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Abstract— “Metagenomics” is the study of genomic sequences obtained directly from environmental microbial communities with the aim 

to linking their structures with functional roles. The field has been aided in the unprecedented advancement through high-throughput omics 

data sequencing. The outcome of sequencing are biologically rich data sets. Metagenomic data consisting of microbial species which outnumber 

microbial samples, lead to the "curse of dimensionality" in datasets. Hence the focus in metagenomics studies has moved towards developing 

efficient computational models using Machine Learning (ML), reducing the computational cost.  In this paper, we comprehensively assessed 

various ML approaches to classifying high-dimensional human microbiota effectively into their functional phenotypes. We propose the appli-

cation of embedded feature selection methods, namely, Extreme Gradient Boosting and Penalized Logistic Regression to determine important 

microbial species. The resultant feature set enhanced the performance of one of the most popular state-of-the-art methods, Random Forest (RF) 

over metagenomic studies. Experimental results indicate that the proposed method achieved best results in terms of accuracy, area under the 

Receiver Operating Characteristic curve (ROC-AUC) and major improvement in processing time. It outperformed other feature selection meth-

ods of filters or wrappers over RF and classifiers such as Support Vector Machine (SVM), Extreme Learning Machine (ELM), and k- Nearest 

Neighbors (k-NN). 

 

 Index Terms—Metagenomics, Microbiota, Embedded Feature Selection, Operational Taxonomic Units (OTUs), Classification  

——————————   ◆   —————————— 

1  INTRODUCTION

ETAGENOMICS, is one of the emerging “omics” 
fields which involves investigation of genomic se-

quences obtained directly from whole microbial communi-
ties present in an environment (such as water, soil, human 
body, and cattle, etc.), following a culture-independent ap-
proach [1]. In recent years, this field has gained attention 
due to crucial projects such as the Human Microbiome Pro-
ject [2], American Gut [3], Earth Microbiome [4], and to the 
unprecedented advances in low-cost high-throughput 
Next-Generation Sequencing (NGS) such as the 454 py-
rosequencing [5], over the traditional Sanger approach [6] 
for DNA isolation and sequencing from environmental 
communities. The two primary sequencing profiles are: i) 
whole metagenome sequencing (WGS), and ii) marker 
gene (16S rRNA/ 18S rRNA/ ITS) sequencing [7]. The most 
commonly used taxonomic profiling for microbial analysis 
is 16S rRNA. The sequence variants of 16S rRNA are clus-
tered at a similarity threshold (usually 97 %) to generate 
Operational Taxonomic Units (OTUs)/taxas [7].  

The in-depth analysis of metagenomic sequencing data 

with computational models and related experiments pro-
vide deeper insights into the complex microbiome ecosys-
tem. Machine learning (ML) techniques learn from data to 
make future predictions [8], [9]. Hence, they are useful for 
integrating high-throughput metagenomic data to predict 
functional roles. The meta-analysis (i.e. the categorization 
of metagenomes into their functional roles), is achieved 
through the application of classification, a supervised ML 
technique; which models the distribution of functional 
classes in terms of predictors (input features) [9], [10]. The 
classifier maps microbiome data, such as quantitative 
abundance count profiles of microbes, to their related 
meta-data [10]. Functional analysis of metagenomic envi-
ronments [11] forms a three-step process as listed below:  

i. Input: A set of metagenomics sequences binned to    

Operational Taxonomic Units (OTUs) [7] and their 

abundance count matrix, 𝑋 (as shown in (1)), with 𝑚 

metagenomic samples and 𝑛 OTUs; and set of func-

tional labels 𝑌. 

𝑋 = [

𝑥1,1 ⋯ 𝑥1,𝑛

⋮ ⋱ 𝑥𝑖,𝑗 ⋮
𝑥𝑚,1 ⋯ 𝑥𝑚,𝑛

]                     (1)                                   

ii. Fitting an ML model to the input matrix 𝑋 by provid-

ing a functional mapping from the row of 𝑋 (repre-

senting a microbial sample) to a functional label 𝑦 ∈
 𝑌 

iii. Output: Labeled sequences. 
 Metagenomic OTU data is high-dimensional, sparse, 
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and skewed with a non-normal or an unknown distribu-
tion and it has interdependencies [12]. These key charac-
teristics of OTUs present computational and statistical 
challenges [12]. Hence, the current research demands de-
velopment of better algorithmic tools to compute biologi-
cal phenotypes efficiently. 

 The motivation of this paper is to provide an intensive 
assessment on the use of various ML models for analyzing 
functional metagenomes. We proposed a method for             
selecting important OTUs from a high-dimensional feature 
space for classifying them into functional profiles. The ob-
jective of OTU feature selection is two-fold: - i) improving 
the predictive performance of the ML models and ii) 
providing faster, cost-effective predictions. In the current 
context, we focused on three feature selection strategies 
based on the filter, wrapper, and embedded methods for 
comparative analysis [13], [14]. These methods are helpful 
in finding a list of candidate microbial species with more 
informative gene sequences, leading to unbiased estimates 
and enhanced performance.  

With this goal, we have designed a comprehensive study 

analyzing various ML models tuning hyper -parameters 

over k- folds cross-validation (where k = 10) and devised a 

new integrative method of combining embedded feature 

selection with the Random Forest (RF) classifier. By apply-

ing the afore-mentioned combination in functional analy-

sis of human microbiota, we obtained improved results in 

comparison to applying RF to metagenomic data alone. In 

this study, we processed metagenomic samples from three 

Use Cases related to human microbiome, to assess the pre-

dictive performance of models built on metagenomic data 

and to compare the results. We investigated how the selec-

tion of discriminative OTUs impacts the predictive perfor-

mance in metagenomic case studies involving a large num-

ber and variety of microbial species.  

The rest of this paper is organized as follows.  Section 

2 presents relevant related work in the field of functional 

metagenomics. Materials and methods are detailed in Sec-

tion 3. Experimental results following evaluations are pre-

sented in Section 4. Finally, conclusion and future work are 

highlighted in Section 5. 

2  RELATED WORK 

Metagenomic studies are being influenced by composi-
tional abundance of OTUs and their functional capabilities 
across samples. An important research question gathering 
attraction by the research community is: - “Which 
OTUs/species/taxas are important to characterize the envi-
ronmental roles?”. The study of the relationships between 
environment and microbiome has its roots in microbiology, 
as was first suggested by studies undertaken by Leeuwen-
hoek [7].  

Microbiome research has been extensively applied to 
the humans. The human body is treated as an ensemble of 
microorganisms which play an important role in the sus-
tainability of human health [15]. The Human Microbiome 
Project (HMP) [16] has opened various avenues for relating 

microbial samples to various human diseases, their inter-
ference in medication and in regulating gene expressions. 
Studies [17-21] have shown an association of the human 
microbiome to various chronic diseases, such as diabetes 
(Type 1 and Type 2), Inflammatory Bowel Disease (Crohn's 
disease or healthy), Obesity (obese, lean, overweight), 
rheumatoid arthritis, fatty liver disease, Alzheimer’s                 
disease, and cancer. The American Gut project [20], a 
crowd-funded citizen science project, has recently exam-
ined linkages between microbial samples and functional 
factors such as health (diseases like diabetes, autism etc.), 
lifestyle (sleep patterns, stress levels) and diet data (vegan, 
carnivore).  

Research has also been performed on other varied phe-
notype hosts such as the ocean, soil, and cattle where mi-
crobe-host interactions have great potential in uncovering 
the influence on an environmental condition being studied 
[21-28]. Wang et al. [26] provided an integrated meta-
genomic analysis of rumen microbiome responsible for 
methane emissions and biomass degradation. Walsh et al. 
[27] proposed a pipeline for metagenomics analysis for ru-
men microbiome. Toyama et al. [28] proposed an analysis 
of microbial communities in freshwater lakes of Amazon 
Basin. The Earth Microbiome project [4] has emerged to 
characterize the curation and analysis of microbial species 
across the globe. Supervised learning using OTU (microbi-
ome) feature space to train models has been used to clas-
sify microbiomes into functional classes as indicated in [8], 
[9], [23-29]. The studies related to ML models for discrimi-
nating OTUs or taxa to predict the functional class of a new 
sample have been conducted [23-32].   

