

Maximizing Heterogeneous Processor Performance under Power Constraints

Optimale prestatie op heterogene processors onder een vermogenshudget

Almutaz Adileh

)

UNIVERSITEIT
GENT

Promotor: prof. dr. ir. L. Eeckhout
Proefschrift ingediend tot het behalen van de graad van
Doctor in de ingenieurswetenschappen: computerwetenschappen

Vakgroep Elektronica en Informatiesystemen
Voorzitter: prof. dr. ir. K. De Bosschere

Faculteit Ingenieurswetenschappen en Architectuur
Academiejaar 2017 - 2018

ISBN 978-94-6355-107-6
NUR 980, 987
Wettelijk depot: D/2018/10.500/25

Examination Committee

Prof. Luc Taerwe, voorzitter
Prodecaan Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Prof. Lieven Eeckhout, promotor
Vakgroep ELIS, Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Prof. Koen De Bosschere, secretaris
Vakgroep ELIS, Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Dr. Stijn Eyerman
Intel Labs
Belgium

Dr. Aamer Jaleel
Nvidia Research
USA

Prof. Jan Fostier
Vakgroep INTEC, Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Prof. Stefanos Kaxiras
Uppsala University, Department of Information Technology
Sweden

Reading Committee

Prof. Koen De Bosschere
Vakgroep ELIS, Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Dr. Stijn Eyerman
Intel Labs
Belgium

Dr. Aamer Jaleel
Nvidia Research
USA

Prof. Jan Fostier
Vakgroep INTEC, Faculteit Ingenieurswetenschappen en Architectuur
Universiteit Gent

Prof. Stefanos Kaxiras
Uppsala University, Department of Information Technology
Sweden

Acknowledgements

| have delayed writing this part to the last minute. My PhD journey was a
long one and writing this part did not seem happening at times. Perhaps | did
not want to start writing it because | know that there is so much | have to say
that cannot be conveyed in few words. Perhaps | was not able to find a proper
way to thank all the great people who helped me persevere throughout this
journey in parallel, without any order. These are few words to reflect my
sincere thanks.

I would like to thank my parents, Amin Adileh and Fatima Abbasi. The two
greatest humans | have met in my life. Time and time again, they happily put
their lives on hold to pave the path for me and my siblings to find our way
in life. After having a PhD, | may still be their least achieving kid. | wouldn’t
be writing these words without your unconditional support. There is no way
| can repay you, but | hope to be a source of happiness for you as long as |
live. During my PhD journey, Rana Dwayyat entered my life to bless it. She
kept holding my hand and never let go. A pure heart with non-fading love.
She gave me my first son Muhammad, who makes me want to be the best
version of myself. | hope | will be a source of pride for you baba, and your
best friend one day. No matter where we live, | pray that the future does not
separate us.

| had the privilege of collaborating and rubbing shoulders with brilliant re-
searchers. | will always be indebted to my advisor, Lieven Eeckhout. Had he
not given me this chance and believed in me throughout my years at Ghent,
I may have never reached the end of the tunnel. He is an inspiration to me as
a researcher and as a great human. | cannot thank Stijn Eyerman and Aamer
Jaleel enough for all the help they have provided me with. Their constant
supply of ideas and help in formulating solutions was instrumental for the
completion of this work.

| would like to thank the members of my examination committee. They
provided me with invaluable feedback and suggestions to improve this work
despite their packed schedules. | would like to thank them for taking time

to come to Ghent University and discuss the various aspects of this work.
They have enriched my PhD examination experience and opened my eyes to
various aspects worth of future exploration.

| met exceptional people and made formidable friendships throughout the
various stages of my PhD. All of them helped by brainstorming, exchanging
ideas, providing feedback, and being exceptional friends. Jennifer Sartor, Sho-
aib Akram, Sam Van den Steen, Sander De Pestel, Cecilia Gonzalez-Alvarez,
Kristof Du Bois, Wim Heirman, Trevor Carlson, Kenzo Van Craeynest, Maxi-
milien Breughe, Xia Zhao, Ajeya Naithani, Kartik Lakshminarasimhan, Lu
Wang, Yuxi Liu, Wenjie Liu, Josué Feliu, Pejman Lotfi-Kamran, Sotiria Fy-
traki, Stavros Volos, Onur Kocberber, Djordje Jevdjic, Cansu Kaynak, Javier
Picorel, Mike Ferdman, Alisa Yurovsky, Evangelos Vlachos, Alexandros Dag-
lis, Babak Falsafi, Boris Grot, David Lilja, Cristina Ghiurcuta, Nancy Chong,
Qasem Ramadan, and Mohammad Murib. Thank you all.

Last but not least, | would like to thank all the people who constantly cheer
for me. My brothers Muhammad and Maen and their families, my sister Lana
and her family, my uncles and aunts, my cousins, my in-laws, and all my
friends around the globe. | thank Allah for blessing me more than | deserve,
with every breath | take and every decision | make. | will always strive to
improve and | aspire to make this a step towards further success.

Gent, 9" April 2018
Almutaz Adileh

vi

Summary

Technology scaling trends have forced processor designers into an era with
new design constraints and challenges. The combination of Moore’s law and
Dennard scaling that enabled leaps of innovation in the computing industry
over the past few decades has come to an end. Although the number of tran-
sistors available on a chip keeps growing as predicted by Moore’s law, scaling
them by Dennard’s rules cannot guarantee the constant power density it
once did, due to the leaky devices in recent technologies. Consequently, tran-
sistors have become abundant, but the active power consumption is expected
to generate heat that far exceeds the ability to cool the processor. Therefore,
the power and thermal characteristics of a processor have become a critical
resource. In response, processor designers limit the chip’s total power con-
sumption by avoiding a large fraction of the processor from operating simul-
taneously, a phenomenon known as dark silicon. Maximizing performance
in the era of dark silicon requires novel techniques that optimally exploit the
available power budget.

Optimizing processor performance under power constraints has been an im-
portant area of research. [Dynamic Voltage and Frequency Scaling| (DVFS)
is a well-known mechanism for managing power, energy and thermals in
single-core and multi-core processors. Although DVFS can be used to im-
prove performance under power constraints, the supply-voltage range over
which dynamic scaling can be performed has shrunk over the years, reduc-
ing the opportunity for DVFS. Consequently, both academia and industry
have proposed [Heterogeneous Chip Multi-Processors| (HCMPs) to combat
the limitations of DVFS. HCMPs consist of high performance ‘big’ cores
and power-efficient ‘little’ cores. Scheduling applications on the big and
little cores of HCMPs is an intricate task. However, it is fundamental to
successfully leveraging the potential of HMCPs to maximize performance
under power constraints.

In this work, we propose novel scheduling policies to maximize the perfor-
mance of power-limited HCMPs. This convoluted problem requires opti-
mizing the power budget partitioning among the multiple applications that

vii

may concurrently utilize the processor. It also requires leveraging the power
budget allocated to individual applications by scheduling different phases
on big and little cores during the course of the application’s execution. To
complicate the problem further, scheduling must care for HCMPs that consist
of multiple core types each featuring several voltage-frequency operating
points. Unfortunately, a wide body of work targeting power management
using DVFS is not directly applicable to HCMPs, raising the priority of tai-
loring solutions to this important problem.

Our view of a power constraint deviates from the conservative definition that
assumes the power limit must never be exceeded. We allow the processor’s
power consumption to temporarily exceed the power limit, as long as it is
preserved over a technology-dependent period of time we refer to as the
power period. The flexibility added by this view of the power constraint has
been exploited by prior works to significantly improve the responsiveness of
interactive applications. In this thesis, we leverage this flexibility to opti-
mize the sustained performance of applications running on a power-limited
HCMP. This objective distinguishes our work from all prior techniques that
optimize for other metrics or follow the conservative definition of a power
constraint. Our work is also the first to improve performance of HCMPs
considering a generic number of core types and a generic number of voltage-
frequency operating points per core type.

We conquer this multi-dimensional scheduling problem by dividing it into
three dimensions, and by tackling each of them individually.

For single-threaded applications, we show that the proposed techniques that
target sustained performance, e.g., sprint-and-rest, do push the boundaries of
the power limit to gain extra performance, but fail to leverage the available
heterogeneity. For single-threaded applications, sprint-and-rest sprints by
activating the big core and then rests by turning the processor off. We ana-
lyze sprint-and-rest’s behavior to show that performance can be significantly
improved if the scheduler uses the heterogeneous core types. We therefore
propose sprint-and-walk, a technique that utilizes the heterogeneity in the
processor. Instead of turning the processor off to rest, sprint-and-walk esti-
mates the total energy the processor is allowed to consume in a power period
and controls its usage over the whole period. By running on the little core,
which consumes power at a rate lower than the allowed limit, the processor
accumulates energy credit. The processor then burns the accumulated credit
by running on the big core, which normally dissipates power above the limit.
This cycle of sprinting on the big core and walking on the little core repeats
throughout the application execution. Our results show that sprint-and-walk
improves performance over sprint-and-rest by 9% on average across all SPEC
CPU2006 applications, and up to 19%, for a moderate power budget of 1.25 W.

viii

Summary

The improvement increases as the power budget gets tighter. For a budget of
0.5 W, the average improvement of sprint-and-walk relative to sprint-and-rest
is 43% on average and up to 76%. More importantly, we estimate the highest
performance attainable through single-threaded phase scheduling through
exhaustive search. Our evaluation shows that the performance achieved by
sprint-and-walk remains within a few percent of an optimal scheduler across
a range of power limits, scheduling granularities, and HCMP configurations.

To maximize the performance of HCMPs running a multi-programmed work-
load, optimal power budget partitioning among applications is needed. We
show that current techniques for power budget partitioning lead to sub-
optimal performance because they do not consider the power and perfor-
mance profiles of each application. These techniques include both equal
budget partitioning among applications and techniques that let applications
greedily compete for the shared power budget. Even widely used ranking
metrics, such as the performance per Watt or big-to-little performance ratio,
can also be misleading. All these metrics fail to consider that the allocated
power budget restricts an application’s utilization of a big core, leading to in-
correct assessment of which application benefits the most from the allocated
budget. Contrary to intuition, our results show that in many cases, memory-
intensive applications dissipate less power than compute-intensive ones, al-
lowing them to utilize the big core for a longer time duration, leading to
higher overall performance with the same power budget. To fill in the missing
gaps, we formulate the problem as a|Linear Programming| (LP) optimization
problem. By solving the LP problem, we devise a novel power budget par-
titioning strategy and a metric based on the big-to-little delta performance
by delta power (DPe/DPo). We use DPe/DPo to perform an online ranking
of applications to schedule on the big core type. We propose DPDP, a fast
and scalable scheduler that partitions the power budget among applications
and schedules their execution on the HCMP such that the overall system
performance is maximized. Our evaluation with DPDP on a heterogeneous
processor consisting of four big.LITTLE pairs shows that DPDP improves chip
performance by 16% on average and up to 40% over a strategy that greedily
and globally utilizes the power budget. DPDP also outperforms commonly
used scheduling metrics and heuristics. We analyze the impact of DPDP on
per-application performance and we propose a technique to enforce a user-
defined tolerable slowdown. Our results show DPDP’s ability to maximize
performance while maintaining the desired latency requirements.

Finally, we consider maximizing the performance of HCMPs featuring an ar-
bitrary number of core types (e.g., big, medium and little), each with multiple
voltage-frequency operating points. The complexity of the scheduler’s task
explodes as it has a significantly wider set of options. The scheduler must

ix

assign each application to an operating point at any core type, and migrate
it to any other operating point on any core type when necessary. To find the
points that maximize performance for a given power budget, the scheduler
typically walks the performance-power curve starting at the lowest operating
point on the little core. It keeps walking the curve until it reaches the first
operating point that exceeds the power limit. To leverage the available power
budget, the scheduler continuously migrates the application between this
point and the last point it encountered that does not exceed the power limit.
The two selected points could be on two different cores. We show that naively
walking the default set of operating points leads the application to inefficient
operating points that drain power without significant performance benefit.
We call these points as they drain the power budget for
sub-optimal performance. Contrary to intuition, we show that even using a
power-performance curve of Pareto-optimal operating points still degrades
performance significantly. We propose PH-Sifter, a fast and scalable tech-
nique that sifts the default set of operating points and eliminates power
holes. We show significant performance improvement for PH-Sifter com-
pared to Pareto-sifting for three use cases: (i) maximizing performance for a
single application, (ii) maximizing system throughput for multi-programmed
workloads, and (iii) maximizing performance on a system in which a fraction
of the power budget is reserved for a high-priority application. Our results
show performance improvements of 13, 27, and 28 percent on average that
reach up to 52, 91 percent, and 2.3x, for the three use cases, respectively.

Samenvatting

De continue miniaturisatie van transistors heeft geleid tot een reeks nieuwe
uitdagingen in processorontwerp. De combinatie van Moore’s wet en Den-
nard schaling, die de laatste paar decennia grote sprongen mogelijk maakte
op vlak van innovatie in de computerindustrie, is uitgedoofd. Ofschoon Moore’s
wet nog steeds geldt en het aantal transistors op een chip nog steeds toe-
neemt, schaalt, door toenemende lekstromen in recente technologieén, de
vermogensdichtheid niet meer proportioneel mee zoals Dennard voorspelde.
Bijgevolg neemt het totale vermogenverbruik toe en wordt er ook meer warmte
gegenereerd dan er kan afgevoerd worden. Dit zorgt ervoor dat de vermogen-
en warmtekarakteristieken van een processor een cruciaal probleem zijn ge-
worden. Tegenwoordig beperken processorarchitecten het totale vermogen-
verbruik door te vermijden dat de volledige processor continu in gebruik is.
Doordat een deel van de transistors niet gebruikt wordt, staat deze oplossing
bekend als dark silicon. Het maximaliseren van de prestatie in dit dark silicon-
tijdperk vereist nieuwe technieken die het beschikbare vermogenbudget op-
timaal benutten.

Het optimaliseren van de prestatie van een processor, rekening houdend met
een vermogenbudget, is een belangrijk onderzoeksgebied. Het dynamisch
schalen van de voedingsspanning en frequentie — Dynamic Voltage and Fre-
quency Scaling (DVFS) — is een welgekende techniek om vermogen, energie
en warmte onder controle te houden in processors met één of meerdere re-
kenkernen (cores). Hoewel DVFS een krachtige techniek is om prestatie te
verbeteren bij een beperkt vermogensbudget, neemt het nut ervan af door
de steeds lager wordende voedingsspanning. Zowel de academische wereld
als de industrie hebben heterogene processors met meerdere rekenkernen
— Heterogeneous Chip-Multiprocessor (HCMP) — voorgesteld als oplossing.
Een HCMP is opgebouwd uit krachtige, ‘grote’ rekenkernen en vermogens-
efficiénte, maar zwakkere, ‘kleine’ rekenkernen. Het kiezen van de meest
geschikte rekenkern om een applicatie op uit te voeren is een ingewikkeld
probleem. Deze keuze is echter fundamenteel voor het maximaliseren van de
prestatie van een HCMP met een beperkt vermogensbudget.

Xi

De focus van dit onderzoek is het uitwerken van nieuwe technieken zodat
de prestatie van applicaties die uitvoeren op een HCMP met een beperkt
vermogensbudget wordt gemaximaliseerd. Dit ingewikkeld probleem vereist
het verdelen van het vermogensbudget over meerdere applicaties die de pro-
cessor tegelijkertijd kunnen gebruiken. Ook is het nodig om het gebruik van
het vermogensbudget van één applicatie te optimaliseren gedurende zijn uit-
voering. Het is immers mogelijk dat verschillende fasen tijdens de uitvoering
beter worden uitgevoerd op verschillende soorten rekenkern. Dit probleem
wordt nog ingewikkelder doordat de verschillende soorten rekenkernen in
een HCMP verschillende spanning-frequentiedomeinen kunnen hebben. He-
laas is een groot deel van het reeds uitgevoerd onderzoek met betrekking tot
DVEFS niet toepasbaar op een HCMP. Hierdoor wordt het nog belangrijker
om nieuwe, aangepaste oplossingen te ontwikkelen voor dit probleem.

De belangrijkste focus van dit werk is het behalen van een constante prestatie
binnen een beperkt vermogensbudget. Dit doel onderscheidt het onderzoek
van eerdere technieken aangezien deze optimaliseren ten opzichte van an-
dere (prestatie-gerelateerde) metrieken. Enkele voorbeelden van eerder werk
zijn technieken die de reactiesnelheid verbeteren of deadlines proberen halen.
Deze technieken hebben duidelijk een ander doel en zijn dus ook niet onmid-
dellijk toepasbaar op ons probleem. In dit werk wordt een vermogenslimiet
beschouwd over een bepaald tijdsinterval. Dit wil zeggen dat gedurende het
tijdsinterval het wel mogelijk is om deze vermogenslimiet tijdelijk te over-
schrijden, maar dat over het volledige tijdsinterval het gemiddeld vermogen-
verbruik onder de limiet moet blijven. Deze randvoorwaarde onderscheidt
dit werk van eerder onderzoek waar men de vermogenslimiet conservatiever
behandelt doordat deze nooit overschreden mag worden. Tevens is dit werk
het eerste onderzoek waarbij de prestatie wordt verbeterd voor een HCMP
met een generiek aantal soorten rekenkernen en een generiek aantal voltage-
frequentiedomeinen per rekenkern.

We benaderen de oplossing van dit meerdimensionaal probleem door het op
te splitsen in drie verschillende dimensies en deze onafhankelijk van elkaar
op te lossen.

Voor enkeldradige (single-threaded) applicaties tonen we aan dat technieken
die een constante prestatie beogen, bijvoorbeeld sprint-en-rust, erin slagen
de vermogenlimiet goed te gebruiken en extra prestatie te behalen, maar dat
ze er niet in slagen om de heterogeniteit van een HCMP te benutten. De
sprint-en-rust techniek zal werk uitvoeren op een grote rekenkern en daarna
de processor uitschakelen. Voor enkeldradige applicaties schatten wij de
maximaal haalbare prestatie door de ontwerpruimte exhaustief te exploreren.
Hiermee tonen we aan dat, door de heterogeniteit van een HCMP te negeren,
sprint-en-rust slechts een fractie behaalt van de maximaal haalbare prestatie.

xii

Samenvatting

Daarom stellen we een nieuwe techniek voor, namelijk sprint-en-wandel. In
plaats van de processor uit te schakelen om te rusten, zal sprint-en-wandel
de totale energie die de processor mag gebruiken gedurende een periode
schatten en het verbruik controleren. Door een applicatie op een kleine reken-
kern uit te voeren, die minder vermogen verbruikt dan de toegelaten limiet,
wordt er energiekrediet opgebouwd. Dit krediet kan dan vervolgens gebruikt
worden om tijdelijk op een grote rekenkern uit te voeren die meer vermo-
gen verbruikt dan de toegelaten limiet. Deze cyclus waarbij er ‘gesprint’
wordt door op de grote rekenkern uit te voeren en ‘gewandeld” wordt door op
de kleine rekenkern uit te voeren, wordt herhaald gedurende de uitvoering
van de applicatie. Voor een vermogenbudget van 1.25 W verbetert sprint-
en-wandel de prestatie van sprint-en-rust met gemiddeld 9% over alle SPEC
CPU2006 applicaties en zien we een maximale verbetering van 19%. Deze
verbetering wordt groter indien het vermogenbudget kleiner wordt. Voor een
vermogenbudget van slechts 0.5 W bedraagt de gemiddelde prestatiewinst
van sprint-en-wandel 43% ten opzichte van sprint-en-rust met een maximale
winst van 76%. Bovendien is de behaalde prestatie met onze techniek slechts
een paar procent verwijderd van het optimum, de maximaal haalbare pres-
tatie die we bepalen via exhaustieve exploratie.

Om de prestatie van werklasten met meerdere applicaties te maximaliseren
op een HCMP is het nodig om een vermogensbudget correct te verdelen. We
tonen aan dat de huidige algoritmes voor partitionering van een vermogens-
budget slechts een suboptimale prestatie behalen omdat ze geen rekening
houden met een vermogen-prestatie profiel per applicatie. Sommige algo-
ritmes proberen het vermogensbudget eerlijk te verdelen over alle applica-
ties. Andere algoritmes volgen een gulzige strategie waarbij applicaties zelf
een deel van het vermogensbudget kunnen alloceren waardoor rekeninten-
sieve applicaties bevoordeeld worden ten opzichte van geheugenintensieve
applicaties. Ook vaak gebruikte metrieken zoals prestatie-per-watt of de
verhouding in prestatie op de grote versus kleine rekenkern kunnen leiden
tot foutieve conclusies aangezien ze niet echt geschikt zijn voor het opti-
maliseren van een vermogensbudget over een tijdsperiode. Onze resultaten
voor geheugenintensieve applicaties tonen dat, tegen de verwachting in, deze
applicaties in veel gevallen minder vermogen verbruiken als ze uitvoeren op
een grote rekenkern dan een rekenintensieve applicatie. Hierdoor kunnen ze
gedurende een langere tijd op een grote rekenkern uitvoeren en behalen ze
dus een hogere prestatie onder een bepaald vermogensbudget. In ons werk
pakken we deze problemen aan door een nieuwe metriek voor te stellen,
DPe/DPo, die de verhouding van het verschil in prestatie op het verschil
in vermogen kwantificeert voor verschillende rekenkernen en configuraties.
Deze metriek sorteert applicaties op basis van hun prestatiewinst indien ze

xiii

een bepaald deel van het vermogen krijgen en laat toe het vermogensbudget
optimaal te verdelen. We formuleren de metriek en het bijhorende algoritme
om het vermogen optimaal te verdelen als een lineair optimalisatieprobleem
en lossen dit op. We evalueren dit DPe/DPo algoritme met betrekking tot het
maximaliseren van de prestatie onder een bepaald vermogensbudget voor
een HCMP met vier rekenkernen. Gemiddeld genomen wordt de prestatie
verbeterd met 16% en is de maximale prestatiewinst 40% ten opzichte van
eerder voorgestelde algoritmes die het vermogensbudget globaal verdelen.

Ten slotte maximaliseren we de prestatie voor een HCMP met een generiek
aantal soorten rekenkernen, bijvoorbeeld grote, gemiddelde en kleine reken-
kernen, elk met meerdere voltage-frequentiedomeinen. De complexiteit van
het probleem wordt hierdoor veel groter aangezien elke optie met elke andere
optie gecombineerd kan worden. De ‘scheduler’ moet, voor elke applicatie en
elke soort rekenkern, het meest geschikte spanning-frequentiedomein kie-
zen en ook in staat zijn om een applicatie op een andere rekenkern uit te
voeren met een verschillende spanning en/of frequentie indien nodig. Voor
het zoeken van de optimale configuraties zal de ‘scheduler’ de prestatie-
vermogencurve overlopen startend in het laagste punt, de uitvoering op de
kleine rekenkern, tot het op een punt komt waarbij het vermogensbudget
overschreden wordt. Om zeker te zijn dat het volledige vermogensbudget
benut wordt, zal de applicatie steeds gemigreerd worden tussen de twee
configuraties juist onder en boven het vermogensbudget. Deze twee configu-
raties kunnen twee verschillende rekenkernen omvatten, maar ook dezelfde
rekenkern met een lagere of hogere frequentie.

Het nadeel van deze naieve techniek is dat het mogelijk is configuraties te
selecteren die meer vermogen verbruiken zonder dat er prestatiewinst is. We
noemen deze configuraties ‘Power Holes” aangezien ze vermogen verbruiken
zonder prestatiewinst op te leveren. Zelfs indien de prestatie-vermogencurve
is opgebouwd uit enkel Pareto-optimale configuraties, is het nog steeds mo-
gelijk suboptimale prestatie te bekomen. Dus stellen we ‘PH-Sifter’ voor, een
snel en schaalbaar algoritme dat de verschillende configuraties ‘zeeft’ om
‘Power Holes’ te elimineren. Onze resultaten tonen aan dat er een bedui-
dende prestatiewinst te behalen valt in minstens drie verschillende gevallen:
(i) het maximaliseren van de prestatie voor één enkele applicatie, (ii) het
maximaliseren van de prestatie voor werklasten met meerdere applicaties, en
(iii) het maximaliseren van de prestatie indien een deel van het vermogens-
budget gereserveerd wordt voor een applicatie met een hoge prioriteit. Voor
deze drie gevallen zien we gemiddelde prestatiewinsten van respectievelijk
13, 27 en 28 procent en maximale prestatiewinsten van 52,91 en 230 procent.

Xiv

Contents

|Acknowledgements| \Y

vii

xi
[Cist of Figures| xix
[List of Tables| xxiii
[List of Abbreviations| XXV
(I__Introduction| 1
[L1__Motivationl oo o oo 1
(12 Key Challenges| 3
[1.3 Key Contributions|. 3
[1.3.1 Optimizing Single-Threaded Performance| 4

[1.3.2 Maximizing Throughput for Multi-Programmed Work- |
[loads| 4

[1.3.3 Maximizing Performance on Generic HCMPs with DVFS| 5

1.4 Other Research Activities| 6
[1.4.1 Cloud Workload Benchmarking and Characterization| 6
142 Scale-Out Processors| 8
[1.4.3 Architectural Support for Probabilistic Branches| . . . 8

(L5 Structure and Overview|. 9

XV

CONTENTS

2 Background|

2.1 A Historic Perspective|.

|22 The End of Dennard Scaling|

[2.3 Power Management|. L.

231

Dynamic Voltage and Frequency Scaling|.

232

Heterogeneous Multicore Processors|

33

Scheduling Without Power Constraints|

II. Optimizations Using DVFS|.
1. Optimizations Using HCMPs|

[2.4 Scheduling under Power Limits|

R4

Scheduling vs Power Management|

[2.5 Prior Work For Scheduling under a Power Limit|

251

Responsiveness Techniques|

[3

[3.3 Scheduling under Power Constraints|

B31

Sprint-and-rest|

332

Sprint-and-walk| 0.

B33

Optimal Performance: Oracle|

[3.4 Evaluation Methodology|

3.5 Experimental Results|

[3.5.1 Potential Performance Improvement|
II. Applications with Weak Phase Behavior] . .
1. Power Limit Reduces Speedup|.
[3.5.2 Sensitivity Study|o o000
Il Power Limit|
(1. Granularity]
[I11. HCMP Configuration|.

3.6 UMmary|. o e e e e e e e e e e e e e e

xvi

11
11
12
14
14
15
17
17
18
20
20
20
23
23
24

25
25
26
28
29
31
32
33
35
35

CONTENTS

{4 Optimizing Performance for Multi-Programmed Workloads| 43
M1 Introduction] L 43
42 Motivation].o oo 45

[4.2.1 Implications of Power Limits on HCMP Scheduling|. . 45

[4.2.2 Power Budget Partitioning|. 47

|4.3 Power Budget Partitioning using Linear Programming| 50
[4.3.1 Linear Programming Formulation|. 51

[4.3.2 The Solution Space| 52

[4.3.3 _ Delta Performance / Delta Power| 52

{4.4 DPDP Budget Partitioning| 54
[4.5 Experimental Setup|o oo 57
4.6 Results and Discussion| 59
461 DPDPResults|. 60

[4.6.2 Big Core Utilization| 61

[4.6.3 Sensitivity Analysis[. o000 000 63

II. Available Power Budget|. 63

Il Core lypel 64

1. Asymmetric HCMP Configuration| 65

[4.6.4 Exploiting Application Phase Behavior] 66

[4.6.5 Per-Application Performance Considerations| 66

47 RelatedWorkl 68
[4.7.1 Power and Thermal Management|{. 68

[4.7.2 Scheduling for Heterogeneous Multicores| 69

4.8 UMMary|. o e 70

[5 Optimizing Performance on HCMPs with DVFS| 73
5.1 Introduction| 73
[5.2 Background and Motivation|00 74
B3 _PHSifferl o oot 76

[5.3.1 PH-Sifter Algorithm| 78
[5.3.2 Multiple Concurrent Applications|. 79
[5.4 Power Management Scheme| 80

xvii

CONTENTS

[5.5 Experimental Setup| o 000000
b.6 Evaluation| oo
[5.6.1 Maximizing Performance for a Single Task|.

[5.6.2 Maximizing Performance for Concurrent Tasks|

[5.6.3 Provisioning for QoS| L.
B.7 Discussionl
[5.7.1 Multi-threaded Applications|.
[5.7.2 Performance Capping|
[5.7.3 Bursty Applications|
5.8 RelatedWorkl o oL

xviii

95
95
99

101

List of Figures

i

ARM'’s first big.LITTLE processor [1]. The Cortex-A15 is used

as the big core and the Cortex-A7 is used as a little core.

