1,581 research outputs found

    Towards the Evolution of Novel Vertical-Axis Wind Turbines

    Full text link
    Renewable and sustainable energy is one of the most important challenges currently facing mankind. Wind has made an increasing contribution to the world's energy supply mix, but still remains a long way from reaching its full potential. In this paper, we investigate the use of artificial evolution to design vertical-axis wind turbine prototypes that are physically instantiated and evaluated under approximated wind tunnel conditions. An artificial neural network is used as a surrogate model to assist learning and found to reduce the number of fabrications required to reach a higher aerodynamic efficiency, resulting in an important cost reduction. Unlike in other approaches, such as computational fluid dynamics simulations, no mathematical formulations are used and no model assumptions are made.Comment: 14 pages, 11 figure

    Computational Methods for Delineating Multiple Nuclear Phenotypes from Different Imaging Modalities

    Get PDF
    Characterizing histopathology or organoid models of breast cancer can provide fundamental knowledge that will lead to a better understanding of tumors, response to therapeutic agents, and discovery of new targeted therapies. To this aim, the delineation of nuclei is significantly interesting since it provides rich information about the aberrant microanatomy or colony formation. For example, (i) cancer cells tend to be larger and, if coupled with high chromatin content, may indicate aneuploidy; (ii) cellular density can be the result of rapid proliferation; (iii) nuclear micro-texture can be a surrogate for fluctuation of heterochromatin patterns, where epigenetic aberrations in cancers are sometimes correlated with alterations in heterochromatin distribution; and (iv) normalized colony formation of cancer cells, in 3D culture, can serve as a surrogate metric for tumor suppression. These evidences suggest that nuclear segmentation and profiling is a major step for subsequent bioinformatics analysis. However, there are two barriers which include technical variations during the sample preparation step and biological heterogeneity since no two patients/samples are alike. As a result of these complexities, extension of deep learning methodologies will have a significant impact on the robust characterization and profiling of pathology sections or organoid models. In this presentation, we demonstrate that integration of regional and contextual representations, within the framework of a deep encoder-decoder architecture, contribute to robust delineation of various nuclear phenotypes from both bright field and confocal microscopy. The deep encoder-decoder architecture can infer perceptual boundaries that are necessary to decompose clumps of nuclei. The method has been validated on pathology section and organoid models of human mammary epithelial cells

    Evolutionary Computation

    Get PDF
    This book presents several recent advances on Evolutionary Computation, specially evolution-based optimization methods and hybrid algorithms for several applications, from optimization and learning to pattern recognition and bioinformatics. This book also presents new algorithms based on several analogies and metafores, where one of them is based on philosophy, specifically on the philosophy of praxis and dialectics. In this book it is also presented interesting applications on bioinformatics, specially the use of particle swarms to discover gene expression patterns in DNA microarrays. Therefore, this book features representative work on the field of evolutionary computation and applied sciences. The intended audience is graduate, undergraduate, researchers, and anyone who wishes to become familiar with the latest research work on this field

    Women in Science 2017

    Get PDF
    Ever since its 1967 start, SURF has been a cornerstone of Smith’s science education. Women in Science 2017 summarizes research done by Smith College’s SURF Program participants during the summer of 2017. 151 students participated in SURF (144 hosted on campus and nearby eld sites), supervised by 58 faculty mentor-advisors drawn from the Clark Science Center and connected to its eighteen science, mathematics, and engineering departments and programs and associated centers and units. At summer’s end, SURF participants summarized their research experiences for this publication.https://scholarworks.smith.edu/clark_womeninscience/1006/thumbnail.jp

    Multivariate Statistical Machine Learning Methods for Genomic Prediction

    Get PDF
    This book is open access under a CC BY 4.0 license This open access book brings together the latest genome base prediction models currently being used by statisticians, breeders and data scientists. It provides an accessible way to understand the theory behind each statistical learning tool, the required pre-processing, the basics of model building, how to train statistical learning methods, the basic R scripts needed to implement each statistical learning tool, and the output of each tool. To do so, for each tool the book provides background theory, some elements of the R statistical software for its implementation, the conceptual underpinnings, and at least two illustrative examples with data from real-world genomic selection experiments. Lastly, worked-out examples help readers check their own comprehension. The book will greatly appeal to readers in plant (and animal) breeding, geneticists and statisticians, as it provides in a very accessible way the necessary theory, the appropriate R code, and illustrative examples for a complete understanding of each statistical learning tool. In addition, it weighs the advantages and disadvantages of each tool
    corecore