
Detecting & Avoiding Interference Between Goals in Intelligent Agents

John Thangarajah and Lin Padgham and Michael Winikoff
RMIT University

Melbourne, AUSTRALIA�
johthan,linpa,winikoff � @cs.rmit.edu.au

Abstract

Pro-active agents typically have multiple simulta-
neous goals. These may interact with each other
both positively and negatively. In this paper we
provide a mechanism allowing agents to detect
and avoid a particular kind of negative interaction
where the effects of one goal undo conditions that
must be protected for successful pursuit of another
goal. In order to detect such interactions we main-
tain summary information about the definite and
potential conditional requirements and resulting ef-
fects of goals and their associated plans. We use
these summaries to guard protected conditions by
scheduling the execution of goals and plan steps.
The algorithms and data structures developed allow
agents to act rationally instead of blindly pursuing
goals that will conflict.

1 Introduction
Pro-active intelligent agents are those agents that pursue goals
[Thangarajah et al., 2002a]. These agents typically have mul-
tiple goals that are active simultaneously. These goals can
interact with each other both positively and negatively. For
example consider a Mars rover agent that has a goal to per-
form soil analysis at location � and another goal to perform
rock analysis at location � . Clearly the agent cannot pursue
these goals in parallel since they require the agent to be at dif-
ferent locations. This is an example of negative interaction.

An intelligent agent should not blindly pursue conflicting
goals or unintentionally make its own goals unattainable if
such is easily avoidable. In earlier work [Thangarajah et al.,
2003] we provided mechanisms for identifying and facilitat-
ing positive interactions with respect to the effects of goals.
Horty and Pollack’s work on evaluating an agent’s options in
the context of its existing plans [Horty and Pollack, 2001] and
Pollack’s work on overloading intentions [Pollack, 1991] also
contribute to managing positive interactions.

In pursuing their goals intelligent agents often use interme-
diate steps which enable later steps to achieve the goal. This
is often managed using a series of plan steps where the effect
of an earlier step achieves the pre-condition for a later step.
A rational agent engaged in this kind of pro-active behaviour
should not allow the pre-conditions that have been achieved

by an earlier step to be interfered with before the later step
that relies on the pre-condition is done. For example sup-
pose an agent is using a plan to cook dinner, involving going
to the store, buying some items, coming home and prepar-
ing the meal. Having arrived at the location of the store, a
rational agent would not allow a plan which took the agent
elsewhere to intervene, prior to actually purchasing the items
at the store.

This paper focuses on recognising situations where these
linkages exist in a plan and controlling plan interleaving to
ensure that an agent does not allow negative interference in
the pursuit of separate parallel goals. We provide detailed
mechanisms that can be easily implemented in agent plat-
forms such as PRS [Ingrand et al., 1992], JAM [Huber, 1999],
dMARS [d’Inverno et al., 1998], and JACK [Busetta et al.,
1998].

There has been significant work in the area of conflicts in
agent systems [Tessier et al., 2000]. However, the focus has
been on multi-agents and identifying various types of con-
flicts. Our work focuses rather on providing algorithms and
representations that allow detection and resolution of con-
flicts due to multiple parallel goals in a single agent.

There is also work in plan scheduling to avoid conflicts
such as the work of [Boutilier and Brafman, 1997] and
[Clement and Durfee, 1999b; 1999a]. Boutilier and Braf-
man provide a representation of concurrent interacting ac-
tions by extending the STRIPS action representation lan-
guage, and provide an algorithm for planning with concur-
rent plans. However this work, like traditional planning ap-
proaches, requires the agent to have a completed plan, and
perform the scheduling prior to execution (i.e. off-line). This
is not useful for the type of agents that we deal with which are
situated in highly dynamic environments where it is generally
not possible to determine which plans to use in advance.