Heterogeneous architectures expand the range of operating

pointsbeyond DVFS|

R2

Three modes of using ARM’s big.LITTLE processors.|

23

Conservative power definition generally used by power man-

agement techniques does not exploit the potential to tem-

porarily exceed the limit to improve performance|

B

A scheduler needs to map each scheduling interval to the ap-

propriate core type to maximize performance while remain-

ing within the power limit|

B2

Sprint-and-walk yields higher performance than sprint-and-

rest under any power budget|

B3

Performance for oracle and sprint-and-walk normalized to

sprint-and-rest. Both methods improve performance signif-

icantly over sprint-and-rest. Sprint-and-walk achieves near-

optimal performancef oL

B4

35

Reasons for limited performance benefits for oracle scheduling.| 36

B5

Normalized performance for sprint-and-walk versus oracle,

relative to sprint-and-rest, for power budgets: (a) 0.5 W, (b)

0.75W,(c) .0W,and (d) 1.5W)

36

Performance for oracle and sprint-and-walk normalized to

sprint-and-rest for various scheduling granularities.|.

B.7

Performance for oracle and sprint-and-walk normalized to

sprint-and-rest for the various HCMP configurations from

Xix

LIST OF FIGURES

[4.1 The big/little performance ratio (top graph) and fraction of |
| time each application is allowed on the big core based on a 1 |
[W per 1s power budget (bottom graph)| 46

|4.2 Performance gain for several budget partitioning approaches |
| normalized to running all applications on the little cores.| . . . 48

|4.3 Graphical representation of the solution space for two-program |
[(left) and three-program (right) combinations. The diagonal |
| line/plane represents the power budget. The shaded area in- |
[dicates the solution space, the dots are potential optimal so- |
[lutions] 53

|4.4 The four phases of the DPDP power manager,| 55

|4.5 Comparing the various power budget partitioning schemes |
| relative to global sprint-and-walk for mixes of four applications.| 60

[4.6 Average STP improvement for DPDP versus global sprint-and- |
[walk for different classes of compute and memory-intensive |
| four-application mixes| 61

|4.7 Big core usage. For most cases, DPe/DPo favors memory- |
| intensive applications, achieving 56% higher big core utiliza- |
| tion than performanceratio. |. 62

[4.8 Normalized STP across different power budgets,| 64

|4.9 Normalized STP assuming out-of-order little cores.| 64

[4.10 Normalized STP for the various partitioning policies assum- |
| ing a CMP configuration of 2 big and 4 little cores|. 65

[4.11 STP (higher is better) and ANTT (lower is better) for different |
| per-application performance support thresholds. A min to |
| max slowdown point of 0.6 improves both STP (6%) and ANTT |
| BR) | 67

[5.1 Naive performance-power curve walking|. 75

[5.2 Pareto-sifting| o o oo 76

B3 PHSHErl. . . o oottt 77

[5.4 The four phases of the power manager| 81

[5.5 PH-Sifter performance gain over Pareto-sifting for a single |
| application with four points per core type.| 84

[5.6 Comparing PH-Sifter vs Pareto-sifting for different numbers |
| of V-F operating points per core type, using multi-programmed |
L workloads)o 85

XX

LIST OF FIGURES

[5.7 Performance gain of PH-Sifter over Pareto-sifting while pro-

visioning for a high-priority application|

[5.8 Optimizing under a performance cap vs. optimizing under a

powercap.)

xxi

List of Tables

[3.1 Core configurations considered in this study|. 33
[3.2 HCMP core mixes and power limits considered in this study. |

Table(3.1|details the core configurations.| 33
[4.1 Big and little core configurations.| 57
[5.1 Voltage-frequency settings used in the experiments|. 83

XXiii

List of Abbreviations

ANTT
BIPS
CMPs
DVFS
EAS
GPU
HCMPs
IPS
ISA
LLC
LP
MLP
PCM
PH
PIE
STP
TCO
TDP

Average Normalized Turnaround Time
Billion Instructions Per Second
Chip-Multiprocessors

Dynamic Voltage and Frequency Scaling
Energy-Aware Scheduler

Graphics Processing Unit
Heterogeneous Chip Multi-Processors
Instructions Per Second

Instruction Set Architecture
Last-Level Cache

Linear Programming

Memory-Level Parallelism
Phase-Change Material

Power Holes

Performance Impact Estimation
System Throughput

Total Cost of Operation

Thermal Design Point

XXV

Chapter 1

Introduction

1.1 Motivation

For the past decades, the performance-driven computing industry has been
empowered by two major pillars: Moore’s law and Dennard scaling. Moore
predicted that the number of transistors on a chip can be doubled almost
every two years [2]. Due to its persistence, this observation is known as
Moore’s law. Dennard [3] proposed a method for scaling the device feature
sizes, the supply voltage, and the operating frequency, such that the extra
transistors integrated in the chip could operate faster and at lower voltage
levels, while maintaining a steady chip power density. By virtue of Dennard
scaling, chip manufacturers were able to provide higher performance with
every generation while avoiding power-and thermal-induced problems. Un-
fortunately, recent technology advancement exposed new phenomena that
hindered the traditional scaling as predicted by these two laws. Driving
the computing industry beyond traditional scaling laws leaves computer
architects with new problems and challenges to address.

The original Moore’s law has slowed down due to the difficulty of shrinking
transistors at the initial rate predicted by Moore. However, Moore’s law
is expected to hold in the foreseeable future, despite the slightly extended
duration between technology nodes. On the other hand, Dennard scaling
has already reached an end. Dennard scaling rules accounted only for the
relation between the transistor dimensions, voltage, current and frequency.
These elements affect the dynamic power of the processor. As transistor
dimensions kept shrinking, the transistor gates became as thin as a few layers
of atoms. At these small dimensions, leakage currents rose significantly
making leakage power a major source of power dissipation in the processor.
To scale down the supply voltage, an equal scaling of the threshold voltage

Motivation

is required to allow scaling the operating frequency. Failing to scale down
the supply voltage breaks Dennard scaling and results in an increase in
power density. Scaling down the threshold voltage is physically limited
and increases static power exponentially. Failing to manage the operating
frequency as per Dennard scaling results in a performance degradation. In
all cases, chip power densities are projected to keep increasing as transistor
counts keep increasing.

The impact of the end of Dennard scaling became apparent with operating
frequencies reaching a plateau, and the adoption of [Chip-Multiprocessors|
to satisfy the market’s appetite for performance. However, as the
number of transistors continues to rise, power and thermal considerations
pose serious threats to the performance improvements that can be expected
from future technology generations. In fact, even today’s processors can-

not operate indefinitely at the maximum operating frequency, or cannot
even turn on a significant fraction of their transistor real estate at once,
a phenomenon known as Dark Silicon [4]. To combat power and energy
challenges, power- and thermal-aware designs try to reduce the processor’s
power consumption, and optimally utilize the transistor real estate within
the safe limits. Most of the prior power management work rely on dynamic
voltage and frequency scaling (DVFS). However, DVFS suffers from the same
threshold scaling problem. The inability to further scale down the threshold
voltage has continuously shrunk the voltage ranges available for DVFS.
Therefore, the power-performance operating points available through DVFS
provide a limited solution to the power-related challenges.

Heterogeneous chip-multiprocessors (HCMPs) have been proposed as a
solution that extends the power-performance operating options beyond
DVFS [5]. HCMPs can also be used to cope with stringent power limits
that force turning off parts of the chip. These processors integrate a mix
of cores that vastly differ in their microarchitecture complexity, power and
performance characteristics. The mix of cores ranges from high-performance
but power-hungry cores to power-efficient but low-performance cores. In
addition to extending the power-performance range over DVFS, the energy-
efficient cores of HCMPs occupy less area and thus consume significantly
less static power than high-performance cores with DVFS. Therefore, HCMPs
provide more options to counter tight power limits and dark silicon. The
usefulness of heterogeneous processors relies on intelligently scheduling
applications to the appropriate core type, and migrating to another core type
when necessary. Our goal in this thesis is to propose novel scheduling
techniques that optimize the performance of long-running applica-
tions on HCMPs in cases of stringent power budgets. Going with the
expected trends, we consider power budgets that limit the number of cores

Introduction

that can be activated at any given point in time.

1.2 Key Challenges

Scheduling applications to core types, and partitioning the power budget
among the applications (and their execution phases) is a complex optimiza-
tion task with multiple dimensions to explore. The complexity increases
with the number of applications, the number of different types of cores,
and the voltage-frequency operating points per core. We deviate from prior
works that conservatively define a power limit as a rate that must never
be exceeded. Instead, we adopt a definition of a power limit that allows
exceeding it momentarily as long as it is preserved over a time duration
that is based on the processor’s power and thermal characteristics. The
same view on a power limit has been adopted by prior work and used to
improve the application’s responsiveness [6 [7]. This view of power opens
another dimension of optimization possibilities for sustained performance. A
scheduler may need to budget its power consumption properly over a whole
time duration. Scheduling and power budget partitioning has to be fast, and
has to scale with the number applications and operating points.

Despite the large body of DVFS and HCMP related work, they all explore only
a subset of the problem dimensions. Techniques that were proposed for ho-
mogeneous machines with DVFS are not directly applicable to heterogeneous
machines because they ignore heterogeneity among core types. Several
techniques that optimize for performance under a power budget are either
limited to DVFS, target single-threaded applications, follow non-scalable
approaches, or assume the power limit cannot be exceeded momentarily
during the execution. Due to the complexity of the problem and the vast
space exploration required to find an optimal solution, the key challenge is
to devise a fast and scalable solution to maximize performance of multiple
applications running on a power-limited HCMP.

1.3 Key Contributions

To address the aforementioned challenge, we decompose the problem into
its basic dimensions and investigate each of them separately. The combined
contributions form our solution to performance maximization on power-
limited HCMPs. First, we investigate solutions for optimal power manage-
ment of single-threaded applications on a power-limited HCMP. Then, we
add another dimension and solve the more general problem of maximizing

Key Contributions

performance on an HCMP running a multi-programmed workload. Finally,
we provide an optimal solution for maximizing performance on an HCMP
comprised of any number of heterogeneous core types (e.g., big, medium,
and little), where each core type can have multiple DVFS operating points.
The main contributions of this work focus on maximizing performance of
long-running applications on HCMPs under power constraints. HCMPs can
be used to run other types of applications, e.g., applications with bursty
behavior or strict performance requirements. We provide, as we see fit,
further discussion on how to extend our proposed techniques to meet the
performance demands of these types of applications.

1.3.1 Optimizing Single-Threaded Performance

Our goal in this contribution is to maximize sustained performance of a
single-threaded application on a power-constrained HCMP. Most previously
proposed power management techniques for single-threaded applications
focus on improving either energy efficiency or application responsiveness.
Moreover, DVFS is the backbone for most of these techniques. We show
that the relevant techniques targeting sustained performance do not leverage
the heterogeneity in the processor. Using exhaustive search, we measure
the maximum performance that can be achieved by optimally using the
HCMP cores under a power limit. We demonstrate that prior work degrades
performance significantly under the same power budget.

We propose a technique that extends over prior proposals to successfully
leverage HCMPs. We study the performance of our proposed technique
in comparison to both prior work and the maximum performance under
the same power limit. We show that our approach not only significantly
improves performance over prior work for a wide range of power budgets,
scheduling granularities and HCMP configurations, but also remains within
a few percents of optimal performance.

1.3.2 Maximizing Throughput for Multi-Programmed Work-
loads

We look into techniques to maximize performance for multi-programmed
workloads running on power-limited HCMPs. Apart from sharing cores and
caches, the main resource among applications is the power budget. The
problem here consists of two components. The first component is how to
partition the power budget among the co-executing applications. The second
component is which core type to assign to each application, and when to
migrate between the big and little cores.

Introduction

In this work, we make several contributions. First, we show that current
scheduling and power management techniques are not suitable to maximize
performance under a power limit. The metrics used to rank applications
when partitioning the power budget are sub-optimal. We discuss the limita-
tions of each technique and ranking metric. We show that these techniques
do not consider the time period over which the power budget is calculated.
Therefore, they fail to accurately estimate the performance of each applica-
tion based on its allocated power budget. Second, we formulate the problem
as a linear programming optimization. However, solving the linear program
at scheduling time is too slow and not scalable to high core counts. We
solve the linear program mathematically, and use the solution to provide an
optimal scheduling strategy and a ranking metric. Our proposed strategy
and ranking metric are fast and scalable, thus can be used at runtime. Finally,
we propose a scheduler implementation that maximizes performance when
given any workload mix, HCMP configuration, and power limit.

This work is published in:

A. Adileh, S. Eyerman, A. Jaleel, L. Eeckhout. Maximizing Heteroge-
neous Processor Performance under Power Constraints. ACM Trans-
actions on Architecture and Code Optimization (TACO), 13(3), p.29, 2016

1.3.3 Maximizing Performance on Generic HCMPs with DVFS

Core heterogeneity has been adopted in products relatively recently.
Scheduling techniques tailored for HCMPs are under development, aiming to
exploit all heterogeneous core types and their respective voltage-frequency
operating points to improve energy efficiency. The techniques we propose so
far in this thesis apply to HCMPs with multiple big and little cores but each
core is limited to a single voltage-frequency setting. The optimization space
significantly increases with multiple voltage-frequency operating points. The
optimized scheduler must select the power budget to assign to each appli-
cation, which operating point to use, when to migrate, and which other core
and operating point to migrate to.

We contribute a comprehensive scheduling technique to optimally utilize
the power budget on a generic HCMP where each core features a generic
number of operating points. We show that current techniques that walk
the power-performance curves to find points of maximum performance
for a given power budget work for homogeneous architectures. However,
walking naively from the little core’s power-performance curves to the big
core curves can result in landing the application on operating points that
waste power and degrade performance. Surprisingly, we show that walking
Pareto-optimal power-performance curves to reach the points of maximum

Other Research Activities

performance for a given power budget suffers from the same problem. We
call the sub-optimal operating points "power holes", because reaching these
points drains the limited power budget and prevents the scheduler from
reaching an optimal solution.

Our approach walks a power-performance curve that contains only a subset
of the operating points that optimally trade power for performance. To find
the optimal subset of operating points, we propose a technique to prune the
power holes on a heterogeneous architecture. Our technique profiles each
application on a single voltage-frequency operating point on each core type.
Using performance and power models, we generate the power-performance
curves for each application on all core types. Our technique takes these
curves and sifts the power holes per application to provide a set of optimal
points. We show significant performance improvements compared to naive
and Pareto-optimal curve walking.

This work is published in:

A. Adileh, S. Eyerman, A. Jaleel, L. Eeckhout. Mind The Power
Holes: Sifting Operating Points in Power-Limited Heterogeneous
Multicores. IEEE Computer Architecture Letters (CAL), 16(1), pages 56-
59, 2017

1.4 Other Research Activities

In addition to investigating novel scheduling techniques for power-limited
heterogeneous processors, | contributed to other research activities targeting
a diverse set of problems.

1.4.1 Cloud Workload Benchmarking and Characterization

Cloud computing emerged as a promising way to fully utilize the processors
available in the datacenter. Several forms of computing services, spanning
various levels of the stack, are being offered in public and private datacenters.
Among the rush of applications populating datacenters, an important set of
applications has emerged. The distinctive characteristics of these applica-
tions set them apart from important classes of workloads including desktop,
scientific, parallel, and even server applications. These applications use a
scale-out model of operation, in which processing a request from a user does
not necessarily require stronger, more aggressive machines due to the need
to access massive datasets. Instead, the request is split into multiple tasks
each running on a different machine that has access to an independent shard
of the dataset.

Introduction

In the quest to propose processor designs tailored to enhance the perfor-
mance and efficiency of datacenters running these scale-out applications,
we noticed the lack of representative benchmarks and tools to characterize
their behavior. | contributed to the creation of a new benchmark suite, called
CloudSuite [8]], to represent the modern scale-out workloads that run in
datacenters. | significantly contributed to the release of the first version
of CloudSuite with detailed instructions on how to install and fine-tune its
applications to study their behavior in a research environment. Moreover, |
organized and participated in giving a tutorial at ISCA 2012 on how to run
CloudSuite on real machines as well as in a simulation environment. | also
contributed to the creation and release of Simics images that include client,
server, and back-end machines to simulate scale-out applications scaled up
to 64 cores, along with the necessary datasets.

| also contributed to the analysis and characterization of scale-out appli-
cations on real machines. This work shows how scale-out applications
utilize the various parts of the processor, and quantitatively demonstrates
how contemporary server-class machines, designed to suite a generic set of
workloads, over-provision many processor features making them inefficient
at running scale-out applications. For example, the mismatch between server
machines and scale-out application requirements include the provisioned
pipeline width, the number of cache hierarchy levels, and |Last-Level Cache]
capacity, among others. The work also provides recommendations for
designing an efficient processor to run scale-out applications.

This work won the best paper award at ASPLOS 2012:

M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic,
C. Kaynak, A. D. Popescu, A. Ailamaki, B. Falsafi, Clearing the Clouds:
A Study of Emerging Scale-Out Workloads on Modern Hardware, in
Proceedings of the international conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Pages 37-
48,2012

This work was also selected as an IEEE Micro Top Picks: M. Ferdman,
A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic, C. Kaynak,
A. D. Popescu, A. Ailamaki, B. Falsafi, A Case for Specialized Pro-
cessors for Scale-Out Workloads. IEEE Micro. Top Picks, 34(3), pages
31-42, May 2014

An extended version of this work also appeared in TOCS 2012: M.
Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic,
C. Kaynak, A. D. Popescu, A. Ailamaki, B. Falsafi, Quantifying the
Mismatch Between Emerging Scale-Out Applications and Modern
Processors, ACM Transactions on Computer Systems (TOCS), 30(4),

Other Research Activities

p-15, November 2012

1.4.2 Scale-Out Processors

Building on the characteristics of scale-out applications, this work optimizes
the processor design targeting these workloads. In particular, due to the large
instruction working sets of scale-out applications, the main benefit of shared
LLCs comes from capturing the instruction working set as they spill from the
private caches. However, due to their massive datasets, scale-out applications
do not benefit significantly from the large on-chip caches. As the capacity
of on-chip caches grows larger, their access latency increases. This latency
is critical to performance as it impacts both data and instruction accesses.
Therefore, contrary to expectation, as the LLC capacity increases, the neg-
ative impact of its access latency on performance outgrows its performance
benefits, causing an overall performance degradation. Server processors for
scale-out workloads benefit more from sizing LLCs modestly and replacing
the area originally occupied by the large LLC with more cores. However,
increasing the number of cores does not improve performance linearly either.
The longer route to access even a modest non-uniform LLC incurs a higher ac-
cess latency as the number of cores increases. We provide a processor design
methodology that determines the number of cores and LLC size, such that
performance density (i.e., performance per unit of chip area) is maximized.
Each configuration of cores and LLC given by this methodology is called a
‘pod’. Processors usually have enough transistors to integrate higher core
counts and LLC capacity. A pod is replicated several times to populate the
available area of the processor, and each pod acts as an independent server.
Pods do not communicate through an on-chip network, further saving the
area occupied by large on-chip networks for other purposes. Our results show
significant improvement for scale-out applications over both conventional
and tiled server architectures.

This work is published in:

P. Lotfi-Kamran, B. Grot, M. Ferdman, S. Volos, O. Kocberber, J.
Picorel, A. Adileh, D. Jevdjic, S. Idgunji, E. Ozer, B. Falsafi, Scale-Out
Processors, in Proceedings of the Annual International Symposium on
Computer Architecture (ISCA), Pages 500-511, June 2012

1.4.3 Architectural Support for Probabilistic Branches

Branch predictors are subject to continuous fine-tuning due to the heavy
branch misprediction penalty, especially in modern deep and aggressive

Introduction

pipelines. We observe that numerous applications from important and
emerging applications, including scientific, engineering, biology, financial
and learning applications, use algorithms that draw random values from a
distribution and steer control flow based on those values. Such probabilistic
branches are challenging to predict because of their inherent probabilistic
nature. As a result, probabilistic codes significantly suffer from branch mis-
predictions. We propose Probabilistic Branch Support (PBS), a hardware/soft-
ware cooperative technique that leverages the observation that the outcome
of probabilistic branches needs to be correct only in a statistical sense. PBS
stores the outcome and the probabilistic values that lead to the outcome
of the current execution to direct the next execution of the probabilistic
branch, thereby completely removing the penalty for mispredicted proba-
bilistic branches. PBS relies on marking probabilistic branches in software
for hardware to exploit. Our evaluation shows that PBS improves MPKI by
45% on average (and up to 99%) and IPC by 6.7% (up to 17%) over the TAGE-
SC-L predictor. PBS requires 161 bytes of hardware overhead and introduces
statistically negligible algorithmic inaccuracy.

This work is currently under review.

1.5 Structure and Overview

In this work we investigate scheduling techniques for maximizing the per-
formance of HCMPs operating under a limited power budget.

In Chapter 2, we provide a motivational background to the significance of
power limitations, the rise of dark silicon that allows only a fraction of the
processor to be active at any point in time, and the promising concept of
heterogeneous processors and the challenges associated with application
scheduling on power-limited heterogeneous processors.

In Chapter 3, we investigate techniques for maximizing the performance of
an HCMP running a single-threaded application via optimized scheduling of
the application execution phases.

We then seek to optimize power budget partitioning among multiple com-
peting applications in Chapter 4. We propose a fast and scalable technique
to partition the budget between applications, schedule them on, and migrate
them between the big and little cores, such that throughput is maximized.

In Chapter 5, we target a solution of the generalized problem where the
HCMP consists of a generic number of big and little cores and each core
features several voltage and frequency operating points. This generalized so-
lution has an impact on single-threaded and multi-programmed applications,

Structure and Overview

in addition to cases where part of the budget is reserved for a time-critical
task.
We provide a summary of our work in Chapter 6, in addition to potential

directions for future exploration.

10

Chapter 2

Background

2.1 A Historic Perspective

The power consumption facet of computing systems has been a source of
challenges for computer architects since the early computing machines. The
problems and challenges associated with the power consumption of comput-
ing devices kept evolving with the evolution of the underlying technology.

Early computing systems, such as the ENIAC computer from the 1940’s relied
on power-hungry vacuum tubes and dissipated around 174 KW [9]. This
power consumption rate was alarming especially with the low computing
capabilities offered by the machine. The machine was spread over an area
of several rooms, causing its power density (i.e., power/area) to be low. This
implied that the major power-related problem for that machine was the high
cost of computation. The low power density implies a relatively easy cooling
task.

Technology evolved to solve the power cost-efficiency problem by adopting
bipolar transistors. These transistors were relatively more power-efficient as
early chips could perform the same computations as the ENIAC computers
with only a few Watt of power. This technology allowed for powerful com-
putational capabilities in a small-sized chip. Despite consuming significantly
less power, the small chip size caused the power density to rise. To drive the
demand for higher performance, more bipolar transistors were integrated
on a single chip, raising its power consumption and density. The problem
evolved from being mostly cost related to include cooling-related challenges.
The continuous escalation of the power dissipation of bipolar devices led to
the adoption of CMOS technology in the early 1990s.

11

The End of Dennard Scaling

The relatively low power of CMOS devices gave architects a temporary relief
from power and heat issues. The transistors were efficient as they did not
dissipate power unless they partook in a switching activity. However, their
very large scale of integration and the continuous reduction of their feature
sizes rekindled old problems. Power density started rising again, and the
switched-off (static) power consumption started to get more significant due
to non-negligible leakage currents at low feature sizes. This resulted in the
rebirth of power and cooling challenges for this new technology.

Power consumption has become a primary design concern for processors,
leading to plenty of research activity on energy- and thermal-aware pro-
cessor designs for all processor domains. For mobile devices, power-aware
designs aim to minimize energy consumption to extend battery life, and limit
heat dissipation to acceptable levels for human interaction and manageable
using only passive cooling. For desktop processors, energy consumption is
one issue of concern, but cooling these processors as they strive to boost
performance is a major challenge. For example, desktop processors reached
a plateau in maximum operating frequency due to thermal concerns. Instead,
performance of desktop processors relies on improving throughput using
multiple cores. For server processors, power consumption is an even larger
design concern given the emphasis on high performance and the impact
power consumption has on total cost of operation (TCO). The extremely
high power consumption rates translate into direct operating cost, which
gets doubled when considering the power delivery and cooling requirement
when deployed in a datacenter.

2.2 The End of Dennard Scaling

For the last few decades, improvements brought by every technology gener-
ation relied on two main pillars: Moore’s law and Dennard scaling. Moore
observed in the 1960’s that the number of transistor integrated on a chip dou-
bles every two years [2]]. This observation persevered for the past few decades
against numerous speculations about its end, but slowed down slightly in
the latest technology generations. Dennard, on the other hand, introduced a
method for scaling transistors [3] which allowed for the increase in transistor
density and speed, while maintaining the power density unchanged across
technology generations. However, Dennard scaling has ended in the last
decade, causing paramount complications to processor architecture design.

Dennard scaling relied on scaling the power supply voltage and the operating
frequency with the same factor as the device dimensions to guarantee steady
power density. To scale down the supply voltage and increase switching

12

Background

speed, the transistor threshold voltage has to be scaled down as well. The
continuous shrinking of transistor dimensions uncovered the severity of
leakage power. Transistor gates became very thin, featuring only few layers
of atoms, and forming leakage paths that drain power even when the device
is held to an off-state. The transistor ceased to operate as the nearly perfect
switch it once was. This phenomenon raised the contribution of static power
to the total processor power consumption. Per Dennard scaling, as supply
voltage is scaled down, threshold voltage is scaled down as well, leading to
exponentially elevated static power. We have reached a lose-lose situation:
scaling the power supply to maintain power scalability does not work as
leakage power increases with reduced threshold scaling, while not scaling
the supply voltage increases power density as more transistors are integrated.
Dennard’s scaling rules are not applicable to this era of leaky transistors. The
end of Dennard scaling poses serious questions regarding the best methods
to drive performance with Moore’s law.

The end of Dennard scaling has evident consequences on processor design.
One clear example is halting the rise of operating frequency around 2004 [5].
Raising the frequency of operation and using deep complex pipelines to
improve performance cannot be sustained without violating power and ther-
mal envelopes. Instead, processor designers use the extra transistors to
integrate multiple cores, and extract performance through parallelism. As
the number of cores increases with Moore’s law, parallelizing applications to
drive performance becomes more challenging, and gets limited by Amdah[’s
law.

Increasing transistor counts while slowly scaling down the voltages is a seri-
ous problem. This trend has led to chips that feature more transistors than
can be simultaneously powered on within safe thermal envelopes. Therefore,
a significant part of current chips must be turned off. For example, early
estimates from ARM co-founder and CTO Mike Muller, predicted that about
only 9% of the chip real estate can be operated at once within the safe
operating limits by 2019 [10]. A following study [4] predicted that chips need
to power off around 50% of its transistors at 8 nm technology. More recent
estimates [11] consider improvements in transistor technology by assuming
studying 7 nm FinFets under a specific thermal design power to conclude
that around 64% of the chip cannot be operated simultaneously under such
technology assumptions. This phenomenon has been famously known as
dark silicon [4], or the utilization wall [12].

To combat the rising power challenges, power-, energy-, and thermal-aware
techniques have been proposed. Several tools are available to computer ar-
chitects, including dynamic voltage and frequency scaling (DVFS), heteroge-
neous processing, and specialized units. In the following sections, we survey

13

Power Management

the main concepts behind these techniques as they lay out the foundation
for this thesis.

2.3 Power Management

In this section we focus on two important tools in the computer architect’s
toolbox to trade off power and performance, according to an application’s
requirements. These tools are dynamic voltage and frequency scaling and
heterogeneous multicore processors. We describe the foundation of these
techniques before going over notable proposals to apply them. We limit
the survey to proposals that apply these techniques to optimize for various
metrics without the assumption of a power limit. We devote Section [2.4] to
discuss the implications of a power limit and optimizations under a power
limit.

