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Abstract  31 

 32 

Single-step GBLUP (ssGBLUP) to obtain genomic prediction was proposed in 2009. Many studies 33 

have investigated ssGBLUP in genomic selection in animal and plants using a standard linear 34 

kernel (similarity matrix) called genomic relationship matrix (G). More general kernels should 35 

allow capturing non-additive effects as well, whereas GBLUP is based on additive gene action. In 36 

this study, we generalized ssBLUP to accommodate two non-linear kernels, the averaged Gaussian 37 

kernel (AK) and the recently developed arc-cosine deep kernel (DK).  38 

 39 

We evaluated the methodology using body weight (BW) and hen-housing production (HHP) traits, 40 

recorded on a sample of phenotyped and genotyped commercial broiler chickens. There were, thus, 41 

different ssGBLUP models corresponding to G, AK and DK. We used random replication of 42 

training (TRN) and testing (TST) layouts at different genotyping rates (20%, 40%, 60% and 80% 43 

of all birds) in three selective genotyping scenarios. The selections were: genotyping youngest 44 

individuals in the pedigree (YS), random genotyping (RS) and genotyping based on parent average 45 

(PA). Predictive abilities were measured using rank correlations between the observed and the 46 

predictive phenotypic values in TST for each random partition. 47 

 48 

Prediction accuracy was influenced by the type of kernel when a large proportion of birds was 49 

genotyped. An advantage of nonlinear kernels (AK and DK) was more apparent when 60 and 80% 50 

of birds had been genotyped. For BW, the lowest rank correlations were obtained with G (0.093 ± 51 

0.015 using RS by 20% genotyped individuals) and the highest values with DK (0.320 ± 0.016 in 52 

the PA setting with 80% genotyped individuals). For HHP, the lowest and highest rank correlations 53 

were obtained by AK with 20% and 80% genotyped individuals, 0.071 ± 0.016 (in RS) and 0.23 54 

± 0.016 (in PA), respectively. Our results indicated that AK and DK are more effective than G 55 

when a large proportion of the target population is genotyped. Our expectation is that ssGBLUP 56 

with AK or DK models, can perform even better than G when non-additive genetic effects 57 

influence the underlying variability of complex traits.   58 

Keywords: Single step genomic prediction, Genomic relationship, RKHS, Gaussian Kernel, 59 

Deep kernel, Chickens60 



 61 
Introduction 62 
 63 

Genomic selection (GS)is widely used across plant and livestock species and has been well 64 

accepted by genetic improvement companies. GS uses genomic information like single nucleotide 65 

polymorphism (SNPs) data, to estimate genomic breeding values and rank selection candidates in 66 

a breeding program (Pryce & Haile-Mariam, 2020; VanRaden, 2020). Different statistical 67 

approaches and strategies have been used to predict genomic estimated breeding values, GEBV 68 

(e.g., Gianola & Rosa, 2015). The most commonly used method based on genomic relationships 69 

or similarities (Gianola et al., 2020), is known as genomic best linear unbiased prediction 70 

(GBLUP). The method is a modification of traditional pedigree-based best linear unbiased 71 

prediction (ABLUP), a standard for predicting breeding values using expected relatedness among 72 

individuals derived from pedigree information. GBLUP differs from ABLUP in that the 73 

relationship matrix A, is replaced by a genomic relationship matrix (G) that is calculated from 74 

genotypic data to capture realized relatedness resulting from the process of Mendelian sampling 75 

(Bernardo, 1994; Misztal et al., 2020; VanRaden, 2008).  76 

 77 

An important development took place when GBLUP was extended to the “single-step” GBLUP 78 

method (ssGBLUP), which allows incorporation of both pedigree- and genomic-derived 79 

relationships into a single relationship matrix H (e.g., Misztal et al., 2009). An essential component 80 

of the single-step method is that the genomic relationship matrix among genotyped animals is 81 

expanded via using pedigree information to form a relationship matrix for all animals, including 82 

individuals that were not genotyped. The combined relationship matrix (H) provides a framework 83 

for obtaining GEBV of all individuals in the pedigree simultaneously in a single step ( Christensen 84 

& Lund, 2010). Early attempts at combining GEBV and breeding values (EBV) were based on 85 

blending “direct” genomic values (DGVs) based solely on genomic and phenotype information, 86 

with EBVs by using indexes that weighted the two estimates of breeding values in some manner. 87 

Blending DGVs and EBVs was based on the rationale that, if the effect of quantitative trait loci 88 

(QTL) was not fully captured by the genomic markers, it could still be captured by polygenic 89 

effects (Konstantinov & Hayes, 2010; Pryce & Haile-Mariam, 2020; VanRaden, 2008). In 90 

ssGBLUP (Aguilar et al., 2011; Christensen & Lund, 2010), pedigree, phenotypes, and genotypes 91 



are used jointly to predict genomic estimated breeding values (GEBVs), for all individuals by 92 

using what is essentially an imputation of genomic values using pedigree information that connects 93 

genotyped individuals with individuals without genotypes. 94 

 95 

The concept of ssGBLUP is operationally attractive because it allows exploiting available 96 

computing strategies suited to large-scale BLUP implementations. A number of studies based on 97 

either real or simulated data has indicated that ssGBLUP is effective and that predictions can be 98 

better than those delivered by DGV or blending methodologies (Howard et al., 2014; Konstantinov 99 