Clement et al. use the notion of summary information to
co-ordinate plans at abstract levels. They have provided a
formalism which defines correct interleaved plan execution
[Clement and Durfee, 1999b] and a scheduling algorithm
which uses this information to appropriately interleave plans
to avoid resource conflicts [Clement et al., 2001]. The work
presented here focusses on recognising the way in which
early steps in a plan typically pave the way for later steps,
setting up “dependency links” and provides mechanisms to
ensure that an agent recognizes these in managing its execu-

E79927
Typewritten Text
Citation: Thangarajah, J, Padgham, L and Winikoff, M 2003, 'Detecting and avoiding interference between goals in intelligent agents', in Proceedings of the 18th International Joint Conference on Artificial Intelligence, Acapulco, Mexico, 9-15 August 2003.

E79927
Typewritten Text

tion of parallel goals. We also provide mechanisms for con-
tinually updating summary information so that agents are also
able to reason about partially completed goals.

In [Thangarajah et al., 2002b] we provided means for an
agent to detect and avoid resource conflicts by using sum-
mary information about resources.1 In the current paper
we use a notion of interaction summaries, based on the ef-
fect summaries developed by Clement and Durfee [Clement
and Durfee, 1999b], containing information about effects,
pre-conditions and in-conditions of goals and plans. Effects
are the conditions that a goal or plan aims to achieve, pre-
conditions are conditions that must be true for a plan to begin
execution, and in-conditions are conditions that must remain
true while the relevant goal or plan is active.

Specifically, we protect in-conditions and pre-conditions
that have been achieved by earlier steps in a plan. We do not
protect all pre-conditions: if the pre-condition has not been
achieved by a previous step then there is no clear justification
for protecting it. In particular, when defining the notion of
preparatory effects in section 3, we only consider dependen-
cies between nodes that are part of the same top-level goal.

In this work we consider only “achievement goals”2, that
is goals where the agent attempts to achieve some condition,
and when this condition is achieved the goal is removed from
the agent’s mental state.

2 Plan and Goal representation
This work builds on our previous work presented in [2002a;
2002b; 2003]. The representation of goals and plans are
therefore similar to what we presented in [Thangarajah et al.,
2003]. To summarise these agents have a pre-defined set of
plans which are used to satisfy goals at run-time. A goal-type
is a template for a goal which consists of (i) a label that in-
dicates the type of the goal, e.g. TransmitResultsGoal (ii) in-
conditions of the goal3 (iii) the effects of the goal4 and (iv) the
possible set of plan-types that can satisfy the goal [Winikoff
et al., 2002].

Similarly a plan-type is a template for a plan and consists
of (i) a label for the type of plan (ii) pre-conditions for the
plan to begin (iii) in-conditions that must be maintained dur-
ing plan execution (iv) the direct effects of the plan and (v) a
plan body which specifies what the plan does. Plan bodies can
contain subgoals and actions. These are combined by either
sequencing them (e.g. “achieve goal ��� and then perform ac-
tion � ” written as “ ����� � ”) or by performing them in parallel
(e.g. “achieve goals � � and ��� ” written as “ � �	� ��� ”).

The pre-conditions include in-conditions5. The reason for
this is that in-conditions are stronger than pre-conditions: if

1This work was done independently from, but is quite similar to
that of [Clement and Durfee, 1999b].

2Another type of goal is a “maintenance goal” where the agent
ensures that a particular condition is never violated.

3Pre-conditions, in-conditions and effects are all represented as
logical conditions.

4These effects are the direct, desired effects of the goal, similar
to the notion of primary expectations of [Pollack, 1991].

5Formally, if
 is the in-conditions then we consider the pre-
conditions to be
��� .

an in-condition fails to hold when a plan begins executing
then the plan fails immediately.

Each goal-type � also has a goal-plan tree template where
a goal-plan tree is a tree structure of goals whose children
are the plans that achieve it and the children of a plan are the
subgoals of the plan, with � as the root. All of the subgoals
of a plan must be executed in order for the plan to succeed
(“AND”). However, it is not necessary that all plans of a goal
be executed (“OR”).

