4 research outputs found

    Uma ferramenta para auxiliar no ensino de estruturas de dados como tipo de dado abstrato

    Get PDF
    Orientador : Beatriz Mascia DaltriniTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de ComputaçãoDoutorad

    Designing New Programming Constructs in a Data Flow VL

    No full text
    A powerful and useful Data-Flow Visual Programming Language (DFVPL) must provide the necessary programming constructs to deal with complex problems. The main purpose of this paper is to give a contribution to the debate on DFVPL constructs, by presenting the solutions we devised for the VIPERS language. 1. Introduction Data-flow is one of the most popular computational models for visual programming languages (VPL). One of the most important features which characterizes the power of a data-flow VPL is the availability of a rich library of predefined functions to be used as elementary building blocks [1]. Moreover, a powerful and useful data-flow VPL must provide the necessary programming constructs to deal with complex problems (in the language's application domain). Our experience with the VIPERS system [2], developed at the University of Pavia, confirms once more that the pure data-flow model needs to be enriched with some forms of control flow constructs in order to tackle non-triv..

    Developments in Dataflow Programming

    Get PDF
    Dataflow has historically been motivated either by parallelism or programmability or some combination of the two. This work, rather than being directed primarily at parallelism or programmability, is instead aimed at maximising the overall utility to the programmer of the system at large. This means that it aims to result in a system in which it is easy to create well-constructed, flexible programs that comply with the principles of software engineering and architecture, but also that the proposed system should be capable at performing practical real-life tasks and should be as widely applicable as can be achieved. With those aims in mind, this project has four goals: * to argue for a unified global dataflow coordination system, extensible to be able to accommodate components of any form that may exist now or in the future; * to establish a link between the design of such a system and the principles of software engineering and architecture; * to design a dataflow coordination system based on those principles, aiming where possible to embed them in the design so that they become easy or unthinking for programmers to apply; and * to implement and test components of the proposed system, using it to build a set of three sample algorithms. Taking the best ideas that have been proposed in dataflow programming in the past --- those that most effectively embed the principles of software engineering --- and extending them with new proposals where necessary, a collection of interactions and functionalities is proposed, including a novel way of using partial evaluation of functions and data dimensionality to represent iteration in an acyclic graph. The proposed design was implemented as far as necessary to construct three test algorithms: calculating a factorial, generating terms of the Fibonacci sequence and performing a merge-sort. The implementation was successful in representing iteration in acyclic dataflow, and the test algorithms generated correct results, limited only by the numerical representation capabilities of the underlying language. Testing and working with the implemented system revealed the importance to usability of the system being visual, interactive and, in a distributed environment, always-available. Proposed further work falls into three categories: writing a full specification (in particular, defining the interfaces by which components will interact); developing new features to extend the functionality; and further developing the test implementation. The conclusion summarises the vision of a unified global dataflow coordination system and makes an appeal for cooperation on its development as an open, non-profit dataflow system run for the good of its community, rather than allowing a proliferation of competing systems run for commercial gain

    Nova combinação de hardware e de software para veículos de desporto automóvel baseada no processamento directo de funções gráficas

