604 research outputs found

    Improving reconfigurable systems reliability by combining periodical test and redundancy techniques: a case study

    Get PDF
    This paper revises and introduces to the field of reconfigurable computer systems, some traditional techniques used in the fields of fault-tolerance and testing of digital circuits. The target area is that of on-board spacecraft electronics, as this class of application is a good candidate for the use of reconfigurable computing technology. Fault tolerant strategies are used in order for the system to adapt itself to the severe conditions found in space. In addition, the paper describes some problems and possible solutions for the use of reconfigurable components, based on programmable logic, in space applications

    Fault tolerant methods for reliability in FPGAs

    Full text link

    Fault-tolerant fpga for mission-critical applications.

    Get PDF
    One of the devices that play a great role in electronic circuits design, specifically safety-critical design applications, is Field programmable Gate Arrays (FPGAs). This is because of its high performance, re-configurability and low development cost. FPGAs are used in many applications such as data processing, networks, automotive, space and industrial applications. Negative impacts on the reliability of such applications result from moving to smaller feature sizes in the latest FPGA architectures. This increases the need for fault-tolerant techniques to improve reliability and extend system lifetime of FPGA-based applications. In this thesis, two fault-tolerant techniques for FPGA-based applications are proposed with a built-in fault detection region. A low cost fault detection scheme is proposed for detecting faults using the fault detection region used in both schemes. The fault detection scheme primarily detects open faults in the programmable interconnect resources in the FPGAs. In addition, Stuck-At faults and Single Event Upsets (SEUs) fault can be detected. For fault recovery, each scheme has its own fault recovery approach. The first approach uses a spare module and a 2-to-1 multiplexer to recover from any fault detected. On the other hand, the second approach recovers from any fault detected using the property of Partial Reconfiguration (PR) in the FPGAs. It relies on identifying a Partially Reconfigurable block (P_b) in the FPGA that is used in the recovery process after the first faulty module is identified in the system. This technique uses only one location to recover from faults in any of the FPGA’s modules and the FPGA interconnects. Simulation results show that both techniques can detect and recover from open faults. In addition, Stuck-At faults and Single Event Upsets (SEUs) fault can also be detected. Finally, both techniques require low area overhead

    Use of Field Programmable Gate Array Technology in Future Space Avionics

    Get PDF
    Fulfilling NASA's new vision for space exploration requires the development of sustainable, flexible and fault tolerant spacecraft control systems. The traditional development paradigm consists of the purchase or fabrication of hardware boards with fixed processor and/or Digital Signal Processing (DSP) components interconnected via a standardized bus system. This is followed by the purchase and/or development of software. This paradigm has several disadvantages for the development of systems to support NASA's new vision. Building a system to be fault tolerant increases the complexity and decreases the performance of included software. Standard bus design and conventional implementation produces natural bottlenecks. Configuring hardware components in systems containing common processors and DSPs is difficult initially and expensive or impossible to change later. The existence of Hardware Description Languages (HDLs), the recent increase in performance, density and radiation tolerance of Field Programmable Gate Arrays (FPGAs), and Intellectual Property (IP) Cores provides the technology for reprogrammable Systems on a Chip (SOC). This technology supports a paradigm better suited for NASA's vision. Hardware and software production are melded for more effective development; they can both evolve together over time. Designers incorporating this technology into future avionics can benefit from its flexibility. Systems can be designed with improved fault isolation and tolerance using hardware instead of software. Also, these designs can be protected from obsolescence problems where maintenance is compromised via component and vendor availability.To investigate the flexibility of this technology, the core of the Central Processing Unit and Input/Output Processor of the Space Shuttle AP101S Computer were prototyped in Verilog HDL and synthesized into an Altera Stratix FPGA

    A Defect-tolerant Cluster in a Mesh SRAM-based FPGA

    No full text
    International audienceIn this paper, we propose the implementation of multiple defect-tolerant techniques on an SRAM-based FPGA. These techniques include redundancy at both the logic block and intra-cluster interconnect. In the logic block, redundancy is implemented at the multiplexer level. Its efficiency is analyzed by injecting a single defect at the output of a multiplexer, considering all possible locations and input combinations. While at the interconnect level, fine grain redundancy is introduced which not only bypasses defects but also increases routability. Taking advantage of the sparse intra-cluster interconnect structures, routability is further improved by efficient distribution of feedback paths allowing more flexibility in the connections among logic blocks. Emulation results show a significant improvement of about 15% and 34% in the robustness of logic block and intra-cluster interconnect respectively. Furthermore, the impact of these hardening schemes on the testability of the FPGA cluster for manufacturing defects is also investigated in terms of maximum achievable fault coverage and the respective cost