Commonly used supervised classification methods in 
metagenomics, are described in studies by Knights et al. 
[24] and Statnikov et al. [29] over the benchmark human 
microbiome data sets. Knights. et al. [29] reviewed super-
vised classifiers of RF, Nearest Shrunken Centroids, Elastic 
Net (ENet), Support Vector Machine (SVM) with filters of 
bi-normal separation and recursive backward feature elim-
ination) over five benchmark data sets (Costello et al. Body 
Habitats (CBH), Skin Sites (CSS), Subject (CS), Fierer et al. 
Subject (FS) and Fierer et al. Subject X Hand (FSH)) origi-
nated from human microbiome studies [24]. Statnikov et 
al. [29] extended the comprehensive evaluation of 18 clas-
sification methods including RF, Logistic Regression, 
SVMs and k- Nearest Neighbors (k-NN) with 5 feature se-
lection methods and 2 accuracy metrics using 8 functional 
tasks on human microbiome (1802 samples), to be classi-
fied into subject categories of body sites. The publications 
reported RF, as the best supervised learning technique for 
analyzing microbiome and linking it to functional roles 
[24], [29]. Yang et al. [30] classified soil samples using 
SVMs and k-NN [30]. Wingfield et al. [31] proposed a hy-
brid classifier consisting of SVMs and neural networks for 
efficiently characterizing Pediatric Inflammatory Bowel 
Disease (IBD) in humans. A comparative study by Pasolli 
et al. [32] proposed a computational tool for functional 
meta-analysis using SVM, RF, Least Absolute Shrinkage 
and Selection Operator (Lasso), and ENet as ML models. 
Huttenhower et al. [33] discussed advances in microbiome 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Toyama%20D%5BAuthor%5D&cauthor=true&cauthor_uid=28007865
http://www.sciencedirect.com/science/article/pii/S0092867414008642#bib50
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research community and the role of diverse microbial com-
munities in the spectrum of functional phenotypes. Deng 
et al. proposed the construction and use of gene co-expres-
sion networks to predict cancerous genes as phenotypes 
[34], [35]. 

In our previous study, we experimented with various 
classifiers and parameter tunings (e.g. seed, kernel, and 
number of iterations) over cattle (MetaPlat Project1) and 
human microbiomes [18], at different taxonomical levels 
[25]. We applied Naïve Bayes (NB); Neural Network (NN); 
RF; SVM; Logistic Regression (LR) with Ridge estimation; 
k-NN; Adaptive Boosting (AdaB) on trees and an ensemble 
of classifiers with filter and wrapper-based feature selec-
tion procedures [25]. Four dominant classifiers providing 
overall good accuracy were reported: SVM, LR, NN and 
RF. LR with penalized Ridge regularization over the fea-
tures obtained by wrapper based on the LR itself, provid-
ing the best results in our study [25].   

The method we proposed in our previous work is suit-
able for smaller data sets but is computationally intensive 
for large-scale data. Therefore, in this paper, we extend be-
yond the traditional approaches listed above to effectively 
classify the large-scale metagenomes. 

3  MATERIAL AND METHODS 

3 .1 Materials 

In this paper, we used three publicly available human met-
agenomics data sets as Use Cases. These data sets are sum-
marised in Table 1 and described as follows. 
(1) The curated version of the human gut microbiome    

data set used in the study by Turnbaugh et al. [36], to 
analyze the effect of diet on human microbiome 
(http://www.exploredata.net/Downloads/Microbi-
ome-Data-Set). The data set consists of 658 samples 
and 6696 OTUs and is mapped to a functional label of 
diet with two majority class values as: i) LF/PP diet (i.e. 
standard low-fat, plant polysaccharide–rich diet) and 
ii) Western diet (i.e. high fat, high sugar diet). 

(2) The curated data set from the study by Koren et al. 
2013 [37] is related to enterotypes across the human 
body. It is downloadable from http://www. 
knightslab.org/data. It consists of 1654 samples and 
3534 OTUs with two functional labels of HMP and 
non-HMP feces. 

(3) The third dataset is obtained from Halfvarson et al. 
[38] who studied the dynamics of human intestinal mi-
crobiota in Inflammatory Bowel Disease (IBD) subjects 
compared to healthy subjects. This data is down-
loadable from Qiita (https://qiita. ucsd.edu/) under 
study ID 1629. The data is also downloadable from R 
platform with command data(DynamicsIBD) under li-
brary (microbiome)2. The data set consists of 673 micro-
bial samples (i.e. fecal samples from the population set 
in Sweden) and 10996 OTUs. The four related func-
tional labels used in our research are: ulcerative coli-
tis (UC), Healthy controls (HC), Crohn’s disease (CD), 
collagenous colitis (CC). 

 

1 http://www.metaplat.eu/ 

          TABLE 1 

Summary of Use Cases: - Human Metagenomics 
 

Data 

Set 

OTUs Samples # of  

Classes 

Functional     

Phenotypes 

Ref. 

Diet 6696 658 02 Low-Fat Diet  

High-Fat 

Die t  

[36] 

Entero-

types 

3534 1654 02 HMP Feces 

Non-HMP 

Feces 

[37] 

IBD 

 

10996 673 04 UC, HC, CD, 

CC  

[38] 

 

3 .2 Methods 

In this section, we provide a description of ML models 
used in this study to analyze the metagenomics data and 
describe the new adapted research methodology. The ML 
models include various classification and feature selection 
methods [10], [13]. 

 
3.2.1 Description of Classification Methods 
The classification methods facilitate predictive modeling 
over the metagenomic Use Cases to support a holistic un-
derstanding of input data and link it to functional classes. 
An objective of this study is to identify a ML model, which 
provides good predictive performance and is fast at classi-
fication over the high-dimensional metagenomes. The fol-
lowing methods have been applied to the Use Cases listed 
in section 3.1. 

 

(1) Boosted Trees (XGBoost) 
The method extreme Gradient Boosting (XGBoost) by 
Chen et al. [39], serves as a sparsity-aware algorithm that 
supports scalable tree boosting for classification [39]. It is 
an improvement over the gradient boosting framework by 
Friedman et al. [40]. The classification decision trees are 
grown iteratively by learning decisions from a previously 
grown tree. The method continuously tries to improve its 
prediction in subsequent iterations by reducing the mis-
classification error rate. It works in parallel fashion with its 
two main components: 

a) linear boosting model solver  
b) and tree ensemble learning algorithm 

A tree ensemble method uses N additive functions over 
training input 𝑥𝑖 (multiple features) to predict the output 
target 𝑌𝑖 in (2) [39]. 

 𝑌𝑖 = ∑ 𝑓𝑛
𝑁
𝑛=1 (𝑥𝑖 ), 𝑓𝑛 ∈  𝐹,       (2) 

 
where N is the number of trees, f is the function in F, which 
serves as a regression tree space and may be regularized to 
penalize the complexity of model [39]. 
           
(2) Penalized Logistic Regression (Glmnet) 
The method tries to fit a generalized logistic model (3) for 
classification by choosing the parameters that maximize 
the log-likelihood of observed sample values with associ-
ated regularization penalty (⅄) (4a, 4b, 4c) [41]. 

 

https://qiita.ucsd.edu/study/description/1629
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𝑃(𝑌 = 1/𝑥) = 1/(1 +  𝑒^(−ℎ(𝑥)) ),        (3) 
 

 
 
 
Regularization methods of Lasso, Ridge and ENet, con-

straint the regression coefficients (wj’s) by imposing a pen-
alty ⅄ on their values (4a, 4b and 4c) [41], [42]. 

 
 
 
       (4a) 
 

    (4b) 
 
 
 

 
where λ controls the overall strength of the penalty  and 
penalizes large coefficients to zero to avoid overfitting.    
        ENet is a generalization of both models Lasso and 
Ridge [42]. The penalties maintain the balance between the 
measure of fit of the logistic model and the measure of co-
efficients. Hence, this approach provides an effective pre-
dictive modeling especially in the case where input micro-
biome features overwhelm each other. 

 
(3) RF 
RF is widely used in metagenomic studies and is consid-
ered a state-of-the-art approach for classifying meta-
genomes [43], [44]. RF works by constructing a set of deci-
sion trees on training samples [43]. The optimal number of 
decision trees aims to minimize the classification error on 
the test sample. The method applies majority voting 
amongst individual trees to derive the functional class [44]. 

 
(4) SVM   
SVM is one of the robust supervised learning methods that 
serve as non-probabilistic linear classifiers over the train-
ing data [45]. The method selects hyperplanes in context of 
linearly separable data, which tends to separate functional 
classes by maximizing the distance (margin) between 
them, forming an optimization problem. 
 
(5) ELM 
Extreme Learning Machine (ELM), proposed by Huang et 
al. [46], is a classifier method which is based on the princi-
ple of single hidden layer feed-forward networks with ran-
domly generated weights and supports no gradient-based 
backpropagation [46]. Hence it is a faster method. The 
model is represented by (5) [46]. 

