257 research outputs found

    How to Blend a Robot within a Group of Zebrafish: Achieving Social Acceptance through Real-time Calibration of a Multi-level Behavioural Model

    Full text link
    We have previously shown how to socially integrate a fish robot into a group of zebrafish thanks to biomimetic behavioural models. The models have to be calibrated on experimental data to present correct behavioural features. This calibration is essential to enhance the social integration of the robot into the group. When calibrated, the behavioural model of fish behaviour is implemented to drive a robot with closed-loop control of social interactions into a group of zebrafish. This approach can be useful to form mixed-groups, and study animal individual and collective behaviour by using biomimetic autonomous robots capable of responding to the animals in long-standing experiments. Here, we show a methodology for continuous real-time calibration and refinement of multi-level behavioural model. The real-time calibration, by an evolutionary algorithm, is based on simulation of the model to correspond to the observed fish behaviour in real-time. The calibrated model is updated on the robot and tested during the experiments. This method allows to cope with changes of dynamics in fish behaviour. Moreover, each fish presents individual behavioural differences. Thus, each trial is done with naive fish groups that display behavioural variability. This real-time calibration methodology can optimise the robot behaviours during the experiments. Our implementation of this methodology runs on three different computers that perform individual tracking, data-analysis, multi-objective evolutionary algorithms, simulation of the fish robot and adaptation of the robot behavioural models, all in real-time.Comment: 9 pages, 3 figure

    Robot Compatible Environment and Conditions

    Get PDF
    Service robot technology is progressing at a fast pace. Accurate robot-friendly indoor localization and harmonization of built environ-ment in alignment with digital, physical, and social environment becomes emphasized. This paper proposes the novel approach of Robot Compatible Environment (RCE) within the architectural space. Evolution of service robotics in connection with civil engineering and architecture is discussed, whereas optimum performance is to be achieved based on robots’ capabilities and spatial affordances. For ubiquitous and safe human-robot interaction, robots are to be integrated into the living environment. The aim of the research is to highlight solutions for various interconnected challenges within the built environment. Our goal is to reach findings on comparison of robotic and accessibility standards, synthesis of navigation, access to information and social acceptance. Checklists, recommendations, and design process are introduced within the RCE framework, proposing a holistic approach

    Affective Communication for Socially Assistive Robots (SARs) for Children with Autism Spectrum Disorder: A Systematic Review

    Get PDF
    Research on affective communication for socially assistive robots has been conducted to enable physical robots to perceive, express, and respond emotionally. However, the use of affective computing in social robots has been limited, especially when social robots are designed for children, and especially those with autism spectrum disorder (ASD). Social robots are based on cognitiveaffective models, which allow them to communicate with people following social behaviors and rules. However, interactions between a child and a robot may change or be different compared to those with an adult or when the child has an emotional deficit. In this study, we systematically reviewed studies related to computational models of emotions for children with ASD. We used the Scopus, WoS, Springer, and IEEE-Xplore databases to answer different research questions related to the definition, interaction, and design of computational models supported by theoretical psychology approaches from 1997 to 2021. Our review found 46 articles; not all the studies considered children or those with ASD.This research was funded by VRIEA-PUCV, grant number 039.358/202

    StimCards: interactive and configurable Question and Answer game - Users study conclusion

    No full text
    International audienceThis paper highlights conclusions about six experiments conducted with StimCards, an interactive and configurable Question and Answer game. It has been created in the context of the Robadom project whose goal is to propose a homecare robot for seniors. In this project, StimCards is applied to cognitive stimulation. This game is special because users can create their own questions and their own game scripts, and decide which digital devices will be used to interact with. Two experiments have been realized to evaluate the possibility for users to create game scripts. Two other experiments compared children and seniors. They evaluated StimCards acceptability and the preferred users' computing interlocutor. Results showed that it is so easy to create game scripts that children can do it. Both children and seniors liked StimCards, and children preferred to interact with a robot, rather than a computer or a virtual character

    After 150 years of watching: is there a need for synthetic ethology?

    Get PDF
    The Darwinian idea of mental continuity is about 150 years old. Although nobody has strongly denied this evolutionary link, both conceptually and practically, relative slow advance has been made by ethology and comparative psychology to quantify mental evolution. Debates on the mechanistic interpretation of cognition often struggle with the same old issues (e.g., associationism vs cognitivism), and in general, experimental methods have made also relative slow progress since the introduction of the puzzle box. In this paper, we illustrate the prevailing issues using examples on ‘mental state attribution’ and ‘perspective taking” and argue that the situation could be improved by the introduction of novel methodological inventions and insights. We suggest that focusing on problem-solving skills and constructing artificial agents that aim to correspond and interact with biological ones, may help to understand the functioning of the mind. We urge the establishment of a novel approach, synthetic ethology, in which researchers take on a practical stance and construct artificial embodied minds relying of specific computational architectures the performance of which can be compared directly to biological agents

    A systematic literature review of decision-making and control systems for autonomous and social robots