& Hayes, 2010; Pérez-Rodríguez et al., 2012). Methods using either SNP effects or genomic 100 

relationships were initially based on a multistep approach (VanRaden, 2008), where a regular 101 

genetic evaluation by pedigree BLUP was followed by extraction of pseudo-phenotypes for 102 

genotyped animals, followed by an evaluation of genotyped animals, and then by a calculation of 103 

an index that combined pedigree and genome-based information ( VanRaden, 2008).  104 

 105 

On the other hand, several studies suggested that non-parametric methods based on kernels, such 106 

as reproducing kernel Hilbert space regression (RKHS) improve predictions of complex traits 107 

(Gianola et al., 2006; Gianola & Van Kaam, 2008). In particular, it was conjectured that non-linear 108 

Gaussian kernels (GK) could capture complex non-additive gene action (e.g., gene×gene epistatic 109 

interactions), as well as nonlinear relations between phenotypes and genotypes. Subsequently, de 110 

los Campos et al., (2009), de los Campos et al., (2010), and Pérez-Rodríguez et al., (2012) noted 111 

that BLUP or GBLUP are special cases of RKHS. Many studies have suggested that various 112 

kernels derived from marker information, could outperform the predictions delivered by the G 113 

relationship matrix (González-Camacho et al., 2012; Pérez-Rodríguez et al., 2012), which is a 114 

valid kernel for RKHS as well, as noted above. It appears that RKHS can improve prediction 115 

accuracy, particularly if there are genotype by environment interaction, epigenetic or metagenomic 116 

effects (Cuevas et al., 2016; E Sousa et al., 2017).  117 

 118 

Cuevas et al.(2019) recently introduced a positive-definite arc-cosine deep kernel (DK) for 119 

genomic prediction as an alternative to deep learning (DL) methods, and which retains the 120 

theoretical appeal of RKHS of capturing relationships or similarities between individuals.  Crossa 121 

et al., 2019a, 2019b, reported that DK achieved a similar or slightly higher prediction accuracy 122 



than either the GK kernel or the genomic relationship matrix (G). The tuning parameter “number 123 

of layers” required for DK can be found using a maximum marginal likelihood procedure (Cuevas 124 

et al., 2019).  125 

 126 
The number and kind of genotyped individuals are crucial for a successful application of ssGBLUP 127 

approach, and these factors impact prediction accuracy in a breeding program (Auinger et al., 128 

2021; Gianola, 2021). For example, a dairy cattle study by Granado-Tajada et al., (2021) using the 129 

ssGBLUP approach found that genotyping males and female are beneficial, when these animals 130 

possess daughters with lactation records. There was no gain in prediction accuracy when the 131 

genetically best (putatively) or extreme individuals were genotyped. They also emphasized the 132 

importance of genotyping individuals from several generations. 133 

There seems to be little recognition that kernel methods can also be used in single step strategies. 134 

In an attempt to examine their performance in a ssGBLUP setting for genomic prediction, we 135 

carried out an experimental comparison using a real chicken data. Our study evaluated the 136 

predictive ability under different genotyping strategies of: 1) the Gaussian nonlinear kernel (GK) 137 

suggested by Gianola et al., (2006) and 2) an arc-cosine deep kernel (DK) suggested by Cho & 138 

Saul (2009), where the kernel evaluation in one of  several layers is a function of the kernel values 139 

in the previous layer. The methods were compared with the standard ssGBLUP method, with 140 

pedigree and genomic relationships, which served as a benchmark.  141 

 142 



 143 
Materials and Methods 144 
 145 
Data 146 
 147 
The dataset used was obtained from Aviagen Ltd (Aviagen Ltd, Newbridge, UK), a major poultry 148 

breeding company. The phenotypic measurements considered were body weight at 35 days of age 149 

(BW) and hen-house production (HHP, the total number of eggs laid between weeks 28 and 54), 150 

with heritability of 0.33 and 0.19, respectively ( Momen et al., 2017). All individuals (𝑛 = 5500) 151 

were sampled from a broiler chicken line undergoing several generations of selection. Pedigree, 152 

genotype and phenotype data were available for all birds. Features and pedigree structure of the 153 

dataset are shown in Table 1.  154 

 155 

When dealing with polygenic traits and single step genomic prediction model, it is typical in animal 156 

breeding genetic evaluation that there will be a large pedigree, involving both genotyped and non-157 

genotyped individuals. Use of all available information is desirable to mitigate biases due to 158 

selection (Im et al., 1989). Poultry breeding programs maintain complete and deep pedigrees of all 159 

birds and employ BLUP-for predicting breeding values of all selection candidates. However, the 160 

number of genotyped individuals typically smaller than the number of individuals in the analysis. 161 

 162 
< Table 1 about here> 163 

 164 
Phenotype correction and genotype quality control  165 
 166 
Before assessing the predictive performance under different design scenarios of the various 167 

models, the raw phenotypes were corrected for plausible (treated as fixed) environmental effects, 168 

to remove known nuisance non-genetic sources of variation.  169 

 170 

All birds were genotyped using a 50K SNP panel from ThermoFisher. Quality control consisted 171 

of eliminating SNPs with a minor allele frequency lower than 1% (MAF<0.01) and a call 172 

frequency lower than 0.95. A total of 42,780 SNPs remained for downstream analysis after the 173 

quality control.  174 

Statistical Analysis 175 
 176 



We considered a  single trait – single step BLUP model, that included both marker and pedigree 177 

information simultaneously for computing the genetic evaluations. Following Legarra et al., 178 