                𝑌𝑖 = 𝑀2𝜎(𝑀1𝑥)   (5) 
where 𝑀1 is the matrix representing input-to-hidden-layer 
weights in a Neural Network, σ is some activation func-
tion such as sigmoid, sine etc., and 𝑀2 is the matrix of hid-
den-to-output-layer weights. 𝑀1  is randomly generated 
with Gaussian noise and 𝑀2 is estimated by Least Squares 
fit w.r.t to output class label class [46]. 
 
 

(6) k-NN 
 k-NN is an instance-based learner method. It considers the 
closely related instances of input features (i.e. instances 
having same properties and at minimized distance), within 
a data set. The class of neighbors determines the class of an 
individual instance [47]. 
 
3.2.2 Description of Feature Selection Methods 
Feature selection methods determine an appropriate sub-
set from the full data set that leads to the smallest classifi-
cation error [48]. The methods used in our study are dis-
cussed below. 

 
(1) Embedded Methods 
Embedded methods learn which OTUs (input features) 
contribute best towards attaining higher performance for 
an ML model, while the model is being constructed (Fig.1. 
a.) [48]. Commonly used embedded feature selection meth-
ods include regularization and boosting methods. Regular-
ization methods tend to introduce additional constraints 
(penalties) into the predictive model (e.g. LR) as an optimi-
zation to lower the complexity of the original model. Ex-
amples of regularization algorithms are the Lasso, ENet, 
and Ridge (listed in the section 3.2.1. above) [41], [42], [48]. 
Lasso and ENet penalties perform inherent feature selec-
tion by setting the coefficients of weak OTU features (i.e. 
when a feature does not fit to LR), to zero. Increasing the 
penalty will produce a solution to sparse data by increas-
ingly setting coefficients to zero in case of more features. 
Ridge produces a more stable effect by setting up similar 
coefficients for correlated OTU features and spreading the 
effect of regularization equally. The features with non-zero 
coefficients are regarded useful [41], [42], [48]. 

Boosting (XGBoost) constructs boosted trees and calcu-
lates an importance score for each feature based on its par-
ticipation in making key decisions with boosted decision 
trees and ranking the respective features. The performance 
score may be calculated by purity index at a splitting node 
or other error functions [39], [40].  

 
(2) Filter methods 
Filter methods evaluate predictive OTUs outside of the 
predictive learner models (Fig.1. b.), by applying statistical 
tests to input OTU features and determining which OTUs 
are more plausibly related with the functional class [48]. It 
is usually a pre-cursor step for model evaluation. We used 
the following filters in our integrated approach.  
 
• Mutual Information 
The method finds weights of discrete OTU features based 
on their correlation with functional class [49]. Features that 
aid in perfectly separating the classes, give maximum in-
formation and unrelated features give no information. It 
measures the impurity in samples, which is also known as, 
Entropy (𝐻) as depicted in (6a). The individual probabili-
ties of the values n ∈ N, estimate a feature N from the 
training data. Mutual Information (MI) is calculated on the 
basis of difference in entropies (related to features). For ex-
ample, considering the two features N and M, 𝑀𝐼 is given 
in (6b) [49]. 

 

 
 

where h(x) = w0+ ∑ wj  
d
j=1 xj , and d represent the num-

ber of dimensions/features; w0   ,wj′s   are the regression 

coefficients and xj
′s are input features. 

 

Lasso =  arg maxw ∑ (yk(h(x) − log(1 + h(x))  )  n
k=1  

                  − ⅄∑ ∣ wj
d
j=1 ∣ 

ENet =  arg maxw ∑ (yk(h(x) − log(1 +  h(x))  )  −n
k=1

⅄ ∑ (1 − α) ∣ wj ∣d
j=1 +  α (wj

2 ))    where (α∈ [0,1])                        

  (4c) 

 Ridge =  arg maxw ∑ (yk(h(x) − log(1 + h(x))  ) n
k=1    

 − ⅄∑ wj
2d

j=1  
   

https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function
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                𝐻 (𝑁) =  −  ∑ 𝑝𝑛n∈N log 𝑝𝑛        (6a) 
 
where 𝑝n denotes the class probability (i.e. proportion of 
samples belonging to class n and N = 1, 2…, n.) 
 

        MI =  𝐻(𝑁 ) + 𝐻(𝑀) − 𝐻(𝑁, 𝑀)                   (6b) 

 
• oneR  
The method is proposed by Holte [50] and it finds weights 
of discrete OTU features by deriving an association rule for 
each attribute and then calculating the associated error 
rate. It selects the rule with minimum error rate. This has 
been used as baseline performance benchmark for other 
feature selecting methods. 

 
(3) Wrapper Methods 
Wrapper method trains a learner (ML) model on different 
subsets of predictive features by continuously adding or 
removing features to choose the optimal set of features, 
that maximizes the prediction performance (Fig.1.c.) [48]. 
We used Recursive Feature Elimination [52] that serves as 
a greedy optimization over wrapper which repeatedly cre-
ates best and worst feature sets and constructs successive 
model iterations with best features from the previous 
model iteration. The process stops when all the features 
have been processed. It tends to rank features in order of 
their elimination.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
a. Embedded                 b. Filter                   c . Wrapper    
 

 Fig.1. Types of feature selection methods 

3.2.3 Performance Evaluation of Classification 
The main objective of this task is to perform functional 
classification and predict its performance in meta-
genomics. The performance of the functional predictions 
in the current metagenomic study is primarily driven by 
statistical assessment strategies, based on a confusion ma-
trix of 𝑐 𝑋 𝑐  w.r.t to “𝑐” functional classes (a sample case of 
binomial class (𝑐 = 2), is shown below in Table2) [53].    
 
 
 
 
 

                                    TABLE 2 

   Confusion Matrix Representation 
 

 Positive  

(Actual) 

Negative 

(Actual) 

Positive  

(Predicted) 

True  Positive  (TP) False  Positive (FP)  

(Type  I Error) 

Negative  

(Predicted) 

False  Negative  (FN)  

(Type  II Error) 

True  Negative  (TN) 

 
     Assessment strategies for binary classification, making 
use of TP and TN for predictions (from Table 2), are listed 
in (7), (8), (9), and (10) [52]. 
 

    Accuracy (𝐴𝑐) =   (TP + TN)/(P + N)    (7) 
 

     Precision ( 𝑃𝑟) =   TP/ (TP + FP)                       (8) 
 

     Sensitivity (𝑆𝑒) = TP/ P      (9) 

 
     Specificity ( 𝑆𝑝) =   TN/ N                   (10) 

 

 where P = TP + FN, and N = TN + FP. 
  
        For multinomial classification with 𝑐  classes, 𝑐 𝑥 𝑐 
confusion matrix M=𝑚𝑖,𝑗 is constructed, where 𝑚 𝑖,𝑗 repre-
sents sample numbers predicted as class j but belonging to 
class i. Consider, 𝑆𝑖 = ∑ 𝑚𝑖,𝑗1≤𝑗≤𝑐  be the number of input 
samples associated with class 𝑖, and 𝐹𝑖 =  ∑ 𝑚𝑖 ,𝑗1≤𝑗≤𝑐  be 
the number of input features predicted to be in functional 
class 𝑗. For the case of 𝑐 > 2, the assessment metrics are 
generalized as follows in (11), (12), (13) and (14). We calcu-
lated mean values of assessments of all individual classes . 

 
     Accuracy (𝐴𝑐) =   ∑ mi,i1≤i≤c ,

/ ∑ Fi1≤i≤c ,
                                (11) 

  
      Precision( 𝑃𝑟) = (∑ (mi,i1≤i≤c .

/ Fi))/c                     (12) 
 

      Sensitivity (𝑆𝑒)  = (∑ (mi,i1≤i≤c .
/ Si))/c                   (13) 

 
      S = (∑ (∑ mk,j/ ∑ mk,j))k≠i,i≤j≤ck≠i,j≠i1≤i≤c  
          (14) 
          and  Specificity 𝑆𝑝 = S/c   
       

  Receiver operating characteristic curve (ROC) evalu-
ates the performance of a classifier in terms of how good 
the classifier in is separating positive and negative samples 
and identifies the best threshold for separating them. It 
characterizes the tradeoffs between sensitivity and speci-
ficity. A low threshold has the capability to produce posi-
tive labels more liberally, so it is prone to have more false 
positives (less specific) but also more true positives (more 
sensitive).  
 

OTU  

Features 

OTU  

Features 

   OTU  

Features 

Selecting 

Best Subset 

Learner 

Performance 

  Selecting               

Best Subset  

      

       

        Learner 

Performance 

  Selecting               

Best Subset 

      

    

 Learner  

+Performance  
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3.2.4 An Integrative Experimental Workflow for Metagenomic 

Analysis 
The data collected from NGS sequencing are immense and 
it is important to select the best and most suitable func-
tional metagenomes to differentiate the samples collected 
from an environmental study. The general experimental 
workflow which integrates various ML models for func-
tional classification in metagenomics is described as fol-
lows (illustrated in Fig.2.). 