When the agent decides to pursue a goal, a goal-plan tree
instance is created and updated at run-time to contain goal
and plan instances. In addition to the above properties, goal
and plan instances will also have a label (instance-name) that
gives a unique handle to it at run-time. This is basically a path
expression in a goal-plan tree instance (e.g. in figure 1 ���� ��������� ��� is the instance-name for plan

���
).

The execution cycle of the agent is similar to the well-
known and developed BDI (Belief Desire Intention) [Rao and
Georgeff, 1995] style of agents that map to agent implemen-
tation systems such as PRS, JAM, dMARS, and JACK, where
a plan is selected from an applicable plan set and if it fails an
alternative applicable plan is tried if available. We extend
this model by requiring that a goal with an in-condition that
is false is delayed until the in-condition becomes true6.

3 Preparatory Effects and Dependency links
Typically, when developing a set of plans to achieve a goal, a
developer is not able to consider all the ways in which the pur-
suit of other goals may interfere with this goal. There are two
important ways in which parallel goals can interfere, which
we try to capture and reason about in this work. Consider-
ing the logical outcomes of goals and plans, interference can
occur:

1. When an in-condition is made false while a plan or goal
is executing, causing the plan or goal to fail.

2. When a previously achieved effect is made false before a
plan or goal that relies on it begins executing, preventing
the goal or plan from being able to execute.

We thus define a preparatory-effect (p-effect) of a goal �
as follows. Consider two plans

� � and
� � which are utilised

to satisfy � and
� � is executed before

� � as shown in figure
1. If

� � brings about an effect � which is a pre-condition of� � , then there is a dependency-link between the preparatory-
effect � and the dependent-plan

� � (����� � ���). We shall
term this a dependency-planlink. In the event that an ef-
fect of a plan serves as a pre-condition to all the plans that
satisfy a sub-goal (as is the case with effect � and sub-goal
�����) then there is a dependency-link between the p-effect
and the dependent-subgoal (��������� � �). We shall term this
a dependency-subgoallink.

A dependency-planlink is complete when the dependent
plan begins execution. A dependency-subgoallink is com-
plete when either (a) the dependent-subgoal is complete or
(b) the last possible plan to satisfy the sub-goal begins execu-
tion (all other plans have been tried but failed).

6Some of the systems will begin executing the goal and have it
immediately fail.

SG1 SG2

P2P1 P5

SG3

 E:e PC:e PC:e PC:e
P4P3

SG4

SG5

G

P

P6 P7

P8
PC:e

Figure 1: Dependency-links example

When a p-effect is achieved the agent should protect the
effect from being undone until all the dependency-links asso-
ciated with the effect are complete.

All dependency-planlinks are potential by definition be-
cause the agent has other means of achieving the dependent-
plan’s parent sub-goal.

A dependency-subgoallink is either� definite if the dependent-subgoal will definitely be pur-
sued as is the case with ��� � (figure 1); or� potential if the dependent-subgoal is not definite. �����
is an example of such a sub-goal as it depends on the
path chosen for ����� .

The above categorisations leads to a ranking of importance
with respect to guarding a p-effect. A definite dependency-
subgoallink is strongest because the dependent-subgoal will
definitely be pursued and all ways of achieving it require
the p-effect as a pre-condition. A potential dependency-
subgoallink is stronger than a dependency-planlink because
although they are both potential the dependent-subgoal of the
dependency-subgoallink will definitely fail if the p-effect is
not true. In contrast the parent sub-goal of the dependent-plan
of a dependency-planlink has other means of being achieved.
This ranking is useful for defining agents that are more or less
careful with respect to protecting preparatory effects from in-
terference.
Dependency-entry:
In order to reason about and protect p-effects we attach de-
pendency information at each plan-node of a goal-plan tree.
This is done at compile time7 and each entry which we shall
term a dependency-entry consists of a set of dependency-
links, (p-effect, dependent-plan/subgoal), where the p-effect
is an effect of the plan. We attach dependency-entries only
to plans because p-effects are achieved by plans, goals only
declare what the plans will achieve.