(2009) and Aguilar et al., (2010), the model and related variance-covariance matrices were : 179 

 180 

𝒚 = 𝟏𝜇 + 𝒁𝒖 + 𝒆 181 

where 𝒚	is the vector of corrected phenotypes); 1 is a vector of ones, and μ is the overall mean.  Z 182 

is the incidence matrix that related observations to random genetic additive effects. Term u is the 183 

vector of random genetic additive effects, is assumed to follow the multivariate normal 184 

distribution  𝑁(𝟎,𝑯𝜎!"), where 𝜎!" is the variance of additive genetic effects; e is the vector of 185 

random residual effects, following the normal distribution of 𝑁(𝟎, 𝑰𝜎#"), in which 𝜎#" is the residual 186 

variance. Let 𝒖 = (𝒖$% , 𝒖′")’ where the partitions pertain to non-genotyped and genotyped 187 

individuals, respectively. The matrix H was defined as: 188 

 189 

𝐇 = #
𝑣𝑎𝑟(𝒖𝟏) 𝑐𝑜𝑣(𝒖𝟏, 𝒖𝟐′)

𝑐𝑜𝑣(𝒖𝟐, 𝒖𝟏′) 𝑣𝑎𝑟(𝒖𝟐)
. = /

𝑨𝟏𝟏 + 𝑨𝟏𝟐𝑨𝟐𝟐#𝟏(𝑲 − 𝑨𝟐𝟐)𝑨𝟐𝟐#𝟏𝑨𝟐𝟏 𝑨𝟐𝟏𝑨𝟐𝟐#𝟏𝑲
𝑲𝑨𝟐𝟐#𝟏𝑨𝟐𝟏 𝑲

4 190 

 191 

In the above expression, A11, A12, A21 and A22 are sub-matrices of A (the pedigree-based relationship 192 

matrix))Here,𝐊 can be any 𝑛 × 𝑛 positive-definite kernel matrix which reflects the covariance 193 

structure (i.e., conveying molecular similarity) between the genotyped individuals. The kernel 194 

matrix K is built from marker information, using various operations on marker codes. 195 

 196 
Designing the proportion of genotyped individuals 197 
 198 
In our dataset there were genotypes for all individuals. To mimic the single step BLUP setting 199 

comprising genotyped and non-genotyped subsets, we designed three genotyping scenarios by 200 

masking a varying portion of the entire marker genotypes of individual birds with pedigrees, to 201 

construct the H matrix. In each of the three scenarios 20%, 40%, 60% or 80% of individuals had 202 

genotypes. For example, in the 20% setting, all birds had pedigrees but only 20% were presented 203 

to the model with marker information. 204 

 205 

The first scenario was called “youngest individuals genotyped” (YS). Here, kept the genotypic 206 

information on subsets of 20% (𝑛 = 1100), 40% (𝑛 = 2200), 60% (𝑛 = 3300) and 80% (𝑛 =207 



4400) according to age of the bird. For instance, in the 40% setting, the 40% youngest birds in the 208 

pedigree were presented with genotypes. These individuals (in the 40%) had all phenotypic, 209 

genotypic and pedigree information, and the rest of the birds had only pedigree and phenotypic 210 

information, so their genotypes were masked.  211 

 212 

In the second scenario (PA), individuals with genotype information were selected based on average 213 

phenotype of its parents. The parental average for each bird was calculated 𝑦&'()#*+ = 0.5(𝑦,-'# +214 

𝑦./0), where y is the adjusted phenotype. Individuals with missing information for both parents 215 

were discarded; if there was information on only one of the parents, the evaluation was the adjusted 216 

record of the single parent. We selected 20%, 40%, 60% and 80% of the top averages as individuals 217 

possessing genotypic information. For example, in the 80% genotyping setting, only 20% of the 218 

birds had pedigree data and phenotypes, whereas 80% had marker, pedigree and phenotypic data. 219 

 220 

Finally, for the third scenario (RS), we randomly selected subsets of 20, 40, 60, and 80% of the 221 

individuals from all genotyped animals in the dataset sets. In contrast to the two previous scenarios, 222 

no consideration of age or performance was made in this scenario. 223 

 224 

Kernel methods 225 

We constructed three different similarity kernels based on the additive encoding of marker effects 226 

(K); these kernels were then used in the RKHS regression model (de los Campos et al., 2009). The 227 

first kernel was the genomic relationship matrix suggested by VanRaden (2008), typically used in  228 

ssGBLUP and applied to various species: 229 

𝐆 =
𝐌𝐌′

2∑ p1(1 − p1)0
23$

 230 

 where, M is a n×m centered genotype incidence matrix for individuals (𝑖: 1, 2, … , 𝑛) of SNP 231 

additive codes (j=1, 2,…, m; m= number of markers). SNP genotype codes were 𝑀-2 	 ∈ {0  =232 

 𝐴𝐴; 	1  =  𝐴𝐵	𝑜𝑟	𝐵𝐴; 	2  =  𝐵𝐵} and p1 is the allelic frequency of the minor allele at the j-th SNP. 233 