2.3.1 Dynamic Voltage and Frequency Scaling

Dynamic voltage and frequency scaling (DVFS) is one of the key techniques
for power and energy management of processors. The key idea behind DVFS
stems from the basic equation describing dynamic power consumption: P =
ACV?2f, where A is a term to factor in the transistors’ switching activity,
C is the load capacitance, V is the supply voltage, and f is the operating
frequency. By reducing the supply voltage by a factor k, a quadratic reduction
of k% in the total dynamic power is obtained. The reduction in supply voltage
slows the switching of the transistor, requiring a proportional reduction in
operating frequency. In total, DVFS can achieve a cubic reduction in dynamic
power by scaling both voltage and frequency. However, scaling the frequency
down leads to a degradation in performance. Therefore, power and en-
ergy management proposals apply DVFS only to applications or application
phases with a relatively small performance degradation due to frequency
scaling.

DVEFS is an effective technique for the reduction and control of dynamic
power. However, as feature sizes shrink with technology advancement, leak-
age power increases making static power a major source of power dissipation.
Not only does this raise the demand for techniques tailored for static power,
leakage concerns also impose a limit on DVFS effectiveness. The operat-
ing frequency is proportional to the difference between the supply voltage
and the transistor threshold voltage. To maintain the range of operating
frequencies, the threshold voltage must be scaled equally to the supply
voltage. However, leakage power grows exponentially with the reduction

14

Background

GIC-400 -~ Cojtex-AlS _ _
A -=— Cortex-A7 Highest pcmt/(&S
N Pai
[}
2 /
(=]
o

/

‘/6 vest point A15

Highest point| A7
=GWwest point A7

Performance

Figure 2.1: ARM’s first big.LITTLE processor [1]. The Cortex-A15 is used
as the big core and the Cortex-A7 is used as a little core. Heterogeneous
architectures expand the range of operating points beyond DVFS.

in threshold voltage. Therefore, a trend in the range of DVFS voltages can
be seen with each smaller technology node. The maximum supply voltage
levels kept continuously shrinking but the minimum levels were only slightly
reduced. Therefore, the range of DVFS operating values kept shrinking with
technology advancement.

2.3.2 Heterogeneous Multicore Processors

Heterogeneous CMPs (HCMPs) emerged to counter the shrinking ranges of
voltage-frequency operating points and the power limits of the processor.
Heterogeneous computing comes in several forms. In this thesis we focus
on heterogeneous architectures that mix multiple types of general-purpose
cores that share the same instruction-set architecture but have different
microarchitectural implementations. We do not discuss other forms of het-
erogeneity in this thesis, such as mixing general-purpose cores with graphics
processing units (GPU) to handle the data-parallel part of applications, or
mixing general-purpose cores with accelerators that excel at a very specific
computation. In general, all these forms of heterogeneity share the same goal
of supplementing general-purpose processors with more power-performance
options for faster and more efficient execution.

HCMPs expand the range of power-performance operating points over
CMPs. Figure is taken from [1]. The left part of Figure shows a
heterogeneous processor featuring two types of cores that implement the
same ISA. The first is a superscalar out-of-order core type that provides
high performance, called the "big core". The second type, called the "little
core", is an in-order core designed for low power consumption. The first

15

Power Management

Sustained Performance Envelope

.

1 2 % Time

Figure 2.2: Three modes of using ARM’s big.LITTLE processors.

ARM big.LITTLE architecture uses an ARM Cortex-A15 as the big core and a
Cortex-A7 as the little core [T]. Numerous commercial products employ var-
ious flavors of single-ISA heterogeneity [13-16]. The right part of Figure[2.1]
re-plots the example power-performance curves of the first ARM big.LITTLE
processor taken from ARM’s white paper [1]. The big core provides high-
performance operating points but provides few options for low power. Little
cores stretch the curve to provide lower power operating points due to their
simpler pipeline and smaller chip area.

ARM proposed three use cases for its big.LITTLE products [[17], as shown by
Figure[2.2] The first use case is the case of bursty applications. The workload
passes through bursts of high-performance requirements that benefit from
the big core; periods that require only modest performance can use the little
core. In the second case, the power budget allocated to the cores is limited,
and the big.Little architecture is used to maximize the sustained performance
under the power limit. This process may involve scheduling applications on
the appropriate core types and migrating them when appropriate. In the
third case, the application requires only modest performance. HCMPs offer
the option to run them on the little cores to improve energy-efficiency, while
turning off the big cores.

Reaping the benefits of HCMPs requires scheduling techniques to achieve
the desired optimization goals. For example, to trade off performance and
energy-efficiency for a single-threaded application, the scheduler has to
identify phases of execution that can be run on the little core without de-
grading performance significantly, similar to DVFS. In a multicore processor
running a multi-programmed workload, the scheduler has to identify the best
application-to-core mapping to achieve the desired goal of optimizing perfor-
mance or preserving energy, or any criterion for optimization of interest.

16

Background

2.3.3 Scheduling Without Power Constraints
I. Optimizations Using DVFS

The main task of power- and energy-aware designs is to find the right
strategy to apply DVFS. The techniques we briefly describe in this section
all differ in their strategy. For example, they may differ in the domain of
DVFS usage, e.g., at the system level or at the application phase level. They
may also differ in the granularity at which DVFS is applied, e.g., core vs.
chip-level. Despite all the differences, the general principle they all share and
exploit is the same. DVFS techniques rely on finding periods of performance
slack in the application run. During these periods, lowering the processor
frequency can be more tolerable than during other parts of the execution
where performance is critical.

At the system level, techniques like [18]] target systems that mix real-time and
non-real-time applications. The goal is to find slack by establishing a deadline
for each application based on its level of interaction with the user. Based
on the established deadlines, this technique estimates the voltage-frequency
setting that maximizes energy-efficiency while meeting the deadline.

This thesis focuses on optimizing performance on heterogeneous processors
based on the application characteristics. Applications (and their phases) are
categorized into memory-intensive and compute-intensive categories. The
general wisdom suggests that in memory-intensive applications (or phases)
the processor is more likely to stall waiting for the lengthy memory opera-
tions. Therefore, scaling down the processor frequency during these phases
leads to minimal performance loss, assuming the memory system operates
on a separate frequency domain. During a memory access, computations
that are independent of the access can run concurrently with it, while other
computations that are dependent on the memory access must wait for its
completion. Scaling down the frequency for the independent instructions
only stretches their execution time, which overlaps with the memory ac-
cess. Thus extending their execution time has negligible impact on overall
performance. On the other hand, scaling down frequency for dependent
instructions that do not run concurrently with the access, exposes their time
and directly degrades performance.

Several approaches have been proposed to isolate memory-intensive parts
of the code for single-threaded applications. Prior techniques include static
compiler techniques, such as [19, 20]. These techniques fail to account for
the underlying processor microarchitecture. Dynamic techniques that rely
on performance monitors and runtime adjustment adapt more accurately at
runtime. One notable line of work by Isci and Martonosi [21]] splits the appli-

17

Power Management

cation into power phases. They use a vector of performance counters to give
each phase a fingerprint. Each counter in the vector gathers measurements
related to a different component of the processor. The values in a vector
change with the application phases, and an adaptation mechanism reacts to
the change in power phases. The work is also extended to predict the next
power phase based on currently collected performance counters [22].

Significant work has targeted CMPs exploiting the same performance slack
principle. For example, Donald and Martonosi [23] establish the advantages
of having a per-core DVFS autonomy compared to chip-wide policies. A
chip-wide policy brings down all the core frequencies at the same time
and does not suite the characteristics of individual applications in a multi-
programmed workload. Plenty of research work has also been invested in un-
derstanding the impact of DVFS on performance of parallel multi-threaded
application running on CMPs, and proposing methods for performance-
energy adaptation for these applications [24-28]].

IIl. Optimizations Using HCMPs

In general, techniques that optimize on HCMPs expose periods of slack,
similar to the DVFS techniques. In addition to these techniques, we also
review proposals that solve problems relevant only to HCMPs, along with
proposals to optimize several other objectives.

HCMPs have the potential to improve several metrics over homogeneous
processors. Kumar et al. [29] demonstrate the energy efficiency benefits
of HCMPs over CMPs. They also show that HCMPs can even improve
performance over CMPs under a constrained area by substituting a big core
with several little cores using the same area [30]. Note that integrating more
little cores benefits throughput but degrades per-application performance.
Therefore, it may not be suitable for all mixes of multi-programmed work-
loads or parallel applications, as also indicated by Hill and Marty [31].

Several papers have proposed scheduling techniques that select the best
application-to-core mapping for performance. Most notably, Van Craeynest
et al. [32] provide a technique for dynamic scheduling to optimize HCMP
performance when running multi-programmed workloads. Unlike static
and offline analysis [33] [34], dynamic schedulers have the advantage of
adapting the schedule to the change in the application behavior as it hap-
pens. Dynamic schedulers need a method to estimate the performance on
one core type given its run on the other core type. Van Craeynest et al.
[32] challenge prior wisdom by showing that memory intensity alone is a
misleading metric and cannot accurately predict the application’s potential

18

Background

performance benefit due to using a big core. Therefore, schedulers should
not use it to rank applications according to their anticipated benefit when
run on a big core. They show that memory-intensive applications differ in
the number of memory requests that can be sent to memory concurrently,
known as memory-level parallelism (MLP). Memory-intensive applications
with high MLP show significant performance gain as they migrate to a big
core. They propose a method, called Performance Impact Estimation (PIE),
that measures ILP and MLP on one core type, and plugs these statistics
into big-to-little and little-to-big models to estimate performance on the
other core type. Their experimental results report significant performance
improvements compared to prior techniques.

Composite cores [35] is another notable scheduling work for HCMPs. Com-
posite cores target minimizing energy given a tolerable performance slack.
They show that a significant amount of energy can be saved by adjusting the
schedule at extremely fine-grain intervals of 1 Kinstructions. The core migra-
tion overhead of current HCMPs is too high, forcing schedulers to operate at
much coarser granularities. Composite cores build a non-traditional HCMP
to allow low-overhead migration and fine-granularity scheduling. They use
a shared front-end of the processor as it does a similar job in both core types.
However, they deploy a heterogeneous backend consisting of one in-order
(little) backend and an out-of-order (big) backend. This way, the migration
between backends incurs minimal overhead and the proposed scheduling
technique achieves high energy reduction. They follow the steps of PIE by
relying on big-to-little and little-to-big performance models. Using a PID
controller that takes the actual overall performance, the performance target,
the performance of the last scheduling interval on one core type, and the
model-predicted performance on the other core type, composite cores decide
whether to run the following interval on the big or little core, such that the
target performance degradation is not exceeded.

Other papers focus on meeting the quality-of-service requirements while
using HCMPs for efficiency. In particular, Zhu et al. [36] classify applications
based on their interaction with the end user using application statistics such
as system calls and network usage. The applications that are classified as
interactive applications get higher priority to run on the big core. Octopus-
man [37] is another technique that tries to guarantee quality of service when
needed, while running efficiently on the little core when there is performance
slack. In particular, Octopus-man exploits the observation that online ser-
vices have a peak of concurrent requests during the day and lower demand
during the night. Therefore, it proposes using the big cores at peak request
time, and using the little cores at times of low request levels. Several other
works target performance and power goals. Van Craeynest et al. [38] focus

19

Scheduling under Power Limits

on scheduling applications on HCMPs such that the fairness is guaranteed
among co-executing applications. The paper describes multiple formulas for
fairness and proposes a scheduler that optimizes for these metrics on an
HCMP.

2.4 Scheduling under Power Limits

So far, we briefly surveyed scheduling techniques that optimize for various
metrics. In this section, we specifically focus on scheduling techniques under
power limits. We provide the definition of a power limit that we assume
throughout the thesis. Then we briefly go over the most recent schedulers
that operate under power limits.

2.4.1 Scheduling vs Power Management

Scheduling refers to the activity of mapping an application to a particular
core. In homogeneous CMPs, scheduling applications relies on factors such
as the number of active tasks, the load per core, and the objective of the
schedule. Power management is the activity of partitioning the power bud-
get among the active tasks. This involves selecting the voltage-frequency
operating point that guarantees high performance while remaining within
the boundaries of the power budget.

These activities are distinct from each other, and modern OSes perform them
through separate components. However, we use the two terms interchange-
ably throughout this thesis. As each chapter contributes to solving one part
of the complex scheduling problem, the assumptions we make regarding the
HCMP configuration and operation justify such usage of the terms. We
assume that each application has access to the exact same set of core types.
Each core type features the exact same set of voltage-frequency operating
points. This implies that there is no competition on the core types among
applications. Therefore, the selection of which core type an application uses
(i.e., the schedule) and the voltage-frequency operating point it selects (i.e.,
power consumption) relies only on the portion of the power budget allocated
to that application. An optimal schedule is a direct consequence of optimal
power management.

2.4.2 Power Limits

Plenty of prior work assumes a basic definition of a power limit, whereby
there is a predefined power consumption rate that should never be exceeded

20

Background

Power > limit

Power
Power

Power limit \Power limit /... ______

Average power < limit

TSa ..
Power < limit .
Power period |

Time Time

(a) Basic power definition (b) General power definition

Figure 2.3: Conservative power definition generally used by power manage-
ment techniques does not exploit the potential to temporarily exceed the
limit to improve performance.

while the processor is running. This basic definition is illustrated in Figure
This basic definition of a power limit applies only to a limited set of real-
life scenarios. For example, when the power supply is provisioned to generate
up to a specific power rating. Even if the processor is engineered to handle
higher powers, a power limit is set. For practical scenarios, this definition
is quite conservative as it prevents the processor from exploiting physically
safe operating conditions to gain extra performance. For example, setting a
maximum operating power for cooling purposes generally allows the specific
cooling technique to dictate the rules for maintaining the power limit. Ex-
ceeding this power limit for a short time duration may not necessarily violate
the cooling constraints of the chip.

We follow a more generalized definition of a power limit. A power limit is
composed of two components. The first one is the power rate that must
not be exceeded. The second component is a time period over which the
power rate is calculated. In general, these values are defined by the processor
manufacturer and are technology-specific. For example, manufacturers typ-
ically specify a power limit called the "thermal design point" (TDP), which is
the maximum power a processor can consume without running into thermal
problems. Despite the differences among major chip manufacturers on the
definition of TDP, they agree that TDP is not the maximum power that must
never be exceeded at any time during processor operation, similar to what
is assumed by the conservative power definition. AMD for example views
TDP as the maximum power that can be sustained when observed over a
"thermally-significant period" [39]]. This means that the processor can exceed
this nominal value at runtime, as long as it does not exceed it for an extremely
extended time duration that ends up burning the chip. Additionally, the
processor must be allowed enough time after it exceeds the power limit to

21

Scheduling under Power Limits

cool down to an acceptable temperature that can be handled at TDP power.
This more generic power definition is shown in Figure

There is not one single value for the power period over which power must
be preserved. Techniques proposed by industrial and academic research to
exceed TDP take thermal constraints into consideration. In these techniques,
the time interval during which the processor is allowed to exceed TDP
depends on the power rate above TDP the technique tries to achieve, and
the thermal capacitance of the cooling infrastructure (e.g., heat sink and fan).
These techniques are forced to lower their power consumption to the defined
TDP for the remainder of the application execution. To safely operate at
power rates that exceed the TDP, these techniques are required to execute
the application below the TDP for a time duration that is sufficient to cool
the processor down. In Turbo-boost 2.0 [7]], the processor exceeds TDP by
1.2x-1.3x for 10s of seconds before cooling down. Similarly, in computational
sprinting [6], the authors assume that the processor that can sustain 1 W
with a single core can sprint for only a fraction of a second when activating
16 cores of 1 W each (i.e., 16x TDP). The processor then needs to cool down for
a few seconds. They extend the duration of sprinting to 1second by placing a
block of phase change material as a heat sink, with around 20 seconds to cool
down due to the material’s high heat capacity. In our research, we look into
a power period of 1 second. This means that we can exceed the power limit
anytime during the power period, but the power consumption must adhere
to the power limit when measured within 1 second of execution. This in no
way affects the general conclusions of this thesis. The same techniques we
propose apply to shorter or longer power periods. Our mathematical formu-
lation assumes a generic finite time duration, as will be seen in the following
chapters. We use 1 second only to simplify the calculations, reasoning, and
mathematical derivation, and to shorten simulation time.

Note that our work focuses on power-limited processors. This means that our
techniques aim to properly manage the power budget across the resources
available on the processor chip, e.g., cores, network-on-chip, and caches.
Power and thermal restrictions that are enforced at the processor level re-
quire managing how individual on-chip resources share the available power
budget. On the contrary, power restrictions due to thermal constraints do
not necessarily limit the power consumption of the memory system or other
system-level components. Therefore, we focus on processor-level power
management in this work. Managing the power budget across all system-
level components, e.g., DRAM memory, processor and bus, is out of the scope
of this thesis and is left as a future work.

22

Background

2.5 Prior Work For Scheduling under a Power Limit

We went briefly over numerous scheduling techniques that optimize for
various metrics by using both DVFS and HCMPs. In this section, we focus
on scheduling techniques that optimize for performance under a power limit.
Although a large body of research investigates the problem, no prior work
looks at the problem from it numerous angles. We look closer at the most
notable related techniques and show how they fail to consider one or more
angles of the problem under consideration.

2.5.1 Responsiveness Techniques

Intel uses a technology called Turbo-boost to provide temporary performance
boost via DVFS when needed. Turbo-boost 1.0 allows boosting the frequency
of all the cores on chip as long as the power and temperature of the processor
does not exceed the nominal TDP value [40]. Turbo-boost 2.0 [7] on the
other hand allows temporarily reaching around 1.2x the TDP to significantly
improve responsiveness at the initial phase of the application. The frequency
is then decreased to ensure the sustained power remains under the TDP.

Computational sprinting [6] is similar in spirit to Turbo-boost 2.0 that is pro-
posed to improve responsiveness of parallel applications. Instead of boosting
frequency to levels that exceed TDP, this technique boosts performance by
running a number of threads that utilizes all the cores of the processor. This
operation resorts to turning off all the cores to abide by the safe thermal
envelope. To increase the sprinting time of the application, and thus achieve
higher performance, computational sprinting uses a block of phase-change
material on top of the processor due to its high heat capacity. For
non-interactive applications, they propose to repeat the sprint operation
indefinitely but turning off the processor for sufficient time to allow sprinting
again afterwards. This sustained technique is called sprint-and-rest [41]].

In comparison to these techniques, our work focuses on sustained perfor-
mance rather than the initial performance burst. This means potentially
preserving a burst of performance and power consumption to the parts of
the application that improve sustained performance the most. Additionally,
Turbo-boost relies on DVFS and computational sprinting relies on parallel
cores. Both do not consider heterogeneous cores, and are not readily appli-
cable to HCMPs. Finally, both techniques do not optimize performance of
multi-programmed applications, and there is no clear approach to manage
the several operating points available per core type. We provide in-depth
comparison with these techniques when necessary in this thesis.

23

Prior Work For Scheduling under a Power Limit

2.5.2 Multicore Sustained Performance

Techniques that try to maximize sustained performance under a power con-
straint are numerous [26}42-46]]. For example, Isci et al. [42] propose a global
power management technique that selects the voltage-frequency operating
point per application, such that the throughput of the CMP is maximized and
the global power budget of the processor is respected. To find the best voltage
and frequency setting per application, they perform a brute force approach
by exploring all possible combinations. This scheme has high scheduling
overhead and suffers from scalability problems. Other approaches try to
find an optimal solution using linear programming solvers at runtime to
find the best application to operating mode assignment, see for example
[43]. However, the runtime overhead of this approach prohibits its usage
as a practical solution especially with a large number of cores and operating
points per core.

Other prior work thoroughly studies the scalability of power management
schemes and proposes fast and scalable solutions to maximize performance
under a power limit [26] [4446]. However, all previously proposed works
cannot be used as a solution to the scheduling problem we are considering
in this thesis. All these approaches assume power management using only
DVFS as the power adjustment knob. Therefore, these techniques are not
directly applicable to HCMPs, in particular when each core has its own set
of voltage-frequency operating points. This will become evident in Chapter[5]
as we tackle the problems involved with the most generalized form of power
management of HCMPs. Moreover, these approaches follow a basic defini-
tion of the power limit, and do not explore the benefits that can be achieved
by spreading a power limit over a time period.

24

Chapter 3

Optimizing Performance for
Single-Threaded Applications

3.1 Introduction

Heterogeneous chip-multiprocessors (HCMPs), e.g., ARM big.LITTLE, have
been proposed for multiple purposes. The main use case for this architecture
is to maximize energy efficiency at a tolerable performance degradation
cost. For example, the application is scheduled to run on the little core
when demand for performance is low, e.g., low user utilization, to save
energy. When high performance is desired, e.g., heavy user interaction, the
scheduler moves the application to the big core. Similarly for non-interactive
applications, the scheduler identifies parts of the application that degrade
the overall performance the least, and schedules them opportunistically on
the little core [29}35]].

In this thesis, we focus on maximizing the performance of power-limited
HCMPs. Power and thermal management techniques, e.g., Turbo-boost
2.0 [7] and computational sprinting [[6]], have been proposed to improve the
performance of power-limited processors. However, these techniques mainly
focus on improving the responsiveness of interactive applications. A more
recent and relevant technique, called sprint-and-rest, was proposed to target
the sustained performance of non-interactive applications [41]], by extending
the work on computational sprinting. Unfortunately, all these techniques
were proposed for homogeneous chip-multiprocessors (CMPs) and lead to
performance degradation when applied to heterogeneous processors.

Our goal in this chapter is to propose a scheduling technique that optimizes
the utilization of the available power budget to maximize single-threaded

25

Problem Statement

(a) Performance on big core relative to little core.
3x
1x

Perf
(big/little)

\»\ (b) Scheduling under a power constraint.
ication 2
A'}p}at'on 3. Power Limit ..l
(0] .
Litle 4 s Ltle ...
w power period >l

‘ ‘ ‘ \ \ \ \ | \ \ ‘ ‘ ‘ ‘

Scheduling granularity

Figure 3.1: A scheduler needs to map each scheduling interval to the appro-
priate core type to maximize performance while remaining within the power
limit.

performance. We show that sprint-and-rest does not exploit the diversity
of core types introduced in HCMPs when optimizing the performance of
single-threaded applications. We perform an exhaustive search to estimate
the maximum performance that can be achieved by optimally scheduling
the application phases on big and little cores under a power limit. Using this
estimate, we demonstrate that exploiting heterogeneity leads to significant
performance improvement over sprint-and-rest, under the same power bud-
get.

We propose sprint-and-walk, a scheduling technique that extends sprint-
and-rest to operate with heterogeneous cores. Sprint-and-walk manages to
significantly improve performance over sprint-and-rest given the same power
budget. Our results show that sprint-and-walk improves performance over
sprint-and-rest by 9% on average across all SPEC CPU2006 applications, and
reaches up to 19%, for a moderate power budget of 1.25 W. The improvement
increases as the power budget gets lower. For a budget of 0.5 W, the average
improvement of sprint-and-walk relative to sprint-and-rest equals 43% on
average and reaches up to 76%. More importantly, we show that the perfor-
mance of sprint-and-walk is within 3% of optimal performance. Sprint-and-
walk maintains this near-optimal performance as we vary the given power
budget, scheduling granularity, and HCMP configuration.

3.2 Problem Statement

We start by describing the assumptions we make about the processor under
test and our definition of a power limit. We first assume the processor has
no area constraints. This assumption allows us to use any microarchitecture

26

Optimizing Performance for Single-Threaded Applications

for both the big and little cores, and any desired mix of heterogeneous cores.
We also assume the single-threaded application runs in isolation, eliminating
the impact of interference through shared resources, e.g., the shared caches
and the limited power budget. Both core types are always available, and the
scheduler can migrate the application between the cores whenever it needs.
Schedulers normally make their decisions once every scheduling interval.
Figure[3.7shows the configuration we use in this chapter.

We define a power limit similarly to Chapter 2] Under this definition, the
power rate is estimated over a technology-dependent power period. This
implies that the processor can dissipate power at a rate that exceeds the
allowed limit at times, but needs to adhere to the limit over the totality of
a power period. We assume the power limit has a value between the big
and little core power ratings. A limit that exceeds the big core power allows
sustained execution on the big core alone. On the contrary, a limit beneath
the little core power prevents sustained execution even on the little core. Both
cases are not interesting scheduling problems and will not be considered in
this study.

Figure sketches the single-threaded scheduling problem under consid-
eration. The horizontal axis represents the application’s execution during
one power period. The period is divided into scheduling intervals, each
of which can be scheduled either on the big or little cores. The curve in
Figure[3.1(a) shows the performance gain for running the application on the
big core relative to the little core for each scheduling interval. The curve in
Figure[3.1{b) shows a schedule under a power limit. According to the shown
schedule, the application runs initially on the little core, consuming power
below the allowed rate. The scheduler runs on the big core towards the end
as the later scheduling intervals seem to benefit more from executing on the
big core than the earlier ones. The scheduler needs to estimate the fraction
of time to run on the big core such that it does not exceed the power limit
when averaged over the power period. Note that there are few scheduling
intervals, represented by the dashed line in the schedule, that highly benefit
from using the big core but have to be scheduled on the little core to keep
the power consumption under the allowed limit.

Given the above description of the context, the scheduling problem becomes:
For each scheduling interval, which is more beneficial for overall
performance: run on the big core to boost performance but burn
excessive power, or run on the little core to save power that allows
the application to utilize the big core at a later interval that boosts
performance more? The end solution is a mapping of each scheduling
interval to a core type, such that power dissipation at the end of each power
period remains below the power limit and performance is maximized.

27

Scheduling under Power Constraints

Note that software schedulers usually make scheduling decisions at the
granularity of an operating system time slice (e.g., a scheduling interval of
10 ms). Without loss of generality, we assume scheduling intervals based
on a fixed number of instructions instead, to facilitate our analysis. A similar
methodology has been used in prior works that propose hardware scheduling
techniques that operate at a lower granularity than an operating system’s
time slice 35 [47, [48]).

Comparing schedulers that take scheduling intervals of a fixed number of
instructions as input can be done in different ways. ldeally for our case, a
power period is divided into intervals of a fixed number of instructions, and
schedulers migrate the application between the big and little cores up to the
end of the period. The best schedule is the one that executes more instruc-
tions within the same time period. To reduce simulation time, a commonly
used technique is to compare schedulers based on a representative task (i.e.,
fixed number of instructions) that is selected from the application. In this
case, the best schedule is the one that finishes the task in the shortest time
within the power limit, or the one with the highest performance assuming
the repetitiveness of the same task to fill one power period. Because the
selected tasks are highly representative of the application behavior, either
of the two approaches would accurately estimate the performance of each
scheduler under a given power budget.

We resort to comparing schedulers based on a fixed task as it significantly fa-
cilitates exploring HCMP scheduling techniques, and in particular the brute-
force search method needed to assess the maximum performance attainable
via scheduling. This exhaustive search is computationally challenging for
a fixed representative task as we have seen. We expect exhaustive search
over a much longer time duration (e.g., power period of 1 second) to be
computationally intractable.

3.3 Scheduling under Power Constraints

We start by introducing sprint-and-rest, the most relevant approach for sus-
tained performance maximization under a power limit. We demonstrate the
shortcomings of sprint-and-rest when applied to HCMPs and propose sprint-
and-walk to overcome these shortcomings. Finally, we describe the method
we use to estimate the upper performance limit attainable via scheduling.

28

Optimizing Performance for Single-Threaded Applications

3.3.1 Sprint-and-rest

Computational sprinting [6] and Turbo-boost 2.0 [[7] are techniques that
target improving the application’s responsiveness by starting it at the highest
performance level. Computational sprinting targets multi-threaded applica-
tions and sprints by operating all the cores of a CMP concurrently, while
Turbo-boost sprints by raising the clock frequency. In both cases, the appli-
cation’s responsiveness is boosted but the processor burns power at a rate
that exceeds the safe limit. Therefore, the whole processor is either turned
off completely or slowed down considerably to allow it to cool down to the
safe operating limits.

Sprint-and-rest [41] is an extension to computational sprinting that targets
non-interactive multi-threaded applications. During one power period, it
starts sprinting on all cores and then turns off the processor to bring the
power rate down to the safe limit. It repeats this sprinting and resting cycle
throughout the application’s execution. This technique has been shown to
be more energy-efficient than sustained execution, i.e., turning on as many
cores as allowed by the power limit without having to turn them off. The main
benefit comes from eliminating the heavy cost of leakage power associated
with turning on a partial set of cores, e.g., leakage power from the large
caches and the network-on-chip.

