176 research outputs found

    Computational Sprinting

    Get PDF
    Although transistor density continues to increase, voltage scaling has stalled and thus power density is increasing each technology generation. Particularly in mobile devices, which have limited cooling options, these trends lead to a utilization wall in which sustained chip performance is limited primarily by power rather than area. However, many mobile applications do not demand sustained performance; rather they comprise short bursts of computation in response to sporadic user activity. To improve responsiveness for such applications, this paper explores activating otherwise powered-down cores for sub-second bursts of intense parallel computation. The approach exploits the concept of computational sprinting, in which a chip temporarily exceeds its sustainable thermal power budget to provide instantaneous throughput, after which the chip must return to nominal operation to cool down. To demonstrate the feasibility of this approach, we analyze the thermal and electrical characteristics of a smart-phone-like system that nominally operates a single core (~1W peak), but can sprint with up to 16 cores for hundreds of milliseconds. We describe a thermal design that incorporates phase-change materials to provide thermal capacitance to enable such sprints. We analyze image recognition kernels to show that parallel sprinting has the potential to achieve the task response time of a 16W chip within the thermal constraints of a 1W mobile platform

    Computational Sprinting: Exceeding Sustainable Power in Thermally Constrained Systems

    Get PDF
    Although process technology trends predict that transistor sizes will continue to shrink for a few more generations, voltage scaling has stalled and thus future chips are projected to be increasingly more power hungry than previous generations. Particularly in mobile devices which are severely cooling constrained, it is estimated that the peak operation of a future chip could generate heat ten times faster than than the device can sustainably vent. However, many mobile applications do not demand sustained performance; rather they comprise short bursts of computation in response to sporadic user activity. To improve responsiveness for such applications, this dissertation proposes computational sprinting, in which a system greatly exceeds sustainable power margins (by up to 10Ã?) to provide up to a few seconds of high-performance computation when a user interacts with the device. Computational sprinting exploits the material property of thermal capacitance to temporarily store the excess heat generated when sprinting. After sprinting, the chip returns to sustainable power levels and dissipates the stored heat when the system is idle. This dissertation: (i) broadly analyzes thermal, electrical, hardware, and software considerations to analyze the feasibility of engineering a system which can provide the responsiveness of a plat- form with 10Ã? higher sustainable power within today\u27s cooling constraints, (ii) leverages existing sources of thermal capacitance to demonstrate sprinting on a real system today, and (iii) identifies the energy-performance characteristics of sprinting operation to determine runtime sprint pacing policies

    Improving processor efficiency through thermal modeling and runtime management of hybrid cooling strategies

    Full text link
    One of the main challenges in building future high performance systems is the ability to maintain safe on-chip temperatures in presence of high power densities. Handling such high power densities necessitates novel cooling solutions that are significantly more efficient than their existing counterparts. A number of advanced cooling methods have been proposed to address the temperature problem in processors. However, tradeoffs exist between performance, cost, and efficiency of those cooling methods, and these tradeoffs depend on the target system properties. Hence, a single cooling solution satisfying optimum conditions for any arbitrary system does not exist. This thesis claims that in order to reach exascale computing, a dramatic improvement in energy efficiency is needed, and achieving this improvement requires a temperature-centric co-design of the cooling and computing subsystems. Such co-design requires detailed system-level thermal modeling, design-time optimization, and runtime management techniques that are aware of the underlying processor architecture and application requirements. To this end, this thesis first proposes compact thermal modeling methods to characterize the complex thermal behavior of cutting-edge cooling solutions, mainly Phase Change Material (PCM)-based cooling, liquid cooling, and thermoelectric cooling (TEC), as well as hybrid designs involving a combination of these. The proposed models are modular and they enable fast and accurate exploration of a large design space. Comparisons against multi-physics simulations and measurements on testbeds validate the accuracy of our models (resulting in less than 1C error on average) and demonstrate significant reductions in simulation time (up to four orders of magnitude shorter simulation times). This thesis then introduces temperature-aware optimization techniques to maximize energy efficiency of a given system as a whole (including computing and cooling energy). The proposed optimization techniques approach the temperature problem from various angles, tackling major sources of inefficiency. One important angle is to understand the application power and performance characteristics and to design management techniques to match them. For workloads that require short bursts of intense parallel computation, we propose using PCM-based cooling in cooperation with a novel Adaptive Sprinting technique. By tracking the PCM state and incorporating this information during runtime decisions, Adaptive Sprinting utilizes the PCM heat storage capability more efficiently, achieving 29\% performance improvement compared to existing sprinting policies. In addition to the application characteristics, high heterogeneity in on-chip heat distribution is an important factor affecting efficiency. Hot spots occur on different locations of the chip with varying intensities; thus, designing a uniform cooling solution to handle worst-case hot spots significantly reduces the cooling efficiency. The hybrid cooling techniques proposed as part of this thesis address this issue by combining the strengths of different cooling methods and localizing the cooling effort over hot spots. Specifically, the thesis introduces LoCool, a cooling system optimizer that minimizes cooling power under temperature constraints for hybrid-cooled systems using TECs and liquid cooling. Finally, the scope of this work is not limited to existing advanced cooling solutions, but it also extends to emerging technologies and their potential benefits and tradeoffs. One such technology is integrated flow cell array, where fuel cells are pumped through microchannels, providing both cooling and on-chip power generation. This thesis explores a broad range of design parameters including maximum chip temperature, leakage power, and generated power for flow cell arrays in order to maximize the benefits of integrating this technology with computing systems. Through thermal modeling and runtime management techniques, and by exploring the design space of emerging cooling solutions, this thesis provides significant improvements in processor energy efficiency.2018-07-09T00:00:00