4 Interaction Tree
In order to detect if goals can be executed in parallel without
any interference from each other we define the notion of inter-

7We do not describe the computation method in detail – the def-
initions above form a specification that can be easily realised.

action summaries. When there is potential interference these
interaction-summaries help us to schedule appropriately.

Interaction-summaries are similar to effect-summaries de-
veloped in [Thangarajah et al., 2003] and based on the work
of Clement and Durfee [Clement and Durfee, 1999b] on con-
dition summaries. The effect-summaries of a goal summarise
the effects that will definitely be achieved irrespective of the
path chosen to satisfy the goal and those that may be achieved
depending on the path chosen. These were used in [Thangara-
jah et al., 2003] to detect situations where the plans of two
goals that bring about the same effect could be merged and to
facilitate this merging.

We use interaction summaries to ensure that the effects
of one goal do not interfere with active in-conditions and
dependency-links of other goals. Therefore we need to main-
tain summary information of (a) effects as they could cause
the interference, and (b) in-conditions and preparatory-effects
as these are what need to be protected when active. Only
those pre-conditions that are set-up by p-effects are protected
so we do not need to maintain pre-condition summaries sep-
arate from the information in the dependency-entries.

For the discussion ahead the general term condition refers
to either in-conditions or effects (including p-effects). Sim-
ilarly to [Thangarajah et al., 2003], conditions can be either
definite or potential. A definite condition will definitely be
achieved/required (achieved for effects and required for in-
conditions) at some point along every possible path of achiev-
ing the goal (i.e. this condition need not be required by all
plans, but is required by at least one plan in every possible
way of achieving the goal). A potential condition will pos-
sibly be achieved/required at some point in the pursuit of the
goal (i.e. this condition is part of at least one plan in at least
one path of achieving the goal but not achieved/required in
all possible paths of achieving the goal). The set of potential
conditions and definite conditions are exclusive of each other.
Interaction Summary:
An interaction-summary of a goal/plan contains the defi-
nite and potential in-conditions, effects and p-effects. For-
mally the interaction-summary of a goal/plan � is a 3 tuple.���
	����������� ������� ��� � ����� �! � ����� �#"$ � ����%
where �!� , �! and �#"$ are the summaries of in-conditions, ef-
fects and preparatory-effects respectively. The in-conditions
summary contains the definite and potential in-conditions of
the node. �!� � ���&�'�)(*��� � �)% and each of (+� and

� � are simply
sets of conditions, (,� = �$-
. ���/-
. � �$0�0$0��/-
.�1 � . Similarly for the
effects and p-effects summaries. We shall see how we can
derive interaction-summaries of a goal/plan in section 4.1.
Interaction-Tree:
The interaction-tree structure is a goal-plan tree where at-
tached at each node is the interaction-summary and in ad-
dition for plan-nodes the dependency-entry8 of the plan. This
tree is built at compile time for each goal-type and instanti-
ated at run-time for each goal-instance. Figure 2 shows the
interaction tree of a simple goal of a Mars rover agent to per-
form soil experiments at location � .

The interaction-tree for any active goal is updated dynam-
ically as the goal is pursued. When a plan/sub-subgoal com-

8as described at the end of section 3.

DE − {DataTransmitted, CloseToLander}

P1

P2

SoilExperimentPlanDepEntry − Dependency Entry

PP − Potential preparatory−effects

EF − EffectsIC − In−conditions

DP − Definite preparatory−effects

PC − Pre−Conditions

DE, PE − Definite EF, Potential EF
DI, PI − Definite IC, Potential IC PI, PP − {}

PE, DI, PI, DP, PP − {}

PI, PP − {}
DepEntry − {}
DP − {AT(A)}
DI − {AT(A)}
PE − {CloseToLander}
DE − {AT(A), SoilAnalysedAt(A), DataTransmitted}

