36,443 research outputs found

    Custom-designed motion-based games for older adults: a review of literature in human-computer interaction

    Get PDF
    Many older adults, particularly persons living in senior residences and care homes, lead sedentary lifestyles, which reduces their life expectancy. Motion-based video games encourage physical activity and might be an opportunity for these adults to remain active and engaged; however, research efforts in the field have frequently focused on younger audiences and little is known about the requirements and benefits of motion-based games for elderly players. In this paper, we present an overview of motion-based video games and other interactive technologies for older adults. First, we summarize existing approaches towards the definition of motion-based video games – often referred to as exergames – and suggest a categorization of motion-based applications into active video games, exergames, and augmented sports. Second, we use this scheme to classify case studies addressing design efforts particularly directed towards older adults. Third, we analyze these case studies with a focus on potential target audiences, benefits, challenges in their deployment, and future design opportunities to investigate whether motion-based video games can be applied to encourage physical activity among older adults. In this context, special attention is paid to evaluation routines and their implications regarding the deployment of such games in the daily lives of older adults. The results show that many case studies examine isolated aspects of motion-based game design for older adults, and despite the broad range of issues in motion-based interaction for older adults covered by the sum of all research projects, there appears to be a disconnect between laboratory-based research and the deployment of motion-based video games in the daily lives of senior citizens. Our literature review suggests that despite research results suggesting various benefits of motion-based play for older adults, most work in the field of game design for senior citizens has focused on the implementation of accessible user interfaces, and that little is known about the long-term deployment of video games for this audience, which is a crucial step if these games are to be implemented in activity programs of senior residences, care homes, or in therapy

    Full-body motion-based game interaction for older adults

    Get PDF
    Older adults in nursing homes often lead sedentary lifestyles, which reduces their life expectancy. Full-body motion-control games provide an opportunity for these adults to remain active and engaged; these games are not designed with age-related impairments in mind, which prevents the games from being leveraged to increase the activity levels of older adults. In this paper, we present two studies aimed at developing game design guidelines for full-body motion controls for older adults experiencing age-related changes and impairments. Our studies also demonstrate how full-body motion-control games can accommodate a variety of user abilities, have a positive effect on mood and, by extension, the emotional well-being of older adults. Based on our studies, we present seven guidelines for the design of full-body interaction in games. The guidelines are designed to foster safe physical activity among older adults, thereby increasing their quality of life. Copyright 2012 ACM

    Human-centred design methods : developing scenarios for robot assisted play informed by user panels and field trials

    Get PDF
    Original article can be found at: http://www.sciencedirect.com/ Copyright ElsevierThis article describes the user-centred development of play scenarios for robot assisted play, as part of the multidisciplinary IROMEC1 project that develops a novel robotic toy for children with special needs. The project investigates how robotic toys can become social mediators, encouraging children with special needs to discover a range of play styles, from solitary to collaborative play (with peers, carers/teachers, parents, etc.). This article explains the developmental process of constructing relevant play scenarios for children with different special needs. Results are presented from consultation with panel of experts (therapists, teachers, parents) who advised on the play needs for the various target user groups and who helped investigate how robotic toys could be used as a play tool to assist in the children’s development. Examples from experimental investigations are provided which have informed the development of scenarios throughout the design process. We conclude by pointing out the potential benefit of this work to a variety of research projects and applications involving human–robot interactions.Peer reviewe

    Is movement better? Comparing sedentary and motion-based game controls for older adults

    Get PDF
    Providing cognitive and physical stimulation for older adults is critical for their well-being. Video games offer the opportunity of engaging seniors, and research has shown a variety of positive effects of motion-based video games for older adults. However, little is known about the suitability of motion-based game controls for older adults and how their use is affected by age-related changes. In this paper, we present a study evaluating sedentary and motion-based game controls with a focus on differences between younger and older adults. Our results show that older adults can apply motion-based game controls efficiently, and that they enjoy motion-based interaction. We present design implications based on our study, and demonstrate how our findings can be applied both to motion-based game design and to general interaction design for older adults. Copyright held by authors

    Development and preliminary evaluation of a novel low cost VR-based upper limb stroke rehabilitation platform using Wii technology.