(1) Input. An OTU table and a label mapping file serve 
as inputs. The OTU table derived from Biological 
Observation Matrix (BIOM), consists of raw abun-
dance counts of OTUs in a microbial sample; where 
rows represent the samples, columns represent the 
OTUs and the cell entries at the intersection of the 
sample and OTU are abundance counts. The samples 
also associate meta-data, describing their association 
with environmental traits (from label mapping file). 

(2) Preprocessing and Feature Selection. The OTU tables 
containing abundance counts of microbial spe-
cies/taxas in a sample, are pre-processed and trans-
posed to fit to a ML. We transformed the input data 
to a suitable form for classification and apply various 
feature selection techniques (listed in section 3.2.1) to 
derive important features. OTU tables have a variety 
of feature attributes. It is important to select relevant 
features to maximize the performance of our experi-
mental design. Feature selection methods removed 
irrelevant and redundant features. Consider, a set of 
m metagenomic samples 𝑥𝑖,  𝑦𝑖 , where i = 1, ...m; con-
sisting of n OTU features {𝑥𝑖,𝑗 } (j = 1, ...n) and one 
functional variable 𝑦𝑖 . Feature selection methods aim 
to identify a suitable fitness function  F(𝑖, 𝑗) that is 
computed over {𝑥𝑖,𝑗 } to predict 𝑦𝑖 , in functional met-
agenomics. 

(3) Cross-Validation. We partitioned the input data set 
into training and test sets for ten-folds cross-valida-
tion. 

(4) Model fitting. Applying ML model for categorizing 
the OTU features, into one of a pre-specified set of 
functional categories or classes, is the key character-
istic step of functional metagenomics. To identify the 
most suitable model for predicting functional meta-
genomes, different supervised ML classification  al-
gorithms (listed in the section 3.2.1), were evaluated 
for their fitness in the prediction task against the 
OTU feature sets. 

(5) Performance Evaluation. We predicted the perfor-
mance of classifier using assessment measures listed 
in section 3.2.2. 

(6) Output. Best Model for classifying metagenomes 
      Along the integrative experimental workflow 

(Fig.2.), we proposed an ensemble method for predict-
ing metagenomes effectively. The method first selected 
the important features from embedded feature selectors 
and thereafter applied RF to a reduced set of features 
(Fig.3.). This construction combined boosting of trees or 
penalized regression as embedded methods with RF to 
attain better modeling. The construction is shown in 
Fig.3. Embedded methods (XGBoost and Glmnet) for 

feature selection and classification are faster, efficient, 
provides good accuracy and are scalable. Hence, their 
combination with RF, state of art method, may infuse a 
good predictive capability in the ensembled approach. 
Also, we performed experiments with other ML models 
along the workflow: - XGBoost, Glmnet (with alpha = 0, 
0.3, 0.5 and 1), RF, SVM, ELM, k-NN, MI+RF, MI+SVM, 
oneR + RF, RF with rfe wrapper for comparative analy-
sis and validation in metagenomic Use Cases.  

 
 
 
 
 
 
 

 
 
 
 
 
 
 
              

       

 

  

 

 

 

Fig.2. A general experimental workflow for functional analysis of 
metagenomes 
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Fig.3. The Proposed Ensembled Approach 

4    EXPERIMENTAL RESULTS AND DISCUSSION 

4 .1 Experimental Settings 

The experiments were conducted to predict metagenomes, 
using R platform (http://www.R-project.org, version 3.0.4). 
The various packages2 related to ML models and the re-
lated optimum set of configurational parameters, used in 
this study are listed below.  

a) XGBoost Extreme Gradient boosting machines. Im-
plementation: package XGBoost. Configurational pa-
rameters: objective" = "binary: logistic" for binary classes 
and objective" = "multi: softmax"    for mutinomial clas-
ses, "nthread” = 8, “max_depth" = 3, "gamma loss reduc-
tion " = 0 

b) Glmnet Lasso, Ridge, ENet logistic classifier. Imple-
mentation: package glmnet. Configurational parame-
ters: family = “binomial”,"multinomial", alpha regulari-
zation penalty (ɑ)=0,0.3,0.5,1. 

c) RF Random forest. Implementation: package ran-
domForest.Configurational parameters: ntree=100 

d) svmRadial A SVM with RBF kernel. package e1071. 
Configurational parameters: kernel="radial", cost=1, 
gamma=0.5, scale=TRUE 

e) ELM Extreme learning machines Implementation: 
package elmNN Configurational parameters: nhid = 
100, actfun = "sig" 

 
2https://cran.r-project.org/web/packages/available_pack-

ages_by_name.html 

f) k-NN k-Nearest Neighbor’s classifier. Implementa-
tion: package class. Configurational parameters: k = =10 

g) rfe Recursive Feature Elimination. Implementation: 
package caret. Configurational parameters: rfeControl = 
rfFuncs 

h) Entropy-based Mutual Information (information. 
gain()) and oneR Filters. Implementation: package 
FSelector. Configurational parameters: Top 20 Features 

i) Confusion Matrix. Implementation: package caret. 
Evaluation metrics over $overall and $byClass associated 
parameters 

j) ROC. Implementation: package pROC. Evaluation 
over binomial and multinomial classes by: area under 
curve(ROC-AUC) values. 

k) glmnetRank. Implementation: package SurvRank, 
Rank order of Coefficients in glmnet 

l) Random forest. Importance. Implementation: package 
FSelector. Configurational parameters: Top 10 Features 

 
    A 10-folds cross-validation was performed for all ex-

periments. Each of the data sets were divided into 10 par-
titions known as folds. One-fold was used for testing and 
the remaining 9 were used for training the data. The pro-
cess was repeated for every fold. The time recorded for ML 
models is the User (CPU) time charged for the execution of 
user instructions of the calling process (in seconds). The 
running environment consisted of a system configured 
with AMD processor A8-7410 @2.20 GHz, Quad Core, 8 GB 
RAM. 

4 .2 Performance of Prediction Models 

In this work, we investigated the combination of feature 
subset selection method and classifier models to tackle an 
important question of metagenomic analysis: - “Which 
OTUs or functions are important for differentiating the 
phenotypic classes and attain good prediction perfor-
mance of classification in metagenomic studies?” We con-
ducted this study to select predominant classifiers for 
downstream metagenomic analysis and subsequently to 
evaluate the efficacy of functional predictions, with and 
without the implementation of feature selection methods, 
over the high-dimensional metagenomic data.  
       Predictive modeling over the case studies supports in 
understanding the input data behavior, and an objective of 
this study is to identify an ML model, which is quick to 
train and accurate at classification in functional meta-
genomics. The RF [43], [44] and SVM [45] are popular state-
of-the-art approaches for predicting functions in meta-
genomics analysis [24], [29]. The classification algorithms 
used in our experiments were: - XGBoost, Glmnet, RF, 
SVM, ELM and k-NN (described in section 3.2.2.1). We first 
applied these classifiers and evaluated their performance 
over the 3 Use Cases (mentioned in Materials section). We 
tuned Glmnet classifier with a regularization penalty of 0, 
0.3, 0.5 and 1.0. The results obtained by ML algorithms 
(based on an optimum set of parameters) over the 3 Use 
Cases, ar detailed in Table 3, 4 and 5 respectively. From the 
obtained results, the dominant classifiers providing overall 

       mXn (m: samples and n: OTU Features) 

m1Xn1  m2Xn2  

  

m3Xn m10Xn  

 

Embedded Learning Over 10 Folds Cross Validation 

        Important Features (n’) 
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good accuracy and ROC-AUC were noted as: - RF (Use 
Case 1), Glmnet (Use Case 2) and XGBoost (Use Case 3). 
The results are useful for further comparative analysis. Alt-
hough the accuracy of RF is good, Glmnet and XGBoost  
served as scalable and faster models than RF on high-di-
mensional metagenomes. 
 