    Get PDF
    Doutoramento em Engenharia EletrónicaThe main motivation for the work presented here began with previously conducted experiments with a programming concept at the time named "Macro". These experiments led to the conviction that it would be possible to build a system of engine control from scratch, which could eliminate many of the current problems of engine management systems in a direct and intrinsic way. It was also hoped that it would minimize the full range of software and hardware needed to make a final and fully functional system. Initially, this paper proposes to make a comprehensive survey of the state of the art in the specific area of software and corresponding hardware of automotive tools and automotive ECUs. Problems arising from such software will be identified, and it will be clear that practically all of these problems stem directly or indirectly from the fact that we continue to make comprehensive use of extremely long and complex "tool chains". Similarly, in the hardware, it will be argued that the problems stem from the extreme complexity and inter-dependency inside processor architectures. The conclusions are presented through an extensive list of "pitfalls" which will be thoroughly enumerated, identified and characterized. Solutions will also be proposed for the various current issues and for the implementation of these same solutions. All this final work will be part of a "proof-of-concept" system called "ECU2010". The central element of this system is the before mentioned "Macro" concept, which is an graphical block representing one of many operations required in a automotive system having arithmetic, logic, filtering, integration, multiplexing functions among others. The end result of the proposed work is a single tool, fully integrated, enabling the development and management of the entire system in one simple visual interface. Part of the presented result relies on a hardware platform fully adapted to the software, as well as enabling high flexibility and scalability in addition to using exactly the same technology for ECU, data logger and peripherals alike. Current systems rely on a mostly evolutionary path, only allowing online calibration of parameters, but never the online alteration of their own automotive functionality algorithms. By contrast, the system developed and described in this thesis had the advantage of following a "clean-slate" approach, whereby everything could be rethought globally. In the end, out of all the system characteristics, "LIVE-Prototyping" is the most relevant feature, allowing the adjustment of automotive algorithms (eg. Injection, ignition, lambda control, etc.) 100% online, keeping the engine constantly working, without ever having to stop or reboot to make such changes. This consequently eliminates any "turnaround delay" typically present in current automotive systems, thereby enhancing the efficiency and handling of such systems.A principal motivação para o trabalho que conduziu a esta tese residiu na constatação de que os actuais métodos de modelação de centralinas automóveis conduzem a significativos problemas de desenvolvimento e manutenção. Como resultado dessa constatação, o objectivo deste trabalho centrou-se no desenvolvimento de um conceito de arquitectura que rompe radicalmente com os modelos state-of-the-art e que assenta num conjunto de conceitos que vieram a ser designados de "Macro" e "Celular ECU". Com este modelo pretendeu-se simultaneamente minimizar a panóplia de software e de hardware necessários à obtenção de uma sistema funcional final. Inicialmente, esta tese propõem-se fazer um levantamento exaustivo do estado da arte na área específica do software e correspondente hardware das ferramentas e centralinas automóveis. Os problemas decorrentes de tal software serão identificados e, dessa identificação deverá ficar claro, que praticamente todos esses problemas têm origem directa ou indirecta no facto de se continuar a fazer um uso exaustivo de "tool chains" extremamente compridas e complexas. De forma semelhante, no hardware, os problemas têm origem na extrema complexidade e inter-dependência das arquitecturas dos processadores. As consequências distribuem-se por uma extensa lista de "pitfalls" que também serão exaustivamente enumeradas, identificadas e caracterizadas. São ainda propostas soluções para os diversos problemas actuais e correspondentes implementações dessas mesmas soluções. Todo este trabalho final faz parte de um sistema "proof-of-concept" designado "ECU2010". O elemento central deste sistema é o já referido conceito de “Macro”, que consiste num bloco gráfico que representa uma de muitas operações necessárias num sistema automóvel, como sejam funções aritméticas, lógicas, de filtragem, de integração, de multiplexagem, entre outras. O resultado final do trabalho proposto assenta numa única ferramenta, totalmente integrada que permite o desenvolvimento e gestão de todo o sistema de forma simples numa única interface visual. Parte do resultado apresentado assenta numa plataforma hardware totalmente adaptada ao software, bem como na elevada flexibilidade e escalabilidade, para além de permitir a utilização de exactamente a mesma tecnologia quer para a centralina, como para o datalogger e para os periféricos. Os sistemas actuais assentam num percurso maioritariamente evolutivo, apenas permitindo a calibração online de parâmetros, mas nunca a alteração online dos próprios algoritmos das funcionalidades automóveis. Pelo contrário, o sistema desenvolvido e descrito nesta tese apresenta a vantagem de seguir um "clean-slate approach", pelo que tudo pode ser globalmente repensado. No final e para além de todas as restantes características, o “LIVE-PROTOTYPING” é a funcionalidade mais relevante, ao permitir alterar algoritmos automóveis (ex: injecção, ignição, controlo lambda, etc.) de forma 100% online, mantendo o motor constantemente a trabalhar e sem nunca ter de o parar ou re-arrancar para efectuar tais alterações. Isto elimina consequentemente qualquer "turnaround delay" tipicamente presente em qualquer sistema automóvel actual, aumentando de forma significativa a eficiência global do sistema e da sua utilização
    corecore