    Reduction of NBTI-Induced Degradation on Ring Oscillators in FPGA

    Get PDF
    Ring Oscillators are used for variety of purposes to enhance reliability on LSIs or FPGAs. This paper introduces an aging-tolerant design structure of ring oscillators that are used in FPGAs. The structure is able to reduce NBTI-induced degradation in a ring oscillator\u27s frequency by setting PMOS transistors of look-up tables in an off-state when the oscillator is not working. The evaluation of a variety of ring oscillators using Altera Cyclone IV device (60nm technology) shows that the proposed structure is capable of controlling degradation level as well as reducing more than 37% performance degradation compared to the conventional oscillators.The 20th IEEE Pacific Rim International Symposium on Dependable Computing (PRDC 2014), Nov 19-21, 2014, Singapor

    Modelling Electronic Circuit Failures using a Xilinx FPGA System

    Get PDF
    FPGAs are a ubiquitous electronic component utilised in a wide range of electronic systems across many industries. Almost all modern FPGAs employ SRAM based configuration memory elements which are susceptible to radiation induced soft errors. In high altitude and space applications, as well as in the nuclear and defence industries, such circuits must operate reliably in radiation-rich environments. A range of soft error mitigation techniques have been proposed but testing and qualification of new fault tolerant circuits can be an expensive and time consuming process. A novel method for simulating radiation-induced soft errors is presented that operates entirely within a laboratory environment and requires no hazardous exposure to radiation or expensive airborne test rigs. A system utilising modular redundancy is then implemented and tested under the new method. The test system is further demonstrated in conjunction with a software flight simulator to test single electronic modules in the context of active service on board a passenger aircraft and the effects of failure under radiation induced soft errors are observed. Our research proposes a test regime in which design strategies for self-healing circuits can be compared and demonstrated to work

    Fault-Tolerant FPGA-Based Systems

    Get PDF
    This paper presents a new approach to on-line fault tolerance via reconfiguration for the systems mapped onto field programmable gate arrays (FPGAs). The fault detection, based on self-checking technique, is introduced at application level; therefore our approach can detect the faults of configurable logic blocks (CLBs) and routing interconnections in the FPGAs concurrently with the normal system work. A grid of tiles is projected on the FPGA structure and a certain number of spare CLBs is reserved inside every tile. The number of spare CLBs per tile, which will be used as a backup upon detecting any faulty CLB, is estimated in accordance with the probability of failure. After locating the faulty CLBs, the faulty tile will be reconfigured with avoiding the faulty CLBs. Our proposed approach uses a combination of hardware and software redundancy. We assume that a module external to the FPGA controls automatically the reconfiguration process in addition to the diagnosis process (DIRC); typically this is an embedded microprocessor having some storage for the various tile configurations. We have implemented our approach using Xilinx Virtex FPGA. The DIRC code is written in JBits software tools. In response to a component failure this approach capitalizes on the unique reconfiguration capabilities of FPGAs and replaces the affected tile with a functionally equivalent one that does not rely on the faulty component. Unlike fixed structure fault-tolerance techniques for ASICs and microprocessors, this approach allows a single physical component to provide redundant backup for several types of components

    Design techniques for xilinx virtex FPGA configuration memory scrubbers

    Get PDF
    SRAM-based FPGAs are in-field reconfigurable an unlimited number of times. This characteristic, together with their high performance and high logic density, proves to be very convenient for a number of ground and space level applications. One drawback of this technology is that it is susceptible to ionizing radiation, and this sensitivity increases with technology scaling. This is a first order concern for applications in harsh radiation environments, and starts to be a concern for high reliability ground applications. Several techniques exist for coping with radiation effects at user application. In order to be effective they need to be complemented with configuration memory scrubbing, which allows error mitigation and prevents failures due to error accumulation. Depending on the radiation environment and on the system dependability requirements, the configuration scrubber design can become more or less complex. This paper classifies and presents current and novel design methodologies and architectures for SRAM-based FPGAs, and in particular for Xilinx Virtex-4QV/5QV, configuration memory scrubbers
    corecore