TABLE 3 
Performance of Classifiers (10-folds CV) over Use Case 1 

 

Model Time 

(secs) 

Ac Pr Se Sp ROC-

AUC 

XGBoost  62   0.931 0.925 0.957 0.895 0.926 

Glmnet-  

ɑ = 1 

(Lasso) 

29  0.92 4 0.884 1.000 0.816 0.908 

Glmnet-  

ɑ = 0.5 

(ENet) 

28  0.950 0.924 0.995 0.888 0.942 

Glmnet ɑ 

= 0 

(Ridge) 

244  0.567 0.635 0.589 0.529 0.571 

Glmnet       

ɑ = 0.3 

32  0.951 0.928 0.992 0.896 0.944 

RF  208

5  

0.953 0.937 0.985 0.908 0.947 

SVM      

(radial) 

793  0.591 0.591 1.000 0.000 0.500 

ELM 

(nhid=100) 

258  0.944 0.930 0.977 0.895 0.936 

k-NN 

(K=10) 

87 0.919 0.897 0.975 0.835 0.905 

 

TABLE 4 
Performance of Classifiers (10-folds CV) over Use Case 2 

 

 Model Time 

(secs) 

Ac Pr Se Sp ROC-

AUC 

XGBoost 41 0.979 0.977 0.990 0.961 0.976 

Glmnet-  

ɑ = 1(Lasso) 

34 0.936 0.911 0.995 0.842 0.919 

Glmnet-  

ɑ = 0.5 (ENet) 

37 0.968 0.955 0.996 0.920 0.958 

Glmnet ɑ = 0 

(Ridge) 

291 0.993 0.993 0.996 0.988 0.992 

Glmnet ɑ = 

0.3 

42 0.985 0.980 0.997 0.966 0.981 

RF  1712 0.991 0.987 0.998 0.978 0.988 

SVM(radial) 181 0.625 0.625 1.00 0.000 0.500 

ELM 

(nhid=100) 

25 0.898 0.903 0.938 0.832 0.885 

k-NN (K=10) 190 0.935 0.913 0.990 0.842 0.916 

4 .3 Performance of Feature Selection 

RF was further tuned with feature selection methods with 
the aim of attaining superior performance and enabling its 
capability for high-dimensional Use Cases. We selected fil-
ter-based (information.gain, oneR), embedded (XGBoost, 
Glmnet) and wrapper-based on recursive feature elimina-
tion (rfe); as the feature selection strategies. Glmnet, SVM 
and XGBoost methods were also combined with filters. 
The ML models used in current context for analysis are 

listed in Table 6. We investigated how the selection of dis-
criminative features impact the performance of predic-
tion.  

 
TABLE 5 

Performance of Classifiers (10-folds CV) over Use Case 3 

 

Model Time 

(secs) 

Ac Pr Se Sp ROC-

AUC 

XGBoost 198 0.770 0.793 0.623 0.901 0.730 

Glmnet-  

ɑ = 1(Lasso) 

254 0.695 0.742 0.466 0.865 0.657 

Glmnet-  

ɑ = 0.5 

(ENet) 

299 0.728 0.725 0.548 0.883 0.728 

Glmnet ɑ = 

0 (Ridge) 

5109 0.770 0.796 0.603 0.901 0.709 

Glmnet        

ɑ = 0.3 

406 0.747 0.744 0.567 0.891 0.712 

RF  3229 0.746 0.786 0.533 0.885 0.703 

SVM         

(radial) 

946 0.481 0.481 0.25 0.75 0.500 

ELM 

(nhid=100) 

45 0.350 0.437 0.355 0.796 0.614 

k-NN 

(K=10) 

230 0.585 0.566 0.400 0.821 0.636 

 
TABLE 6 

      Ensemble of ML Models Used in the Current Study 
 

   ML Model Feature Selection Classifier 

RF_XB_GMi where i =   

0,0.3,0.5 or 1 

XGBoost+Glmnet RF 

GMj_XB_GMi where  

i, j = 0,0.3,0.5 or 1 

XGBoost+Glmnet Glmnet 

RF_XB XGBoost RF 

RF_IG Mutual Information RF 

RF_oneR oneR RF 

RF_rfe  Recursive Feature Elimi-

nation (rfe ) 

RF 

SVM_IG Mutual Information SVM 

XB_XB_GMi where i = 

0,0.3,0.5 or 1 

XGBoost+Glmnet XGBoost 

 
The results of an afore-mentioned combination of 

feature selection and the classifiers (listed in Table 6), were 
obtained on an optimum set of parameters (as listed in sec-
tion 4.1), and recorded in Tables 7, 8 and 9 for Use Cases 
1,2, and 3 respectively. The embedded feature selection 
with XGBoost and Glmnet (penalized) in combination with 
RF classifier, potentially provided higher accuracy and 
ROC-AUC values for predicting functional classes in our 
metagenomic Use Cases. In Use Case 1, we extended the 
analysis in designing an optimal feature subset by combin-
ing important features of XGBoost (features retrieved 
based on rank importance with associated R function of 
XGBoost importance ()2) and Top 120 features ranked by 
glmnetRank2 associated with Glmnet (ɑ = 0.3), i.e. 
XB_GM0.3. We selected ɑ = 0.3, as it gave higher accuracy 
than Glmnet regularized with other ɑ values of 0, 0.5 and 1 
(Table 3), in this Use Case. We used glmnetRank function 
()2 to rank order the OTU features obtained by Glmnet and 
then selected top 120 features as we verified high ROC-
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AUC on this value (Fig.4).  

Fig.4. Selecting Top Features from Glmnet Model (ɑ = 0.3) over Use 

Case 1 
     XB_GM0.3 enhanced the performance of supervised 
classification with RF as classifier (i.e. RF_XB_GM0.3). 
With this ensemble setting, RF performance (Time: 2085 
secs, Ac: 0.953, ROC-AUC:0.944, Number of Features 
(NFS): 6697), improved to (Time: 160 secs, Ac: 0.960, ROC-
AUC:0.952, Number of Features (NFS): 271), over Use Case 
1.When XB_GM0.3 (feature selection method) was applied 
to Glmnet (classifier) with a ridge (ɑ = 0), in Use Case 1, the 
performance improved from the Ac of 0.567 to 0.965 (Fig.5., 
Fig.7. a., Table 3, Table 7). Also, the Ac of XGBoost im-
proved slightly from 0.930 to 0.945 when applied to the op-
timal OTU feature set obtained by XB_GM0.3. 
 
                                 TABLE 7 
Performance of Feature Selector and Classifiers (10 Folds CV) 
over Use Case 1 (NFS: # of Features Selected) 
 

Mod-

els 

NFS T ime 

(Secs) 

Ac Pr Se Sp ROC-

AUC 

RF_XB

_GM0.

3 

270 160  

 

 

0.960 0.946 0.990 0.914 0.952 

GM0_

XB_G

M0.3 

270 103 

 

0.965 0.958 0.985 0.936 0.960 

XB_ 

XB_G

M0.3 

  270 98 0.945 0.938 0.973 0.903 0.938 

RF_ 

XB 

 83 81 0.954 0.942 0.984 0.911 0.948 

RF_ 

IG 

 20 290  0.936 0.928 0.967 0.889 0.928 

RF_ 

oneR 

 20 252 0.767 0.721 0.987 0.447 0.717 

SVM

_IG 

 20 288 0.911 0.922 0.927 0.889 0.907 

RF_ 

rfe  

---- ~ 

80K 

0.940 0.936 0.962 0.907 0.934 

 
     RF_XB_GM0.3 and GM0_XB_GM0.3 proved to be best 
ML models over Use Case 1. These models provided better 
performance than filters and wrappers; and proved better 
than models listed in Table 3. The overall performance of 
SVMs over this Use Case data was also improved by ap-
plying entropy-based mutual information. gain filter 
method (e.g. Ac improves from 0.591 to 0.911). 
 

 
a) Glmnet Ridge over Original Feature set   

   

b) Glmnet Ridge over Feature set obtained by RF_XB_GM0.3 

method 

                                                    

    Fig.5. Improvement in Ridge over Use Case 1 with RF_XG_GM0.3: -       
  (a) Original and (b) Improved 

         In Use Case 2, ensembled combination of XGBoost 
and top 120 features ranked by glmnetRank ()2 associated 
with, Glmnet at ɑ = 0, (the hyper-parameter providing 
highest accuracy of Glmnet (Table 4)) as feature selector 
and RF as Classifier, i.e. RF_XB_GM0; provided the best 
performance in terms of highest Ac and ROC-AUC of 0.999 
(Fig. 7.b). Overall, embedded feature selection strategies 
improved the performance over classification in this Use 
Case as well (Table 4, Table 8). The Use Case 3 relates to a 
study on dynamics of IDB disease in relation to the human 
microbiome. The case deals with multinomial functional 

0.935

0.94

0.945

0.95

Top
50

Top
100

Top
120

Top
150

Top
200

Top
250

Top
300

Top
350

Top
400

A
U
C

Features

ROC-Area Under Curve

0.0e+00 5.0e+09 1.0e+10 1.5e+10

-4
e

+
0

9
-2

e
+

0
9

0
e

+
0

0
2

e
+

0
9

L1 Norm

C
o

e
ff
ic

ie
n

ts

82 82 82 82



10 IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, MANUSCRIPT ID 

 

classes unlike previous Use Cases of binomial classes. 
 