Sprint-and-rest can be directly applied to HCMPs running single-threaded
applications. During a power period, the application first runs on the big
core (sprint) until the power budget is completely consumed. The processor
is then turned off for the remainder of the power period (rest). This technique
can run the application indefinitely under a power limit. However, it does
not take advantage of the power-performance opportunities offered by the
little core. Our analysis shows that switching to the little core instead of com-
pletely shutting down during the rest phase is more beneficial to performance
under the same power limit.

Figure[3.2]plots the performance-power space for the baseline HCMP config-
uration (see configuration details in Section [3.4). The performance in billion
instructions per second is shown on the horizontal axis, and the power
in Watt is shown on the vertical axis. The performance and power values
shown in the figure are averaged across all SPEC CPU2006 applications. We
report the total power of the processor by summing the runtime dynamic
power and leakage power, and assuming idle cores are power-gated. We
study heterogeneous configurations composed of only two different core
types (i.e., a big and a little core). We represent each core type with a single
point on the figure, using its performance and power as coordinates. On
average, the little core consumes 0.25 W for a performance of 0.75 BIPS, while

29

Scheduling under Power Constraints

Sprint-and-rest
— Sprint-and-walk
Big

Power (W)

Budget1=1.2W

' I I 1Perf(Sprint-and-rest) at Budget1
) s .// Perf(Sprint-and-walk) at Budget1
0 1 2 3 4
Performance (BIPS)

Figure 3.2: Sprint-and-walk yields higher performance than sprint-and-rest
under any power budget.

the big core consumes 2.2 W for a performance of 3.4 BIPS. If the HCMP is
given a power budget of 0.25W, we expect it can sustain an application’s
execution on the little core. If the power budget is between 0.25W and
2.2W, the HCMP can conservatively execute the application on the little
core without fully consuming the power budget. To exploit the whole power
budget, the application can run on the little core for a fraction of the time
period and migrate to the big core for the rest of the period. The fraction
of time to run on each core type depends on the power budget and the
scheduling technique. Figure helps reason about the performance of a
scheduling technique given a power budget.

Sprint-and-rest sprints on the big core and rests by turning the processor off.
Therefore, its power-performance behavior on average is represented by the
line connecting the big core point and the zero coordinate. Any point (x,y)
on the line means that sprint-and-rest is expected to yield a performance
"x" on average, when given a power budget "y" due to partially running on
both core types. A technique that leverages heterogeneity by sprinting on the
big core and migrating to the little core instead of turning off the processor
have an average power-performance behavior that is represented by the line
connecting the big core coordinate and the little core coordinate. The line is
labeled as "sprint-to-walk" in the figure. A horizontal line represents a power
budget. The figure shows two example budget lines at 0.75W and 1.2W.

The intersection point between a power budget and the sprint-and-rest line

30

Optimizing Performance for Single-Threaded Applications

projects the expected performance on the horizontal axis.

It is clear that the intersection point of any power budget line with the
sprint-and-walk line always happens further to the right, i.e., yielding higher
performance, than the intersection with a sprint-and-rest line. For example,
at a power budget of 0.75 W, sprint-and-rest degrades performance by around
24% relative to sprint-and-walk. The figure also shows that for loose power
budgets, all scheduling techniques yield similar performance as they can run
extensively on the big core. As the power budget gets tighter, the gap widens
between the two techniques, showing a clear advantage for techniques that
leverage heterogeneity. We expect the same conclusion to apply to CMPs
that feature multiple pairs of big and little cores running multi-programmed
workloads, and maintaining the LLC capacity provisioned per pair of cores.

3.3.2 Sprint-and-walk

We propose sprint-and-walk to utilize both core types in an HCMP, instead
of shutting down the processor. Algorithm 1] describes how sprint-and-walk
operates.

Sprint-and-walk is based on the concept of energy credit. A power limit
P that a processor must preserve over a power period T implies that the
processor has an energy budget E = P x T to spend over a period T. We are in-
terested in power limits between the big and little core’s power ratings. If the
scheduler runs a scheduling interval on the little core, its energy consumption
is lower than what sustained execution at the allowed limit would consume
assuming the same time as need by the little core. On the other hand, the
big core consumes more energy per scheduling interval relative to sustained
execution at the allowed limit assuming the same time as needed by the big
core. Therefore, running an interval on the little core allows the scheduler to
accumulate energy credit equal to the difference between its consumption
and the energy consumed during the same time at the allowed power limit.
This energy credit can be used to run other future intervals on the big core.
Running an interval on the big core burns more energy than the a run at the
sustain power limit. The difference between the consumed budget and the
allowed budget is taken from the previously accumulated credit.

In simple terms, Algorithm [1| runs the application initially on the little core
to build up energy credit for a specific time duration. Then, it migrates
to the big core and continues there until the accumulated energy credit is
consumed. Running on the big core is the sprint part, while accumulating
credit on the little core is the walk part. Repeating the sprint-and-walk cycle
allows sustained execution of an application on a power-limited HCMP. We

31

Scheduling under Power Constraints

Algorithm 1 Sprint-and-walk. Accumulate energy credit by running on little,
then run on the big core until credit is dissipated.

Divide application into intervals of fixed instructions
power_consumed = 0, energy_credit = 0
credit_build_time = 0, threshold = 10 ms
remaining_time = One power period
while remaining_time >0 do
take the next interval
if energy_credit<= 0 OR credit_build_time<threshold then
run on little
remaining_time = remaining_time - time of interval on little
if energy_credit >= 0 then
credit_build_time += time of interval on little

end if
energy_credit+=interval time*(power_limit - interval power)
end if
if energy_credit >0 AND credit_build_time >= threshold then
Run on Big

remaining_time -= time of interval on Big
energy_credit-=interval time*(interval power - power_limit)
if energy_credit <= 0 then
credit_build_time =0
end if
remaining_time = remaining_time - time of interval on Big
end if
end while

use 10 ms to build energy credit because it is frequent enough to sample
the different phases of the application, and long enough to amortize the
migration overhead. The algorithm preserves the power limit as it guarantees
not running above the limit unless enough energy credit is available.

3.3.3 Optimal Performance: Oracle

As scheduling decisions are taken at the granularity of every scheduling
interval, optimal scheduling requires complete knowledge of the application
power and performance on both core types for every scheduling interval.
With this knowledge, a scheduler has to rank the intervals according to their
benefit from running on the big core. Assuming all the intervals start on
the little core, the scheduler can proceed to move them to the big core, one
interval at a time, until it estimates it would exceed the power limit. The
resulting schedule would be optimal.

32

Optimizing Performance for Single-Threaded Applications

Core 1 Core 2 Core 3 Core 4
Pipeline width 4 4 2 2
Type Out-of-order Out-of-order Out-of-order In-order
Frequency 2.6 GHz 1.5 GHz 1.5 GHz 1.5 GHz
Voltage 09V 0.64V 0.64V 0.64V
ROB size 168 168 32 -
L1 I-cache 32 KB
L1 D-cache 32 KB
Shared L2 cache 4 MB per pair
Memory B/W 25.6 GB/s

Table 3.1: Core configurations considered in this study.

Core 1 Core 2 Core 3 Core 4
Baseline Config. 2 Config. 3 Config. 4
HCMP config. | core 1(big) core 1(big) core 2 (big) core 3 (big)
core 4 (little) core 3 (little) core 4 (little) core 4 (little)
Power limit 1.25 W 1.5W 0.6 W 0.4 W

Table 3.2: HCMP core mixes and power limits considered in this study. Table
3.1 details the core configurations.

We carry out a brute-force search through all possible schedules. For each
application, we divide its representative code into n scheduling intervals.
The default interval consists of 1 million instructions (see Section for
details on methodology). We search through all possible combinations where
each interval could be scheduled on either the big or little cores. This
means calculating the power and performance of 2" schedules. The optimal
schedule is the one that finishes the execution in the shortest time while
remaining under the allowed power rate. We refer to this approach as the
oracle throughout this study.

3.4 Evaluation Methodology

We analyze all SPEC CPU2006 applications using all their inputs sets, for a
total of 55 benchmarks. We use SimPoint [49] to find a representative code

33

Evaluation Methodology

segment of 750 Million instructions. We use Sniper 6.0 [50] with its most
detailed cycle-level core modes to carry out the performance evaluation for
all applications across all HCMP configurations under test. Moreover, we use
McPAT [51] to model power consumption assuming a 22 nm technology. We
report the total power of the processor including leakage power and runtime
dynamic power, assuming idle cores are power-gated.

The baseline configuration we use in this study and carry throughout the
thesis deploys a 4-wide aggressive out-of-order core running at 2.6 GHz and
0.9V as the big core. For the little core, we use a 2-wide in-order core running
at 1.5 GHz and 0.65 V. We carry out experiments on HCMPs composed of
other core mixes. Table provides an overview of all core types we use
in this chapter. Table shows the four HCMP configurations and their
respective power limits.

As mentioned in Section we study only power limits that fall between
the big and little power ratings. To select an appropriate limit for our HCMP
configurations, we run each application on all four core types we consider in
this study. We measure the power rating for each application on each core
type. For each HCMP consisting of two different core types we calculate
the average power between the big and the little core power ratings. Finally,
we take all the average power ratings for each application and calculate the
median of these values as the power budget. Without lack of generality, we
assume this power budget must be consumed over a power period of 1 sec-
ond. Table[3.2|shows the power budgets we use in this chapter. Our baseline
configuration experiments assume a budget of 1.25W. A similar value has
been assumed in prior power-limited design works such as computational

sprinting [6].

We evaluate HCMPs that feature two core types integrated on a chip with-
out any special micro-architectural techniques aiming at lower migration
overheads, such as the ones used in [35] [48]]. Therefore, we assume that
scheduling decisions are made at a relatively coarser granularity than the
1 thousand instructions used in these prior studies. We assume scheduling
intervals of 1 million instructions. At an estimated migration overhead of
20 microseconds [[1]], we expect the switching overhead to be around 2% if
migration happens at every scheduling interval. This migration overhead is
considered sufficiently low not to impact the general findings of this study,
and can thus be ignored. For completeness, we study the impact of shrinking
this scheduling interval to 10 thousand instructions and expanding it to 10
million instructions where the scheduling overhead is negligible.

34

Optimizing Performance for Single-Threaded Applications

== Sprint-and-walk Oracle

—_
w
)

N

N

(&)
1

—_
N
1

normalized performance
-~
- (&)}
1 1

-

o

(&)
1

sorted benchmarks

Figure 3.3: Performance for oracle and sprint-and-walk normalized to sprint-
and-rest. Both methods improve performance significantly over sprint-and-
rest. Sprint-and-walk achieves near-optimal performance.

3.5 Experimental Results

In this section we show the performance improvement of both sprint-and-
walk and oracle over sprint-and-rest. First, we show performance results
assuming the baseline HCMP and power limit, and then we discuss the
factors that impact these results. We perform a design space exploration
to account for the impact of diverse core configurations, power limits, and
scheduling granularities on performance.

3.5.1 Potential Performance Improvement

Figure[3.3]shows the performance of oracle and sprint-and-walk normalized
to sprint-and-rest for the baseline configuration. Both sprint-and-walk and
oracle improve performance significantly over sprint-and-rest. Moreover,
there is a small gap between the performance curve for sprint-and-walk and
oracle for all the applications. The similarity between the two curves demon-
strates the significant resemblance between the two methods across all ap-
plications. Sprint-and-walk improves performance by 9% on average and up
to 19%, over sprint-and-rest, while oracle yields an average improvement of
11% that reaches up to 23%. As previously demonstrated in Figure[3.2] sprint-
and-walk is expected to yield even higher performance improvements over
sprint-and-rest as the power budget decreases. The following subsections
discuss potential factors that lead sprint-and-walk and oracle to yield similar
performance.

35

Experimental Results

Perf

(big/ittle)
x

Y

MG :
1X
Speedup =

P
(1-p)-L
3X S |
1X

(big/littie)

Performance
al\
N
x

scheduling intervals scheduling intervals
(a) Weak phase behavior (b) Impact of the power limit

Figure 3.4: Reasons for limited performance benefits for oracle scheduling.

I. Applications with Weak Phase Behavior

We observe that several applications show weak or no phase behavior. This
corroborates findings from prior studies such as [52]. Figure shows
several cases of weak phase behavior. The vertical axis show the performance
improvement of the big core over the little core for every scheduling interval.
We include Amdahl’s speedup law in the figure to show two kinds of phase
behavior. The top and middle lines show cases where the application does
not see a change in it behavior for almost the entire period. This implies
that regardless of which intervals the oracle selects, the performance benefit
beyond sprint-and-walk is limited. In Amdahl’s terms, the limited benefit of
oracle is due to the insignificant fraction of enhancement. For the bottom
line case, there are two considerable phases of execution, the speedup ratio
’S” in Amdahl’s equation is quite low. Therefore, the speedup of oracle over
sprint-and-walk remains limited by Amdahl’s law.

IIl. Power Limit Reduces Speedup

For applications that exhibit significant phase variation, oracle may still see
limited improvement over sprint-and-walk due to the imposed power limit.
Figure [3.4b| demonstrates such a case. The application has two main phases
that differ considerably from each other. However, the power limit is too
strict, forcing both oracle and sprint-and-walk to run extensively on the little
core for sustained operation. If the power limit is too loose (not shown), both
schedulers can afford to run extensively on the big core during the power
period. In either case, the performance of sprint-and-walk remains close to
oracle.

36

Optimizing Performance for Single-Threaded Applications

3.5.2 Sensitivity Study

The power limit has a major impact on the performance improvement for
both sprint-and-walk and oracle over sprint-and-rest and it may also affect
the gap between oracle and sprint-and-walk. We show the impact of varying
the power limit above and below the baseline limit. We also examine the
impact of the selected scheduling granularity and HCMP configuration.

I. Power Limit

We explore power limits around the median point of 1.25 W, ranging from
0.5 W to 1.5 W by increments of 0.25 W. Figure3.5/shows sorted performance
for oracle and sprint-and-walk normalized to sprint-and-rest, under various
power limits. The figure conveys a similar message to the one observed
in the baseline scenario. Both oracle and sprint-and-walk improve perfor-
mance significantly over sprint-and-rest, especially for tight power limits.
As predicted by Figure with the increase in the power budget, all the
methods converge due to their ability to schedule more intervals on the on
the big core. For power budgets of 0.5W, 0.75W, 1W, 1.5W, sprint-and-
walk improves performance by an average of 42%, 24%, 15%, 7% and up to
76%, 44%, 28%, 40%, respectively. For the same budgets, oracle improves
performance by an average of 46%, 27%, 17%, 9% and up to 78%,48%, 32%,
45%, respectively. When the budget exceeds the power consumption of the
big core, all schedules have the ability to run on the big core throughout
execution. Sprint-and-walk starts by running initially on the little core to
accumulate energy credit, this may causes a few percents of performance
degradation compared to the other two methods when the application can
sustain big core execution within the power budget.

The curves in Figure [3.5]as well as the performance improvement numbers
show that the resemblance between sprint-and-walk and oracle persists
across the different power budgets. This implies that sprint-and-walk pro-
vides near-optimal performance across all applications despite the change in
power budgets.

Il. Granularity

So far, we picked intervals of 1M instructions as our baseline scheduling
granularity. Increasing the granularity over TM lowers the overheads associ-
ated with making scheduling decisions and migrating the application from
one core type to another. However, this comes at the expense of lowering
the accuracy at which finer granularities can track the application phases,

37

Experimental Results

— Sprint-and-walk —— Oracle — Sprint-and-walk —— Oracle

ormalized performance

n

sorted benchmarks sorted benchmarks
(a) Power budget of 0.5 W (b) Power budget of 0.75 W
— Sprint-and-walk —— Oracle — Sprint-and-walk — Oracle

normalized performance
normalized performance

sorted benchmark sorted benchmarks
(c) Power budget of 1.0 W (d) Power budget of 1.5 W

Figure 3.5: Normalized performance for sprint-and-walk versus oracle, relative to sprint-and-rest, for power budgets: (a) 0.5 W,
(b) 0.75 W, (c) 1.0 W, and (d) 1.5 W.

38

Optimizing Performance for Single-Threaded Applications

SW-10K= === =" Oracle-10K SW-100K= === =" Oracle-100K
SW-1M Oracle-1M SW-2M Oracle-2M
SW-5M Oracle-5M SW-10M =====" Oracle-10M

sorted benchmarks

Figure 3.6: Performance for oracle and sprint-and-walk normalized to sprint-
and-rest for various scheduling granularities.

which could lead to a higher performance at the same power limit. In this
section, we experiment with 10 K, 100 K, 1M, 2 M, 5 M, and 10 M instruction
granularities.

Figure[3.6/shows the normalized performance for oracle and sprint-and-walk
over sprint-and-rest at a power budget of 0.75 W for the various scheduling
granularities. For each granularity we show two curves, one for sprint-and-
walk and one for oracle. As the curves are close to each other, we show the
oracle curves in dashed format. All the curves are normalized to the same
performance achieved by sprint-and-rest, which is measured mathematically,
i.e., the switches from the big to the little core happens immediately when the
budget finishes. This corresponds to switching at the finest granularity. We
select 0.75 W because the gap between sprint-and-walk and oracle for both
the average and maximum performance is slightly wider than other budgets,
making it an interesting case to study. Other budgets behave similarly as we
have seen in Section and lead to similar conclusions.

The figure shows that the finer the granularity, the more accurately oracle
tracks the application phases, leading to higher performance improvement
over sprint-and-rest. However, the performance improvement is insignifi-
cant. On average, oracle’s performance improvement goes from 25% at a
granularity of 10 M instructions to 27% at 1 M instructions and 29% at 10 K
instructions. This result corroborates prior works [35} [48]] that also suggest
that a higher improvement is expected at granularities beneath 1 K instruc-
tions. However, operating even at the fine granularities considered in this

39

Experimental Results

work requires a significant change to the underlying core microarchitecture
to elude the high migration overhead. On the other hand, sprint-and-walk
does not show the same sensitivity to the change in scheduling granularity,
as its algorithm has a limited freedom since it migrates to the big core only
at when enough credit is accumulated. On average, sprint-and-rest improves
performance by 23% at a granularity of 10 M instructions, but saturates at
24% for all the finer granularities. The take-away message is that even when
ignoring the migration overheads of an oracle at fine granularities, the gap
with sprint-and-walk remains insignificant.

lll. HCMP Configuration

Our baseline HCMP pairs a 4-wide aggressive out-of-order core with a 2-wide
in-order core. These cores are at two opposite ends of the power-performance
spectrum. We investigate whether such a configuration biases the conclu-
sions we have seen so far. For example, if the big core consumes too much
power whenever used, the scheduler is forced to run more frequently on the
little core, leaving little room for optimization. Similarly, the wimpy little
core can degrade performance significantly, overshadowing the scheduler’s
attempts to improve performance on the big core. We explore the results
for three other HCMP mixes that vary the core complexities and voltage-
frequency operating points as shown in Table[3.2] In the table, configuration
1is the baseline configuration. Configuration 2 mixes a 4-wide out-of-order
core running at 2.6 GHz (big) with a 2-wide out-of-order core running at 1.5
GHz (little). We reduce the frequency of the 4-wide core to 1.5 GHz (big)
and mix it with the in-order core (little) to form configuration 3. Finally,
configuration 4 uses the 2-wide out-of-order core running at 1.5 GHz (big)
and the in-order core (little).

Figure shows performance for oracle and sprint-and-walk relative to
sprint-and-rest for the three HCMP configurations. The curves in Figure 3.7
resemble the ones shown for the baseline configuration. On average, oracle
improves performance by 17% for configuration 2, 11% for configuration 3,
and 9% for configuration 4. Sprint-and-walk improves performance of the
same configurations by 16%, 8%, 6%, respectively. This shows again a gap
of 1-3% between sprint-and-walk and oracle on average. Interestingly, we
notice that three to four cases in configurations 3 and 4 benefit more from
sprint-and-rest more than both techniques that use the little core. Both
configurations have a relatively weak big core operating at a relatively low
frequency, making its power consumption relatively low. For those specific
applications, the little core’s performance is considerably lower than the
average but their power consumption remains close to the average. This

40

Optimizing Performance for Single-Threaded Applications

= Sprint-and-walk = Oracle

N
3
)

N
i
f

N
w
)

N
N
)

N
N
1

normalized performance
-
o

o
©
:

o
e

sorted benchmarks
(a) HMCP configuration 2: core1 big, core3 little

— Sprint-and-walk —— Oracle

-
w
)

N
[N
)

-
EEN
I

-
I

normalized performance

o
©
:

o
©

sorted benchmarks
(b) HMCP configuration 3: core2 big, core4 little

= Sprint-and-walk = QOracle

N
w
)

-
(N
)

-
-
L

normalized performance

sorted benchmarks
(c) HMCP configuration 4: core3 big, core4 little

Figure 3.7: Performance for oracle and sprint-and-walk normalized to sprint-
and-rest for the various HCMP configurations from Table

41

Summary

makes the little core a less efficient option than turning off the processor.
Note that the various HCMP configurations assume different power budgets
suitable for each configuration. The figures are intended to show the near-
optimal performance of sprint-and-walk remains across different HCMP
configurations. The results cannot be used to make conclusions on which
configuration provides better performance.

3.6 Summary

In this chapter we focused on maximizing single-threaded performance of
HCMPs under a power constraint. Power management techniques for single-
threaded applications, such as Turbo-boost 2.0, and multi-threaded applica-
tions, such as computational sprinting, focus on responsiveness. Sprint-and-
rest was proposed for sustained performance under a power budget. When
applying sprint-and-rest to power-limited HCMPs, the processor sprints on
the big core until it consumes its power budget, after which it rests by turning
off the processor, and repeats the cycle throughout the application execution.

We show that sprint-and-rest does not handle the limited power budget
properly when deployed on a heterogeneous processor because it fails to
utilize the available heterogeneity. We propose a new method, called sprint-
and-walk, that extends sprint-and-rest and utilizes both core types of the
HCMP. We show that sprint-and-walk significantly improves performance
over sprint-and-rest when given the same power budget. More importantly,
we show that sprint-and-walk achieves near-optimal performance. To esti-
mate the maximum performance attainable via scheduling under a power
limit, we exhaustively search all possible schedules. Our experiments show
that sprint-and-walk improves performance over sprint-and-rest by 9% on
average and up to 19%. Oracle improves performance by 11% on average and
up to 23%. Moreover, the gap between the two techniques is insignificant
across all SPEC CPU2006 applications. Further more, our extensive analysis
shows that sprint-and-walk is a robust solution that remains within a few
percents of optimal performance as we vary the power budgets available to
the processor, the scheduling granularities, and the HCMP core configura-
tions.

42

Chapter 4

Optimizing Performance for

Multi-Programmed
Workloads

4.1 Introduction

In the previous chapters we introduced Heterogeneous chip-multiprocessors
(HCMPs) as way to extend the shrinking range of operating points available
through DVFS. In the era of dark silicon, HCMPs provide a selection of core
types that allows the processor to better cope with stringent power limits,
and gain extra performance under a given power budget. Both academia and
industry have proposed heterogeneous chip multi-processors that consist
of multiple high-performance but power-hungry ‘big’ cores and multiple
power-efficient but low-performance ‘little’ cores. Recent commercial HCMP
offerings include Samsung’s Exynos series starting from Exynos 5 [[13] till
the latest Exynos 9 [53]], NVIDIA’s Tegra-4 [[14]/Tegra-K1 [54]/Tegra-X1 [55]],
MediaTek’s Helio X20 [[16]], and Intel’s QuicklA [15]. In Chapter (3| we
focus on utilizing HCMPs to maximize the performance for single-threaded
applications under power constraints. In this chapter we target optimizing
the performance of HCMPs when running a multi-programmed workload
under a power constraint.

Performance and power consumption of an HCMP is a function of the
application to core mapping, with time spent on the big core being the
determining factor. As a result, significant research work has focused on
a dynamic scheduler that selects the appropriate core type to optimize per-

43

1.

Introduction

formance [32] 34} [38] 5658]] or energy efficiency [33] 35, 59]. Unfortunately,
none of these prior works take power constraints into account.

We focus on HCMPs with a constrained power budget, i.e., the processor
cannot consume more than a fixed power budget over a specific time period
(e.g., n Watt per m seconds), which is dictated by design parameters. Under
such power budget constraints, applications can be executed on the big core
only when sufficient power budget is available. Otherwise, the application
must be executed on the little cor Consequently, application performance
on such systems directly depends on effectively consuming the available
power budget (which is a function of the application’s power consumption
on the big core).

Intuitively, the power budget should be distributed among concurrently
executing applications based on utility, i.e., the ability for an application
to execute a large fraction of the defined time period on the big core. If
an application can execute a larger fraction of the power period on the
big core, it should be given a larger share of the power budget compared
to an application that can run less on the big core and thus benefit less
from running on the big core. With this in mind, we make the following
contributions in this chapter:

« We formulate the performance optimization challenge on power-
constrained HCMPs as a linear programming problem. We show that
the optimal solution is a schedule where each application runs on
either a big or a small core and exactly one application runs partially
on both.

+ We show that to obtain optimal performance on power-constrained
HCMPs, big core resources should be given to applications with the
highest Delta Performance / Delta Power (DPe/DPo), i.e., the ratio of
the performance delta and the power delta between the big versus little
core.

« We propose DPDP power budget partitioning, a novel policy that
dynamically ranks and schedules applications to big and little cores
based on the DPe/DPo metric. Our proposal uses the insight of the
linear program solution to design a scalable power budget partitioning
policy, that is proven to be optimal in an offline scenario.

« A surprising (perhaps counterintuitive) finding is that memory-
intensive applications tend to be preferred (over compute-intensive ap-
plications) to run on the big core in power-constrained environments.

In our setup, we assume the power consumption of the little core never exceeds the power
constraints, similar to the sustained workloads case in [17].

44

Optimizing Performance for Multi-Programmed Workloads

Because memory-intensive applications consume less power on the
big core than compute-intensive applications, they can run a longer
fraction of time on the big core before having to migrate to the little
core. Therefore, in many cases, they better leverage the power budget
to improve performance than compute-intensive applications.

Our evaluations with DPDP on a 4-core heterogeneous processor consisting
of big.LITTLE pairs show that DPDP improves chip performance by 16% on
average and up to 40% over a strategy that greedily and globally optimizes
the power budget. We demonstrate that DPDP outperforms schedulers based
on commonly used heuristics such as performance ratio and performance
per Watt. We also show that DPDP is scalable to different core counts, core
types, and power budgets. Moreover, we analyze the impact of DPDP on
per-application performance and we propose a technique to enforce a user-
defined tolerable slowdown. Our results show DPDP’s ability to maximize
performance while maintaining the desired latency requirements.

4.2 Motivation

4.2.1 Implications of Power Limits on HCMP Scheduling

We define a power constraint as the maximum power consumption averaged
over a certain time interval, similar to the way we define it throughout this
thesis. This means that power consumption can temporarily exceed this
limit, as long as it is followed by a lower power phase to ensure that the
average is within the limit. This is different from prior work [26] 42| 44
46, which typically assumes a strict power limit at every moment in time.
This definition is motivated by recent work on thermal management [6, [7]:
heating because of high power consumption happens gradually and has
a certain delay (thermal time constant). As a result, chip temperature is
determined by the average power consumption over this time period, rather
than the instantaneous power consumption. We conservatively set the power
period to one second, but our technique can handle any time period setting
(as long as it is long enough compared to the core migration time).

In our HCMP setup, this power constraint definition means that we can exe-
cute more programs on the big cores than the power budget allows, followed
by a migration to the little cores to compensate for the overconsumption.
Therefore, HCMP power management should consider both the performance
and power characteristics of each program on each core type.

