8,911 research outputs found

    Detecting and avoiding interference between goals in intelligent agents

    Get PDF
    Pro-active agents typically have multiple simultaneous goals. These may interact with each other both positively and negatively. In this paper we provide a mechanism allowing agents to detect and avoid a particular kind of negative interaction where the effects of one goal undo conditions that must be protected for successful pursuit of another goal. In order to detect such interactions we maintain summary information about the definite and potential conditional requirements and resulting effects of goals and their associated plans. We use these summaries to guard protected conditions by scheduling the execution of goals and plan steps. The algorithms and data structures developed allow agents to act rationally instead of blindly pursuing goals that will conflict

    Making intelligent systems team players: Overview for designers

    Get PDF
    This report is a guide and companion to the NASA Technical Memorandum 104738, 'Making Intelligent Systems Team Players,' Volumes 1 and 2. The first two volumes of this Technical Memorandum provide comprehensive guidance to designers of intelligent systems for real-time fault management of space systems, with the objective of achieving more effective human interaction. This report provides an analysis of the material discussed in the Technical Memorandum. It clarifies what it means for an intelligent system to be a team player, and how such systems are designed. It identifies significant intelligent system design problems and their impacts on reliability and usability. Where common design practice is not effective in solving these problems, we make recommendations for these situations. In this report, we summarize the main points in the Technical Memorandum and identify where to look for further information

    Declarative and procedural goals in intelligent agent systems

    Get PDF
    An important concept for intelligent agent systems is goals. Goals have two aspects: declarative (a description of the state sought), and procedural (a set of plans for achieving the goal). A declarative view of goals is necessary in order to reason about important properties of goals, while a procedural view of goals is necessary to ensure that goals can be achieved efficiently in dynamic environments. In this paper we propose a framework for goals which integrates both views. We discuss the requisite properties of goals and the link between the declarative and procedural aspects, then derive a formal semantics which has these properties. We present a high-level plan notation with goals and give its formal semantics. We then show how the use of declarative information permits reasoning (such as the detection and resolution of conflicts) to be performed on goals

    Towards quantifying the completeness of BDI goals

    Get PDF
    Often, such as in the presence of con icts, an agent must choose between multiple intentions. The level of complete- ness of the intentions can be a factor in this deliberation. We sketch a pragmatic but principled mechanism for quan- tifying the level of completeness of goals in a Belief-Desire- Intention{like agent. Our approach leverages previous work on resource and e ects summarization but we go beyond by accommodating both dynamic resource summaries and goal e ects, while also allowing a non-binary quanti cation of goal completeness

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Real-time computation of distance to dynamic obstacles with multiple depth sensors

    Get PDF
    We present an efficient method to evaluate distances between dynamic obstacles and a number of points of interests (e.g., placed on the links of a robot) when using multiple depth cameras. A depth-space oriented discretization of the Cartesian space is introduced that represents at best the workspace monitored by a depth camera, including occluded points. A depth grid map can be initialized off line from the arrangement of the multiple depth cameras, and its peculiar search characteristics allows fusing on line the information given by the multiple sensors in a very simple and fast way. The real-time performance of the proposed approach is shown by means of collision avoidance experiments where two Kinect sensors monitor a human-robot coexistence task

    Future Trends and Challenges for Mobile and Convergent Networks

    Get PDF
    Some traffic characteristics like real-time, location-based, and community-inspired, as well as the exponential increase on the data traffic in mobile networks, are challenging the academia and standardization communities to manage these networks in completely novel and intelligent ways, otherwise, current network infrastructures can not offer a connection service with an acceptable quality for both emergent traffic demand and application requisites. In this way, a very relevant research problem that needs to be addressed is how a heterogeneous wireless access infrastructure should be controlled to offer a network access with a proper level of quality for diverse flows ending at multi-mode devices in mobile scenarios. The current chapter reviews recent research and standardization work developed under the most used wireless access technologies and mobile access proposals. It comprehensively outlines the impact on the deployment of those technologies in future networking environments, not only on the network performance but also in how the most important requirements of several relevant players, such as, content providers, network operators, and users/terminals can be addressed. Finally, the chapter concludes referring the most notable aspects in how the environment of future networks are expected to evolve like technology convergence, service convergence, terminal convergence, market convergence, environmental awareness, energy-efficiency, self-organized and intelligent infrastructure, as well as the most important functional requisites to be addressed through that infrastructure such as flow mobility, data offloading, load balancing and vertical multihoming.Comment: In book 4G & Beyond: The Convergence of Networks, Devices and Services, Nova Science Publishers, 201
    corecore