TABLE 8 
Performance of Feature Selector and Classifiers (10- folds 

CV) over Use Case 2 (NFS: # of Features Selected) 

 
Models            

   

NF

S 

 

T ime 

(Secs) 

Ac Pr Se Sp ROC-

AUC 

RF_XB_

GM0 

250 409 0.999 0.999 1.000 0.998 0.999 

XB_XB_

GM0 

250 337 0.989 0.983 1.000 0.971 0.986 

RF_XB 38 59 0.988 0.985 0.996 0.984 0.984 

RF_IG 20 169 0.979 0.980 0.987 0.965 0.976 

RF_oneR 20 149 0.626 0.626 1.000 0.000 0.500 

SVM_IG 20 175 0.918 0.892 0.990 0.796 0.892 

RF_rfe  --- ~ 

210K 

0.994 0.991 1.000 0.984 0.992 

 
Glmnet (ɑ = 0; Ridge), provided the best accuracy in this 
Use Case, however the time taken by Ridge Regression in 
this case, is 5109 secs > 3229 secs of RF, so we did not con-
sider the Ridge in embedded feature selection in this study 
related to multiple classes. We implemented some of other 
models listed in Table 6 over this  
Use Case and attained the results recorded in Table 9. 
      The ensemble of XGBoost for feature selection (embed-
ded method) and RF for classification i.e. RF_XB produced 
best results with (Time: 46 secs, average Ac: 0.795, average  
ROC-AUC: 0.746, Number of Features (NFS): 449,), which 
is an improvement over RF applied on original data set 
with (Time: 3229 secs, average Ac: 0.746, average ROC-
AUC: 0.703, Number of Features (NFS): 10997) (Fig.7.c).  
      The result was also validated by comparing RX_XB 
with RF statistically (using t-test) over 10 folds cross-vali-
dated data. The significant improvement was achieved (p 
< 0.05). 

4 .3 Comparison with Previous Study 

Thereafter, we investigated the procedure of selecting a       
reduced subset (Top-10) by using RF algorithm (Random-
Forest filter i.e. random.forest.Importance ()2 as indicated 
in section 4.1), before the application of classifier RF. 
 

                                TABLE 9 
 Performance of Feature Selector and Classifiers (10- folds 
CV) over Use Case 3 (NFS: # of Features Selected) 

Mod-

els 

      

NFS 

 

Time 

(Secs) 

Ac Pr Se Sp ROC-

AUC 

RF_XB 449 46 0.795 0,846 0.618 0.907 0.746 

RF_IG 20 151 0.726 0.750 0.550 0.882 0.706 

RF_one

R 

20 154 0.600 0.550 0.894 0.344 0.626 

SVM_I

G 

20 152 0.685 0.683 0.463 0.861 0.670 

RF_rfe  --- ~25K 0.710 0.740 0.530 0.870 0.695 

 

This embedded RF approach was suggested by Pasolli et 
al. [32] for meta-analysis of large metagenomic datasets. 

The results of this ensemble (RF+RF) over our Use cases are 
listed in Table 10. Comparing the performance of RF+RF 
with RF_XB with 10-folds cross-validation, our proposed 
method of RF_XB exhibited better results than RF+RF 
(Fig.6, Table 7,8,9,10) 
 

TABLE 10 
Performance of RF+RF (Top 10 of Features Selected) 

 
 

RF + RF 

Model 

with         

10 folds 

CV 

 

 

 

T ime 

(Secs) Ac Pr Se Sp 
ROC-

AUC  

Use  

Case  1 

1680 0.947 0.938 0.972 0.911 0.941 

Use  

Case  2 

1900 0.978 0.978 0.988 0.962 0.975 

Use  

Case  3 

1315 0.762 0.772 0.582 0.898 0.730 

 
 

a) Computational Time (major improvement) 

 
 
 
 

 
b) Accuracy (marginal Improvements) 

 

Fig.6. Comparing RF+RF and RF_XB in terms of (a) Time and (b) Perfor-
mance 

4 .4 The effect of tuning the hyper-parameters of RF And 
XGBoost 

We further studied the impact of tuning parameters of 
XGBoost and RF over the Use Cases, to evaluate classifica-
tion performance of RF_XB. The Ac and ROC-AUC of 
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RF_XB were enhanced to 0.962 and 0.957 respectively with 
tuning of max_depth parameter of XGBoost to 5 and num-
ber of trees in RF to 500 in Use Case 1 (Table 11). Also, we 
observed that the increasing the max_depth of XGBoost (1 
to 5), improves the performance in this Use Case. 
    The performance of differencing human enterotypes 
(Use Case 2), was also influenced by parameter tuning of 
XGBoost and RF (shown in Table 12). But this case sug-
gested that it is not always necessary that with increasing 
max_depth of XGBoost, we may improve on computational 
performance unlike in Use Case 1.   
 

        TABLE 11 
Parametric Tuning (XGBoost & RF) and Performance Analy-
sis of RF_XB ((10- folds CV) ) over Use Case 1 (NFS: # of Fea-
tures Selected) 
   

Max Depth 

(XGBoost) 

Num-

ber of 

T rees 

(RF) 

NF

S 

Ac Pr Se Sp ROC

-

AUC 

1  RF: 

100 

12 0.935 0.932 0.959 0.897 0.929 

RF:500 12 0.935 0.932 0.959 0.899 0.930 

3 RF: 

100 

82 0.954 0.942 0.984 0.911 0.948 

RF:500 82 0.950 0.935 0.984 0.900 0.942 

5 RF: 

100 

104 0.958 0.946 0.986 0.920 0.953 

RF:500 104 0.962 0.948 0.989 0.924 0.957 

 
                        TABLE 12 

Parametric Tuning (XGBoost & RF) and Performance Analy-
sis of RF_XB ((10- folds CV) over Use Case 2 (NFS: # of Fea-
tures Selected) 
 

Max 

Depth 

(XGBoost) 

Num-

ber of 

T rees 

(RF) 

NFS Ac Pr Se Sp ROC-

AUC 

1  RF: 

100 

9 0.975 0.973 0.986 0.955 0.970 

RF:500 9 0.974 0.973 0.985 0.955 0.970 

3 RF: 

100 

37 0.988 0.985 0.996 0.984 0.984 

RF:500 37 0.972 0.967 0.989 0.942 0.966 

5 RF: 

100 

47 0.993 0.993 0.996 0.988 0.992 

RF:500 47 0.992 0.992 0.995 0.986 0.990 

 
      In Use Case 3, RF_XB method provided the best perfor-
mance, when it was tuned to 500 as the number of trees in 
RF and max_depth in XGBoost as 1. There was a significant 
improvement in the performance of RF_XB over RF from 
0.746 to 0.817. 
     Overall, it is suggested that the embedded methods of 
feature selection with parametric tunings (e.g. RF: number 
of trees: 500 and max depth in XGBoost as 1,3,5), may en-
hance the performance of analysis. 
 
 

4 .5 The study of the dynamics of the proposed model  

The application of embedded methods over all the Use 
Cases, indicated a significant improvement in comparison 
to run time of state-of-the-art RF and other strategies of fil-
ters and wrappers (p<0.01). To summarize the experi-
mental results, we highlight the following key discussion 
points: - 
1. RF has been established as the best classifier in litera-

ture [24], [29], for functional metagenomic analysis. 
But we proposed Boosted Trees(XGBoost) and Penal-
ized LR (Glmnet with penalty) as alternative and effi-
cient methods for classification of high-dimensional 
metagenomes. 

2. The ensemble of embedded feature selection using 
XGBoost and/or Glmnet and RF as classifier, poten-
tially provides high predictive performance in meta-
genomic case studies in comparison to filter and wrap-
per methods over RF. 

3. The proposed embedded ML methods (feature selec-
tion + classifier) outperform other classifiers namely, 
SVM, ELM, and k- NN. 

4. Tuning the hyper-parameters in the ensemble (embed-
ded) approach, may further improve the performance 
of analysis. 

5. The embedded method (Feature Selection + Classifica-
tion) of XGBoost + RF may provide a competitive mar-
ginal to competitive improvement in accuracy but a 
major improvement in computational time over 

 

a) Use Case 1: - Overall Results (Accuracy in % and Time in seconds) 

obtained before and after application of Feature Selections (em-

bedded feature selection with XGBboost and Glmnet-Ridge) com-

bined with RF and XGBoost and entropy-based Filter (MI) with 

SVMs. 
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b) Use Case 2: - Overall Results (Accuracy in % and Time in seconds) 

obtained before and after application of Feature Selections (em-

bedded feature selection with XGBboost and Glmnet-Ridge) com-

bined with RF and XGBoost and entropy-based Filter (MI) with 

SVMs. 