The G matrix was used to construct H in a single step BLUP that was used as benchmark for 234 

comparisons. 235 
 236 
Gaussian kernel 237 



The nonlinear Gaussian Kernel (GK) method (e.g., Gianola et al. 2006; Gianola and van Kaam 238 

2008) was the second type of kernel used. The Gaussian kernel has the form: 239 

𝐆𝐊44$ = 	𝑒𝑥𝑝(−h
‖𝐌4–𝐌4$‖"

𝑄 ) 240 

where ‖𝐌4–𝐌4$‖ is the Euclidean distance between the vectors of SNP markers of individuals i 241 

and i% normalized to range from 0 to 1, relative to the median of the pairwise distance Q, a scalar 242 

variable; h > 0, is a bandwidth parameter (a regularization variable) that controls the similarity 243 

between individuals or rate of decay of GK44$ Euclidean distance (increase or decrease). GK, is one 244 

of the most widely used kernel functions in genome-enabled prediction, and selection of the 245 

bandwidth is critical. Here, we used an approach called “kernel averaging” or “multiple kernel 246 

learning,” as proposed in de los Campos et al., (2010). We defined a grid of seven values: h= (0.2, 247 

0.4, 0.8, 1, 1.5, 3, 5) and using the formula above, we computed seven distinct GKs, named GK0.2, 248 

GK0.4, …, GK5, related to each specific value of h. Then, the seven kernels were  “averaged” to 249 

build a final kernel as: 𝐀𝐊 =
5%&'.)
)

56%&
) 𝐆𝐊7." +

5%&'.*
)

56%&
) 𝐆𝐊7.9 +⋯+

5%&+
)

56%&
) 𝐆𝐊:. The 𝜎;<'.)

" , 𝜎;<'.*
" , …, 250 

𝜎;<+
"  parameters are variance component estimates captured by the kernels 𝐆𝐊7.", 𝐆𝐊7.9,…, 𝐆𝐊:, 251 

respectively, and 𝜎];<"  is the sum of these seven variances. We assumed that the ratios of variances 252 

reflect the relative contributions of the kernels to the marked genetic variation in the population 253 

(Supplementary Excel spreadsheet). The resultant 𝐀𝐊 kernel matrix was used to construct 𝐇 to be 254 

used in a single step GBLUP.  255 

 256 
Deep Kernel 257 
 258 
The arc-cosine kernel, referred to as Deep Kernel (DK), was the third similarity matrix employed 259 

to create an H matrix. The DK structure was introduced in Cuevas et al., (2019) and used by Crossa 260 

et al., (2019b) for genomic prediction in a multi-environment model. The method is based on  Neal 261 

(2012), in the context of Bayesian inference for deep artificial neural networks (ANN). An arc-262 

cosine kernel is used to measure the similarity between two genotyped individuals by considering 263 

the angle between two vectors of their SNP markers 𝑴-, 𝑴-$. Let Θ(𝑧) = $
"
(1 + 𝑠𝑖𝑔𝑛(𝑧))be the 264 

“Heavyside” step function taking the value zero for negative arguments and one for positive 265 

arguments. We defined the t-th order of arc-cosine kernel function by integral representation: 266 



𝐴𝐾=(𝐌4. 𝐌4$) = 2e𝑑𝑤
𝑒>

‖@‖)
"

(2𝜋)./" Θ
(w.𝐌4)Θ(w.𝐌4$)(w.𝐌4)=(w.𝐌4$)= 267 

where, w is the weight corresponding to the parameters of the model. For non-negative integer 268 

values of 𝑡, Cho (2012), showed that the the angle 𝜃 between the 𝐌4  and 𝐌4$ input vectors is: 269 

𝜃-,-$ = 𝑐𝑜𝑠>$ m
𝐌4. 𝐌4$

‖𝑴-‖	‖𝑴-$‖	
n 270 

 271 

Here, ⋅ stands for the inner product and ǁMiǁ is the norm of individual’s i genotypes. The kernel 272 

resulting from the above operation is a symmetric semi-definite positive matrix (Cuevas et al.  273 

2019a). For a single layer in an artificial neural network (ANN) layout, let: 274 

 275 

 276 

AKC(𝐌𝐢. 𝐌4%) =
1
𝜋
‖𝐌𝒊‖	‖𝐌-%‖	𝑱=(𝜃-,-%) 277 

 278 

Where, π is the pi constant and 𝑱r𝜃-,-$s = (−1)=	(sin	θ)"=F$ ( $
G4H I

	 J
JI

) ( p-q
G4H I

).  The function 𝐽=(𝜃), 279 

takes its maximum value at  𝜃 = 0, and decays monotonically to zero at 𝜃 = p, for all values of t. 280 

When 𝑡 = 	0, the arc-cosine kernel maps inputs M, to a unit hypersphere in feature space with 281 

𝐀𝐊7(𝐌,𝐌) = 1;when 𝑡	 = 	1, the arc-cosine kernel preserves the norm of inputs as 𝐀𝐊$(𝐌,𝐌) =282 