45

Motivation

"(ydea8 wopoq) 398pnq somod s | uad pp | ®

uo paseq 2102 S1q ay3 uo pamoj|e si uoijedijdde yoes awiy jo uoioesy pue (ydead doy) oiyes souewoyiad anj/S1q ay] 1 24nS14

astar.r I

bwaves
bzip2.ch
bzip2.co
bzip2.I
bzip2.p
bzip2.s
bzip2.t
cactusADM
calculix
dealll
gamess.c
gamess.h
gamess.t
gcc.166
gcc.200
gce.cp
gcc.c-t
gcc.expr2
gcc.expr
gcc.g23
gcc.s04
gce.sc
GemsFDTD
Gobmk.13
gobmk.n
gobmk.s
gobmk.c
gobmk.d
gromacs
h264ref.base
h264ref.main
h264ref.sss
hmmer.n
hmmer.r
Ibm
leslie3d
libquantum
mcf

milc

namd
omnetpp
perlbench.c
perlbench.d
perlbench.s
povray
sjeng
soplex.p
soplex.r
sphinx3
tonto

wrf
xalancbmk
zeusmp

Fraction on big
COoO0o000O0

RN XSV NS, TiYe) ENENEN N
]

46

Perf. ratio (big/little)

€

I

Optimizing Performance for Multi-Programmed Workloads

Assuming no power constraints, Figure (top graph) shows the perfor-
mance advantage for the SPEC CPU2006 benchmarks when running on the
big core relative to the little cor Under no constraints, applications can
observe anywhere from 2 to 4x better performance on a big core relative to
a little core. However, on a power-constrained HCMP, the budget limits how
long the application can execute on the big core. Once the power budget
is depleted, the application must be executed on the little core. Assuming a
power budget of 1 Watt to spend over 1 second per application, Figure [4.1]
(bottom graph) illustrates the fraction of the total execution time each ap-
plication can execute on the big core. Under power constraints, we observe
that applications can spend as little as 10% of the total execution time on the
big core (e.g., hmmer), or as much as 60% of the total execution time on the
big core (e.g., mcf). The varying behavior among workloads is primarily due
to the difference in power consumption on the big core. In general, we find
that memory-intensive applications tend to have lower power consumption
on the big core since they spend a large fraction of the execution time stalled
waiting for memory, which enables them to spend more time on the big core
for a given budget.

4.2.2 Power Budget Partitioning

Based on the observations from the previous section, we now show how prior
proposals are unsuitable for power-limited HCMPs environments. Figure[4.2]
shows an example heterogeneous multicore featuring two big and two little
cores, concurrently running two applications: gamess.h and libquantum. The
power consumption of both applications on each core type is provided as
well. For this example, we assume a power budget of 2 Watt over a period of
1 second (1 Watt per big.LITTLE pair).

The gamess.h benchmark is a compute-intensive workload that significantly
benefits from the big core (3x performance), but if it may only consume 1W,
it can be run on the big core for 0.09 seconds only, and for the remaining 0.91
seconds, it has to run on the little core, because of its relatively high power
consumption on the big core. Although the memory-intensive libquantum
does not benefit from the big core as much (2.3x performance), its relatively
low power consumption allows it to run for 0.5 seconds on the big core for
the same 1 W power consumption. Overall, libquantum achieves about 40%
higher performance than gamess.h (both relative to little core) when both are
given the same 1 W per 1s power budget.

. Throughout Section we assume an out-of-order little core. In Sectionwe show results
for both in-order and out-of-order little cores (see Sectionfor our experimental setup).

47

Motivation

—_ = -

_.__unchEB

FI:I_

Gamess.h

—

Libquan. | Gamess
%m,\%\ﬂv 1.34 3.35
rmﬂ%@v 0.56 0.75
Perl. | 237 3.04

Conservative

Sprint-and-rest

Sprint-and-walk

Equal budget

Perf ratio

Optimal

Libquan.
Gamess

Libquan.

Gamess
Libquan.

Gamess

Libquan.
Gamess

Libquan.

Gamess

Libquan.
Gamess

Little

Big
. Little
Big
Little
Big
. Little
\ Little
Little
Big
Little
Big
\Little
Little
- >

Thermal period

08 09 1 11 12 13 14 15 16
Performance normalized to conservative

Figure 4.2: Performance gain for several budget partitioning approaches normalized to running all applications on the little cores.

48

Optimizing Performance for Multi-Programmed Workloads

Figure also shows the performance (drawn to scale) for several HCMP
scheduling approaches. While not all of these approaches explicitly partition
the power budget, the application to core mapping indirectly partitions the
power budget based on which and when applications execute on a big core:

« The Conservative approach interprets the power budget as a strict
power limit (total power cannot exceed 2 Watts at any time). If the
total power consumption of executing one or more applications on the
big core exceeds the power budget (as is the case in our example), the
applications can only execute on the little core. Consequently, this
approach does not utilize the available power budget and hence yields
suboptimal performance. This approach is taken by most DVFS-based
CMP power capping studies [26} [42] [44-46]].

+ Sprint-and-rest is similar to computational sprinting for long-running
applications [6] [41]]. Here, we execute all applications on the big core
to obtain the highest performance, and as soon as we have consumed
the available budget, the HCMP is turned off to cool down.

+ Sprint-and-walk follows our definition in Chapter |3} For multiple
cores, this approach is similar to sprint-and-rest but after sprinting
both applications on the big core, we move both of them to the little
cores such that the total budget is still preserved. It is clear that the
fraction spent on the big core will shrink compared to sprint-and-rest
to provision for the run to continue on the little cores. This is the HCMP
scheduling variant of Intel’s Turbo-boost 2.0 [[7], which increases the
frequencies of all cores if there is thermal headroom.

« Equal budget partitioning divides the power budget equally among
the applications (each getting 1 W per 1 s). Here each application
spends a different fraction of the time on the big core based on its
power rates on the big and little cores.

« Performance ratio ranks the applications by their big-to-little perfor-
mance ratio. We always run the lowest ranked application on the little
core while the highest ranked application gets the remainder of the
budget (which allows it to run a fraction of the time on the big core).
This is a common approach for scheduling in HCMPs.

« Optimal system performance is achieved by favoring libquantum over
gamess.h, i.e., run gamess always on little, and give the remaining
budget to libquantum to run on the big core.

49

Power Budget Partitioning using Linear Programming

The suboptimal performance observed for the various scheduling policies is
mainly due to being application-unaware. Both sprint-and-rest and sprint-
and-walk let all the applications greedily compete for the budget: the ap-
plications with higher power consumption rates deplete most of the budget
leaving the lower power applications with a smaller fraction of the budget
despite being better at utilizing it. Similarly, although the performance ratio
approach tries to optimize where to allocate its budget, ignoring the power
limits restricts the time spent on the big core, leading to a wrong prediction of
which application would benefit the most from the given budget. Although
equal budget partitioning provides an equal chance for both applications, it
fails to reach optimal performance because the budget given to gamess.h is
depleted quickly, not benefiting its total performance significantly. However,
when prioritizing libquantum, its memory-intensive nature leads to lower
power consumption that results in an overall higher utilization of the big
core, and this leads to higher overall system performance. The bottom line is
that application awareness is essential to partition the available power
budget among co-running applications to maximize overall system
performance.

Maximizing performance in power-constrained HCMPs mandates optimally
tuning the fraction of time each application gets on the big core, which
comes down to searching through an infinite number of possible fraction
allocations. This analysis clearly motivates the need for a new optimal
and scalable mechanism for partitioning the available power budget across
concurrently executing applications. To that end, the next section formulates
the power budget partitioning problem using linear programming, which
yields a practical, yet well-performing algorithm.

4.3 Power Budget Partitioning using Linear Pro-
gramming

As shown in the previous section, partitioning the power budget across
applications to optimize performance is not straightforward. A partitioning
policy should take into account both the performance gain of an application
on the big core, as well as the fraction of time it can spend on the big core,
which is determined by its power consumption. Instead of trying out various
heuristics, we take a more rigorous approach by formulating the problem
statement using linear programming. Note that the power manager itself
does not need to solve a linear program during runtime. Instead, the key
insight from the mathematical formulation leads to a solution that enables
a low-overhead scalable power manager to dynamically find the optimal

50

Optimizing Performance for Multi-Programmed Workloads

schedule and power distribution among the applications in the large design
space.

4.3.1 Linear Programming Formulation

To formulate power budget partitioning as a linear programming problem,
we denote performance as S and power consumption as P (in Watt). The
performance of each application is expressed as its[[P§|(instructions per sec-
ond) divided by its IPS when run on the big core in isolation (i.e., its weighted
IPS), such that the sum of the performance of all applications in the workload
equals system throughput [60]. S1.; and Py, ; denote performance and
power, respectively, for application ¢ on the little core, whereas Sp ; and Pp ;
denote performance and power on the big core. f; denotes the fraction of the
power period application ¢ executes on the big core; by consequence, 1 — f;
then is the fraction of time it runs on the little core. P44 is the available
power budget. Our objective is to find f; for each application i so that system
throughput is maximized while remaining within the power budget. We only
consider solutions where each application either runs on the big or the little
core (no idle periods), because we find a sprint-and-rest scheme to be always
suboptimal for our configuration. Initially, we assume that each application
in the mix has one pair of a big and little cores allocated to it. This allows us to
focus on the power budget partitioning problem based on the application and
core characteristics while ignoring any further restrictions that result from
applications competing over a limited number of big or little cores. We show
how our approach can be extended to other configurations in Section [4.6.3|
(asymmetric configuration). This optimization problem can be written as a
linear programming problem as shown in Equation 4.1}

maximize > fiSp,i+ (1 — fi)SL.
i=1

subjectto 0 < f; < 1,Vi (4.1)
> fiPgi+ (1 — fi)Pri < Phudget
i=1

It is clear that the set of fractions f; that meet the constraints to form a
correct solution is infinite. However, an interesting characteristic of linear
programming is that an optimal solution is at one of the intersection points
of the constraint equations. In the case of n applications, finding a solution
could be cumbersome though because a comprehensive search to find and
evaluate the intersection points is still needed. Nevertheless, we will show
how we circumvent this obstacle by exploiting an important characteristic of
the solution space as we describe next.

51

Power Budget Partitioning using Linear Programming

4.3.2 The Solution Space

To ease the discussion, we first consider two applications, and then generalize
our findings to more applications. For two applications, the problem can be
rewritten as:

maximize fi1.Sp1+ (1 — f1)Sp1+ f2Sp2+ (1 — f2)Sr2
subjectto 0 < f1, fo <1

fiP1+ (1= fi1)PLa+ foPpa+ (1 — f2) P2
< Pbudget

(4.2)

The solution space of this optimization problem is shown in Figure on
the left. fi; and f need to be inside the square between 0 and 1, and the
power budget restricts the solutions to the left of the line cutting the square.
Due to the nature of linear programs, the optimal solution is one of the two
intersections of the budget line and the square (indicated by the dots). This
means that there are only two possibly optimal solutions: either program 1
or program 2 runs on the big core as long as possible, and if any budget is
left over, the other program can run on the big core for a fraction of the time
only.

A similar argument can be made for multiple applications in n dimensions:
the optimal solution is always on one of the edges of the unit hypercube,
meaning that only one fraction is a real number between 0 and 1, and all
other fractions are either 0 or 1. To illustrate this, the right part of Figure[4.3]
shows six possible solutions in three dimensions: all solutions have two
fractions either 0 or 1, and one fraction in between 0 and 1. This implies
that all applications run either on the big core or the little core all of the
time, and one (and only one!) application migrates between big and little
(because its fraction is in between 0 and 1). Finding a solution thus boils
down to finding which applications to always run on the big core (if
any), which applications to always run on the little core, and finding
the one application that should migrate between core types.

4.3.3 Delta Performance / Delta Power

We have shown that using linear programming optimization, an infinite
solution space can be reduced to prioritizing which applications to run on
the big core at the availability of a power budget. However, searching
comprehensively through all possible solutions is still not a feasible approach
for a dynamic power manager.

52

Optimizing Performance for Multi-Programmed Workloads
if3 s, AS:
gl / (1,1,1

S (0,0.0)

. $,(1,£,0)

1 f1 8

Figure 4.3: Graphical representation of the solution space for two-program
(left) and three-program (right) combinations. The diagonal line/plane rep-
resents the power budget. The shaded area indicates the solution space, the
dots are potential optimal solutions.

The question now is how to rank the applications such that the top-ranked
applications run on the big core, and the bottom-ranked applications run on
the small core; the application at the boundary then needs to switch between
the big and small cores. To derive a mathematically sound ranking metric,
we analytically solve the linear program. We first do the analysis for two
applications, and then generalize our finding to more applications.

Using the problem defined in Equation for two applications, we note
that the optimum is achieved when the budget is completely consumed,
making the second restriction an equation instead of an inequality. We solve
this equation for fa, and replace fa in the maximization function with that
expression. This yields a linear function in fi:

maximize «f; + (3,

. _ Spa1—Sr. Sp,2—SL,2
with o = P 1—Pr 1 Ppo—Pro"

(4.3)

Maximizing this function depends on the sign of o if « is positive, fi should
be as large as possible; if « is negative, fi should be as small as possible.
The sign of « is determined by the Delta Performance by Delta Power ratio
(DPe/DPo): if the difference in performance between the big and little core
divided by the difference in power consumption between the big and little
core for program 1 is larger than for program 2, the sign is positive, and vice
versa. Hence, if the delta performance delta power ratio of program 1is larger
than for program 2, program 1 should execute on the big core as long as
possible, and if it is smaller, program 2 should run on the big core.

Applying the same solution method for three programs yields the following
result (with DPDP; the delta performance delta power ratio of application ¢

53

DPDP Budget Partitioning

between big and little core, and § a constant term):
maximize (DPDPy — DPDPs) fi + (DPDPy — DPDP3) fo+ 8 (4.4)

This means that if DPDP; is larger than DPDPs3, f1 should be maximized,
and similarly for fy. If DPDP; is smaller than DPDP3, then f; should
be minimal, and similarly for fy. If both DPDP; and DPDPs are larger
than DPDPg3, then the largest of DPDP1 and DPDP5 will determine which
fraction yields the largest performance benefit: if DPDP; is larger than
DPDPy, the term with f1 will be larger than the term with f5, so maximizing
f1 yields the largest performance benefit, and vice versa for f5. In conclusion,
the ideal scheduling policy is to select the program with the largest DPDP to
run on the big core, and if budget is left, select the second largest DPDP, and
so on. A similar analysis for four programs gives the same conclusion.

These insights provide us with the foundation for an optimal schedule:
rank the programs based on DPe/DPo, and calculate the fraction of time the
highest ranked program can run on the big core, assuming all other programs
execute on the little cores. If that fraction is smaller than 1, the optimal
schedule is found. If it is 1, calculate how long the program ranked second
can execute on the big core, given that the first program runs on the big
core all the time, and the other programs execute on the little core. Then
continue this iterative process until the budget is fully consumed. This is a
linear method in the number of programs, which makes it a scalable solution.

4.4 DPDP Budget Partitioning

The mathematically derived optimal power management foundations de-
scribed in the previous section assume that performance and power con-
sumption is known for all applications for both the big and little cores;
moreover, it is assumed to be constant over the power period. In reality, this
is not the case: performance and power is unknown (or needs to be measured
or predicted across core types), and applications go through phase changes
during execution. In this section we discuss the implementation details of our
power manager, called DPDP, which leverages the key insights described in
the previous section to optimize performance within a tight power budget
in a low-overhead and scalable way. DPDP requires hardware support to
independently operate (and deactivate) individual cores in the processor, in
addition to the ability to measure the performance and power consumption
of each core in the processor as the applications run.

DPDP power budget partitioning involves four phases: (i) profiling, (ii) a
ranking and partitioning phase, (iii) a monitoring and repartitioning phase

54

Optimizing Performance for Multi-Programmed Workloads

Power period (1 second)

f-—————— - —— —>
20ms 100ms 100ms 50ms

—rt k i
Profiling, Run & collect stats. ' Run & collect stats. Equal-budget
Sprint & walk

Al A A
Partition budget Re-rank applications Re-rank applications
& repartition budget & repartition budget

Figure 4.4: The four phases of the DPDP power manager.

to adapt to application phase changes, and (iv) sprint-and-walk to make up
for profiling inaccuracies and to ensure that we do not exceed the power
budget. Figure 4.4 shows how these phases are distributed along the power
period.

Phase #1: Initial profiling. This phase is done only once, when the
applications start. Profiling is done by executing each application for a
short duration on each core type and measuring its performance and power
consumption. To set the duration of the profiling phase, we need to make
a compromise between profiling accuracy and overhead. A longer profiling
phase has a better chance of capturing accurate power and performance
measurements for each application. However, it allows applications to in-
efficiently consume part of the power budget, reducing the potential perfor-
mance gain. We set our profiling duration to 10 ms on each core type for
a total overhead of 2% for a power period of 1 second (2 times 10 ms). For
applications that have no fine-grained phase behavior, this duration could
be reduced without losing accuracy. We profile all co-running applications
in parallel to reduce the overhead and to capture the effect of interference in
shared resources. We start by running half of them on the big cores and the
other half on the little cores, and migrating them after 10 ms.

Phase #2: Ranking applications and partitioning the budget. As dis-
cussed in Section the optimal schedule requires the applications to run
either on the big core or the little core, except for one application that
runs partially on both core types. Using the statistics gathered for each
application in the profiling phase, our scheme ranks the applications based
on their respective DPe/DPo metrics, and uses this ranking to determine the
schedule for each application. Algorithm[2]summarizes the classification and
partitioning phase. The algorithm starts with the highest ranked application
and assumes all the other applications run on the little cores. If the remaining
budget permits, the scheduler allocates a big core to this application and allo-
cates the required power budget for that core, then it updates the remaining
budget statistics. The scheduler repeats the same procedure iteratively for

55

DPDP Budget Partitioning

Algorithm 2 Determining the fraction of time on the big core each applica-
tion gets during a power period.

Start with list of applications ranked by DPe/DPo
consumed_budget = _(power of all apps on little core)
while consumed_budget < available_budget do
Take the next highest ranked application a
if available_budget — consumed_budget > Pp , — Pr, , then
Schedule application a on big all time
consumed_budget = consumed_budget — Py, o + Pp 4
else
Fractionyg (a) =

available_budget— consumed_budget

Ppa=PL,a
Budget fully consumed, end while loop
end if
end while

Schedule the rest of the applications on little core

the remaining applications in rank order. Once an application cannot fully
execute on the big core, the scheduler calculates the fraction of time the
application is permitted to run on the big core, and schedules the remaining
applications on the little cores.

Phase #3: Statistics collection and budget repartitioning. To cope
with changes in the application phase behavior, our scheme continuously
accumulates power and performance statistics for each application based on
its allocated core type. Every 100 ms, our scheme repeats Phase #2 using
the updated performance and power values, in addition to the total power
consumed up to this point. This enhances the accuracy of the measured
statistics and ensures the adaptability of our power budget partitioning
scheme to changes in workload behavior.

Phase #4: Sprint-and-walk at the end of the power period. In the
last 50 ms, we determine the leftover budget. We equally divide this budget
among the applications, and execute all of them on the little cores for 10 ms.
We then determine how much power is ‘saved’ by running on the little core
compared to the allocated budget. We then ‘burn’ this excess power by
running the applications on the big cores, until it is completely burned. After
that we again execute on the little core, saving budget, and then burn the
saved power on the big core. This is repeated until the end of the power
period. We call this dynamic sprint-and-walk: the fraction of time to run on
the big core is dynamically determined by saving and burning the power
budget. This step is required for two reasons. The first is to ensure that the
execution remains within the power limit at the end of the power period.
The second reason is that we can use this phase as the profiling phase for
the next power period. During Phase #3, most of the applications run on a

56

Optimizing Performance for Multi-Programmed Workloads

Big Little
Type Out-of-order In-order
Frequency 2.6 GHz 1.5 GHz
Voltage 09V 0.64 V
Pipeline width 4 2
ROB size 168 -
L1 I-cache 32KB 32KB
L1 D-cache 32 KB 32 KB
Shared L2 cache 4 MB per pair
Memory bandwidth 25.6 GB/s

Table 4.1: Big and little core configurations.

single core type for the whole duration. In Phase #4 on the other hand, each
application runs on both the little and big core for some time, generating
profile information for the next power period.

The overhead of the scheduler is minimal. The main overhead incurred by the
scheduler is to rank the n applications, which has a complexity of O(n logn).
Considering this overhead is incurred at most once per 100 ms (which is
an adjustable design knob), the scheduler has an unnoticeable impact on
performance. The scheduler described in this section can be implemented
in software as part of the operating system scheduler. Optionally, it can be
implemented as part of a power management unit in hardware. Similar to
the software implementation, a hardware implementation needs to rank the
applications based on their DPe/DPo measurements. Moreover, by continu-
ously monitoring an application’s power and performance statistics in Phase
#4, as described above, profiling overhead is incurred only at the beginning
of the application run.

4.5 Experimental Setup

We use the Sniper 6.0 [50] simulation infrastructure (using its most detailed
cycle-level core model) to carry out the experiments in this work. We simulate
heterogeneous multicore systems that consist of two core types, big and
little, see Table The big core is an aggressive four-wide out-of-order
core running at 2.6 GHz, while the little core is a two-wide in-order core
running at 1.5 GHz. The last-level cache is shared by all cores. There is

57

Experimental Setup

4 MB of LLC per pair of big and little cores. Throughout the evaluation
experiments we assume that the processor relies on a cache hierarchy that
does not use data or instruction prefetching techniques. We aim to study the
power budget partitioning techniques based on application characteristics,
regardless of prefetching benefits. Such techniques may make a memory-
intensive application less memory-bound. However, their impact would
still leave a significant distinction in power and performance characteristics
across applications, which can be leveraged by DPDP. Therefore, we expect
our results and conclusions to hold in the presence of such techniques.

We use the in-order little core configuration throughout Section We con-
sider a two-wide out-of-order little core in one of the sensitivity studies, to re-
semble recent low-power microarchitectures, such as Intel’s Silvermont [6T].
We evaluate scheduling 4 applications on processors consisting of 4 pairs of
big and little cores. We also demonstrate the applicability of our method to
architectures having fewer big cores than little cores.

We use McPAT 1.3 [51] to estimate the power consumption of our schedules,
assuming a 22 nm chip technology. We report total power consumption as the
sum of the leakage power and the runtime dynamic power, assuming clock
gating for unused structures in the active cores. Idle cores are power-gated.
We set the power budget for each big-little pair at 1 Watt for each period
of 1 second, i.e., 4 pairs of big and little cores are given 4 W every second.
This budget assumption is reasonable for the sake of our analysis as it falls
between the big core and little core power ratings and allows sufficient room
for optimization. A similar power budget has been assumed in prior work [6].
Moreover, we provide a sensitivity study to show the benefit of DPDP as
we vary the assumed baseline power budget. Our simulation infrastructure
accounts for the overheads associated with migrating applications between
cores. This includes 20 us required for saving and restoring architectural
state [[1]] and for powering on the other core (because our scheduler knows
when to migrate, powering on the other core could also be done slightly
before the transition time). We also model the impact of cache warmup
(on top of the 20 us mentioned above). Overall, our power manager suffers
minimal overhead because it switches between cores at most once every
100 ms in phase #3, and less than five times in phase #4.

To evaluate our scheme we use all 26 SPEC CPU2006 benchmarks and
consider all of their reference inputs resulting in 55 benchmark-input com-
binations. We use PinPoint [62] to generate representative regions of 10
billion instructions, and we simulate 1 second of execution. We consider 75
randomly chosen combinations of 4 benchmarks. We evaluate performance
using total system throughput (STP), which reflects the overall achieved
throughput of the system compared to a reference single big core. We also

58

Optimizing Performance for Multi-Programmed Workloads

consider user-perceived performance by evaluating the average normalized
turnaround time (ANTT) [[60].

4.6 Results and Discussion

We now demonstrate the effectiveness of DPDP power budget partitioning.
We consider the following five schemes and evaluate their effectiveness at
improving performance within the power budget of 1 Watt per 1 second per
application.

 Global sprint-and-walk. Our first scheduler considers a global power
budget (i.e., 4 Watts per 1 second for four applications), and greedily
optimizes performance within the given power budget. It starts by
executing all applications on the little cores for 10 ms. It then calculates
the ‘saved’ budget compared to the total budget, which it then burns
by executing all applications on the big cores. The ‘saved’ budget
equals the available budget (0.01 W per 10 ms per application) minus
the amount of energy consumed during the 10 ms time interval. Once
the available budget is burned, all applications migrate back to the little
cores, saving budget again for the next 10 ms, which can then be burned
on the big cores, etc.

 Equal-budget sprint-and-walk. This scheduler is similar to the previous
one, except that we now partition the overall power budget across
the co-running applications, and optimize the power budget for each
application individually, i.e., we assign 1 Watt per 1 second for each
application. Similarly to the previous scheduler, all applications start
running on the little cores for 10 ms. For each application, we calculate
the saved budget relative to the available budget, and we greedily run
the application on the big core until the saved budget is consumed.
Once an application’s power budget is consumed, it migrates back to
the little core for another 10 ms to again build up its power budget, and
the scheme repeats.

« Budget partitioning using performance ratio. This scheduler is similar to
DPDP as described in Section[4.4] but instead of using DPe/DPo as the
ranking metric, we use performance ratio between big and little cores.
In other words, applications that speed up more on the big core are
given a larger share of the budget and thus higher priority to run on
the big core, as long as the power budget is not exceeded.

59

Results and Discussion

DPDP

Equal budget

normalized STP

© o o
~N 0 ©
e}

|

|

|

|

|

|

|

|

|

|

|

|

|

|

sorted workloads

Figure 4.5: Comparing the various power budget partitioning schemes rela-
tive to global sprint-and-walk for mixes of four applications.

« Budget partitioning using performance per Watt. Here, we rank the
applications based on the performance per Watt on the big core. Per-
formance per Watt is a commonly used metric for expressing power
efficiency, and intuitively, it makes sense to run applications with the
highest performance per Watt ratio on the big cores.

+ Budget partitioning using DPe/DPo. This is the DPDP scheduler, as
described in Section [4.4]

We normalize all of the results to the global sprint-and-walk scheme, because
this scheme is the natural translation of Intel’s Turbo-boost [[7]], originally de-
signed for DVFS, to HCMPs. The graphs in this section show how each of the
schemes perform compared to the baseline scheme using an S-curve, showing
the sorted relative performance difference for all workload combinations.

4.6.1 DPDP Results

Figures[4.5] quantifies the performance improvements achieved by DPDP for
mixes of four applications. The graph clearly shows that DPDP outperforms
the other power budget partitioning schemes. DPDP improves performance
by 16% on average and up to 40% over global sprint-and-walk for mixes of four
applications. The performance improvement of DPDP stems from optimal
budget partitioning. DPDP selects the applications that achieve the highest
raise in performance given the available budget, the period over which power
is calculated, and the performance characteristics of the application on both
core types. The other alternatives, as explain in Section fail to consider
one or more aspects of performance maximization under a power limit.

60

Optimizing Performance for Multi-Programmed Workloads

128 — — — — — — — — — — — — — — —

=
N
N
|
|
|
|
|
|
|
|
|
|
|
|
|

perfomrance ga
=
N
|
|
|
|
|

4 mem 3 mem 2 mem 1 mem 0 mem
0 comp 1 comp 2 comp 3 comp 4 comp

Figure 4.6: Average STP improvement for DPDP versus global sprint-and-
walk for different classes of compute and memory-intensive four-application
mixes.

Figure also demonstrates DPDP’s robustness: DPDP improves overall
performance for all workload mixes. Although equal budget partitioning
consistently improves performance, for most mixes, the improvement is lim-
ited to less than 5% on average. The other two budget partitioning schemes
are less robust, and do not consistently improve performance. In fact, about
half of application mixes observe a performance degradation for the schemes
based on the performance ratio and performance per Watt metrics. This
clearly demonstrates the effectiveness of the DPe/DPo metric for application
scheduling and power budget partitioning.

Figure[4.6/shows the average performance improvement for DPDP over global
sprint-and-walk for different mixes of compute and memory-intensive ap-
plications. We classify applications as memory-intensive if they spend at
least 25% of their execution time waiting for main memory. We consider
workload mixes with zero to up to four memory- and compute-intensive
applications. The performance gain for DPDP over global sprint-and-walk
peaks for mixes with 2 compute and 2 memory-intensive applications. This is
as expected: the larger the difference is between the applications’ big-versus-
little characteristics, the larger the impact of power budget partitioning is on
performance.

4.6.2 Big Core Utilization

To gain more insight into the performance benefits achieved through DPDP,
we now investigate which applications get to run on the big core more

61

Results and Discussion

B Memory B Compute

mixes of 2 mem & 2 comp applications
(a) Breakdown for the DPe/DPo metric.

big core utilization

H Memory B Compute

2..- — — — — — — — — — — — — — —

mixes of 2 mem & 2 comp applications

(b) Breakdown for the performance ratio metric.