DepEntry − {}DepEntry − {}
DepEntry − {}
PE, PI, DP, PP − {}
DI − {AT(A)}

PE, PI, DP, PP − {}
DI − {AT(A)}
DE − {SoilAnalysedAt(A)}

DE − {SoilAnalysedAt(A)}

PE, DI, PI, DP, PP − {}
DE − {DataTransmitted}

PE, DI, PI, PP − {}
DP − {AT(A)}
DE − {AT(A)}

DP − {AT(A)}
PE, DI, PI, PP − {}

DE − {AT(A)}

DP − {AT(A)}

IC − AT(A)

AnalyseSoilPlan(A)

EF − {SoilAnalysedAt(A)}

EF − {DataTransmitted}
PC − {CloseToLander}

TransmitResultsPlan1
P4

SG1

EF − {AT(A)}

MoveToLocation (A)

EF − {CloseToLander, DataTransmitted}
PC − {NOT CloseToLander}

TransmitResultsPlan2
P5

 EF − {AT(A)}

MoveToPlan(A)
P3

DI − {AT(A)}
PE − {CloseToLander}
DE − {AT(A), SoilAnalysedAt(A), DataTransmitted} G1 :Perform Soil Experiment Goal At (A)

G1

EF − {SoilAnalysedAt(A), DataTransmitted}

DI,PI,DP,PP − {}
PE − {CloseToLander}
DE − {DataTransmitted} SG3

Transmit Results

EF − {DataTransmitted}

 P3)}DepEntry − {(AT(A)

PerformSoilAnalysisAt(A)
SG2

EF − {SoilAnalysedAt(A)}

Figure 2: Interaction Tree example

pletes the corresponding node is removed and the interaction
summary of the parent-node is re-computed. Any changes
to the parent node are propagated up the tree. Dependency-
entries are updated when plans (dependent-plans) begin exe-
cution.

4.1 Deriving Interaction Summaries
Interaction summaries are derived at compile time and
updated at runtime, similarly to the mechanism used in
[Thangarajah et al., 2002b]. In this section we use the fol-
lowing notation: � � � � is the set of subgoals of the plan

�
,

and in-cond
� ��� is the in-conditions of � (with � being either

a goal or a plan).
The interaction-summary of a node of a goal-plan tree is

derived by combining the local conditions of that node with
the interaction-summaries of all its child nodes. Each piece
of the summary (the in-condition summary, the effect sum-
mary and the p-effect summary) is calculated by combining
the relevant pieces of the local and children nodes. The inter-
action summaries of goal nodes and plan nodes are calculated
slightly differently and the details are as follows.

The effects summary of a plan is computed by taking the
union of the local effects of the plan with the effects of each
of the goals within the plan, using the addition operator �
defined as follows:� (� � � ��%�� � (� � � � %&� � � (��� (� ��� � � ��� � � ��%
where (and

�
are respectively sets of definite and potential

conditions (either effects or in-conditions).
The effects summary of a plan is then:
� � � �&� � effects-of

� � ��� � � %������
	��������� ��� �
The p-effect summaries are analogous to effect summaries.

The in-condition summary of a plan is similar to the
above and is defined as:

� � � � �&� � in-cond
� � ��� � � %�� � �
	��������� � ��� �

The summaries of goals however need to take into account
that the plans whose conditions are being combined, are alter-
native ways to achieve a goal. The agent will typically9 only

9More than one plan may be executed in the case of plan failure.
This does not change the rationale for the combination operators.

execute one of these alternative plans and thus the combined
definite conditions are those that are definite for all plans,
while the combined potential conditions are those potential
for some plan plus those that are definite for some plan, but
not for all. The conditions of plans are combined using a
merge operator � , defined as follows:� (� � � ��%�� � (� � � � %���� � (��� (� ������ (� � (��� (� � (�$��� � � � � ���/%

Goals do not have effects other than the effects of their
plans, so the effect summary10 of a goal is:

� � � � ��� " 	 plans-of ���� � �! �
The in-condition summary of a goal is then defined as the

merged in-conditions of its plan nodes, combined with the
local in-conditions of the goal as follows:
��� � � � � � in-cond

� � ��� � � %�� � " 	 plans-of ��"� ��� �! �
In order to determine the interaction-summary (

