10,771 research outputs found

    A Reference Architecture for Digital Ecosystems

    Get PDF
    Digital ecosystems are a new type of application based on a “universal digital environment” populated by digital entities that form communities that evolve and interact with information exchange and who trade digital objects that are produced through the system. Entities that participate and form the ecosystem can be applications running not only on simple devices: wearable, sensors, actuators, but also on complex services executed on smartphones, tablets, personal computers, company servers, etc. A reference architecture for digital ecosystems is a step toward standardization, as it defines a set of guidelines in designing and implementing a digital ecosystem. Often such architectures are very abstract, difficult to understand and implement. In this chapter, we introduce a vendor- and technology-neutral reference architecture for digital ecosystems and apply this architecture to an actual use case

    Smart objects as building blocks for the internet of things

    Get PDF
    The combination of the Internet and emerging technologies such as nearfield communications, real-time localization, and embedded sensors lets us transform everyday objects into smart objects that can understand and react to their environment. Such objects are building blocks for the Internet of Things and enable novel computing applications. As a step toward design and architectural principles for smart objects, the authors introduce a hierarchy of architectures with increasing levels of real-world awareness and interactivity. In particular, they describe activity-, policy-, and process-aware smart objects and demonstrate how the respective architectural abstractions support increasingly complex application

    Modeling of Biological Intelligence for SCM System Optimization

    Get PDF
    This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms

    Stochastic make-to-stock inventory deployment problem: an endosymbiotic psychoclonal algorithm based approach

    Get PDF
    Integrated steel manufacturers (ISMs) have no specific product, they just produce finished product from the ore. This enhances the uncertainty prevailing in the ISM regarding the nature of the finished product and significant demand by customers. At present low cost mini-mills are giving firm competition to ISMs in terms of cost, and this has compelled the ISM industry to target customers who want exotic products and faster reliable deliveries. To meet this objective, ISMs are exploring the option of satisfying part of their demand by converting strategically placed products, this helps in increasing the variability of product produced by the ISM in a short lead time. In this paper the authors have proposed a new hybrid evolutionary algorithm named endosymbiotic-psychoclonal (ESPC) to decide what and how much to stock as a semi-product in inventory. In the proposed theory, the ability of previously proposed psychoclonal algorithms to exploit the search space has been increased by making antibodies and antigen more co-operative interacting species. The efficacy of the proposed algorithm has been tested on randomly generated datasets and the results compared with other evolutionary algorithms such as genetic algorithms (GA) and simulated annealing (SA). The comparison of ESPC with GA and SA proves the superiority of the proposed algorithm both in terms of quality of the solution obtained and convergence time required to reach the optimal/near optimal value of the solution

    An Approach to E-marketplace Automation

    Get PDF
    E-marketplaces have become an essential part of e-commerce. In our research a decentralised agent-based e-marketplace platform was devised. The goal of our research is to improve overall supply chain service quality by allowing companies\u27 agents to evaluate the service quality of their partners through the history of their transactions. Consequently, since more informed decisions are taking place continuously and autonomously, supply chain service quality is being improved along the whole supply chain. In the article a service quality evaluation model of a supply chain is empirically evaluated

    Reinforcement Learning Algorithms and Complexity of Inventory Control, A Review

    Get PDF
    Driven by the ability to perform sequential decision-making in complex dynamic situations, Reinforcement Learning (RL) has quickly become a promising avenue to solve inventory control (IC) problems. The objective of this paper is to provide a comprehensive overview of the IC problems that have been effectively solved due to the application of RL. Our contributions include providing the first systematic review in this field of interest and application. We also identify potential extensions and come up with four propositions that formulate a theoretical framework that may help develop RL algorithms to solve complex IC problems. We recommend specific future research directions and novel approaches in solving IC problems

    Predicting Completion Time for Production Line in a Supply Chain System through Artificial Neural Networks

    Get PDF
    Completion time in manufacturing sector is the time needed to produce a product through production processes in sequence and it reflects the delivery performance of such company in supply chain system to meet customer demands on time. However, actual completion time always deviated from the standard completion time due to unavoidable factors and consequently affect delivery due date and ultimately lead to customer dissatisfaction. Therefore, this paper predicts completion time based on historical data of production line activities and discovers the most influential factor that contributes to the tardiness or a late jobs due date from its completion time. A well-known company in producing audio speaker is selected as a case company. Based on the review of previous works, it is found that Artificial Neural Networks (ANN) has superior capability in prediction of future occurrence by capturing the underlying relationship among variables through historical data. Besides, ANN is also capable to provide final weight for each of related variable. Variable with the highest value of final weight indicates the most influential variable and should be concerned more to solve completion time issue which has persisted among entities in supply chain system. The obtained result is expected to become an advantageous guidance for every entity in supply chain system to fulfil completion time requirement as requested by customer in order to survive in this turbulent market place
    • …
    corecore