497 research outputs found

    Implementation of network moving target defense in embedded systems

    Get PDF
    Moving target defense provides opportunities for adaptive defense in embedded systems. A great deal of work has been done on incorporating moving target defense techniques into enterprise systems to increase the cost to attackers and level the playing field. A smaller body of work focuses on implementing these techniques in embedded systems, which can greatly benefit from adaptive self-defense techniques. This work implements a network shuffling proof of concept in the Zephyr real time operating system to tackle the challenge of incorporating shuffling techniques into embedded systems. A host-centric, high security implementation is provided which maximizes attacker uncertainty and minimizes the impact of host compromise. Identifiers are utilized at the datalink, network, and transport layers and rotated per connection using keys shared between host pairs.Existing shuffling schemes are explored, including those targeted to IoT contexts. Existing limitations in protecting embedded systems are considered along with the presented by moving target defense. The design details and implementation of incorporating a moving target defense module to in the Zephyr networking stack is provided. The protection provided by the scheme is evaluated and it is compared to existing address shuffling schemes. Future work in better handling data forwarding and collisions in the proof of concept scheme are considered. Options for adapting and building on the scheme to meet the needs of system designers are explored. This work provides system designers with insights into implementing address shuffling in embedded systems

    The world of IoT

    Get PDF
    This book describes the world of Internet of things (IoT). Main technologies involved in the use of IoT are introduced. Moreover, IoT devices and platforms are also described in this module. Finally, a list of real IoT applications is shown for several typical IoT fields.Peer ReviewedPostprint (published version

    On Communication Privacy in the Internet of Things

    Get PDF
    We tackle the problem of privacy breaching in IPv6 Low power Wireless Personal Area Networks (6LoWPAN)-based Internet of Things (IoT) networks where an attacker may be able to identify the communicating entities. We propose three contributions which are: (i) survey: we thoroughly expose the prime focus of the existing solutions on communication identifiers privacy in 6LoWPANs, clarifying the important information about: at which layer the solutions operate, based on which protocol, against which attack, for which application, based on simulations or real prototypes, which sensitive information or communication identifiers are protected, which Privacy-Preserving Technique (PPT) is used, and how long is the duration of the protection against privacy attacks. (ii) uOTA: based on the One Time Address (OTA) approach proposed for the traditional Internet, with a focus on low complexity, memory footprint, and energy consumption, uOTA uses just one IPv6 address to send or to receive one packet. (iii) ACFI which is based on: (1) anonymizing both IP and MAC addresses, as well as port number at the source host, using a random pseudonyming scheme, and (2) anonymizing the IP address and port number of the destination host, using a Tor-like network. We analysed the effect of the Tor entry node location on the performance of our solution in three different scenarios: the Tor entry node is located (a) inside the 6LoWPAN, (b) at the 6LBR gateway, or (c) completely outside the 6LoWPAN. Using Cooja simulator, we showed that our solutions (uOTA and ACFI) outperformed stateof-the-art solutions by making it more difficult to identify communication flows by improving the anonymity and unlinkability of the communicating entities without significantly affecting energy consumption, communication delay, and network bandwidth

    Features, operation principle and limits of SPI and I2C communication protocols for smart objects: a novel SPI-based hybrid protocol especially suitable for IoT applications

    Get PDF
    The Internet of Things (IoT) is an expression, sometimes abused by companies given the absence of an unambiguous meaning, that indicates the upcoming evolution of Internet as it has been known so far. In fact, all objects will have network capabilities which will be exploited to overcome, in certain situations, human intervention. Thanks to the direct cooperation of new class of devices, aware of their operating scenario and interconnected in subnetworks, our life style will be strongly enhanced and simplified. IoT, however, is not yet the “El Dorado” of technology, capable of revolutionizing everyday life: some aspects and open issues have to be carefully analyzed. The huge complexity of this new technology forces companies to select a specific research field: for this reason, they focus only on some features that an IoT device should have to guarantee fulfillment of requirements. In this context, this research work concerns an analysis of features, operation principle and limits of SPI and I2C communication protocols followed by the proposal of a new hybrid protocol suited for embedded systems, named FlexSPI, thought as an evolution of the classic SPI. Thanks to a robust software architecture, it is able to provide many features that can be used by smart objects to enhance their capabilities. In this way, sensors and actuators or, more in general, subsystems, can quickly exchange data and efficiently react to malfunctioning; moreover, number of devices on bus can be safely increased even while smart object is performing operations

    Internet Predictions

    Get PDF
    More than a dozen leading experts give their opinions on where the Internet is headed and where it will be in the next decade in terms of technology, policy, and applications. They cover topics ranging from the Internet of Things to climate change to the digital storage of the future. A summary of the articles is available in the Web extras section