 

c) Use Case 3: - Overall Results (Accuracy in % and Time in seconds) 

obtained before and after application of Feature Selections (em-

bedded feature selection obtained from XGBboost) combined with 

RF; and entropy-based (MI) Filters with SVMs 

 

Fig.7. Improvements over ML models in predictive performance with 

feature selectors using (a) Use Case1, (b) Use Case 2, (c) Use Case 3  

5.  CONCLUSION 

The current study makes important methodological contri-
butions for use of ML models in the field of functional met-
agenomics. In this study, we uniformly evaluated meta-
genomic human microbiome data from 3 studies and used 
10 folds cross-validation to evaluate the performance of 
ML models used for prediction of functions. We recom-
mended some of the best models in general for functional 
metagenomic analysis.  We have shown that embedded 
feature selection strategies of XGBoost or Glmnet are most 
effective in dealing with high-dimensional metagenomic 
data, as they are faster, provide better performance and are 
scalable with large scale metagenomic data. 

 
a) Important OTU Features identified from Use Case 1  

b) Important OTU Features identified from Use Case 2  

c) Important OTU Features identified from Use Case 3  
 

Fig.8. Dominant Predictive OTU features for Classifying Human Mi-

crobiome in context of (a) Use Case 1, (b) Use Case 2 and (c) Use case 

3 

     Overall, the classification algorithms of RF, Glmnet (Pe-
nalized LR) with Ridge and XGBoost, resulted in the 
higher predictive performance. RF has been established as 
one of the best models for classifying metagenomes in 
listed in the literature [8], [24], [29]. However, we propose 
that in terms of computational cost, embedded feature se-
lection methods outperform RF by scaling well to high di-
mensions and hence could also be combined with RF to 
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further improve its performance. We proposed an ensem-
ble predictor in which features were selected using scalable 
boosting of trees (XGBoost) and /or in combination with 
Penalized LR (Glmnet) and RF acts a classifier. The ap-
proach is effective in functional metagenomics. 

The method provided marginally better or competitive 
accuracy in comparison to RF by selecting important fea-
tures but reduced the computational cost significantly. 
SVM on a features subset obtained by entropy-based filter 
performed better than SVM on whole set of features. 
Hence, this reflects overall feature engineering may play 
an important role in analyzing the data and improving 
overall performance in metagenomic Use Cases. We hope 
that these results would inform future human microbiome 
studies related to dietary effects on human microbiota, en-
terotypes and IBD disease, and creates base knowledge for 
further scientific research. 

In future, we would like to experiment with phylogeny- 
aware ML models to characterize not just the abundance 
counts of OTUs but also the relationships between various 
OTUs at different taxonomic levels; and to propose a new 
framework for metagenomics functional analysis by in cor-
porating such association analysis. Also, we propose to ex-
plore other advances in ML such as deep learning with 
neural nets, sparse graphs and kernel-based similarity and 
gene expression networks (co-occurrence, inter relations), 
for increasing the reliability of microbiome analysis in our 
workflow. 

ACKNOWLEDGMENT  

This research is supported by Research Strategy Fund of 
Ulster University, United Kingdom and the MetaPlat pro-
ject, (www.metaplat.eu), funded by H2020-MSCA-RISE-
2015. Prof. Huiru Zheng ( h.zheng@ulster.ac.uk) is the cor-
responding author of this research.  

REFERENCES 

[1] P. Hugenholtz and G. W. Tyson, “Metagenomics,” Nature, 

vol. 455, no. August 2006, pp. 481–483, 2008. 

[2] The NIH HMP Working Group, “The NIH Human 

Microbiome Project,” Genome Res., vol. 19, no. 12, pp. 2317–

2323, 2009. 

[3] American Gut Project. http://americangut.org/about/. 

Accessed  July 2017. 

[4] J. A. Gilbert et a l., “The Earth Microbiome Project,” in 1st 

EMP meeting on sample selection and acquisition, 2010. 

[5] S. C. Schuster, “Next-generation sequencing transforms 

today’s biology,” Nat. Methods, vol. 5, no. 1, pp. 16–18, 2008. 

[6] F. Sanger, S. Nicklen, and  a R. Coulson, “DNA sequencing 

with chain-terminating inhibitors.,” Proc. Natl. Acad. Sci. U. 

S. A., vol. 74, no. 12, pp. 5463–7, 1977. 

[7] J. C. Wooley, A. Godzik, and I. Friedberg, “A primer on 

metagenomics,” PLoS Computational Biology, vol. 6, no. 2. 

2010. 

[8] H. Soueidan and M. Nikolski, “Machine learning for 

metagenomics: methods and tools,” arXiv, pp. 1–23, 2015. 

[9] J. L. Bouchot, W. L. Trimble, G. Ditzler, Y. Lan, S . Essinger, 

and G. Rosen, “Advances in Machine Learning for 

Processing and Comparison of Metagenomic Data,” Comput. 

Syst. Biol. From Mol. Mech. to Dis. Second Ed., pp. 295–329, 

2013. 

[10]  B. Kotsiantis, Sotiris, I. Zaharakis, and P. Pintelas. 

"Supervised machine learning: A review of classification 

techniques." ,3-24, 2004. 

[11] K. N. Lam, J. Cheng, K. Engel, J. D. Neufeld, and T. C. 

Charles, “Current and future resources for functional 

metagenomics,” Front. Microbiol., vol. 6, no. OCT, 2015. 

[12] H. Li, ““Microbiome, Metagenomics, and High-Dimensional 

Compositional Data Analysis,” Annu. Rev. Stat. Its Appl., 

vol. 2, no. 1, pp. 73–94, 2015. 

[13] D. Asir Antony Gnana Singh, S . Appavu alias Balamurugan 

KLN, and E. Jebamalar Leavline, “Literature Review on 

Feature Selection Methods for High-Dimensional Data,” Int. 

J. Comput. Appl., vol. 136, no. 1, pp. 975–8887, 2016. 

[14] G. Chandrashekar and F. Sahin, “A survey on feature 

selection methods,” Comput. Electr. Eng., vol. 40, no. 1, pp. 

16–28, 2014. 

[15] I. Cho and M. J. Blaser, “The human microbiome: at the 

interface of health and disease.,” Nat. Rev. Genet., vol. 13, no. 

4, pp. 260–270, 2012. 

[16] D. Gevers et a l., “The Human Microbiome Project: A 

Community Resource for the Healthy Human Microbiome,” 

PLoS Biol., vol. 10, no. 8, 2012. 

[17] C. Manichanh, N. Borruel, F. Casellas, and F. Guarner, “The 

gut microbiota in IBD.,” Nat. Rev. Gastroenterol. Hepatol., vol. 

9, no. October, pp. 599–608, 2012. 

[18] P. J. Turnbaugh et a l., “A core gut microbiome in obese and 

lean twins,” Nature, vol. 457, no. 7228, pp. 480–484, 2009. 

[19] J. U. Scher and S . B. Abramson, “The microbiome and 

rheumatoid arthritis.,” Nat. Rev. Rheumatol., vol. 7, no. 10, pp. 

569–78, 2011. 

[20] D. McDonald, A. Birmingham, and R. Knight, “Context and 

the human microbiome.,” Microbiome, vol. 3, no. 1, p. 52, 

2015. 

[21]   N. Arslan, "Obesity, fatty liver disease and intestinal 

microbiota", World Journal of Gastroenterology, vol. 20, no. 

44, p. 16452, 2014. 

[22] D. R. Learman et a l., “Biogeochemical and microbial 

variation across 5500 km of Antarctic  surface sediment 

implicates organic matter as a driver of benthic community 

structure,” Front. Microbiol., vol. 7, no. MAR, pp. 1–11, 2016. 

[23] S . Hiraoka et a l., “Genomic and metagenomic analysis of 

microbes in a soil environment affected by the 2011 Great 

East Japan Earthquake tsunami.,” BMC Genomics, vol. 17, no. 

1, p. 53, 2016. 

[24]  D. Knights, E. Costello and R. Knight, "Supervised 

classification of human microbiota", FEMS Microbiology 

Reviews, vol. 35, no. 2, pp. 343-359, 2011.  

[25] J. T. Wassan et a l., “An Integrative Approach for the 

Functional Analysis of Metagenomic Studies,” International 

Conference on Intelligent Computing (ICIC), pp. 421–427, 

Springer, Cham, 2017. 