1

big core utilization

0

Figure 4.7: Big core usage. For most cases, DPe/DPo favors memory-intensive
applications, achieving 56% higher big core utilization than performance
ratio.

frequently. Figure breaks down the time spent on the big cores by
application type (memory versus compute-intensive) for DPDP versus budget
partitioning using performance ratio. For a mix of four applications, the
highest utilization of the available 4 big cores equals 4. All the mixes shown
in the figure use two memory and two compute-intensive applications.

Two observations can be made from the figure. First, DPDP leads to a higher
big core utilization compared to budget partitioning using the performance
ratio metric, compare Figure [4.7(a) versus (b). DPDP improves the big core
utilization by about 56% over budget partitioning based on the performance
ratio metric on average across the workload mixes. This suggests that DPDP
is better able at effectively utilizing big core resources, which explains the

62

Optimizing Performance for Multi-Programmed Workloads

observed performance benefits.

Second and more interestingly, DPDP tends to favor memory-intensive ap-
plications by allocating a larger fraction of the power budget to them than to
compute-intensive applications, although not uniformly so — it is a function
of the DPe/DPo ratio. This observation suggests that memory-intensive
applications are better at utilizing the available budget than their compute-
intensive counterparts. This is counter-intuitive, as memory-intensive appli-
cations usually show a smaller performance benefit from running on a big
core compared to compute-intensive applications. In fact, [33} 34}, 56| 57} 59]
propose scheduling compute-intensive applications on a big core to optimize
performance (in the absence of a power limit). Van Craeynest et al. [32] show
that memory-intensive applications could benefit from running on a big core
by exploiting more memory-level parallelism, which explains the fact that
the performance ratio metric also selects the memory-intensive applications
for some mixes. However, we find that memory-intensive applications have
another benefit under power constraints. Due to the fact that they wait more
for main memory, they can more extensively leverage clock-gating, which
reduces the big core’s power consumption. This in its turn increases the time
that they can spend on the big core, which leads to an overall increase in
system throughput under a power constraint.

4.6.3 Sensitivity Analysis

We now explore the sensitivity of DPDP with respect to the available power
budget, the core types available in the HCMP, and asymmetry in the HCMP
configuration.

I. Available Power Budget

The available power budget has a considerable impact on the performance
gain that can be achieved through power budget partitioning. Figure
shows the impact of varying the power budget on the achieved gain. De-
creasing the budget to 0.75 Watt per 1 second slightly decreases the average
performance gain to 13.5%. Similarly, increasing the budget to 1.5 Watt per
1 second shows smaller gains compared to the nominal 1 Watt per 1 second
power budget. A much larger budget (2 Watt per 1second), on the other hand,
shows an insignificant performance gain. This is to be expected: for a power
budget in-between the power ratings of the big and little cores, proper power
budget partitioning is expected to provide significant performance gains.
Once the budget becomes either too constrained or too abundant relative

63

Results and Discussion

---------------- 0.75W 10W =—————15W 20w
154¢7¢ — — - — — — — — — — — — —
1.4+

& 13-

n

2 1.2-

N

® 1.1
£
2 11
9 - - -"-"—- - = = = = = = =
0.8

sorted workloads
Figure 4.8: Normalized STP across different power budgets.
................ Perf ratio ——— Perf/W Equal budget=————DPDP
3 - - - = — — — — — — — —

normalized STP

0.8

sorted workloads

Figure 4.9: Normalized STP assuming out-of-order little cores.

to the little and big core’s power consumption, budget partitioning becomes
less valuable. For constrained cases, most of the applications would have to
run on the little cores anyways, making it close to a conservative approach.
For abundant budgets on the other hand, most of the applications are able
to run on the big cores, limiting the opportunity for budget partitioning.

II. Core Type

We now set the little core to be an out-of-order core instead of an in-order core
(frequency settings, cache hierarchy, and other structures remain the same),
see Figure DPDP still yields a significant performance improvement
over a global sprint-and-walk approach. DPDP improves performance by

64

Optimizing Performance for Multi-Programmed Workloads

---------------- Perf ratio =——— Perf/W Equal budget =——

13— — — — — — — — — — — — =

sorted workloads

Figure 4.10: Normalized STP for the various partitioning policies assuming a
CMP configuration of 2 big and 4 little cores.

9% on average over global sprint-and-walk, and up to 26%. Note that the
performance gain for an out-of-order little core is lower than the gain seen for
the in-order configuration. This relatively lower performance gain happens
for two reasons. First, the less powerful in-order little core provides relatively
lower performance compared to the out-of-order little core, increasing the
opportunity for power budget partitioning. Second, the in-order little core
consumes less power than the out-of-order little core, which increases the
fraction of time allowed on a big core for our budget partitioning scheme.

. Asymmetric HCMP Configuration

In the previous results, we assume as many big and little cores as there are
applications. However, the DPDP scheduler also applies to configurations
with fewer big cores than little cores. The only change is that the partitioning
algorithm (Algorithm [2) also halts if all big cores are used before the budget
runs out. Figure[d.10]shows the results for an HCMP configuration consisting
of four little cores and only two big cores. The general performance improve-
ment over all other techniques is again clear. DPDP still shows a significant
14% improvement on average over global sprint-and-walk that reaches up to
33%. However, these gains are lower than our baseline results. Clearly, as the
number of available big cores decreases, more applications are forced to stay
on the little cores even when sufficient power budget is available.

65

Results and Discussion

4.6.4 Exploiting Application Phase Behavior

In DPDP, there is one application that runs on the big core for a fraction
of the power period, and on the little core for the remaining fraction. This
is done by first running on the little core, after which we switch to the big
core, and the cycle keeps repeating every 100 ms throughout the application
execution. This behavior is similar to the sprint-and-walk method we tested
in Chapter [3] Our prior analysis shows that this method remains within a
few percents of an optimal power manager even when we vary the power
budget, the scheduling granularity, and the HCMP configuration. Therefore,
we decided not to implement a phase-aware scheduler to further improve the
performance of the single application that migrates between the big and the
little core.

4.6.5 Per-Application Performance Considerations

DPDP is designed to optimize system throughput under a power limit. To
maximize throughput, DPDP favors applications with higher DPe/DPo val-
ues, giving them higher power budgets to run more on the big core. It is
expected that applications with low DPe/DPo could suffer a slowdown com-
pared to techniques that distribute power equally or that even greedily op-
timize the global power budget (e.g., global sprint-and-walk). In this section,
we show how to extend DPDP with the capability to balance between the
maximum throughput requirement and the maximum performance degra-
dation any single application suffers.

To avoid slowing down low-ranked applications too much, we allocate more
power to those applications once a significant per-application performance
degradation is detected. Our approach tries to control the degree of simi-
larity by which applications progress in their execution (i.e., equal-progress
fairness) [38]. To assess the progress of each application, we calculate the
slowdown of each application using DPDP compared to always running on
the big core. The similarity of slowdowns among applications indicates the
fairness of the distribution, and reveals whether one application is suffering
a relatively significant slowdown.

We use the ratio of the smallest slowdown to the highest slowdown among
all applications to represent the equality of progress. We call this ratio the
progress index. The closer this ratio to one, the fairer the power distribution
and the progress of applications. The closer it is to zero, the higher the focus
is on system throughput (i.e., lower regard to per application slowdown). We
provide the user with a knob to specify a slowdown threshold. At runtime,
if the progress index drops below the slowdown threshold, DPDP focuses on

66

Optimizing Performance for Multi-Programmed Workloads

Max STP == Slowdown threshold 0.6= = = = = Slowdown threshold 1.0

147 — — — — — — — — — — — — — —

sorted workloads
(a) System throughput for different per-application performance support thresholds

Max STP == Slowdown threshold 0.6 = = = = = Slowdown threshold 1.0

2T — —= —_— —_— —_ —_— —_ —_ —_— —_— —_— —_— —= —

1.8+
Z 4
Z16
3
N 1.4+

1.2+

normal

1-

e ——

0.8 sorted workloads

(b) ANTT for different per-application performance support thresholds

Figure 4.11: STP (higher is better) and ANTT (lower is better) for different per-
application performance support thresholds. A min to max slowdown point
of 0.6 improves both STP (6%) and ANTT (3%).

improving per-application performance. Otherwise, it continues to maximize
system throughput.

DPDP is a flexible power manager, thus integrating this knob is straightfor-
ward. Every 100 ms, DPDP reranks the applications based on their updated
performance and power consumption. To provide per-application perfor-
mance support, we calculate the progress index, in addition to the DPe/DPo
metric every 100 ms. If the index drops below the specified threshold, DPDP
reranks the applications based on their respective slowdowns. This ensures
that applications with slower progress get more time on the big core over
the next 100 ms. When the progress index exceeds the slowdown thresh-
old, DPDP resumes operating for maximum system throughput using the
DPe/DPo metric.

67

Related Work

Figure shows the potential for adjusting the slowdown threshold to
strike a sweet spot between system throughput and per-application perfor-
mance. We use the average normalized turnaround time (ANTT) to assess
per-application performance. Equation describes how ANTT is calcu-
lated. For all the co-executing applications, ANTT averages the ratio of each
application’s performance when running in isolation (i.e., Sy ; in the equa-
tion) over its performance when running as part of the multi-programmed
workload (i.e., Sy,p; in the equation). ANTT incorporates equal progress by
heavily penalizing slowly running applications [60].

ANTT = 13" S (4.5)
i=1 7"

The higher ANTT normalized to global sprint-and-walk, the worse the impact
of DPDP on the perceived per-application performance. When operating
DPDP in full support of per-application performance (i.e., setting the slow-
down threshold to 1), system throughput sees either insignificant gain or
even a slight degradation for several mixes, as the dotted line in Figure
(a) shows. On the other hand, when operating in maximum system
throughput mode (i.e., original DPDP where applications are always ranked
using DPe/DPo), ANTT tends to increase by an average of 40%, as Figure
[4.11)(b) shows. By properly adjusting the slowdown threshold, DPDP is able
to achieve similar ANTT to the mode of full per-application performance
support (Figure (b)). ANTT gets slightly reduced compared to global
sprint-and-walk as can be seen for several mixes in the figure (mixes below
1). Figure[4.11](b) also shows that proper threshold tuning improves system
throughput by 6% on average and up to 12%. More importantly, the results
show the flexibility of DPDP to adapt to various system requirements.

4.7 Related Work

We now discuss related work in power and thermal management, as well as
recent work in scheduling for HCMPs.

4.7.1 Power and Thermal Management

Brooks et al.[63] discuss thermal constraints in microprocessors. They pro-
pose dynamic thermal management schemes for single-core processors us-
ing DVFS and fetch throttling. Donald et al. [23] study dynamic thermal
management for homogeneous multicores, and several papers [26}[42, [44-46]]
propose schemes for maximizing the performance of homogeneous multicore

68

Optimizing Performance for Multi-Programmed Workloads

processor under strict power limits using per-core DVFS. None of these DVFS
works are directly applicable to HCMPs and neither do they consider the
potential gains offered by temporarily exceeding the power cap.

Intel’s Turboboost 1.0 [40] increases the frequency when few cores are active,
whereas Turboboost 2.0 [7] allows for increasing the frequency beyond the
TDP for short periods of time to improve responsiveness. Computational
sprinting [6l 41] is a technique to improve the responsiveness of interactive
applications by temporarily using more cores than the TDP allows, followed
by an idle cool-down period. Our technique targets improving sustained chip
throughput, rather than improving interactive responsiveness. Raghavan et
al. [64] show that computational sprinting can also be beneficial for sustained
performance if enabling more cores leads to a better energy-efficiency. In a
heterogeneous multicore setup, we find that a sprint-and-rest scheme (run
on the big core, and then idle; the second technique in Figure[4.2) never out-
performs a sprint-and-walk scheme (run on the big core, followed by running
on the little core), because running on the little core is always more energy-
efficient than running on the big core. Fan et al. [65]] describe an architecture
to sprint data analytics applications at a rack level. They use game theory to
optimize system throughput of the whole rack given individual chip thermal
limits and the rack-level power limit. An agent can sprint a chip by activating
additional cores and raising their frequency. Their technique is not intended
to partition the budget among multiple applications sharing the same chip.
Our approach on the other hand takes a single chip running multiple appli-
cations concurrently. We improve system throughput by correctly selecting
which applications to sprint on the big cores given a specific power budget.

Muthukaruppan et al. [66] and Zhu et al. [36] propose power and thermal
management on HCMPs to improve energy efficiency while meeting QoS re-
quirements. Here we focus on optimal power management with maximizing
total system throughput as a main objective. Paul et al. [67] propose a tech-
nique to coordinate power and thermal management to improve performance
and energy efficiency in systems consisting of both CPUs and GPUs.

4.7.2 Scheduling for Heterogeneous Multicores

Kumar et al. [29] advocate single-ISA heterogeneous multicores to reduce
power consumption. They show that a heterogeneous multicore is superior
to DVFS in terms of energy-efficiency. A recent study by Lukefahr et al. [47]
confirms that heterogeneity indeed outperforms DVFS for low-power sys-
tems.

69

Summary

Many proposals advocate scheduling compute-intensive applications on the
big cores, because they show the highest performance improvement [33| 34,
56, 57, 59]. Van Craeynest et al. [32] show that memory-intensive applica-
tions can also show important performance gains on big cores if they are
able to exploit more memory-level parallelism. All of these proposals optimize
for performance or energy-efficiency, without considering power constraints.
Our analysis shows that under power constraints, memory-intensive applica-
tions have another benefit: due to their lower power consumption, they can
execute longer on the big core, which increases their overall performance,
despite of their lower performance improvement on the big cores.

4.8 Summary

Power and thermal constraints are becoming the main limiting factor in ex-
tracting high performance in modern processors. HCMPs provide flexibility
to improve performance under power limits: if power headroom is available,
applications can execute on big, powerful cores, while executing on little,
energy-efficient cores cools down the chip and builds up new headroom. This
paper explores mechanisms to maximize the performance of an HCMP under
power limits.

We show that global greedy scheduling or equal budget partitioning schemes
do not lead to optimal performance, because some applications can use
the budget more efficiently than others. Previously proposed scheduling
schemes for performance and energy efficiency also do not reach optimal
performance, because they ignore the fraction of time that applications can
make use of the big core as implied by the power budget. Using linear pro-
gramming, we deduce that ranking applications by their delta performance
delta power ratio (DPe/DPo) leads to the theoretically optimal schedule.

We propose and evaluate a scheduler that uses the DPe/DPo metric, and
show that it indeed outperforms the other schedulers by a significant mar-
gin. Our experimental results with 4 big.LITTLE pairs demonstrate that
DPDP outperforms global greedy scheduling, a natural translation of Intel’s
Turbo-boost to HCMPs, by 16% on average and up to 40%. An interesting
observation is that under power constraints, it is beneficial to favor memory-
intensive applications to run on the big core, whereas prior work advocates
scheduling compute-intensive applications on the big core (in the absence
of power constraints). The reason for this counterintuitive result is that
memory-intensive applications usually consume less power on the big core,
allowing them to run on the big core for a longer period of time, thereby
improving overall performance within the power budget.

70

Optimizing Performance for Multi-Programmed Workloads

We also show that DPDP vyields significant improvement as we change
the available power budget and the little core microarchitecture. DPDP’s
performance improvement remains significant across a spectrum of power
budgets. However, we notice that when the power budget gets extremely
loose or extremely tight, the performance of all the scheduling metrics con-
verge as the opportunity for optimization shrinks. We also show that DPDP
yields high performance improvement as we substitute the in-order little core
with an out-of-order one. However, DPDP’s performance improvement over
other techniques gets lower with an out-of-order core. The in-order little
core consumes less power and yields lower performance than the out-of-
order core. Hence, it has a bigger power and performance gap with the big
core. Therefore, the impact of optimizing the power budget and mapping
applications to core types has a higher influence on the fraction of time spent
on the big core and the overall performance of the processor.

We demonstrate DPDP’s flexibility to adapt to operating scenarios of inter-
est. We show how to use DPDP in cases of asymmetric HCMP configura-
tions. Similar to symmetric HCMPs, DPDP vyields significant performance
improvement over other techniques on asymmetric HCMPs. DPDP improves
performance by increasing the big core utilization. On HCMPs with fewer
big cores, DPDP’s performance improvement over other techniques may
get lower. DPDP can be flexibly applied to cases where the per-application
perceived latency is of interest. We show how to extend DPDP with a knob
that lets a user determine the level of tolerance to per-application incurred
latency in favor of maximizing the system throughput. Our results show that
it is possible to strike a sweet spot by which DPDP significantly improves STP
over the global sprint-and-walk and at the same time slightly improving the
latency per application compared to approaches that greedily compete for
the power budget.

71

Chapter 5

Optimizing Performance on
HCMPs with DVFS

5.1 Introduction

One of the main benefits brought by heterogeneous multicore processors is to
expand the set of power-performance tradeoff points in CMPs beyond DVFS.
However, this added flexibility significantly complicates mining for optimal
operating points that achieve the power and performance targets. In this
chapter, we seek to optimize the performance of a generic, power-limited
HCMP configuration. We target HCMPs that feature a generic number of
core types, and each core type can run on several Voltage-Frequency (V-F)
operating points.

We maintain our view of a power limit as a consumption rate that can be ex-
ceeded instantaneously as long as it is preserved over a time period. To max-
imize performance of one application on one core type, a traditional power
manager uses the default V-F operating points to generate a performance-
power curve for the application. It then walks the curve to find the point of
maximum performance that does not exceed the limit [68]. A power target
in-between two points can be achieved by alternating between the points. We
show in this work that the same approach should not be applied to power-
limited HCMPs. This approach leads to sub-optimal power-performance
tradeoff points.

We observe that when mixing different core types in HCMPs, naively relying
on the default set of operating points leads to sub-optimal results. Finding
the highest performing point below the power limit, and alternating with
another point (e.g., immediately) above the limit can waste significant power

73

Background and Motivation

and performance. We show that, contrary to intuition, even when filtering
the default set of operating points to keep only Pareto-optimal points, this
approach still leads to significant performance degradation. Using a brute-
force approach to find the points of maximum performance involves high
overhead. This is especially true with a high number of core types, operating
points per core, and concurrent applications. In particular, optimizing perfor-
mance for multiple applications sharing a power budget explodes the search
space as it requires both optimal budget partitioning among applications
and optimal per-application operating point selection based on the assigned

budget.

In this work we show that several points in the default set of operating
points drain power without significant performance benefit when they are
used in power-limited HCMPs; hence, the name power holes. Surprisingly,
Pareto-optimal points suffer from a similar problem. Sifting power holes is
key to optimizing performance for both cases of a single application and
multiple concurrent applications. Moreover, sifting must be performed at
runtime as it is application-specific. We propose PH-Sifter, a fast and scalable
technique for sifting operating points, and keeping only the set of points that
optimally use power to gain performance. We show significant performance
improvements for PH-Sifter compared to Pareto-sifting for three use cases:
(i) maximizing performance for a single application, (ii) maximizing system
throughput for multi-programmed workloads, and (iii) maximizing perfor-
mance of a system in which part of the power budget is reserved for a high-
priority application. Our results show performance improvements of 13%,
27%, and 28% on average that reach up to 52%, 91%, and 2.3x, respectively,
for the three use cases.

5.2 Background and Motivation

This work targets the performance of power-limited HCMPs with multiple
V-F operating points per core type. Because the V-F operating points come in
discrete values, power managers need to search for the highest performing
point that does not violate the power limit [68]. Conservatively selecting a
single operating point does not guarantee maximum performance under a
power limit. First, the difference between that point’s power rating and the
allowed budget is wasted, degrading performance. More importantly, higher
performance could be achieved within the same limit when migrating the
application between two points; one point that does not exceed the limit and
another point that exceeds it but yields a higher performance. One approach
to find the optimal operating points is to perform a brute force search for all

74

Optimizing Performance on HCMPs with DVFS

....... e small big
Bm— — — — — — — — — — g —

4__ — — — — — — — — — —

3 4 5 6
Performance (BIPS)

Figure 5.1: Naive performance-power curve walking.

the pairs of operating points. However, this method suffers from significant
overhead for a single application, and the overhead explodes as the number
of operating points and concurrent applications increases.

Figure shows the performance versus power consumption for two
core types, each with four operating points, for an example benchmark,
bzip2.liberty from SPEC CPU2006. Each point represents one V-F setting
of the core (see Section for details regarding the experimental setup).
Figure [5.1] also shows the naive approach to maximize performance under a
power limit. It starts by walking the default operating points from the lowest
performance point on the little core to the highest point that does not exceed
the power limit. Then it opportunistically alternates between this point and
the next higher performance point to leverage the whole power budget, while
keeping the average power below the limit.

For example, assuming a power limit of 1W, this naive approach schedules
the application on the third point of the little core (3L) and switches to the
fourth point (4L) as much as the budget allows. This approach results in sub-
optimal performance because alternating between point 3L of the little core
and 1B of the big core better trades power for performance.

A method that considers only Pareto-optimal performance-power points
filters point 4L, as Figure[5.2shows. An operating point is considered Pareto-
optimal if there exists no other operating point that yields better performance
at lower power. Point 4L of the little core is a non-Pareto-optimal point, and
can therefore be discarded. All other operating points are Pareto-optimal.
Pareto curves are usually used to show the spectrum of efficient operating
points in HCMP products [[16]]. Surprisingly, walking the Pareto-optimal

75

PH-Sifter

------- > small big Pareto

5b— — — — — — — — — — gy —
A = = = = = = = — — — —
Sl - - . _ S
g 23&%”

24— — — T - — —
O
o 3L‘.\"X lw

e

O_ T T T ' ! !

0 1 2 3 4 5 6

Performance (BIPS)

Figure 5.2: Pareto-sifting.

curve to find the optimal operating points within the power budget [69] still
leads to power holes that waste power and degrade performance.

Consider the same application and the same 1 W power budget. An approach
that uses Pareto-optimal points alternates between points 3L (little) and point
1B (big). Assuming no migration overhead in this example, the application
runs 62% of the time on the big core and 38% on the little core, reaching
an average performance of 2.35 BIPS. The Pareto approach improves over
the naive approach because the line between points 3L and 1B crosses the
1W budget line further to the right on the x-axis. However, there are still
opportunities to improve performance. For example, point 2L uses less power
than 3L and allows the application to utilize the big core at point (1B) up
to 88% of the time, for a higher performance of 2.62 BIPS. As we show in
Section[3.3.2] this latter choice is still not the optimal. This calls for a feasible
approach to identify optimal operating points that maximize performance
under power limits.

5.3 PH-Sifter

Based on the discussion in Section the problem of filtering operating
points boils down to selecting the next point that yields the highest perfor-
mance for power, starting from a lower operating point. In this section, we
propose PH-Sifter, a fast operating point sifting technique. PH-Sifter relies
on Delta Performance / Delta Power (DPe/DPo) to rank the relative efficiency
of optimal operating points. DPe/DPo is the reciprocal of the slope between

76

Optimizing Performance on HCMPs with DVFS

sy s big

PH-Sifter

Power holes

Performance (BIPS)

Figure 5.3: PH-Sifter.

two operating points. Hence, the flatter the slope, the higher DPe/DPo. In
Figure[5.1] the slope between the third and fourth points of the little core (3L
vs 4L) is steeper than the slope between the third point of the little core and
the first point of the big core (3L vs 1B).

Now consider the line between the lowest operating point on the little core
and the lowest point on the big core as in Figure[5.3] Its slope is lower (i.e., its
DPe/DPo is higher) than all other lines originating from the lowest operating
point of the little core to any other operating point. Intuitively, alternating
an application between the lowest point of the little core (1L) and the lowest
point of the big core (1B) results in a (virtual) operating point on this line.
It is clear that any other operating point on the little core results in a worse
power/performance (virtual) operating point. As a result, all operating points
of the little core can be pruned except for the lowest point.

A set of operating points can be proven optimal for performance optimization
under a power limit if (and only if) DPe/DPo is a monotonically decreasing
function from the lowest to the highest power-performance operating point.
Suppose a set of operating points are not monotonically decreasing. This
means that there is at least one operating point ’x’ that breaks monotonicity
and its performance rating falls between the performance of two operating
points (a and b), such that ’a’ is followed by ’x’ which is then followed
by ’b> when walking the operating point power performance curve. Since
this point breaks the decreasing monotonicity, DPe/DPo(a,x) is smaller than
DPe/DPo(x,b). Moreover, DPe/DPo(a,b) is greater than DPe/DPo(a,x) but
smaller than DPe/DPo(x,b). If the latter condition is not satisfied, this means
that ’x’ forms a monotonically decreasing curve or it is just an impossible
point to exist, and both are cases of no interest. Because DPe/DPo(a,b) is

77

PH-Sifter

greater than DPe/DPo(a,x), alternating between points ’a’ and ’b’ always
yields a better performance for any power budget ranging between the power
ratings of points ’a’ and ’b’. Therefore, the set of operating points cannot be
optimal because point ’x’ is not needed.

Figure[5.3|visualizes this. The Pareto frontier in Figure[5.2)is not a monoton-
ically decreasing function: the slope between the second and third points of
the little core (2L vs 3L) is steeper than between the second point of the little
core and the first point of the big core (2L vs 1B). In turn, the slope between
(2L vs 1B) is steeper than that between the first point on the little core and
the first point on the big core (1L vs 1B), making the second, third and fourth
points on the little core (2L, 3L and 4L) sub-optimal and classified as power
holes as shown in the monotonically decreasing curve in Figure[5.3|

Put differently, the monotonicity of the DPe/DPo metric means that the curve
of optimal operating points should be convex, i.e., no point should be above
any line connecting two other points. For the power manager, this means that
the next operating point to be considered is the one with the highest
DPe/DPo relative to the current operating point, and all intermediate
operating points are power holes that should be pruned.

5.3.1 PH-Sifter Algorithm

Algorithm|3|describes PH-Sifter. The algorithm starts at the lowest operating
point on the little core. It then chooses the next optimal point as the one
with the highest DPe/DPo value. All the intermediate points between the
two selected points are considered power holes and are filtered out. From
the newly chosen point, the algorithm again selects the point with the
highest DPe/DPo value from the set of operating points that were not filtered
out already. The algorithm proceeds until it reaches the highest operating
point on the big core. The algorithm has a complexity of O(np) to prune
p operating points for n applications. The filtering algorithm can be also
parallelized to prune the n applications simultaneously.

Excluding intermediate points at each step of Algorithm [3| results in the
convex shape that guarantees optimality of the sifted set. For any potential
budget, the two points in the set with power values just above and below
the budget form a line that crosses the budget line furthest to the right (i.e.,
highest in performance).

Consider Figure[5.3]as an example. Starting from point zero, point 1L has the
highest DPe/DPo. Index current_point is set to point 1L and it is included in
the optimal set. Next, from 1L, point 1B has the highest DPe/DPo, so it is in-
cluded in the optimal set, current_point is set to 1B, and intermediate points

78

Optimizing Performance on HCMPs with DVFS

Algorithm 3 PH-Sifter: excluding power hole operating points.

init_points = all operating points form all core types
sifted_points = NULL
Sort (ascending) init_points by performance values
current_point = init_points[0]
Push init_points[0] to sifted_points, pop it from init_points
while current_point is not last element in init_points do
Calculate DPe/DPo from current_point to all init_points
Take highest DPe/DPo as highest_point
Remove all intermediate points between current_point and highest_point
from init_points
Push highest_point to sifted_points, pop it from init_points
current_point = highest_point
end while
output sifted_points

(2L, 3L, 4L) are filtered out. Repeat this iterative process until current_point
reaches 4B.

Note that Algorithm [3|is not restricted to two core types (i.e., big and little
types) only. PH-Sifter operates under the assumption that the application
can be scheduled on any number of available core types, each featuring
any number of operating points. The initial set of points, i.e., init_points
in Algorithm (3] considers all the operating points on all core types. The
algorithm takes all the available operating points and sifts them based on
the DPe/DPo metric. The core type corresponding to each operating point is
not needed by the algorithm to perform the sifting process. Therefore, the
results and use cases we show in this chapter can be easily generalized to
any number of core types and operating points.

5.3.2 Multiple Concurrent Applications

As the number of available cores and concurrent applications increases,
operating point sifting becomes more important. Algorithm [4 shows how to
maximize the performance for multiple concurrent applications. In principle,
the algorithm walks the power-performance curves for all the applications at
the same time starting with the lowest operating point on the little core. At
each step, the algorithm selects the application with the highest DPe/DPo
value and provides it with the budget necessary to move to the next higher
operating point. The algorithm updates the new operating point of that
application and repeats the procedure until the power budget is distributed
among the applications.