    Get PDF
    In the last years, considerable research has been carried out to develop robots that can improve our quality of life during tedious and challenging tasks. In these contexts, robots operating without human supervision open many possibilities to assist people in their daily activities. When autonomous robots collaborate with humans, social skills are necessary for adequate communication and cooperation. Considering these facts, endowing autonomous and social robots with decision-making and control models is critical for appropriately fulfiling their initial goals. This manuscript presents a systematic review of the evolution of decision-making systems and control architectures for autonomous and social robots in the last three decades. These architectures have been incorporating new methods based on biologically inspired models and Machine Learning to enhance these systems’ possibilities to developed societies. The review explores the most novel advances in each application area, comparing their most essential features. Additionally, we describe the current challenges of software architecture devoted to action selection, an analysis not provided in similar reviews of behavioural models for autonomous and social robots. Finally, we present the future directions that these systems can take in the future.The research leading to these results has received funding from the projects: Robots Sociales para Estimulación Física, Cognitiva y Afectiva de Mayores (ROSES), RTI2018-096338-B-I00, funded by the Ministerio de Ciencia, Innovación y Universidades; Robots sociales para mitigar la soledad y el aislamiento en mayores (SOROLI), PID2021-123941OA-I00, funded by Agencia Estatal de Investigación (AEI), Spanish Ministerio de Ciencia e Innovación. This publication is part of the R&D&I project PLEC2021-007819 funded by MCIN/AEI/10.13039/501100011033 and by the European Union NextGenerationEU/PRTR

    Building and Designing Expressive Speech Synthesis

    Get PDF
    We know there is something special about speech. Our voices are not just a means of communicating. They also give a deep impression of who we are and what we might know. They can betray our upbringing, our emotional state, our state of health. They can be used to persuade and convince, to calm and to excite. As speech systems enter the social domain they are required to interact, support and mediate our social relationships with 1) each other, 2) with digital information, and, increasingly, 3) with AI-based algorithms and processes. Socially Interactive Agents (SIAs) are at the fore- front of research and innovation in this area. There is an assumption that in the future “spoken language will provide a natural conversational interface between human beings and so-called intelligent systems.” [Moore 2017, p. 283]. A considerable amount of previous research work has tested this assumption with mixed results. However, as pointed out “voice interfaces have become notorious for fostering frustration and failure” [Nass and Brave 2005, p.6]. It is within this context, between our exceptional and intelligent human use of speech to communicate and interact with other humans, and our desire to leverage this means of communication for artificial systems, that the technology, often termed expressive speech synthesis uncomfortably falls. Uncomfortably, because it is often overshadowed by issues in interactivity and the underlying intelligence of the system which is something that emerges from the interaction of many of the components in a SIA. This is especially true of what we might term conversational speech, where decoupling how things are spoken, from when and to whom they are spoken, can seem an impossible task. This is an even greater challenge in evaluation and in characterising full systems which have made use of expressive speech. Furthermore when designing an interaction with a SIA, we must not only consider how SIAs should speak but how much, and whether they should even speak at all. These considerations cannot be ignored. Any speech synthesis that is used in the context of an artificial agent will have a perceived accent, a vocal style, an underlying emotion and an intonational model. Dimensions like accent and personality (cross speaker parameters) as well as vocal style, emotion and intonation during an interaction (within-speaker parameters) need to be built in the design of a synthetic voice. Even a default or neutral voice has to consider these same expressive speech synthesis components. Such design parameters have a strong influence on how effectively a system will interact, how it is perceived and its assumed ability to perform a task or function. To ignore these is to blindly accept a set of design decisions that ignores the complex effect speech has on the user’s successful interaction with a system. Thus expressive speech synthesis is a key design component in SIAs. This chapter explores the world of expressive speech synthesis, aiming to act as a starting point for those interested in the design, building and evaluation of such artificial speech. The debates and literature within this topic are vast and are fundamentally multidisciplinary in focus, covering a wide range of disciplines such as linguistics, pragmatics, psychology, speech and language technology, robotics and human-computer interaction (HCI), to name a few. It is not our aim to synthesise these areas but to give a scaffold and a starting point for the reader by exploring the critical dimensions and decisions they may need to consider when choosing to use expressive speech. To do this, the chapter explores the building of expressive synthesis, highlighting key decisions and parameters as well as emphasising future challenges in expressive speech research and development. Yet, before these are expanded upon we must first try and define what we actually mean by expressive speech

    Grounding Emotion Appraisal in Autonomous Humanoids

    Full text link

    Assistance dogs provide a useful behavioural model to enrich communicative skills of assistance robots

    Get PDF
    These studies are part of a project aiming to reveal relevant aspects of human–dog interactions, which could serve as a model to design successful human-robot interactions. Presently there are no successfully commercialized assistance robots, however, assistance dogs work efficiently as partners for persons with disabilities. In Study 1, we analyzed the cooperation of 32 assistance dog–owner dyads performing a carrying task. We revealed typical behavior sequences and also differences depending on the dyads' experiences and on whether the owner was a wheelchair user. In Study 2, we investigated dogs' responses to unforeseen difficulties during a retrieving task in two contexts. Dogs displayed specific communicative and displacement behaviors, and a strong commitment to execute the insoluble task. Questionnaire data from Study 3 confirmed that these behaviors could successfully attenuate owners' disappointment. Although owners anticipated the technical competence of future assistance robots to be moderate/high, they could not imagine robots as emotional companions, which negatively affected their acceptance ratings of future robotic assistants. We propose that assistance dogs' cooperative behaviors and problem solving strategies should inspire the development of the relevant functions and social behaviors of assistance robots with limited manual and verbal skills

    The behaviour of commercial broilers in response to a mobile robot

    Get PDF
    1. Modern broiler production, in increasingly large sheds holding upwards of 50.000 birds, controls indoor climate based on a handful of fixed location sensors, often well above the bird occupied zone. Significant deviations within a shed from the optimal climate conditions for the birds are common, but installing a higher density grid of fixed sensors is not cost effective. A robotic platform, moving through the flock of birds, collecting detailed spacial information on a wide range of climate parameters at bird level, will enable accurate decisions to optimise the climate in large sheds being made in real time. 2. A preliminary study investigated the feasibility of running a mobile robotic platform among a flock of broiler chickens for an entire 6-week cycle. Bird behaviour in response to the robot was also studied
    • 

    corecore