Network Analysis.
	3.2.2Virtual Honeypot Deployment

	3.3A Dynamic Honeypot Design
	3.4Intrusion Detection Using A Dynamic Honeypot

	CHAPTER IV��IMPLEMENTATION
	4.1Dynamic Honeypot Implementation
	4.1.1Gathering Network Information
	4.1.2Generating Honeypot Definitions.
	4.1.3Deploying The Honeypots

	4.2Anomaly Based Intrusion Detection
	4.2.1Reporting The Honeypot Traffic
	4.2.2An Additional Alarm Mechanism Based On Honeypot Traffic

	CHAPTER V��TESTING AND RESULTS
	5.1Testing Network Analysis
	5.2Testing Honeypot Configuration
	5.3Testing Virtual Honeypot Deployment
	5.4Testing The Intrusion Detection Abilities
	5.4.1Controlled Intrusions
	5.4.2Real World intrusions

	CHAPTER VI��CONCLUSIONS AND FUTURE DIRECTIONS
	6.1Conclusions
	6.2Directions For Future Research

	REFERENCES
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F
	Appendix G
	Appendix H
	CURRICULUM VITAE