79

Power Management Scheme

Algorithm 4 Maximizing throughput for multiple applications.
Sift each application (PH-Sifter) to get si fted_points per app.
current_point[App;| = sifted_points[App;][0]
next_point[App;] = sifted_points[App;][1]
used_budget = >_(power of all apps on current_point)
while used_budget < available_budget do

Calculate DPe/DPo per app between current_point & next_point
Sort the results & take the highest ranked application a
if available_budget — wused_budget >
next_point[a].power — current_point[a].power then
Schedule application a on next_point[a]
used_budget = used_budget + next_point|a].power — current_point|a].power
current_point[a] = next_point[a]
next_point[a] = next_pointla] + 1
else

. _ available_budget—used_budget
fracnonnel't_lw’mf (a’) T next_point[a].power— current_point|a].power
Budget fully consumed, end while loop

end if
end while

Schedule the last application on next_point for fraction,,..; ,ein: and on current_point
for the rest of the time
Schedule the rest on their current_point

As system throughput sums the performance gain achieved by each appli-
cation, each step in Algorithm[4] allocates power to the application with the
highest potential gain, and consequently the highest contribution to system
throughput. Allocating part of the budget to another application at any step
lowers throughput. The optimality of both algorithms can be mathematically
proven.

Note that Algorithm[4would fail to maximize performance without properly-
sifted operating points. Without PH-Sifter, a power manager may have
to resort to an expensive non-scalable brute-force approach to opti-
mally divide the power budget and guarantee maximum performance
for this case. For n applications, Algorithm |4 has a complexity of O(n)
because it needs to find the application with the highest DPe/DPo at each
step. The total number of steps depend on the power budget.

5.4 Power Management Scheme

So far we have described the algorithms for sifting power holes of each
application using PH-Sifter, and power budget partitioning through a step by
step walking of the curve and allocating power to the applications with the
highest DPe/DPo. In this section we briefly describe the power manager we

80

Optimizing Performance on HCMPs with DVFS

Power period (1 second)

f—————————————————— 0 —>
20ms 100ms 100ms 50ms

—rt k i
Profiling, Run & collect stats. ' Run & collect stats. Equal-budget
Sprint & walk

A A A
Partition budget Re-rank applications Re-rank applications
& repartition budget & repartition budget

Figure 5.4: The four phases of the power manager.

implemented for evaluating the impact of these algorithms. We use a similar
framework to the one used in Section We use the same framework to
compare both PH-Sifter and Pareto-sifting.

The power manager has four phases distributed over the power period of
1 second as shown in Figure 5.4} In the first phase, the manager profiles
all the applications on the middle V-F operating point of each core type for
10 ms. The manager assigns half of the applications to one core type, and the
other half to the other core type in the first 10 ms. The manager reverses the
profiling assignment in the following 10 ms. In the second phase, the power
manager uses the profiled middle operating point for each application on
each core type, and estimates the power and performance of the remaining
operating points using the models taken from [70].

In principle, the model divides the execution time into two parts, pipelined
and non-pipelined. The pipelined part represents the fraction of the execu-
tion that is spent on the processor and that scales (i.e., expands or shrinks)
with the change in operating frequency. The non-pipelined part represents
the time the processor spends waiting for a memory access. The frequency
domain of the memory system is independent from the processor. There-
fore, the non-pipelined time does not scale with the processor operating
frequency. Equation shows how performance is scaled based on this
classification of time. T'(V, f,) is the total execution time at a nominal
voltage and frequency setting, and T'(V, f) is the execution time we would
like to predict when running at another voltage-frequency operating point

(V. f)-

T(Vna fn) = Tpipelined(vn7 fn) + Tnonfpipelined

.1)
Tpipetined(Vn,fn
T(‘/? f) == lf/;i fn) + Tnonfpipelined

We rely on the leading-loads model [25] to estimate the pipelined and non-
pipelined times. As equation shows, we scale the first term linearly
with frequency while keeping the second term unchanged. In practice, we

31

Power Management Scheme

track the non-pipelined time and consider the rest of the execution time as
pipelined time. The leading-loads model shows that when estimating the
non-pipelined time that results from a load that misses in the last level cache,
we only need to track the memory access time of the first missing load until
it returns from memory. This applies whether the access happens in isolation
or with multiple overlapping memory accesses. Similarly, we also measure
the non-pipelined time that results from instruction cache misses. We model
both cases in our power management technique.

Once performance numbers are estimated at the target frequency, we use
the estimated time to estimate energy and power at the target voltage
and frequency. We assume a clock-gated processor throughout this thesis.
Equation [5.2| describes how to calculate the total energy of the processor as
we scale the operating voltage and frequency settings.

E(V, f) = Ea(Vas fn)- ¥z + P(V)T(V, f) (5.2)

The first term in the equation shows that to scale the dynamic energy that is
measured at a nominal frequency and voltage setting to a target voltage set-
ting, multiply it by “% The second term simply scales the static power by the
total execution time assuming the new operating frequency. Further details
on the power and performance estimation models can be found in [[70].

After predicting the power and performance numbers at all the operating
points, the power manager sifts the points per application and partitions
the power budget. We compare between PH-Sifter and Pareto-sifting. For a
single-threaded application, the method to walk the resulting curve is identi-
cal. For power budget partitioning among multi-programmed workloads, we
use the same incremental DPe/DPo method once assuming a Pareto-optimal
curve and another time using the PH-Sifter curve.

In phase three, the manager has already partitioned the power budget and
set the schedule and operating point selection. The application runs on the
assigned setting. To adapt to changes in program behavior, the manager
keep accumulating power and performance statistics at runtime during this
phase. Every 100 ms it regenerates the curves per application, sifts the newly
generated curves and repartitions the power budget. Phase continues until
the final 50 ms of the execution. The fourth phase starts at the final 50 ms
of the power period. In this phase, the applications go through equal budget
sprint-and-walk, between the highest operating point on the big core to the
lowest performance point on the little core, to make sure the power budget
is respected at the end of the power period.

The power management scheme can be implemented either in software as
part of the operating system scheduler or in hardware as part of a power

82

Optimizing Performance on HCMPs with DVFS

Table 5.1: Voltage-frequency settings used in the experiments.

Frequency (GHz) Voltage (V)

1.5 0.64
2.0 0.74
2.6 0.88
3.2 1.1

management unit. In hardware, we require n comparators to prune n ap-
plications in parallel. The same comparators can then be reused to guide
the walking of the curves as described by Algorithm |4]in at most O(logn)
comparisons each time. The total number of repetition is a function of
the power budget. Whether implemented in hardware of in software, the
algorithm scales linearly with the number of available operating points per
application since the pruning step takes at most O(np) steps as previously
discussed (O(p) if done in parallel). Moreover, considering this overhead is
incurred at most once per 100 ms, the overhead of our power management
technique is expected to have an unnoticeable impact on performance.

5.5 Experimental Setup

This work is a direct progress from the previous chapter. We therefore main-
tain a similar simulation methodology to what has been described before.
We use Sniper 6.0 [50] to perform the necessary simulation experiments for
this work. We simulate HCMPs consisting of two core types, a big and a
little core. Similar to the assumptions of the previous chapter, the big core is
aggressive four-wide out-of-order, while the little core is two-wide in-order.
We assume an LLC of 4 MB per pair of big and little cores that is shared
by all the cores. We consider the voltage-frequency operating points shown
in Table Extra intermediate frequency settings are generated by inter-
polating between the shown operating points. Similar to previous chapters,
we carry out our experiments while assuming a cache hierarchy that does
not use data or instruction prefetching techniques. We aim to study the
power budget partitioning techniques based on application characteristics,
regardless of prefetching benefits.

We use all SPEC CPU2006 benchmarks using all the reference inputs. For the
experiments involving multi-programmed workloads, we randomly generate
75 mixes of four applications and run each mix on a processor with four

83

Evaluation

o 1.6
2
S5 14
£ 12
o
c 1
(0]
_g-O.S
(5]
506
20.4
5 0.2
5 0.
S0
SN L 0" ASX=Z0CocHORANTANCNOTAVEDNCEEDEGLT QAT >N 0Exac
I~ G O H E=T S Sw P SIS R R B I, B = t 2o © X =
N33 N nEEEf 8N o8 2FELESE5E58£E5°558
RSN NG g e EgS90EES8855%52EE g8 SEpEsa’s” 23%
2NNLa 58 EE 8900002 & E Q23 £ @ Q
o O (=2} o O = 200 © N .=
Q.0 B S g 3 o cEooooDOD © £ =g OT =T < c
@ oo o o0 S e 2 T oD S o
= X
3] o 88 < = Qoo £
£
]
T

Figure 5.5: PH-Sifter performance gain over Pareto-sifting for a single appli-
cation with four points per core type.

big/little pairs. We use McPAT 1.3 [51] to estimate total power consump-
tion of the processor, including both dynamic and leakage power, assuming
22 nm chip technology. Similar to previous chapters, we assume idle cores
are power-gated and unused structures in the active cores are clock-gated.
We assume 20 us [[1]] core migration overhead, and account for all related
overheads, such as cache warmup.

5.6 Evaluation

Operating point sifting is necessary for any optimization targeting the per-
formance of power-limited HCMPs with multiple V-F operating points per
core. We evaluate PH-Sifter under three scenarios. The first case shows
the performance improvement of a single application using PH-Sifter. The
second case extends the first to multiple concurrent applications. Finally,
we look into a case with one high-priority application that requires a fixed
fraction of the power budget, leaving the remaining budget to other lower-
priority applications.

5.6.1 Maximizing Performance for a Single Task

Figure shows the performance gain of PH-Sifter normalized to Pareto-
sifting for the SPEC CPU 2006 applications. Applications run on a pair of
big/little cores each with four operating points, assuming a power budget of
1 W. The results show an average performance improvement of 13%, up to a
maximum of 52%. The average is affected by applications that do not benefit
from pruning under the 1W budget assumption. For these applications,
the budget falls between optimal points that exist in both PH-Sifter and

84

Optimizing Performance on HCMPs with DVFS

2 states 4 states s 8 states == 16 states

N
'
‘‘‘‘‘‘‘
3

oy

STP (PH-Sifter/Pareto)
o BoRee
[e0] [l N » (o] (o] N
I
I
I
I
I
I
I
I
|
|
i
I
I

sorted workloads

Figure 5.6: Comparing PH-Sifter vs Pareto-sifting for different numbers of
V-F operating points per core type, using multi-programmed workloads.

Pareto-sifting. If the budget for these applications changes, due to sharing
the budget with other applications or due to a fluctuation in the power
consumption of other components (e.g., GPUs), PH-Sifter will similarly show
high performance benefits.

5.6.2 Maximizing Performance for Concurrent Tasks

We use Algorithm [4] to maximize the performance for multi-programmed
workloads. Figure[5.6] shows the performance gain of PH-Sifter over Pareto-
sifting with 2, 4, 8 and 16 operating points per core type. Each point on the
horizontal axis represents a mix of four applications, for a total of 75 mixes.
The workloads are sorted based on their normalized system throughput (STP,
on the vertical axis) [[60]].

The figure shows that PH-Sifter outperforms Pareto-sifting for different
numbers of operating points. This shows the impact of power holes on
Pareto-sifting performance. Additionally, we note higher improvement as the
number of operating points increases. The intuition is that as the number of
operating points increases, more power holes need to be sifted. We notice
that Pareto-sifting fails to identify a larger number of non-optimal points
causing the gap with PH-Sifter to widen. The lowest gains are for two points
per core, with only a few workloads showing noticeable gains. For these
experiments, we use only the lowest and highest points per core type. We
find that Pareto-sifting in most cases correctly identifies the high point on
the little core as a power hole, similar to PH-Sifter (Figure considering
only the lowest and highest points).

85

Evaluation

24— — — — - — = == —
22+ — — — — — — — — —
2__ R R R R R J— R R R
84— — — — — — — — — —
16— — — — — — — — — —

b4— — — — — — — — — —

1.2+
1
0.8

........

STP (PH-Sifter/Pareto)

sorted workloads

Figure 5.7: Performance gain of PH-Sifter over Pareto-sifting while provision-
ing for a high-priority application.

Our results show that proper sifting of operating points significantly impacts
performance. An average performance gain of 19%, 27%, and 32% is achieved
over Pareto-sifting, that reaches up to 69%, 91%, and 92% for 4, 8, and 16
points per core, respectively.

5.6.3 Provisioning for QoS

We consider a scenario where a fixed fraction of the power budget is reserved
solely for a high-priority application to meet its performance target, while
the remaining budget is divided among the remaining lower-priority appli-
cations. This scenario could be further generalized to one where the high-
priority application consumes a variable fraction of the power budget, while
the remaining budget goes to the other applications.

Our experiment assumes 25% of the power budget is allocated to the high-
priority application. Figure [5.7| shows the results of PH-Sifter compared to
Pareto-sifting assuming eight operating points per core type. The figure
shows again the result of the case without a high-priority application, to
show the similarity. Although the same power budget is allocated to the
latency-sensitive application, PH-Sifter significantly improves system perfor-
mance by an average of 28% and up to 2.3x compared to Pareto-sifting.

This case could be viewed as a mix of the two previously shown use cases.
The application risks not meeting its quality target using only 25% of the
power budget if the operating points are not properly sifted. Similarly, the
maximum system performance of the remaining applications would suffer
significantly if the power holes are used per application.

86

Optimizing Performance on HCMPs with DVFS

5.7 Discussion

The main goal of this thesis is to propose power management techniques
that maximize performance for single-threaded applications and multi-
programmed workloads under power constraints. In this section, we provide
a preliminary discussion of how the proposed techniques can be further
extended to multi-threaded applications and to other cases of interest where
power-efficiency is enforced when applications have specific performance
requirements.

5.7.1 Multi-threaded Applications

The characteristics of multi-threaded applications distinguishes them from
single-threaded applications and workloads consisting of a group of single-
threaded applications. In particular, the performance of multi-threaded
applications is not necessarily the sum or average of its individual threads.
Moreover, adjusting the voltage-frequency operating points does not change
performance and power consumption of multi-threaded applications in the
same manner as they would for single-threaded applications. Synchroniza-
tion and communication among threads impact the overall performance of
multi-threaded applications. Therefore, power and performance character-
istics of individual threads cannot be representative of overall application
performance.

Prior work [27] reveals two categories of multi-threaded applications. In
the first category, all the threads are equally critical. Equally progressing
all threads is necessary for overall application performance. The second
category consists of one or more threads that are more critical than others.
Improving performance of critical threads significantly impacts application
performance, while improving a non-critical thread performance has negligi-
ble impact on total performance. Other related works [28][70]] seek to predict
the energy and performance impact of changing the voltage and frequency
settings on multi-threaded applications. We use wisdom from prior work to
layout a strategy for extending our work to maximize performance of multi-
threaded applications under power constraints.

For multi-threaded applications whose threads are equally critical, allocat-
ing a power budget to improve the performance of any thread is expected
to provide similar performance impact regardless of the selected thread.
However, boosting the performance of the same thread all the time may
reduce its criticality. For example, the thread may finish its tasks or reach
a barrier ahead of other threads. Therefore, we expect that the best strategy

87

Discussion

for this category of multi-threaded application is to ensure equal progress
of all threads. This requires allocating the power budget equally across all
threads. When extra power can be allocated to one or few threads only, the
scheduler needs to ensure that this power budget is allocated to a different
set of threads at each scheduling interval, e.g., in a round-robin fashion.

When one or more threads in the application are more critical than others,
prior work suggests that investing a fraction of the power budget to improve
the performance of a non-critical application would yield negligible perfor-
mance improvement for the total application performance. On the other
hand, improving the most critical thread leads to the highest performance
improvement. Therefore, we propose evaluating the criticality of all threads
of the application, e.g., building a criticality stack [27]], and use criticality
information for power budget partitioning.

In cases when the big and little cores have only one voltage-frequency oper-
ating point, the power manager allocates enough power for the most critical
thread to run on the big core. Any remaining power is then allocated to the
second most critical thread, and so on. The rationale behind such a scheme is
that the highest little-to-big delta performance can be achieved by boosting
the performance of the most critical thread. A non-critical thread has a delta
performance to delta power ratio of approximately zero because improving
its performance does not impact total performance. Therefore, we propose
using per-thread criticality information as a proxy for the delta performance
by delta power metric.

For processor featuring multiple core types, each with multiple voltage-
frequency operating points, we propose following the same steps used for a
single-threaded application when dealing with multi-threaded applications.
First, the voltage-frequency operating points for each thread are filtered out
based on their individual power-performance characteristics (i.e., not con-
sidering the overall performance of the application). This leaves the power
manager with the optimal set of points for each thread. The second step
that walks the curves by taking the application with the highest DPe/DPo
step each round cannot be used in the same manner as for single-threaded
applications. The problem here, again, is that allocating the power budget to
the thread with the highest DPe/DPo step may not necessarily improve total
application performance because that thread may be non-critical. Instead,
we propose advancing the most critical threads, based on the criticality stack
of the application.

When walking the curves of each thread, the power manager has to deter-
mine how much of the power budget to allocate to the most critical thread,
relative to the second most critical and other lower-ranked threads. This

88

Optimizing Performance on HCMPs with DVFS

T
o
=
@
Q)

)
O

Power

S

Performance

e AR N gy - g

; Performarce
! Cap

Figure 5.8: Optimizing under a performance cap vs. optimizing under a power
cap.

decision basically determines how many steps each thread can walk higher
on its power-performance curve of filtered operating points. We propose a
heuristic to advance threads by a number of steps that is proportional to the
relative criticality of threads. For example, if the criticality stack suggests
that the most critical thread is three times more critical than the second
ranked thread, it is allocated a proportionally higher fraction of the power
budget. A more elaborate scheme is beyond the scope of this thesis and will
be considered for future work.

5.7.2 Performance Capping

Our optimization techniques maximize performance within a given power
constraint. Several mobile applications may demand a different but closely-
related optimization. In particular, the computation capabilities available
to several mobile applications are surplus to their needs. We thus see an
opportunity to make another optimization: Given the performance demand
of an application, how to minimize its power consumption.

This optimization problem can be viewed as the reciprocal of the optimiza-
tion problem addressed in this thesis. Figure shows the relationship
between the two optimization targets. A horizontal line cutting through the
performance-power curve representing the processor capabilities represents

89

Discussion

the power constraints, under which we optimize performance. A vertical line
represents a specific performance requirement beyond which the application
does not benefit. Here we briefly discuss how our proposed techniques can
be leveraged to minimize power consumption.

For the case of one single-threaded application and one operating point
per core type, sprint-and-walk can be applied with the performance goal in
mind. This means that the application first starts on the big core to gain a
performance headroom. Then the application migrates to the little core until
the performance can no longer tolerate running on the little core without
violating the performance requirement. Then it migrates again to the big
core to gain another performance headroom for a specific time interval.

The techniques proposed in this thesis are necessary for the new optimiza-
tion target in the general case where multi-programmed workloads run on
multiple core types each with multiple voltage-frequency operating points.
In particular, to minimize power consumption of the processor given a per-
formance cap, generating a per-application curve similar to the one shown in
Figure[5.8]is necessary. Obtaining such a curve relies on pruning power holes
using the same PH-Sifter techniques described by Algorithm [3] This allows
each application to reach to the two optimal performance points between
which it needs to migrate for minimal power given a performance cap. To
minimize the power consumption given a cap on system performance, we
take all the pruned curves for each application and walk them by reversing
the walk described by Algorithm |4l The inverse walk means that we start
all the applications on the highest operating point. At each step we walk the
application with the lowest DPe/DPo value (i.e., the biggest slope). Taking the
application with lowest DPe/DPo step means that our approach selects the
step that drops power the most without impacting performance significantly.
We repeat these steps until we reach the point where dropping the perfor-
mance of any of the applications further leads to potential violation of the
performance requirement. At this point, one application can still be migrated
among two performance points as much as the performance requirement
allows. Taking the highest steps of power reduction at each step guarantees
that we minimize the power consumption while operating at the desired level
of system performance.

5.7.3 Bursty Applications

The techniques proposed in this thesis are mostly oriented towards im-
proving system throughput (or sustained performance for single-threaded
applications) given a restricted power budget. However, HCMPs may operate
in environments where applications have a bursty behavior. In particular,

90

Optimizing Performance on HCMPs with DVFS

an application sees a sudden request that requires a timely response. This
translates into an immediate surge of computational demand on the proces-
sor side to react to the user’s request within a pre-defined quality-of-service
time limit.

Such an environment and workload behavior are not the direct target of most
of the optimizations proposed in this thesis. In other words, we do not seek
to minimize the response time of the processor for time-critical applications.
However, we would like to emphasize the benefits of our proposed power
management techniques in cases of close relation to these environments and
applications. In particular, this chapter has demonstrated two cases where
our techniques are necessary for optimizing the power management under
strict performance requirements.

First, for any application, pruning the power holes as described in Algorithm[3]
is required to ensure no power is lost unnecessarily. For example, if the
desired performance can be achieved by a power hole operating point on
either the big or little cores, a scheduling technique could be easily deceived
to use such a point as the best operating point that meets the performance
requirement while minimizing power consumption. However, we have shown
that such a point wastes power because other points could achieve the same
performance at a lower power budget. Pruning is necessary to guarantee
that the application is operating between the optimal operating points that
guarantee the lowest power consumption.

We have shown the advantages of our techniques when co-locating a time-
critical application with multiple applications with no strict performance
demand (see Section[5.6.3). For a power-limited processor, this case mandates
that enough power is allocated for the time-critical application to meet its
target performance requirement. The rest of the power budget is then parti-
tioned among the other applications. The benefit of our proposed techniques
are two-fold in this case. First, by sifting the sub-optimal power holes we
guarantee that the time-critical application meets its performance target
with minimal power consumption. In other words, when compared to tech-
niques that do not filter power holes, PH-Sifter can free more power budget
that can be allocated to the other non-critical applications. Second, with any
remaining power budget, our approach maximizes system throughput of the
remaining tasks that run concurrently on the processor.

5.8 Related Work

Techniques for maximizing performance under a power constraint in the
presence of multiple V-F operating points have be proposed by academic

91

Related Work

and industrial research. Although these prior technique suite homogeneous
CMPs with multiple V-F operating points, they are not readily applicable
to HCMPs. For example, Isci et al. [42] relies on brute-force search to find
the optimal V-F operating point assignment for each application such that
performance is maximized within a power limit. Such an approach does
not scale as the number of applications and V-F operating points increase.
With the possibility to temporarily exceed the power limit by migrating
between two operating points above and below the power limit, the number
of possibilities increases, making this approach impractical. Ma et al. [26]]
improve the power management scalability by dividing the cores on the chip
into groups based on the applications they are executing. They provide a
scheme to allocate a "frequency" budget to each group of cores based on the
power efficiency of the applications using performance per Watt as a ranking
metric. We have shown in the previous chapter the significant performance
degradation that can be caused by partitioning the power budget based on
this misleading metric. More importantly, this technique does not provide
a scalable solution to use when each application can run on multiple core
types each featuring several V-F operating points. More recently, Su et
al. [68] show how prior work that search incrementally for the V-F setting
that maximizes performance under a power limit requires significant time
overhead to reach the correct V-F setting. They propose a practical method
based on performance counters that are implemented in the processor to
predict the power and performance of each V-F operating point to fasten
the search process. However, as we have demonstrated, after forming the
power-performance curve, this method walks the curve naively and falls into
the inefficient power holes.

Scheduling application on HCMPs and maximizing their efficiency is also an
on-going effort in industry. Despite implementation differences among ven-
dors, power management in recent systems rely on multiple components that
act independently. The OS scheduler in one hand is responsible for selecting
the cores to assign each application to based on a load metric. A frequency
governor is used to select the V-F setting on the core [5]. The Ondemand gov-
ernor periodically checks whether the CPU utilization has crossed a specific
threshold (e.g., 95%), it then jumps to maximum frequency. The Interactive
governor tries to adapt to faster based on the expected load level and adjust
the frequency according to the load. This model of operation does not suite
HCMPs because the optimal core type and the operating frequency need
to be selected together to avoid wasting power or degrading performance.
Recent scheduler implementations from Qualcomm try to achieve this goal
by allowing the scheduler to pass hints to the frequency governor about the
expected load [[71]. A more comprehensive solution, known as the Energy-

92

Optimizing Performance on HCMPs with DVFS

Aware Scheduler (EAS), is being developed by Linaro and ARM, aiming to
integrate the decision making of which core and frequency to assign to each
task into the scheduler [72]. The optimizations envisioned by this project
includes improving energy efficiency by making better choices of whether to
increase the frequency setting for one task or move it to a more powerful core
at a lower frequency, and load consolidation, among others. All the current
proposals are not well suited to maximize performance on HCMPs under a
given power budget despite adapting to interactive tasks or improving energy
efficiency. Moreover, these proposal do not rigorously consider which V-F
states can act as power holes that can significantly degrade performance.

It is worth noting that most of the decisions made by mainstream frequency
governors are based on CPU utilization. An application waiting for a memory
access is still considered utilizing the core. Therefore, such an approach leads
to inaccurate power management policies. Other frequency governors that
rely on power and performance models to optimize the selection of the V-F
setting have been proposed, such as the green governors [73]. Similar to [68]],
these governors are not suited to walking the V-F curves in a heterogeneous
processor.

5.9 Summary

We demonstrate the necessity to properly sift the default set of operating
points when optimizing for performance in power-limited HCMPs with mul-
tiple V-F operating points per core type. We show that naively walking
the power-performance curve of the default operating points leads to power
holes, or points that waste power for low performance benefit. Selecting
operating points using Pareto-optimal sifting suffers similar performance
degradation. We propose PH-Sifter, a fast operating point sifting technique
that starts at the lowest operating point, filters all the points until the next
operating point that achieves the highest Delta Performance / Delta Power
value, and continues until all the points are considered. We reason about
the optimality of PH-Sifter and show significant performance improvements
compared to Pareto-sifting for a single application, multiple applications, and
systems with high-priority applications.

93

Chapter 6

Conclusions

6.1 Summary

Technology scaling trends have resulted in processors that have abundant
transistors but suffer from a high power density due to the end of Dennard
scaling. Processor designers are forced to activate only a limited fraction of
the processor at any time to limit total power consumption and avoid thermal
problems, a phenomenon known as dark silicon. In this era of dark silicon,
power has become a scarce resource for processor operation. Maximizing
performance requires novel techniques that optimally exploit the available
power budget.

In this work, we focus on heterogeneous chip-multiprocessors (HCMPs) as
a promising technique to cope with limited power budgets. HCMPs mix
high-performing but power-hungry ‘big’ cores with power-efficient but low-
performance ‘little’ cores. Under power constraints, applications can run on
the big core when power headroom is available but then they must returnto a
little core to cool the processor down afterwards. Optimized scheduling tech-
niques are essential to successfully use the capabilities of HCMPs to squeeze
every drop of performance from the available power budget. Unfortunately,
a wide body of scheduling work that optimizes performance under power
limits using DVFS is not readily applicable to HCMPs.

Our goal in this work is to propose novel scheduling solutions that maximize
performance on power-limited HCMPs. To that end, we zoom into the layers
of this composite problem, and address each of them separately. Maximizing
performance requires optimizing the power budget partitioning among the
multiple applications that may concurrently utilize the processor. An opti-
mized solution is also required to leverage the power budget allocated for

95

Summary

individual applications by scheduling their different phases on big and little
cores during the course of application execution. An optimized scheduler
must also cater for the complex cases where HCMPs consist of multiple
core types each featuring several voltage-frequency operating points. We
adopt a generalized definition of a power constraint that allows the power
consumption to momentarily exceed the power limit as long it is preserved
over a technology-dependent period of time, which we call the power period.
Prior techniques have leveraged this flexible view of a power constraint to
improve responsiveness of interactive applications. In this work, we exploit
this relaxed view of a power constraint to maximize sustained performance.
The added flexibility comes at the expense of a more complicated scheduling
problem because it adds a time dimension to optimize over. Our optimization
target, along with the power definition we adopt, sets our work apart from all
prior work that target other optimization objectives or conservatively assume
power consumption can never exceed the power limit. Our contributions in
this work address various parts of the problem.