    Get PDF
    Abstract Purpose: This paper proposes a novel system (using the Nintendo Wii remote) that offers customised, non-immersive, virtual reality-based, upper-limb stroke rehabilitation and reports on promising preliminary findings with stroke survivors. Method: The system novelty lies in the high accuracy of the full kinematic tracking of the upper limb movement in real-time, offering strong personal connection between the stroke survivor and a virtual character when executing therapist prescribed adjustable exercises/games. It allows the therapist to monitor patient performance and to individually calibrate the system in terms of range of movement, speed and duration. Results: The system was tested for acceptability with three stroke survivors with differing levels of disability. Participants reported an overwhelming connection with the system and avatar. A two-week, single case study with a long-term stroke survivor showed positive changes in all four outcome measures employed, with the participant reporting better wrist control and greater functional use. Activities, which were deemed too challenging or too easy were associated with lower scores of enjoyment/motivation, highlighting the need for activities to be individually calibrated. Conclusions: Given the preliminary findings, it would be beneficial to extend the case study in terms of duration and participants and to conduct an acceptability and feasibility study with community dwelling survivors. Implications for Rehabilitation Low-cost, off-the-shelf game sensors, such as the Nintendo Wii remote, are acceptable by stroke survivors as an add-on to upper limb stroke rehabilitation but have to be bespoked to provide high-fidelity and real-time kinematic tracking of the arm movement. Providing therapists with real-time and remote monitoring of the quality of the movement and not just the amount of practice, is imperative and most critical for getting a better understanding of each patient and administering the right amount and type of exercise. The ability to translate therapeutic arm movement into individually calibrated exercises and games, allows accommodation of the wide range of movement difficulties seen after stroke and the ability to adjust these activities (in terms of speed, range of movement and duration) will aid motivation and adherence - key issues in rehabilitation. With increasing pressures on resources and the move to more community-based rehabilitation, the proposed system has the potential for promoting the intensity of practice necessary for recovery in both community and acute settings.The National Health Service (NHS) London Regional Innovation Fund

    KINECTWheels: wheelchair-accessible motion-based game interaction

    Get PDF
    The increasing popularity of full-body motion-based video games creates new challenges for game accessibility research. Many games strongly focus on able-bodied persons and require players to move around freely. To address this problem, we introduce KINECTWheels, a toolkit that facilitates the integration of wheelchair-based game input. Our library can help game designers to integrate wheelchair input at the development stage, and it can be configured to trigger keystroke events to make off-the-shelf PC games wheelchair-accessible

    Home-based physical therapy with an interactive computer vision system

    Full text link
    In this paper, we present ExerciseCheck. ExerciseCheck is an interactive computer vision system that is sufficiently modular to work with different sources of human pose estimates, i.e., estimates from deep or traditional models that interpret RGB or RGB-D camera input. In a pilot study, we first compare the pose estimates produced by four deep models based on RGB input with those of the MS Kinect based on RGB-D data. The results indicate a performance gap that required us to choose the MS Kinect when we tested ExerciseCheck with Parkinson’s disease patients in their homes. ExerciseCheck is capable of customizing exercises, capturing exercise information, evaluating patient performance, providing therapeutic feedback to the patient and the therapist, checking the progress of the user over the course of the physical therapy, and supporting the patient throughout this period. We conclude that ExerciseCheck is a user-friendly computer vision application that can assist patients by providing motivation and guidance to ensure correct execution of the required exercises. Our results also suggest that while there has been considerable progress in the field of pose estimation using deep learning, current deep learning models are not fully ready to replace RGB-D sensors, especially when the exercises involved are complex, and the patient population being accounted for has to be carefully tracked for its “active range of motion.”Published versio

    Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions.

    Get PDF
    Fall prediction is a multifaceted problem that involves complex interactions between physiological, behavioral, and environmental factors. Existing fall detection and prediction systems mainly focus on physiological factors such as gait, vision, and cognition, and do not address the multifactorial nature of falls. In addition, these systems lack efficient user interfaces and feedback for preventing future falls. Recent advances in internet of things (IoT) and mobile technologies offer ample opportunities for integrating contextual information about patient behavior and environment along with physiological health data for predicting falls. This article reviews the state-of-the-art in fall detection and prediction systems. It also describes the challenges, limitations, and future directions in the design and implementation of effective fall prediction and prevention systems
    corecore