    Maximizing heterogeneous processor performance under power constraints

    Get PDF

    TOP PICKS FROM THE 2012 COMPUTER ARCHITECTURE CONFERENCES Introduction

    Get PDF

    Intelligent Management of Mobile Systems through Computational Self-Awareness

    Full text link
    Runtime resource management for many-core systems is increasingly complex. The complexity can be due to diverse workload characteristics with conflicting demands, or limited shared resources such as memory bandwidth and power. Resource management strategies for many-core systems must distribute shared resource(s) appropriately across workloads, while coordinating the high-level system goals at runtime in a scalable and robust manner. To address the complexity of dynamic resource management in many-core systems, state-of-the-art techniques that use heuristics have been proposed. These methods lack the formalism in providing robustness against unexpected runtime behavior. One of the common solutions for this problem is to deploy classical control approaches with bounds and formal guarantees. Traditional control theoretic methods lack the ability to adapt to (1) changing goals at runtime (i.e., self-adaptivity), and (2) changing dynamics of the modeled system (i.e., self-optimization). In this chapter, we explore adaptive resource management techniques that provide self-optimization and self-adaptivity by employing principles of computational self-awareness, specifically reflection. By supporting these self-awareness properties, the system can reason about the actions it takes by considering the significance of competing objectives, user requirements, and operating conditions while executing unpredictable workloads

    Adaptive Knobs for Resource Efficient Computing

    Get PDF
    Performance demands of emerging domains such as artificial intelligence, machine learning and vision, Internet-of-things etc., continue to grow. Meeting such requirements on modern multi/many core systems with higher power densities, fixed power and energy budgets, and thermal constraints exacerbates the run-time management challenge. This leaves an open problem on extracting the required performance within the power and energy limits, while also ensuring thermal safety. Existing architectural solutions including asymmetric and heterogeneous cores and custom acceleration improve performance-per-watt in specific design time and static scenarios. However, satisfying applications’ performance requirements under dynamic and unknown workload scenarios subject to varying system dynamics of power, temperature and energy requires intelligent run-time management. Adaptive strategies are necessary for maximizing resource efficiency, considering i) diverse requirements and characteristics of concurrent applications, ii) dynamic workload variation, iii) core-level heterogeneity and iv) power, thermal and energy constraints. This dissertation proposes such adaptive techniques for efficient run-time resource management to maximize performance within fixed budgets under unknown and dynamic workload scenarios. Resource management strategies proposed in this dissertation comprehensively consider application and workload characteristics and variable effect of power actuation on performance for pro-active and appropriate allocation decisions. Specific contributions include i) run-time mapping approach to improve power budgets for higher throughput, ii) thermal aware performance boosting for efficient utilization of power budget and higher performance, iii) approximation as a run-time knob exploiting accuracy performance trade-offs for maximizing performance under power caps at minimal loss of accuracy and iv) co-ordinated approximation for heterogeneous systems through joint actuation of dynamic approximation and power knobs for performance guarantees with minimal power consumption. The approaches presented in this dissertation focus on adapting existing mapping techniques, performance boosting strategies, software and dynamic approximations to meet the performance requirements, simultaneously considering system constraints. The proposed strategies are compared against relevant state-of-the-art run-time management frameworks to qualitatively evaluate their efficacy
    • …
    corecore