Optimizing Performance for Single-Threaded Applications. We aim
to maximize the sustained performance of single-threaded applications. We
show that the most relevant technique targeting sustained performance,
called sprint-and-rest, fails to leverage the heterogeneity available in an
HCMP processor. Sprint-and-rest has been proposed for multi-threaded
applications. When adopted for single-threaded applications, sprint-and-
rest exceeds the power limit as it runs on the big core (sprint) and then
cools the processor down (rest) by turning it off. We show that sprint-and-
rest degrades performance significantly due to ignoring the heterogeneous
cores of the processor. We propose a new technique, called sprint-and-walk,
that exploits the heterogeneous core types in the processor. Sprint-and-walk
estimates the total energy it is allowed to consume within the power period
based on the allowed sustained power limit. It uses the little core, which
consumes power at a rate lower than the allowed limit, to accumulates energy
credit. It then burns the accumulated credit by running on the big core,
which normally dissipates power above the limit. The scheduler repeats
the same cycle of sprinting on the big core then walking on the little core
throughout the application execution. Using exhaustive search, we also
determine the highest performance attainable through scheduling under a
power limit. Our results show that sprint-and-walk improves performance
over sprint-and-rest by 9% on average across all SPEC CPU2006 applica-
tions, that reaches up to 19%, for a moderate power budget of 1.25 W. The
improvement increases as the power budget gets tighter. For a budget of
0.5 W, the average improvement of sprint-and-walk relative to sprint-and-
rest equals 43% and reaches up to 76%. More importantly, sprint-and-walk

96

Conclusions

achieves a performance improvement that is within a few percents of optimal
performance.

Optimizing the Performance for Multi-Programmed Workloads. We
seek to optimize the performance foran HCMP running a multi-programmed
workload. This task relies on optimally dividing the power budget among the
concurrent applications. We show that both techniques that partition the
power budget equally among the co-running applications and techniques
that let the co-executing applications greedily compete over the shared
power budget lead to sub-optimal performance. These problems ignore the
power and performance characteristics of the co-executing applications. We
show that even techniques that rely on commonly used scheduling met-
rics, e.g., performance per Watt or big-to-little performance ratio, are also
misleading. These ranking metrics do not consider the restricted big core
utilization imposed by the limited power budget. Therefore, they cannot
accurately estimate each application’s benefits from the allocated power
budget. Counter to intuition, we show that in many cases, memory-intensive
applications dissipate less power than compute-intensive ones, allowing
them to utilize the big core for a longer time duration, leading to higher
overall performance with the same power budget. In addition to the lack of a
metric that prioritizes the applications when partitioning the power budget,
there is also a lack of a strategy to determine the fraction of the budget each
application should receive after they have been ranked.

We formulate the problem as a linear programming optimization problem
and mathematically solve it to derive an optimal power budget partitioning
strategy. We show that allocating power to each application such that it can
only partially run on the big core is sub-optimal. An optimal partitioning of
a budget "P" over "n" application schedules all applications either on the big
or little cores, except for one application that needs to migrate between the
two. We also derive a novel ranking metric based on big-to-little delta per-
formance/delta power (DPe/DPo) for each application. This metric enables a
fast and scalable way to sort the applications according to their worthiness
of running on the big core. We propose DPDP, a fast and scalable scheduler
that maximizes performance on a power-limited HCMP by optimizing the
power budget partitioning among concurrent applications. Our evaluations
with DPDP on a heterogeneous processor consisting of four big.LITTLE pairs
show that DPDP improves chip performance by 16% on average and up to
40% over a strategy that greedily and globally utilizes the power budget. We
also show that DPDP outperforms all the other techniques as we change
the available power budget. However, if the power budget is either too
restrictive or too loose, the opportunity for optimization reduces. Similarly,
the performance improvements of DPDP remain significant even when we

97

Summary

change the mix of cores in the HCMP. Interestingly, our results indicate that
using an out-of-order little core yields a lower performance improvement over
the other techniques. The bigger gap between the power and performance
characteristics of the little core and the big core makes scheduling decisions
of a higher impact on the overall performance.

We analyze DPDP’s impact on the per-application performance, and propose
an extension that allows DPDP to improve overall throughput while remain-
ing within a tolerable application slowdown. Our results show that DPDP can
strike a sweet spot that allows it to considerably improve system throughput
while slightly improving the application latency.

Optimizing Performance on HCMPs with Multiple V-F Operating
Points. Most proposals for power management are proposed for DVFS, and
cannot schedule applications across the heterogeneous cores in HCMPs com-
posed of an arbitrary number of core types (e.g., big, medium, and little), each
equipped with multiple voltage-frequency operating points. The scheduler
has an exploded set of options, and has to assign each application to an
operating point at any core type and migrate it to any other operating point
on any core when necessary. To find the points that maximize performance
for a give power budget, the scheduler typically walks the performance-
power curve starting at the lowest operating point on the little core. It keeps
walking the curve until it reaches the first operating point that exceeds the
power limit. To leverage the whole power budget, the scheduler continuously
migrates the application between this point and the last point it encountered
that does not exceed the power limit. The two selected points could be on
two different cores. We show that naively walking the default set of operating
points leads the application to inefficient operating points which drain power
without significant performance benefit. We call these points Power Holes
(PH) as they drain the power budget for sub-optimal performance. Contrary
to intuition, we show that even using a power-performance curve of Pareto-
optimal operating points still degrades performance significantly for the
same reason. We propose PH-Sifter, a fast and scalable technique that sifts
the default set of operating points and eliminates power holes. We show sig-
nificant performance improvements for PH-Sifter compared to Pareto-sifting
for three use cases: (i) maximizing performance for a single application, (ii)
maximizing system throughput for multi-programmed workloads, and (iii)
maximizing performance for a system in which a fraction of the power budget
is reserved for a high-priority application. Our results show performance
improvements of 13, 27, and 28 percent on average that reach up to 52, 91
percent, and 2.3x respectively, for the three use cases.

98

Conclusions

6.2 Future Work

As the abundant transistors are being used to integrate more functional and
specialized units to improve performance, we can foresee the necessity to
extend our work to investigate emerging trends in processor design. Here we
describe a couple of opportunities: (i) extending the work to include other
forms of heterogeneity; (ii) considering heterogeneous cache and memory
hierarchies.

One way of combating dark silicon relies on heterogeneous architectures. In
this work we focused on processors with heterogeneous cores. Other forms of
heterogeneity have been proposed to improve performance in the era of dark
silicon. We could imagine a processor tailored from single-ISA heterogeneous
multi-cores, specialized or FPGA-based accelerators, and graphics processing
units (GPUs). Maximizing performance of such a system under power con-
straints involves coordinating the execution of all these units. Partitioning
the power budget among the concurrent applications or kernels, selecting
when to activate the particular units, and the operating frequency to use
for each particular computation. Among the challenging tasks a scheduler
has to partake is the proper estimation of the power consumption and the
performance that can be achieved by running on each computation resource,
and the impact of co-executing multiple applications and kernels on such
a heterogeneous platform. Studies have reported a shift from the original
workload behavior as proportions of the workload are distributed among the
various components. The dynamic change in the workload behavior should
be taken into account when determining the proper ways to optimize for
performance under a power constraint. The mathematical formulation we
used in this thesis may need to be reexamined to account for all the extra
variables. A fast and scalable policy is expected to be more critical due to the
significant expansion of the solution space.

We assume a power limit on a processor that employs heterogeneity at the
core level. As memory systems are evolving to deploy heterogeneous tech-
nologies at various levels of the stack, we look to support a more generalized
memory hierarchy. In particular, processor manufacturers are moving to-
wards stacking DRAM modules on the same die as the processor. Regardless
of the stacking technology and the role of the DRAM components (i.e., main
memory or cache), these stacked memory modules share the power budget
with the processor. A general power management strategy is necessary to
decide whether the application benefits from the stacked DRAM or not,
whether it should run on the big or the little core with the stacked DRAM,
and how much of the stacked DRAM is sufficient for the mix of applications
given under a limited power budget. The problem is further complicated

99

Future Work

when considering multiple voltage-frequency operating points per core, and
perhaps for the stacked DRAM modules. Devising architectural techniques
to tune the power consumption of the DRAM modules could be a challenge
on its own. Such a task involves proposing strategies to control the DRAM
refresh operation, and intelligently partitioning the dataset among DRAM
modules to enable fast activation and deactivation of the modules while
incurring minimal overhead for warm-up or copying dirty data blocks.

100

Bibliography

(1]

(2]

P. Greenhalgh, “big.LITTLE processing with ARM Cortex-A15 & Cortex-
A7) ARM White paper, September 2011.

G. E. Moore, “Cramming more components onto integrated circuits,”
Proceedings of the IEEE, vol. 86, no. 1, pp. 82-85, 1998.

R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R.
LeBlanc, “Design of ion-implanted MOSFET’s with very small physical
dimensions,” IEEE Journal of Solid-State Circuits, vol. 9, no. 5, pp. 256—
268, 1974.

H. Esmaeilzadeh, E. Blem, R. St.Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in 38th
Annual International Symposium on Computer Architecture (ISCA), 2011,
pp. 365-376.

M. Sjalander, M. Martonosi, and S. Kaxiras, “Power-efficient computer
architectures: Recent advances,” Synthesis Lectures on Computer Archi-
tecture, vol. 9, no. 3, pp. 1-96, 2014.

A. Raghavan, Y. Luo, A. Chandawalla, M. C. Papaefthymiou, K. P. Pipe,
T. F. Wenisch, and M. M. K. Martin, “Computational sprinting,” in 18th
International Symposium on High Performance Computer Architecture
(HPCA), 2012, pp. 249-260.

E. Rotem, A. Naveh, A. Ananthakrishnan, D. Rajwan, and E. Weissmann,
“Power-management architecture of the intel microarchitecture code-
named Sandy Bridge,” IEEE Micro, no. 2, pp. 20-27, 2012.

M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic,
C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing the
clouds: a study of emerging scale-out workloads on modern hardware,”
in Proceedings of the International Conference on Architectural Support

101

BIBLIOGRAPHY

(0]

[10]

[11]

[12]

[16]

for Programming Languages and Operating Systems (ASPLOS), 2012, pp.
37-48.

J. Birnbaum and R. S. Williams, “Physics and the information revolu-
tion,” Physics Today, vol. 53, no. 1, pp. 38—43, 2000.

R. Merritt, “Arm cto: power surge could create’dark silicon’” EE Times,
Oct, 2009.

A. Shafaei Bejestan, Y. Wang, S. Ramadurgam, Y. Xue, P. Bogdan,
and M. Pedram, “Analyzing the dark silicon phenomenon in a many-
core chip multi-processor under deeply-scaled process technologies,” in
Proceedings of the 25th edition on Great Lakes Symposium on VLSI, 2015,
pp. 127-132.

G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-
Martinez, S. Swanson, and M. B. Taylor, “Conservation cores: reducing
the energy of mature computations,” in Proceedings of the International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2010, pp. 205-218.

Samsung Electronics, “Samsung primes Exynos 5 Octa for ARM
big.LITTLE technology with heterogeneous multi-processing capabil-
ity,” Press release, September 2013.

NVIDIA, “Variable SMP — a multi-core CPU architecture for low power
and high performance,” White paper, 2011.

N. Chitlur, G. Srinivasa, S. Hahn, P. Gupta, D. Reddy, D. Koufaty,
P. Brett, A. Prabhakaran, L. Zhao, N. ljih, S. Subhaschandra, S. Grover,
X. Jiang, and R. lyer, “QuicklA: Exploring heterogeneous architectures
on real prototypes,” in 18th International Symposium on High Perfor-
mance Computer Architecture (HPCA), 2012, pp. 1-8.

T.-Y. Lin, M.-H. Lee, L. Chou, C. Peng, J.-M. Hsu, J.-M. Chen, J.-C. Chen,
A. Chiou, A. Chiu, D. Lee et al., “Helio x20: The first tri-gear mobile
soc with corepilot™ 3.0 technology,” in IEEE 28th Hot Chips Symposium
(HCS), 2016, pp. 1-24

B. Jeff, “big.LITTLE technology moves towards fully heterogeneous
global task scheduling,” ARM White paper, November 2013.

K. Flautner, S. Reinhardt, and T. Mudge, “Automatic performance set-
ting for dynamic voltage scaling,” in Proceedings of the 7th Annual In-
ternational Conference on Mobile Computing and Networking, 2001, pp.
260-271.

102

BIBLIOGRAPHY

[19]

[20]

[21]

C.-H. Hsu and U. Kremer, “The design, implementation, and evaluation
of a compiler algorithm for CPU energy reduction,” in Proceedings of
the Conference on Programming Language Design and Implementation
(PLDI), 2003, pp. 38-48.

H. Saputra, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, J. S. Hu, C.-H.
Hsu, and U. Kremer, “Energy-conscious compilation based on voltage
scaling.” in Proceedings of the Joint Conference on Languages, Compilers
and Tools for Embedded Systems: Software and Compilers for Embedded
Systems (LCTES/SCOPES), 2002, pp. 2—-11.

C. Isci and M. Martonosi, “Identifying program power phase behavior
using power vectors,” in IEEE International Workshop on Workload Char-
acterization (WWC), 2003, pp. 108-118.

C. Isci, G. Contreras, and M. Martonosi, “Live, runtime phase mon-
itoring and prediction on real systems with application to dynamic
power management,” in Proceedings of the 39th Annual International
Symposium on Microarchitecture (MICRO), 2006, pp. 359-370.

[23] J. Donald and M. Martonosi, “Techniques for multicore thermal man-

[25]

[26]

[27]

(28]

agement: Classification and new exploration,” in 33rd International Sym-
posium on Computer Architecture (ISCA), 2006, pp. 78-88.

W. Kim, M. S. Gupta, G.-Y. Wei, and D. Brooks, “System level analysis of
fast, per-core DVFS using on-chip switching regulators,” in 14th Interna-
tional Symposium on High Performance Computer Architecture (HPCA),
2008, pp. 123-134.

S. Eyerman and L. Eeckhout, “A counter architecture for online DVFS
profitability estimation,” IEEE Transactions on Computers, vol. 59, no. 11,
pp. 1576-1583, 2010.

K. Ma, X. Li, M. Chen, and X. Wang, “Scalable power control for many-
core architectures running multi-threaded applications,” in 38th Annual
International Symposium on Computer Architecture (ISCA), 2011, pp.
449-460.

K. Du Bois, S. Eyerman, J. B. Sartor, and L. Eeckhout, “Criticality stacks:
Identifying critical threads in parallel programs using synchronization
behavior,” in Proceedings of the 40th Annual International Symposium on
Computer Architecture (ISCA), 2013, pp. 511-522.

S. Akram, J. B. Sartor, and L. Eeckhout, “DVFS performance prediction
for managed multithreaded applications,” in International Symposium

103

BIBLIOGRAPHY

[29]

[30]

on Performance Analysis of Systems and Software (ISPASS), 2016, pp. 12—
23.

R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen,
“Single-ISA heterogeneous multi-core architectures: The potential for
processor power reduction,” in 36th International Symposium on Microar-
chitecture (MICRO), 2003, pp. 81-92.

R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I. Farkas,
“Single-ISA heterogeneous multi-core architectures for multithreaded
workload performance,” in Proceedings of the 31st Annual International
Symposium on Computer Architecture (ISCA), 2004, pp. 64-75.

M. D. Hill and M. R. Marty, “Amdahl’s law in the multicore era,” Com-
puter, vol. 41, no. 7, 2008.

K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer,
“Scheduling heterogeneous multi-cores through performance impact
estimation (PIE),” in International Symposium on Computer Architecture
(ISCA), 2012, pp. 213-224.

[33] J. Chen and L. K. John, “Efficient program scheduling for heterogeneous

(34]

(35]

(37]

multi-core processors,” in Proceedings of the 46th Annual Design Automa-
tion Conference (DAC), 2009, pp. 927-930.

D. Shelepov, J. C. Saez Alcaide, S. Jeffery, A. Fedorova, N. Perez, Z. F.
Huang, S. Blagodurov, and V. Kumar, “Hass: a scheduler for hetero-
geneous multicore systems,” ACM SIGOPS Operating Systems Review,
vol. 43, no. 2, pp. 66-75, 2009.

A. Lukefahr, S. Padmanabha, R. Das, F. M. Sleiman, R. Dreslinski, T. F.
Wenisch, and S. Mahlke, “Composite cores: Pushing heterogeneity into
a core,” in 45th International Symposium on Microarchitecture (MICRO),
2012, pp. 317-328.

Y. Zhu, M. Halpern, and V. J. Reddi, “Event-based scheduling for energy-
efficient qos (eqos) in mobile web applications,” in 21st International
Symposium on High Performance Computer Architecture (HPCA), 2015,
pp. 137-149.

V. Petrucci, M. Laurenzano, J. Doherty, Y. Zhang, D. Mosse, J. Mars,
L. Tang et al., “Octopus-man: Qos-driven task management for hetero-
geneous multicores in warehouse-scale computers,” in 21st International
Symposium on High Performance Computer Architecture (HPCA), 2015,
pp. 246-258.

104

BIBLIOGRAPHY

(38]

[39]

[40]

[41]

[42]

[43]

[45]

K. Van Craeynest, S. Akram, W. Heirman, A. Jaleel, and L. Eeckhout,
“Fairness-aware scheduling on single-ISA heterogeneous multi-cores,”
in 22nd International Conference on Parallel Architectures and Compila-
tion Techniques (PACT), 2013, pp. 177-187.

AMD, “10h desktop processor power and thermal data sheet,” White
paper.

S. Gunther, A. Deval, T. Burton, and R. Kumar, “Energy-efficient com-
puting: power management system on the Nehalem family of proces-
sors”” Intel Technology Journal, vol. 14, no. 3, 2010.

A. Raghavan, L. Emurian, L. Shao, M. C. Papaefthymiou, K. P. Pipe,
T. F. Wenisch, and M. M. K. Martin, “Computational sprinting on a
hardware/software testbed,” in International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2013, pp. 155-166.

C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi,
“An analysis of efficient multi-core global power management policies:
Maximizing performance for a given power budget,” in Proceedings of
the 39th International Symposium on Microarchitecture (MICRO), 2006,
pp. 347-358.

R. Teodorescu and . Torrellas, “Variation-aware application scheduling
and power management for chip multiprocessors,” in Proceedings of the
35th Annual International Symposium on Computer Architecture (ISCA),
2008, pp. 363-374.

R. Cochran, C. Hankendi, A. K. Coskun, and S. Reda, “Pack & cap:
adaptive DVFS and thread packing under power caps,” in Proceedings of
the 44th annual International Symposium on Microarchitecture (MICRO),
2011, pp. 175-185.

Y. Wang, K. Ma, and X. Wang, “Temperature-constrained power control
for chip multiprocessors with online model estimation,” in Proceedings
of the 36th Annual International Symposium on Computer Architecture
(ISCA), 2009, pp. 314-324.

[46] J. A. Winter, D. H. Albonesi, and C. A. Shoemaker, “Scalable thread

scheduling and global power management for heterogeneous many-
core architectures,” in Proceedings of the 19th International Conference
on Parallel Architectures and Compilation Techniques (PACT), 2010, pp.
29-40.

105

BIBLIOGRAPHY

[47]

(48]

[50]

(51]

[52]

[53]

[54]

[55]

[56]

(57]

A. Lukefahr, S. Padmanabha, R. Das, R. Dreslinski Jr, T. F. Wenisch, and
S. Mahlke, “Heterogeneous microarchitectures trump voltage scaling
for low-power cores,” in Proceedings of the 23rd International Conference
on Parallel Architectures and Compilation Techniques (PACT), 2014, pp.
237-250.

H. H. Najaf-abadi and E. Rotenberg, “Architectural contesting,” in 15th
International Symposium on High Performance Computer Architecture
(HPCA), 2009, pp. 189-200.

G. Hamerly, E. Perelman, J. Lau, and B. Calder, “Simpoint 3.0: Faster
and more flexible program phase analysis,” Journal of Instruction Level
Parallelism, vol. 7, no. 4, pp. 1-28, 2005.

T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout, “An
evaluation of high-level mechanistic core models,” ACM Transactions on
Architecture and Code Optimization (TACO), vol. 11, no. 3, p. 28, 2014.

S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.
Jouppi, “McPAT: an integrated power, area, and timing modeling frame-
work for multicore and manycore architectures,” in 42nd International
Symposium on Microarchitecture (MICRO), 2009, pp. 469—-480.

M. Annavaram, R. Rakvic, M. Polito, J.-Y. Bouguet, R. Hankins, and
B. Davies, “The fuzzy correlation between code and performance pre-

dictability,” in 37th International Symposium on Microarchitecture (MI-
CRO), 2004, pp. 93-104.

Samsung Electronics, “A mobile processor that goes beyond mobile
innovation,” Press release, September 2017.

NVIDIA, “Nvidia Tegra K1 - a new era in mobile computing,” White
paper, 2014.

NVIDIA, “Nvidia Tegra X1 — Nvidia’s new mobile superchip,” White
paper, 2015.

M. Becchi and P. Crowley, “Dynamic thread assignment on heteroge-
neous multiprocessor architectures,” in Proceedings of the 3rd conference
on Computing Frontiers, 2006, pp. 29-40.

D. Koufaty, D. Reddy, and S. Hahn, “Bias scheduling in heterogeneous
multi-core architectures,” in Proceedings of the 5th European Conference
on Computer Systems, 2010, pp. 125-138.

106

BIBLIOGRAPHY

(58]

[63]

[66]

[67]

N. B. Lakshminarayana, J. Lee, and H. Kim, “Age based scheduling for
asymmetric multiprocessors,” in Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis, 2009, p. 25.

S. Ghiasi, T. Keller, and F. Rawson, “Scheduling for heterogeneous
processors in server systems,” in Proceedings of the 2nd Conference on
Computing Frontiers, 2005, pp. 199-210.

S. Eyerman and L. Eeckhout, “System-level performance metrics for
multiprogram workloads,” IEEE Micro, vol. 28, no. 3, pp. 42-53, 2008.

B. Kuttana, “Technology insight: Intel Silvermont microarchitecture,”
Intel Developer Forum, 2013.

H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi,
“Pinpointing representative portions of large Intel Itanium programs
with dynamic instrumentation,” in Proceedings of the 37th International
Symposium on Microarchitecture (MICRO), 2004, pp. 81-92.

D. Brooks and M. Martonosi, “Dynamic thermal management for high-
performance microprocessors,” in 7th International Symposium on High-
Performance Computer Architecture (HPCA), 2001, pp. 171-182.

A. Raghavan, L. Emurian, L. Shao, M. Papaefthymiou, K. P. Pipe, T. F.
Wenisch, and M. M. Martin, “Utilizing dark silicon to save energy with
computational sprinting,” IEEE Micro, vol. 33, no. 5, pp. 20-28, 2013.

S. Fan, S. M. Zahedi, and B. C. Lee, “The computational sprinting game,”
in Proceedings of the 21st International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS), 2016,
pp. 561-575.

T. S. Muthukaruppan, A. Pathania, and T. Mitra, “Price theory based
power management for heterogeneous multi-cores” in International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2014, pp. 161-176.

I. Paul, S. Manne, M. Arora, W. L. Bircher, and S. Yalamanchili, “Coop-
erative boosting: Needy versus greedy power management,” in Proceed-
ings of the 40th Annual International Symposium on Computer Architec-
ture (ISCA), 2013, pp. 285-296.

B. Su, J. Gu, L. Shen, W. Huang, J. L. Greathouse, and Z. Wang, “PPEP:
Online performance, power, and energy prediction framework and
DVFS space exploration,” in Proceedings of the 47th Annual International
Symposium on Microarchitecture (MICRO), 2014, pp. 445-457.

107

BIBLIOGRAPHY

[69]

(71]

(72]

(73]

O. Azizi, A. Mahesri, B. C. Lee, S. J. Patel, and M. Horowitz, “Energy-
performance tradeoffs in processor architecture and circuit design: A
marginal cost analysis,” in Proceedings of the 37th Annual International
Symposium on Computer Architecture (ISCA), 2010, pp. 26-36.

R. Miftakhutdinov, E. Ebrahimi, and Y. N. Patt, “Predicting performance
impact of DVFS for realistic memory systems,” in Proceedings of the 45th
Annual International Symposium on Microarchitecture (MICRO), 2012, pp.
155-165.

J. Ho and A. Frumusanu, “Understanding Qualcomm’s Snapdragon
810: Performance preview,” 2015. [Online]. Available: https://www.
anandtech.com/show/8933/snapdragon-810-performance-preview/4

I. Rickards and A. Kucheria, “Energy-aware scheduling (EAS)
progress update,” 2015. [Online]. Available: https://www.linaro.org/
blog/energy-aware-scheduling-eas-progress-update/

V. Spiliopoulos, S. Kaxiras, and G. Keramidas, “Green governors: A
framework for continuously adaptive DVFS,” in Green Computing Con-
ference and Workshops (IGCC), 2011, pp. 1-8.

108

https://www.anandtech.com/show/8933/snapdragon-810-performance-preview/4
https://www.anandtech.com/show/8933/snapdragon-810-performance-preview/4
https://www.linaro.org/blog/energy-aware-scheduling-eas-progress-update/
https://www.linaro.org/blog/energy-aware-scheduling-eas-progress-update/

	Acknowledgements
	Contents
	Summary
	Samenvatting
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Key Challenges
	1.3 Key Contributions
	1.3.1 Optimizing Single-Threaded Performance
	1.3.2 Maximizing Throughput for Multi-Programmed Workloads
	1.3.3 Maximizing Performance on Generic HCMPs with DVFS

	1.4 Other Research Activities
	1.4.1 Cloud Workload Benchmarking and Characterization
	1.4.2 Scale-Out Processors
	1.4.3 Architectural Support for Probabilistic Branches

	1.5 Structure and Overview

	2 Background
	2.1 A Historic Perspective
	2.2 The End of Dennard Scaling
	2.3 Power Management
	2.3.1 Dynamic Voltage and Frequency Scaling
	2.3.2 Heterogeneous Multicore Processors
	2.3.3 Scheduling Without Power Constraints
	I. Optimizations Using DVFS
	II. Optimizations Using HCMPs

	2.4 Scheduling under Power Limits
	2.4.1 Scheduling vs Power Management
	2.4.2 Power Limits

	2.5 Prior Work For Scheduling under a Power Limit
	2.5.1 Responsiveness Techniques
	2.5.2 Multicore Sustained Performance

	3 Optimizing Performance for Single-Threaded Applications
	3.1 Introduction
	3.2 Problem Statement
	3.3 Scheduling under Power Constraints
	3.3.1 Sprint-and-rest
	3.3.2 Sprint-and-walk
	3.3.3 Optimal Performance: Oracle

	3.4 Evaluation Methodology
	3.5 Experimental Results
	3.5.1 Potential Performance Improvement
	I. Applications with Weak Phase Behavior
	II. Power Limit Reduces Speedup

	3.5.2 Sensitivity Study
	I. Power Limit
	II. Granularity
	III. HCMP Configuration

	3.6 Summary

	4 Optimizing Performance for Multi-Programmed Workloads
	4.1 Introduction
	4.2 Motivation
	4.2.1 Implications of Power Limits on HCMP Scheduling
	4.2.2 Power Budget Partitioning

	4.3 Power Budget Partitioning using Linear Programming
	4.3.1 Linear Programming Formulation
	4.3.2 The Solution Space
	4.3.3 Delta Performance / Delta Power

	4.4 DPDP Budget Partitioning
	4.5 Experimental Setup
	4.6 Results and Discussion
	4.6.1 DPDP Results
	4.6.2 Big Core Utilization
	4.6.3 Sensitivity Analysis
	I. Available Power Budget
	II. Core Type
	III. Asymmetric HCMP Configuration

	4.6.4 Exploiting Application Phase Behavior
	4.6.5 Per-Application Performance Considerations

	4.7 Related Work
	4.7.1 Power and Thermal Management
	4.7.2 Scheduling for Heterogeneous Multicores

	4.8 Summary

	5 Optimizing Performance on HCMPs with DVFS
	5.1 Introduction
	5.2 Background and Motivation
	5.3 PH-Sifter
	5.3.1 PH-Sifter Algorithm
	5.3.2 Multiple Concurrent Applications

	5.4 Power Management Scheme
	5.5 Experimental Setup
	5.6 Evaluation
	5.6.1 Maximizing Performance for a Single Task
	5.6.2 Maximizing Performance for Concurrent Tasks
	5.6.3 Provisioning for QoS

	5.7 Discussion
	5.7.1 Multi-threaded Applications
	5.7.2 Performance Capping
	5.7.3 Bursty Applications

	5.8 Related Work
	5.9 Summary

	6 Conclusions
	6.1 Summary
	6.2 Future Work

	Bibliography