� �) of a set
of goals, the # operator is applied to all of the goals in the set
as follows � � � �%$'&)(���
*/� = +,�
	��"- �/.�0 21 � � ��� �
where

� � ��� � ��# � � ��� � �&�� � � ��� � ��� � � ��� �$��� � ��� � ��� � ��� �$��� � "$ ��� � ��� � "$ ��� � �/% .
5 Executing goals simultaneously
Having calculated interaction summaries, we then use these
to detect and avoid potential interference. We will first look at
ways of determining whether two goals will definitely not in-
terfere with each other, in which case they can be pursued in
parallel without any monitoring or scheduling of plans. Then
we will discuss how goals that may have potential interfer-
ence can be scheduled to avoid such conflicts whilst being
pursued simultaneously.

As we have discussed in section 3, when two goals are exe-
cuted in parallel, we track and protect the following two con-
straints: (a) the in-conditions of each goal and its active plan
instances must not be violated and (b) the preparatory-effects
(p-effects) that have been achieved must not be undone until
the dependency-links are complete.

10The p-effect summary is similar

We can determine that a new goal � 1 �� will not interfere
with an existing set of goals � ���
* if all (i.e. both definite and
potential) the effects of � 1 �� are compatible with all the de-
rived in-conditions and p-effects of � ���
* . Two conditions11

are compatible if it is possible for them to be simultaneously
true. The details depend on the specific representation of con-
ditions.

5.1 Scheduling
If there is interference between two goals this can be avoided
by pursuing the goals in sequence. However, this restriction
is too strong since it requires that the agent never have more
than one goal that is being pursued. A more reasonable re-
striction is to pursue the goals in parallel, but monitor these
goals for the steps which cause conflict and schedule them
such that they do not interfere with each other. We do this
by guarding the in-conditions and dependency-links that are
active when adopting new goals and executing new plans.

In order to do this we use the interaction-trees and we fur-
ther require a data structure that we shall call the Guard-
edSet12 (� �) which includes in-conditions and dependency-
links that are currently active and need to be guarded by the
agent. Dependency-links are obtained from the dependency-
entry of the associated plan-node from the interaction-tree.
In-conditions are placed together with the name of the asso-
ciated goal or plan instance. The GuardedSet can be defined
by the following simple grammar:
GuardedSet � dependency-entry

�
InCondEntry

�

dependency-entry � p-effect PGName
InCondEntry � in-condition PGName
PGName � planInstanceName

�
goalInstanceName

We avoid interference between goals by (i) protecting the
in-conditions while a plan or goal is executing, and (ii) pro-
tecting the p-effects that are achieved by a plan from the ef-
fects of new plans until the relevant dependency-links com-
plete. However, in doing this, we must be careful to avoid
deadlocks. For example, imagine we have the following two
goals:
G � .incondition(x), G � � 0 0 � subgoal1.effect(NOT y),
G � .incondition(y), G � � 0 0 � subgoal2.effect(NOT x).
Assume that the agent is pursuing G � , but has not yet reached
subgoal1. The � � contains � , as it is an in-condition of G � .
In considering G � , if the agent checks only the conditions in
the � � there appears to be no problem and G � could be pur-
sued, placing � also in the � � . However when subgoal1 and
subgoal2 are respectively reached, they would be suspended
as they affect � and � respectively, both of which are in the
� � , thus creating a deadlock. Consequently, before adopt-
ing a goal/plan, we look ahead at effects that can be achieved
by existing goals (using their interaction summaries) and en-
sure they don’t interfere with the in-conditions of the new
goal/plan to be executed.

Interference can then be avoided between goals by incor-
porating the following steps into the agent execution cycle.

1. When the agent begins the pursuit of a goal the in-
conditions of the goal (i.e. the direct in-conditions, not

11More generally, sets of conditions
12Actually, this is a pair of multisets.

the derived in-conditions) are added to the � � .