‖𝐌‖". Finally, for all 𝑡	 > 	1, the kernel is A𝐊K(𝐌,𝐌)	~	‖𝑴‖"=. A potential advantage of DK is 283 

the ability of capturing non-additive relationships between individuals, an unexplored concept in 284 

quantitative genetics theory. 285 

 Cho and Saul (2009) and Cuevas et al. (2019) present a recursive relationship approach for 286 

shaping a basic DK, into a final DK-emulating ANN hidden layer (𝑙), by repeating 𝑙 times the 287 

operation  288 

 289 

 290 

𝑨𝑲(CF$)(𝐌4. 𝐌4%) =
1
π }𝑨𝑲

(C)(𝐌4. 𝐌4)	𝑨𝑲(C)(𝐌4%. 𝐌4%)~
$
"	𝑱=(θ4,4%(C)) 291 

 292 



𝜃-,2(C) = 𝑐𝑜𝑠>$ �𝑨𝑲(C)r𝑴- .𝑴2s}𝑨𝑲(C)(𝑴- .𝑴-)	𝑨𝑲(C)r𝑴2 .𝑴2s~
>$"� 293 

 294 

Thus,  values of 𝑨𝑲(NF$), at level (layer) 𝑙 + 1 are computed from the previous layer 𝑨𝑲(N). 295 

Computing a bandwidth is not necessary, contrary to GK, and the additional computational effort 296 

required depends on the number of discrete layers. We selected the number of layers (l), using the 297 

maximum likelihood method  in (Cuevas et al., 2019). 298 

 299 
Prediction ability by cross-validation (CV) 300 

Genome‐enabled prediction accuracy of the various models across the three scenarios was assessed 301 

by designing a replicated partitioned training – testing (TRN-TST) layout. Here, training and 302 

testing sets in a random partition are completely disjoint. In total, we used 200 TRN-TST 303 

replicates, with 60% of the whole data set assigned to TRN and the remaining 40% assigned to 304 

TST set in each run. TRN-TST sets were randomly recreated in each replication. The training set 305 

was used to fit the models and the testing set to measure the predictive performance of the 306 

competingmodels. For each TRN-TST scenario, two metrics were computed: (i) rank correlation 307 

between observed phenotypic values and predicted genomic values, and (ii) mean-squared error 308 

of prediction (PMSE), i.e., the average squared difference between predicted genomic breeding 309 

values and the actual phenotypes. We used Fisher’s z-transformation (𝑍% 	= 	0.5[𝑙𝑛(1 +310 

𝑟)	– 	𝑙𝑛(1 − 𝑟)] ), where r stands for rank correlation, to normalize the distribution of correlation 311 

estimates. We also performed a test for empirical prediction bias done by regressing phenotypes 312 

on predicted genetic values; if the slope of the regression differs from 1, this would suggest “bias”. 313 

All models were fitted with the “emmreml” function from the EMMREML R package (Akdemir 314 

and Godfrey 2015). 315 



Results 316 
 317 
Predictive performance for body weight at 35 days of age (BW) 318 
 319 
Figure 1 shows the boxplot of the predictive rank correlations, PMSE and bias (assessment (slopes) 320 

values for the three genotyping scenarios (PA, RS and YS) for body weight (BW) over the 200 321 

replicates. In all genotyping scenarios, recall that we first selected 20% of the youngest genotyped 322 

chickens as animals with genotypic information in the H matrix. Then, we allowed to have 323 

genotypes to 40% , 60% and 80% of the birds in the sample (percentage values on the x-axis). The 324 

predictive performance of different H matrices is indicated by blue, red and green colors, for G, 325 

AK and DK, respectively. Predictive rank correlations increased as the proportion of birds with 326 

genotypes increased from 20 to 80 %. This was observed for all three H matrices, across all 327 

genotyping scenarios (PA, RS and YS). For example, in the first column of Figure 1 (PA), for the 328 

scenario with 20% genotyped birds, the mean predictive rank correlations (standard deviation) 329 

were 0.25 (0.02), 0.25 (0.02) and 0.26 (0.02), for HG, HAK and HDK, respectively, and increased 330 

to 0.31 (0.02), 0.31 (0.02) and 0.33 (0.02) when 80% of birds were genotyped. Under the 80% 331 

setting, there was a mild advantage of HDK over HG and HAK in the single step BLUP models. In 332 

YS, birds selected for genotyping according to their age in the pedigree, the most closely related 333 

animals originated from recent generations. YS is representative of a selection scenario where 334 

genotyping and phenotyping of youngest progenies is favored. Here, there was much overlap 335 

between the predictive distributions generated by different kernels, with slight advantage for HDK. 336 

A similar pattern of mild differences between kernels was observed for predictive mean squared 337 

error (PMSE) for all genotyping scenarios. As the fraction of genotyped individuals relative to the 338 

total increased, PMSE decreased; the lowest PMSEs were obtained with 80% genotyped 339 



individuals with HDK. As depicted by the bottom plots of Figure 1, the slopes could not be 340 

considered different from 1, so all predictions could be claims empirically “unbiased”.  341 

The panels in the middle column in Figure 1 compare HAK and HDK versus HG when individuals 342 

were randomly genotyped (RS). Under RS, all three kernels for single step BLUP, had poorer 343 

prediction ability when compared to the YS and PA scenarios. Ass before, the lowest and highest 344 

prediction rank correlations were obtained with 20% and 80%, genotyping, respectively. The 345 

ranges of predictive correlations under RS were 0.10 (0.02), 0.11 (0.02), and 0.10 (0.02) with 20 346 