    Routing and Mobility on IPv6 over LoWPAN

    Get PDF
    The IoT means a world-wide network of interconnected objects based on standard communication protocols. An object in this context is a quotidian physical device augmented with sensing/actuating, processing, storing and communication capabilities. These objects must be able to interact with the surrounding environment where they are placed and to cooperate with neighbouring objects in order to accomplish a common objective. The IoT objects have also the capabilities of converting the sensed data into automated instructions and communicating them to other objects through the communication networks, avoiding the human intervention in several tasks. Most of IoT deployments are based on small devices with restricted computational resources and energy constraints. For this reason, initially the scientific community did not consider the use of IP protocol suite in this scenarios because there was the perception that it was too heavy to the available resources on such devices. Meanwhile, the scientific community and the industry started to rethink about the use of IP protocol suite in all IoT devices and now it is considered as the solution to provide connectivity between the IoT devices, independently of the Layer 2 protocol in use, and to connect them to the Internet. Despite the use of IP suite protocol in all devices and the amount of solutions proposed, many open issues remain unsolved in order to reach a seamless integration between the IoT and the Internet and to provide the conditions to IoT service widespread. This thesis addressed the challenges associated with the interconnectivity between the Internet and the IoT devices and with the security aspects of the IoT. In the interconnectivity between the IoT devices and the Internet the problem is how to provide valuable information to the Internet connected devices, independently of the supported IP protocol version, without being necessary accessed directly to the IoT nodes. In order to solve this problem, solutions based on Representational state transfer (REST) web services and IPv4 to IPv6 dual stack transition mechanism were proposed and evaluated. The REST web service and the transition mechanism runs only at the border router without penalizing the IoT constrained devices. The mitigation of the effects of internal and external security attacks minimizing the overhead imposed on the IoT devices is the security challenge addressed in this thesis. Three different solutions were proposed. The first is a mechanism to prevent remotely initiated transport level Denial of Service attacks that avoids the use of inefficient and hard to manage traditional firewalls. It is based on filtering at the border router the traffic received from the Internet and destined to the IoT network according to the conditions announced by each IoT device. The second is a network access security framework that can be used to control the nodes that have access to the network, based on administrative approval, and to enforce security compliance to the authorized nodes. The third is a network admission control framework that prevents IoT unauthorized nodes to communicate with IoT authorized nodes or with the Internet, which drastically reduces the number of possible security attacks. The network admission control was also exploited as a management mechanism as it can be used to manage the network size in terms of number of nodes, making the network more manageable, increasing its reliability and extending its lifetime.A IoT (Internet of Things) tem suscitado o interesse tanto da comunidade académica como da indústria, uma vez que os campos de aplicação são inúmeros assim como os potenciais ganhos que podem ser obtidos através do uso deste tipo de tecnologia. A IoT significa uma rede global de objetos ligados entre si através de uma rede de comunicações baseada em protocolos standard. Neste contexto, um objeto é um objeto físico do dia a dia ao qual foi adicionada a capacidade de medir e de atuar sobre variáveis físicas, de processar e armazenar dados e de comunicar. Estes objetos têm a capacidade de interagir com o meio ambiente envolvente e de cooperar com outros objetos vizinhos de forma a atingirem um objetivo comum. Estes objetos também têm a capacidade de converter os dados lidos em instruções e de as comunicar a outros objetos através da rede de comunicações, evitando desta forma a intervenção humana em diversas tarefas. A maior parte das concretizações de sistemas IoT são baseados em pequenos dispositivos autónomos com restrições ao nível dos recursos computacionais e de retenção de energia. Por esta razão, inicialmente a comunidade científica não considerou adequado o uso da pilha protocolar IP neste tipo de dispositivos, uma vez que havia a perceção de que era muito pesada para os recursos computacionais disponíveis. Entretanto, a comunidade científica e a indústria retomaram a discussão acerca dos benefícios do uso da pilha protocolar em todos os dispositivos da IoT e atualmente é considerada a solução para estabelecer a conetividade entre os dispositivos IoT independentemente do protocolo da camada dois em uso e para os ligar à Internet. Apesar do uso da pilha protocolar IP em todos os dispositivos e da quantidade de soluções propostas, são vários os problemas por resolver no que concerne à integração contínua e sem interrupções da IoT na Internet e de criar as condições para a adoção generalizada deste tipo de tecnologias. Esta tese versa sobre os desafios associados à integração da IoT na Internet e dos aspetos de segurança da IoT. Relativamente à integração da IoT na Internet o problema é como fornecer informação válida aos dispositivos ligados à Internet, independentemente da versão do protocolo IP em uso, evitando o acesso direto aos dispositivos IoT. Para a resolução deste problema foram propostas e avaliadas soluções baseadas em web services REST e em mecanismos de transição IPv4 para IPv6 do tipo pilha dupla (dual stack). O web service e o mecanismo de transição são suportados apenas no router de fronteira, sem penalizar os dispositivos IoT. No que concerne à segurança, o problema é mitigar os efeitos dos ataques de segurança internos e externos iniciados local e remotamente. Foram propostas três soluções diferentes, a primeira é um mecanismo que minimiza os efeitos dos ataques de negação de serviço com origem na Internet e que evita o uso de mecanismos de firewalls ineficientes e de gestão complexa. Este mecanismo filtra no router de fronteira o tráfego com origem na Internet é destinado à IoT de acordo com as condições anunciadas por cada um dos dispositivos IoT da rede. A segunda solução, é uma framework de network admission control que controla quais os dispositivos que podem aceder à rede com base na autorização administrativa e que aplica políticas de conformidade relativas à segurança aos dispositivos autorizados. A terceira é um mecanismo de network admission control para redes 6LoWPAN que evita que dispositivos não autorizados comuniquem com outros dispositivos legítimos e com a Internet o que reduz drasticamente o número de ataques à segurança. Este mecanismo também foi explorado como um mecanismo de gestão uma vez que pode ser utilizado a dimensão da rede quanto ao número de dispositivos, tornando-a mais fácil de gerir e aumentando a sua fiabilidade e o seu tempo de vida

    Emerging technologies for learning (volume 2)

    Get PDF
    corecore