2. When the agent satisfies a goal or the goal fails any in-
conditions of the goal in the � � are removed. If the goal
is part of a dependency-subgoallink in the � � this entry
is also removed.

3. When a plan begins execution

(a) In addition to placing the in-conditions into the
� � , if the plan has any p-effects then the relevant
dependency-entry of the p-effects are placed in the
GuardedSet. The reason we do this at the start
of the plan, instead of the end (when the p-effect
is achieved) is because the plan step that achieves
the effect is not known in advance; and the agent
should not begin another plan that could possibly
undo the p-effect while the plan is executing.

(b) If the plan either completes a dependency-planlink
or a dependency-subgoallink13 that is protected in
the � � , then delete that dependency entry.

4. When a plan completes or fails execution, the in-
conditions of the plan that are in the � � are removed.
Further, in the event of plan failure any dependency-
entries associated with p-effects of the plan are removed
from the � � .

5. Before the agent adopts a goal � 1 �� , it should perform
the following to avoid deadlocks. Check for each goal
� that has an associated condition in the � � , whether
the in-conditions of � 1 �� are compatible with the com-
bined definite and potential effects of � .
If they are compatible then � 1 �� can be pursued in par-
allel with � . Else check for compatibility with the defi-
nite effects of � .
If they are not compatible then unless � 1 �� completes
before � they will conflict. Since we have no notion of
time ��1 �� should not be pursued in parallel with � , but
should be re-considered when the incompatible effects
of � have been achieved.
Else the agent can either (a) choose to be cautious and
not allow � 1 �� to execute until the incompatible effects
in � are achieved, or (b) since potential conditions de-
pend on the path chosen, be optimistic and allow � 1 ��
to execute hoping that the incompatible effects (and re-
sulting goal/plan failure) will be avoided.

6. Before the agent executes a plan
� 1 �� , it should check

whether the effects of
� 1 �� are compatible with the con-

ditions protected in the � � . If they are not compatible
then the plan must wait until they are compatible. Also
in order to prevent deadlocks the in-conditions and p-
effects of the plan must be checked against the derived
effects of existing goals that have a guarded condition as
done before adopting a new goal.

Above we have given priority to the goal that is already
being pursued as opposed to the new goal. This however is
totally dependent on the priority mechanism of the applica-
tion. If the new goal is more important then existing goals

13By being the last plan to be attempted.

can be preempted. However goal priorities and mechanisms
for goal preemption are beyond the scope of this paper.

6 Conclusion
In this paper we argued that intelligent agents often have
plans involving several steps, where the results of one step
set up conditions for a later step to be successful. In-
telligent agents typically pursue multiple goals in parallel,
but if intelligent or rational, they should manage this paral-
lelism in a way which avoids undoing of preparatory effects
too early. They should also not do something intentionally
which causes immediate failure of another currently execut-
ing plan/goal.

We defined a notion of preparatory effects and depen-
dency links and described how summary information could
be computed and then used to protect both preparatory ef-
fects (before a plan/goal executes) and in-conditions (while a
plan/goal executes). These mechanisms allow an intelligent
agent to pursue multiple goals in parallel without stupidly and
unnecessarily acting in a way that causes failure of some goal
or plan. These mechanisms capture the kind of reasoning that
is done effortlessly by humans, but which is not yet evident
in intelligent computer agents.

Our analysis and experimentation indicates that this addi-
tional reasoning is not computationally expensive. However
we plan to also test the costs and benefits empirically in fur-
ther work. We also plan to do work to clarify the relationship
between this work and earlier work by Clement and Durfee
et al.

Acknowledgements
We would like to acknowledge the support of Agent Oriented
Software Pty. Ltd. and of the Australian Research Council
(ARC) under grant CO0106934. We would also like to thank
Ed Durfee for bringing to our attention the similarities be-
tween this work and work previously published by his group.

References
[Boutilier and Brafman, 1997] Craig Boutilier and Ronen I.

Brafman. Planning with concurrent interacting actions. In
Proceedings of the 14th National Conference on Artificial
Intelligence (AAAI-97), 1997.