% genotyped individuals, and increased to 0.15 (0.02), 0.18 (0.02) and 0.17 (0.02) with 80 % 347 

genotyped birds, for HG, HAK and HDK, respectively. There was a hint of a superiority of HAK and 348 

HDK, over HG but it did not translate into lower MSE. The leftmost column of Figure 1 shows the 349 

predictive performance of the H matrices when birds were selected for genotyping based on the 350 

phenotypic parent average (PA). For this scenario, the lowest predictive rank correlations were 351 

again obtained when only 20 % of the birds were genotyped, with values 0.24 (0.02), 0.25 (0.02) 352 

and 0.25 (0.02) for HG, HAK and HDK, respectively; the largest values were obtained with 80 % of 353 

individuals genotyped. In the PA scenario, the HDK, was slightly better than HG and HAK, except 354 

when only 20 % of the birds were genotyped. In short, for PA, HDK and HAK were slightly better 355 

than HG. Predictions were empirically “unbiased” in YS since the slopes of the regressions did not 356 

differ from 1. Overall, predictions were better in the YS and PA scenarios and worst in RS in terms 357 

of all metrics considered.  358 

In a nutshell, results body weight (BW) indicated that single step BLUP predictions may be 359 

improved in some cases by using non-linear similarity matrices for the H matrix, without 360 

detectable adverse effects. This result held mostly when predictions derived from a large 361 

proportion of individuals with genomic data, in addition to pedigree and phenotypic information. 362 



The non-parametric kernels have potential to capture additive and non-additive gene actions 363 

(Morota & Gianola, 2014), and this property is expected to be conveyed to some extent to the H 364 

matrix. In general markers exploit similarity in state, and may capture non-additive gene action (if 365 

appropriately encoded) and linkage disequilibrium, whereas A informs about similarity by descent 366 

( Momen et al., 2017), so there would be complementarity between genomic and pedigree data. 367 

The additive encoding of markers and the standard genomic relationship matrix are supplementary 368 

to the information from A. Our findings suggest that H matrices employing nonlinear kernels may 369 

be useful for attaining a higher accuracy of predictions, when non-additive genetic variance is 370 

present without a deterioration in the capture of additive effects, at least in the sense of prediction. 371 

<< Figure 1 About Here >> 372 

Predictive performance for hen-house egg production (HHP) 373 
 374 
Figure 2 displays the boxplot of rank correlations, PMSE and slope values (“bias” assessment) 375 

obtained from the different H matrices over 200 replicates of the TRN-TST layout for hen-house 376 

egg production (HHP). Results for YS (right-most column in Figure 2), shows a slightly better 377 

performance of HDK over HG and HAK when 20 %, 40 % and 60 % of genotyped individuals were 378 

used, HDK and HAK kernels had a similar performance for 80 % genotyping rates and HG was 379 

slightly worst in this case.  The rank correlations for HG, HAK and HDK ranged, respectively, from 380 

0.19 (0.02), 0.19 (0.02), and 0.20 (0.02) for 20 % genotyping rate to 0.21 (0.02), 0.23 (0.02), and 381 

0.23 (0.02) for 80 %. Under the RS scenario, HDK was slightly better than HG and HAK, when 382 

genotyping rate was the highest (80 %). HAK was the worst performer under all genotyping rates 383 

in RS. Rank correlations ranged from 0.08 (0.02), 0.06 (0.02), and 0.07 (0.02) for 20 % genotyping 384 

rate to 0.20 (0.02), 0.19 (0.02), and 0.21 (0.02) for the 80 % rate, for HG, HAK and HDK, 385 

respectively. As for BW, RS delivered the lowest predictive ability for HHP. This is in agreement 386 



with the view that genomic prediction of more closely related genotyped individuals would be 387 

better than of a randomly sampled set of individuals (Pszczola et al., 2011).  388 

In the PA scenario, HAK performed better than HG, and HDK at all genotyping rates. HG had the 389 

lowest performances at all genotyping rates. A negligible difference was observed in the predictive 390 

rank correlations at 80 % genotyping. The predictive rank correlations were 0.18 (0.02), 0.20 391 

(0.01) and 0.19 (0.02) with 20 % genotyping rate and 0.23 (0.02), 0.24 (0.02), and 0.24 (0.02) with 392 

80 % genotyping rate, respectively for HG, HAK and HDK. Predictive mean squared error (PMSE) 393 

displayed the same pattern as predictive rank correlations but differences were minor. No evidence 394 

of empirical “bias” was detected.  395 

In summary, predictive accuracies of single step genomic prediction based on non-linear similarity 396 

matrices were slightly better, seldom worse, than those based on the traditional single step GBLUP 397 

(HG) for BW and HHP. Sometimes imperfect LD can lead to apparent epistasis. A recent study by 398 

Schrauf et al., (2020) provided evidence that at a higher marker density the superiority of nonlinear 399 

over the standard additive kernel may dissipate if such phantom epistasis exist. In practice, 400 

however, it is almost impossible to claim that LD between markers and quantitative trait loci and 401 

markers is “perfect” or “imperfect”, as the true LD cannot be observed. 402 

When a larger proportion of birds with genotypic information was present in the reference 403 

population, the gain of nonlinear kernels was larger, and was larger when genotyping was based 404 

on PA, especially when we used HAK. 405 

 406 
<< Figure 1 About Here >> 407 

 408 
Discussion 409 
 410 
We investigated two non-linear similarity kinship matrices, the averaged Gaussian kernel (AK) 411 

and arc-cosine kernel referred as the deep kernel (DK), when constructing the H matrix in the 412 

single-step BLUP methodology. The predictive ability of these kernels was compared with results 413 

from a standard genomic relationship-based H matrix (Christensen & Lund, 2010; Legarra et al., 414 