[26] H. Wang, H. Zheng, F. Browne, R. Roehe, R. Dewhurst, F. 

Engel, M. Hemmje, X. Lu and P. Walsh, "Integrated 

metagenomic analysis of the rumen microbiome of cattle 

reveals key biological mechanisms associated with methane 

traits", Methods, vol. 124, pp. 108-119, 2017. 

[27]  P. Walsh, C. Palu, B.Kelly, B.Lawor, J.Wassan, H.Zheng, and 

H.Wang. "A metagenomics analysis of rumen microbiome." 

In 2017 IEEE International Conference on Bioinformatics and 

Biomedicine (BIBM), pp. 2077-2082. IEEE, 2017. 

[28]  D. Toyama, L. Kishi, C. Santos-Júnior, A. Soares-Costa, T. de 

Oliveira, F. de Miranda and F. Henrique-Silva, 

mailto:h.zheng@ulster.ac.uk)


14 IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, MANUSCRIPT ID 

 

"Metagenomics Analysis of Microorganisms in Freshwater 

Lakes of the Amazon Basin", Genome Announcements, vol. 

4, no. 6, pp. e01440-16, 2016. 

[29]  A. Statnikov et a l., “A comprehensive evaluation of 

multicategory classification methods for microbiomic data.,” 

Microbiome, vol. 1, no. 1, p. 11, 2013. 

[30] C. Yang et a l., “An ecoinformatics tool for microbial 

community studies: Supervised classification of Amplicon 

Length Heterogeneity (ALH) profiles of 16S rRNA,” J. 

Microbiol. Methods, vol. 65, no. 1, pp. 49–62, 2006. 

[31] B. Wingfield and S . Coleman, “A Metagenomic Hybrid 

Classifier for Paediatric  Inflammatory Bowel Disease,” pp. 

1083–1089, 2016. 

[32] E. Pasolli, D. T. Truong, F. Malik, L. Waldron, and N. Segata, 

“Machine Learning Meta-analysis of Large Metagenomic 

Datasets: Tools and Biological Insights,” PLoS Comput. Biol., 

vol. 12, no. 7, 2016. 

[33]  R. Knight, C. Brown, J. Caporaso, J. Clemente, D. Gevers, E. 

Franzosa, S . Kelley, D. Knights, R. Ley, A. Mahurkar,    J. 

Ravel and O. White, "Advancing the Microbiome Research 

Community", Cell, vol. 159, no. 2, pp. 227-230, 2014 

[34] S . Deng, L. Zhu and D. Huang, "Predicting Hub Genes 

Associated with Cervical Cancer through Gene Co -

Expression Networks", IEEE/ACM Transactions on 

Computational Biology and Bioinformatics, vol. 13, no. 1, pp. 

27-35, 2016. 

[35] S . Deng, L. Zhu and D. Huang, "Mining the bladder cancer-

associated genes by an integrated strategy for the 

construction and analysis of differential co -expression 

networks", BMC Genomics, vol. 16, no. 3, p. S4, 2015. 
[36] P. J. Turnbaugh, V. K. Ridaura, J. J. Faith, F. E. Rey, R. Knight, 

and J. I. Gordon, “The Effect of Diet on the Human Gut 

Microbiome : A Metagenomic Analysis in Humanized 

Gnotobiotic  Mice,” vol. 1, no. 6, 2009. 

[37] O. Koren et a l., “A Guide to Enterotypes across the Human 

Body  : Meta- Analysis of Microbial Community Structures in 

Human Microbiome Datasets,” vol. 9, no. 1, 2013. 

[38] H. Jonas, Colin J. Brislawn, R. Lamendella, Y.Vázquez-

Baeza, William A. Walters, Lisa M. Bramer, Mauro D'Amato 

et al. "Dynamics of the human gut microbiome in 

inflammatory bowel disease." Nature microbiology 2 , 2017. 

[39]  T. Chen and C. Guestrin, “XGBoost : A Scalable Tree Boosting 

System,” pp. 785–794, 2016. 

[40] J. H. Friedman,"Greedy function approximation: a gradient 

boosting machine. Annals of statistics", pp.1189-1232,2001. 

[41] J.Hosmer, D.W., S .Lemeshow, R.Sturdivant, "Applied 

logistic  regression",vol. 398,. John Wiley & Sons,2013. 

[42] H. Zou and T. Hastie, “Regularization and variable selection 

via the elastic  net - Zou - 2005 - Journal of the Royal Statistical 

Society: Series B (Statistical Methodology) - Wiley Online 

Library,” … R. Stat. Soc. Ser. B (Statistical …, 2005. 

[43] L. Breiman and A. Cutler, “Breiman and Cutler’s random 

forests for classification and regression,” Packag. 

“randomForest,” p. 29, 2012. 

[44] L. Breiman, “Random Forests,” Mach. Learn., vol. 45, no. 1, 

pp. 5–32, 2001. 

[45] L. Saitta, “Support-Vector Networks,” vol. 297, pp. 273–297, 

1995. 

[46] G. Huang, Q. Zhu, and C. S iew, “Extreme Learning 

Machine  : A New Learning Scheme of Feedforward Neural 

Networks I ],” pp. 985–990,2004. 

[47]  P.Cunningham, and S .J.Delany."k-Nearest neighbour 

classifiers." Multiple Classifier Systems , vol 34, pp 1-17, 

2007. 

[48] Y. Saeys, I. Inza, and P. Larra.aga, “A review of feature 

selection techniques in bioinformatics,” Bioinformatics, vol. 

23, no. 19. pp. 2507–2517, 2007. 

[49]     J. Vergara and P. Estévez, "A review of feature selection 

methods based on mutual information", Neural Computing 

and Applications, vol. 24, no. 1, pp. 175-186, 2013. 

[50]  R. Holte, "Very Simple Classification Rules Perform Well on 

Most Commonly Used Data sets", Machine Learning, vol. 11, 

pp. 63, 1993. 

[51] M. Hall, “Correlation-based Feature Selection for Machine 

Learning,” Methodology, vol. 2, no. April, pp. 1–5, 1999. 

[52] P. M. Granitto, C. Furlanello, F. Biasioli, and F. Gasperi, 

“Recursive feature elimination with random forest for PTR-

MS analysis of agroindustrial products,” vol. 83, pp. 83–90, 

2006. 

[53] M. Sokolova and G. Lapalme, “A systematic  analysis of 

performance measures for classification tasks,” Inf. Process. 

Manag., vol. 45, no. 4, pp. 427–437, 2009. 
 

J yotsna Talreja Wassan is pursuing Ph.D. from School of 

Computing, Ulster University, U.K., and her current re-

search area is “Integrative Data Analytics in Metagenomics”. 

She is serving as an Assistant Professor in Dept. of Computer 

Science, Maitreyi College, University of Delhi, INDIA, since 

2010 and currently is on academic leave. She has published papers in in-

ternational journals and conference proceedings, e-lessons, and book 

chapters. She worked as a Software Engineer in her early career at ST. 

Microelectronics Pvt. Ltd., India and received Silver Recognition for 

FALCON project. 

 

Haiying Wang (M-’05) received the Ph.D. degree on artificial 

intelligence in biomedicine in 2004 and he is currently a 

Reader in the School of Computing at Ulster University, UK. 
His research area includes artificial intelligence, complex 

network analysis, computational biology, and bioinformatics. 

He has a research interest and expertise in network-based approaches to 

the field of systems biology and metagenomics. Since 2004, he has pub-

lished more than130 peer-reviewed research papers in international jour-

nals and conference proceedings.  

Fiona Browne is a Lecturer in Computing Science at the Ul-

ster University since 2013 with over 8 years research expe-

rience and 3 years industrial experience. She is a Fellow of 
the Higher Education Academy. In 2009, she received a 

PhD on Artificial Intelligence in Bioinformatics from the 

Ulster University. She worked as a research associate for Ulster University 

(EU-FP6 funded CARDIOWORKBENCH project) and as a Senior Soft-

ware Developer at PathXL. She joined Queen’s University Belfast as a Re-

search Fellow on an Invest NI START project. She has published various 

papers in peer reviewed international journals and conference proceed-

ings. 

Huiru Zheng ( SM’03) received the Ph.D. degree on data 

mining and bioinformatics from Ulster University, UK, in 

2003. Her research area  

lies on the broad area of healthcare informatics, including 

bioinformatics, medical informatics, data mining and arti-

ficial intelligence and their applications on systems biology, telecare, and 

tele-medicine. She has published over 230 research papers in peer re-

viewed international journals and conferences. Prof. Zheng is currently a 

Professor of Computer Science with the School of Computing at Ulster 

University. 