[Busetta et al., 1998] Paolo Busetta, Ralph Rönnquist, An-
drew Hodgson, and Andrew Lucas. JACK Intelligent
Agents - Components for Intelligent Agents in Java. Tech-
nical report, Agent Oriented Software Pty. Ltd, Mel-
bourne, Australia, 1998.

[Clement and Durfee, 1999a] Bradley J. Clement and Ed-
mund H. Durfee. Identifying and resolving conflicts
among agents with hierarchical plans. In AAAI Workshop
on Negotiation: Settling Conflicts and Identifying Oppor-
tunities, AAAI Technical Report WS-99-12, 1999.

[Clement and Durfee, 1999b] Bradley J. Clement and Ed-
mund H. Durfee. Theory for coordinating concurrent hi-
erarchical planning agents using summary information. In
Proceedings of the National Conference on Artificial Intel-
ligence (AAAI-99), pages 495–502, July 1999.

[Clement et al., 2001] Bradley J. Clement, Anthony C. Bar-
rett, Gregg R. Rabideau, and Edmund H. Durfee. Using
abstraction in planning and scheduling. In Proceedings
of the Sixth European Conference on Planning (ECP-01),
September 2001.

[d’Inverno et al., 1998] Mark d’Inverno, David Kinny,
Michael Luck, and Michael Wooldridge. A formal speci-
fication of dMARS. In Intelligent Agents IV: Proceedings
of the Fourth International Workshop on Agent Theories,
Architectures, and Languages, 1998.

[Horty and Pollack, 2001] John F. Horty and Martha E. Pol-
lack. Evaluating new options in the context of existing
plans. Artificial Intelligence, 127:199–220, 2001.

[Huber, 1999] Marcus J. Huber. JAM: A BDI-theoretic mo-
bile agent architecture. In Proceedings of the Third Inter-
national Conference on Autonomous Agents (Agents’99),
pages 236–243, May 1999.

[Ingrand et al., 1992] F. F. Ingrand, M. P. Georgeff, and A. S.
Rao. An architecture for real-time reasoning and system
control. IEEE Expert, 7(6), 1992.

[Pollack, 1991] M. E. Pollack. Overloading intentions for
efficient practical reasoning. Noûs, 25(4):513–536, 1991.

[Rao and Georgeff, 1995] Anand S. Rao and Michael P.
Georgeff. BDI-Agents from theory to practice. In Pro-
ceedings of the International Conference on Multi-Agent
Systems ICMAS-95, San Francisco, USA, 1995.

[Tessier et al., 2000] Catherine Tessier, Laurent Chaudron,
and Heinz-Jürgen Müller, editors. Conflicting Agents:
Conflict Management in Multi-Agent Systems. Kluwer
Academic Publishers, 2000. ISBN 0-7923-7210-7.

[Thangarajah et al., 2002a] John Thangarajah, Lin
Padgham, and James Harland. Representation and
reasoning for goals in BDI agents. In Proceedings of the
Twenty-Fifth Australasian Computer Science Conference
(ACSC 2002), Melbourne, Australia, 2002.

[Thangarajah et al., 2002b] John Thangarajah, Michael
Winikoff, Lin Padgham, and Klaus Fischer. Avoiding
resource conflicts in intelligent agents. In Proceedings of
the 15th European Conference on Artifical Intelligence
2002 (ECAI 2002), Lyon, France, 2002.

[Thangarajah et al., 2003] John Thangarajah, Lin Padgham,
and Michael Winikoff. Detecting and exploiting posi-
tive goal interaction in intelligent agents. In Proceed-
ings of the Second International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2003),
Melbourne, Australia, 2003.

[Winikoff et al., 2002] Michael Winikoff, Lin Padgham,
James Harland, and John Thangarajah. Declarative & pro-
cedural goals in intelligent agent systems. In Proceed-
ings of the Eighth International Conference on Principles
of Knowledge Representation and Reasoning (KR2002),
Toulouse, France, April 2002.