2009). We employed four different genotyping rates, with 20, 40, 60 and 80 % of birds in a sample 415 

of fully pedigreed commercial broiler chickens genotyped and, in all cases, the birds had complete 416 



phenotype and pedigree information. A training-testing layout was used in every instance and was 417 

repeated 200 times by random reconstruction in each scenario of genotyping rate and genotyping 418 

strategy (random selection, and based on either age or parental average).  419 

The predictive ability of the models was assessed by comparing the distributions of predictive rank 420 

correlations, predictive mean squared errors and prediction bias statistics, and the target traits were 421 

body weight at 35 days of age (BW) and hen house egg production (HHP). The latter is the total 422 

number of eggs per hen laid between weeks 28 and 54 of age. The two traits have a moderate 423 

genomic heritability between 0.19 and 0.36 (Momen et al., 2017), with a negative genetic 424 

correlation between them (𝑟)(OP,QQR) =	−0.2, Momen et al., 2017). Since all birds had genotype 425 

and pedigree information, in order to mimic the setting of single-step BLUP methodology, the 426 

genotypes of 80, 60, 40 and 20% of the birds were masked to created varying genotyping rates. 427 

We designed three strategies to decide which genotypes would be masked, to create marker-based 428 

kinship matrices and, subsequently, the corresponding H matrices. In the first strategy (YS), we 429 

sorted individuals from oldest to youngest, and selected 20, 40, 60 and 80% of the youngest birds. 430 

On a second strategy, we sorted birds according to their parent’s phenotypic average (PA) and kept 431 

the genotypes of individuals with the highest PA values, with the same as proportions considered 432 

for two other strategies (i.e., 20, 40, 60 and 80 %), and finally, we randomly masked genotypes of 433 

20, 40, 60 and 80% of birds (RS).  434 

In all three selection strategies (YS, RS and PA), higher predictive accuracies were obtained for 435 

BW than for HHP, as expected based on heritability values of these two traits (Momen et al., 2017). 436 

Predictive accuracy was clearly influenced by the proportion of genotyped birds, with a higher 437 

proportion of genotyped birds resulting in a higher prediction accuracy of genomic values. Our 438 

results agreed with findings of Boligon et al., (2012) and Chu et al., (2018), who found that 439 



selective genotyping improved the accuracy of GEBV, and that animals with the best performance 440 

were the most informative for prediction. Selective genotyping is feasible in broilers because 441 

important traits such as body weight and feed efficiency can be measured before sexual maturity. 442 

A simulation study by Ehsani et al., (2010) reported that selective genotyping of the best animals 443 

based on phenotypic values provided weaker predictions of breeding values of animals in the next 444 

generation relative to random sampling, which does not agree with our real data results. In addition, 445 

Ehsani et al., (2010), did not find relevant differences between genotyping individuals with high 446 

phenotypic values versus individuals with low phenotypic values in the reference population. We 447 

found that selective genotyping according to parent average (PA) may deliver a higher prediction 448 

accuracy. Using a simulation, Jiménez-Montero et al., (2012) concluded that the predictive 449 

accuracy of GEBV depends not only on the number of animals genotyped but also on the selective 450 

genotyping strategy as well.  451 

Many efforts have been conducted to enrich BLUP by using alternative kinship-based prediction 452 

methods. The significant work of Misztal et al., (2009), well known as ssGBLUP, provided the ability 453 

to evaluate genotyped and non-genotyped individuals simultaneously. The methodology has been 454 

mostly used for large field data sets, e.g., cattle, pigs and chickens, has led to a higher accuracy, and is 455 

simpler than multistep genomic selection methods (Aguilar et al., 2011; Christensen et al., 2012; 456 

Simeone et al., 2012). On the other hand, different linear and non-linear marker-based similarity 457 

matrices have been developed and implemented by researchers to quantify resemblance between 458 

individuals. A commonly used kernel is the Gaussian kernel (GK) based on molecular markers 459 

(Gianola et al., 2006; Gianola & Van Kaam, 2008) and recently, Cuevas et al., (2019), introduced the 460 

arc-cosine kernel function for genome-enabled prediction. Except for the genomic relationship matrix 461 

(a special form of reproducing kernel), none of these kernels have been tested in the context of 462 

ssGBLUP. We designed the study to investigate the impact of two well used kernels, AK and DK, in 463 



genomic prediction, in a comparison with G, and in the context of ssGBLUP prediction. Our results 464 

suggest that, for some of the scenarios tested, the predictive ability of the single step approached can 465 

be enhanced somewhat by using an H matrix based on AK and DK, as opposed to G. We found that 466 

when genotyping rate increased as part of the selection strategy, the predictive ability of the single step 467 

models increased, with the alternative kernels producing in some cases better results than G. Because 468 

these kernel methods can capture complex gene actions, as well as nonlinear relationships between 469 

phenotype and genotype (Gianola et al., 2006; Gianola & Van Kaam, 2008), the extended H matrix 470 

may be useful in predictive problems when dominance and epistasis underlie gene action. Our results 471 

also suggest that even when the genotyping rate was small, the prediction accuracy using AK and DK 472 

was nearly similar to that of the G, but these two kernels displayed advantages over G at highest 473 

genotyping rates. Cuevas et al., (2019), stated that, DK is computationally easier, since no tuning 474 

parameter is required, while performing similarly or slightly better than the common kernels. In our 475 

study, we used an average of Gaussian kernels, producing a slightly better performance than DK in 476 

some cases. A difficulty with the AK approach is that the weights assigned to each of the kernel depend 477 

on variance components derived from a multi-kernel fitting exercise. Since the kernels are not mutually 478 

orthogonal, the weights placed to the individual kernels may not produce the best possible average 479 

kernel. This is a subject for further study. 480 

We used a somewhat large data set representative of poultry breeding studies with genotyped and non-481 

genotypes individuals evaluated together. We found that the AK and DK kernels were slightly better 482 

than G, when genotyping rate in the single step strategy was large. Using a high-density SNP panel 483 

would be expected to deliver better predictions and perhaps, as in Schrauf et al., (2020), the suggested 484 

superiority of nonlinear kernels might be lost as marker density increases, provided that "phantom 485 

epistasis") is an illusion created by the LD picture captured by low density panels. The preceding may 486 

or may not hold in practice, but our, improvements in prediction accuracies should be taken with 487 

caution as evidence of non-additive effects. Through development of new genotyping platforms, the 488 



cost of genotyping has steadily decreased, and genotyping a large proportion of individuals will be 489 

even more feasible. Whereas computation with large-scale genomic data still remain a challenge, 490 

kernel based methods are less involved than marker-based regression approaches. 491 

In conclusion, we studied, seemingly for the first time in the literature, non-linear kernels as an 492 

alternative to G in the context of a single step genomic evaluation strategy. The results suggested that 493 

this type of kernel may enhance prediction models by capturing additive and non-additive genetic 494 

variability, when present. Future research should examine these kernels for traits known to be strongly 495 

affected by epistasis or by genotype ´ environment interaction.  496 

 497 
Authors’ contributions 498 

 499 

MM carried out the study and wrote the first draft of the manuscript. DG designed the experiment, 500 

supervised the study and critically contributed to the final version of manuscript. GJMR, PM and AK 501 

participated in discussion and reviewed the manuscript. All authors read and approved the final 502 

manuscript. 503 

Acknowledgements 504 

The first author wishes to acknowledge Aviagen (Midlothian, United Kingdom) for providing the 505 

data. 506 
Competing interests 507 

The authors declare that they have no competing interests. 508 

 509 
Availability of data and materials 510 

The datasets generated and analyzed during the current study are not publicly available due to the 511 

Aviagen Ltd (Aviagen Ltd, Newbridge, UK) polices. 512 
 513 

 514 



Tables  515 
 516 
Table 1 Pedigree information and features of the chicken data used 517 
 518 
Individuals in total 5807 
Sires in total  299 
Dams in total  835 
Founders  307 
Inbreeds in total 2663 
Full-sib groups 607 
Average family size (Max-Min) 8.66 (38 to 2) 
Average pedigree based inbreeding coefficient (Max-Min) % 1.4 (12.5 to 0.19) 
Maximum number of discrete generation equivalents 4.8 
Individuals with progeny  1064 
Longest ancestral path (LAP)*:  
G0 307 
G1 128 
G2 157 
G3 181 
G4 1021 
G5 3992 
G6 21 
* Is a path in the pedigree of an individual, which connects the individuals to its 
farthest ancestor.  

 519 
 520 



Figure legends: 521 
 522 
 523 
Figure 1. Boxplot of the Fisher’s z- transformed predictive rank correlations, predictive mean 524 
squares errors (PMSE), and predictive bias between phenotypes and predicted breeding values, 525 
using H matrices based on the VanRaden’s genomic relationship matrix (G), Averaged Gaussian 526 
kernel (AK) and Deep kernel (DK) for body weight (BW) in the single step GBLUP model 527 
(ssGBLUP). Genotyping scenarios (bottom to top) were: 20, 40, 60 and 80% of birds with 528 
genotypes: youngest (YS), at random (RS) and best parent average (PA). Distributions are based 529 
on 200 training-testing sets by assigning 60 % and 40 % of birds to training and testing, 530 
respectively.  Green, red and yellow colors denote values for G, AK or DK relationship matrices, 531 
respectively. 532 
 533 
 534 
Figure 2. Boxplot of the Fisher’s z- transformed predictive rank correlations, predictive mean 535 
squares errors (PMSE), and predictive bias, using H matrices based on the VanRaden’s genomic 536 
relationship matrix (G), Averaged Gaussian kernel (AK) and Deep kernel (DK) for hen-house 537 
production (HHP) in the single step GBLUP model (ssGBLUP). Genotyping scenarios (bottom to 538 
top) were: 20, 40, 60 and 80% of birds with genotypes: youngest (YS), at random (RS) and best 539 
parent average (PA). Distributions are based on 200 training-testing sets by assigning 60 % and 40 540 
% of birds to training and testing, respectively.  Green, red and yellow colors denote values for G, 541 
AK or DK relationship matrices, respectively.  542 
 543 
 544 

 545 
 546 
 547 
 548 
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