
University of Exeter
Department of Computer Science

Developments in Dataflow Programming

Daniel Julius Maxwell

April 2018

Supervised by Dr Antony Galton & Prof. Jonathan Fieldsend

Submitted by Daniel Julius Maxwell to the University of Exeter as a thesis for the degree
of Doctor of Philosophy in Computer Science, April 2018.

This thesis is available for Library use on the understanding that it is copyright material
and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identi-
fied and that no material has previously been submitted and approved for the award of a
degree by this or any other University.

(signature) ...

Abstract

Dataflow has historically been motivated either by parallelism or programmability or some
combination of the two. This work, rather than being directed primarily at parallelism
or programmability, is instead aimed at maximising the overall utility to the programmer
of the system at large. This means that it aims to result in a system in which it is easy
to create well-constructed, flexible programs that comply with the principles of software
engineering and architecture, but also that the proposed system should be capable at
performing practical real-life tasks and should be as widely applicable as can be achieved.

With those aims in mind, this project has four goals:

• to argue for a unified global dataflow coordination system, extensible to be able to
accommodate components of any form that may exist now or in the future;

• to establish a link between the design of such a system and the principles of software
engineering and architecture;

• to design a dataflow coordination system based on those principles, aiming where
possible to embed them in the design so that they become easy or unthinking for
programmers to apply; and

• to implement and test components of the proposed system, using it to build a set of
three sample algorithms.

Taking the best ideas that have been proposed in dataflow programming in the past —
those that most effectively embed the principles of software engineering — and extending
them with new proposals where necessary, a collection of interactions and functionali-
ties is proposed, including a novel way of using partial evaluation of functions and data
dimensionality to represent iteration in an acyclic graph.

The proposed design was implemented as far as necessary to construct three test algo-
rithms: calculating a factorial, generating terms of the Fibonacci sequence and perform-
ing a merge-sort. The implementation was successful in representing iteration in acyclic
dataflow, and the test algorithms generated correct results, limited only by the numer-
ical representation capabilities of the underlying language. Testing and working with
the implemented system revealed the importance to usability of the system being visual,
interactive and, in a distributed environment, always-available.

Proposed further work falls into three categories: writing a full specification (in particular,
defining the interfaces by which components will interact); developing new features to
extend the functionality; and further developing the test implementation.

The conclusion summarises the vision of a unified global dataflow coordination system
and makes an appeal for cooperation on its development as an open, non-profit dataflow
system run for the good of its community, rather than allowing a proliferation of competing
systems run for commercial gain.

To Avocado, for whom I hope computers will be easier to use.

Acknowledgements

I would like to thank my supervisors, Dr Antony Galton for his great attention to de-
tail, being lightning-fast to understand and tease apart my logic, and insistence on clear
explanations; and Professor Jonathan Fieldsend for solid competence, deep knowledge of
programming languages, high standards and some timely advice on productivity.

Huge thanks to Clare for listening, sharing my excitement about the subject, being brave
enough to read sections of my thesis and for her valiant efforts to explain the topic to our
friends.

Thank you to my funders, EPSRC (grant number EP/K503046/1), and to the Department
of Computer Science for awarding me the funding.

And thank you to my examiners, Dr Yulei Wu and Professor Ian Watson, for taking on
that mammoth task.

Contents

List of figures iii

1 Introduction 1
1.1 Purpose . 1
1.2 What Is Dataflow? . 4
1.3 What Is A Coordination System . 5
1.4 Document Structure . 7

2 The History of Dataflow 8
2.1 Origin and Motivation . 8
2.2 Partial Evaluation . 11
2.3 Side-Effects . 12
2.4 Data-Driven vs. Demand-Driven Execution 14
2.5 Iteration . 15
2.6 Pessimism ... and the Recovery . 16
2.7 Coordination Languages . 19
2.8 Dataflow Classification . 20
2.9 Implementations . 22
2.10 Open Problems . 25
2.11 Summary . 26

3 Software Engineering 27
3.1 Origins . 27
3.2 Development Methodologies . 28
3.3 Software Architecture . 33
3.4 Architectural Principles . 34
3.5 Architectural Styles . 42
3.6 Summary . 43

4 Definition 45
4.1 A Coordination System . 45
4.2 Functional Purity . 46
4.3 What Are Nodes And Connections? . 48
4.4 Separation Between Nodes And Resources 52
4.5 Visual Representation . 52
4.6 The Service-Provider Model . 54
4.7 Triggering Execution . 56
4.8 Partial Evaluation . 57

i

4.9 Expected Inputs . 62
4.10 Dimensions . 65
4.11 Iteration . 66
4.12 The Generalised Iteration Node . 74
4.13 Function Isolation . 83
4.14 Notifications and Time-Stamps . 86
4.15 Subscription Types . 88
4.16 Synchronisation . 89
4.17 Testing and Development . 90
4.18 Example Application . 96
4.19 Further Work . 100
4.20 Summary . 100

5 Implementation 102
5.1 Feature Implementation . 102
5.2 Code Structure . 110
5.3 Test Algorithms . 114
5.4 Summary . 127

6 Evaluation and Results 129
6.1 Programmability . 129
6.2 Speed . 131
6.3 Distributability . 132
6.4 Summary . 132

7 Further Work 133
7.1 Full Specification . 133
7.2 Additional Features . 136
7.3 Further Work on the Implementation . 145
7.4 Summary . 148

8 Conclusion 149

Appendices

A Nomenclature 153

B Visual Notation 156

C API Documentation 161

D Examples 173

Bibliography 183

ii

List of Figures

2.1 Reproduction of Yazdanpanah et al. [2014] Fig 2. 19

3.1 An example of a stage-wise process model, reproduced from Benington [1956]. 28
3.2 Not Royce’s recommendation. Royce commented about this process that it

is “risky and invites failure”. Reproduced from Royce [1970]. 29
3.3 Royce’s recommended process model. 29
3.4 An Efficiency Chart. The horizontal axis represents work done; the project

starts at the left and moves to the right as it progresses. 31
3.5 Multiple phases of work. A series of phases of work in which each change

to the project triggers a new phase. 32
3.6 Narrowing the gap. Seen on an efficiency chart, software engineering has

two goals: to move change points to the left by uncovering knowledge; and
to move reversion points to the right by making the system flexible. 35

3.7 An Efficiency Chart. 43

4.1 The ‘How Is Bob Feeling?’ node. A node’s computational power could
come from any source. 50

4.2 Bob’s pie-making node. A node could have the job of creating some output
or external effect. 51

4.3 Nodes in shallow and deep notation. 53
4.4 Inputs, outputs and connections. 54
4.5 An ID node is a node with one input, which provides its input, unaltered,

as an output. 54
4.6 Partial evaluation. 58
4.7 Derived inputs. 59
4.8 Reusing nodes. 59
4.9 Connecting a node’s content to an upstream node. 60
4.10 Fully resolved input names. 60
4.11 Inputs that arrive by multiple routes. Each input can only be inherited

once by a each node. 61
4.12 Inheriting the ‘quantity’ input. 62
4.13 Without connecting the recipe, it would be impossible to set the quantity

required. 63
4.14 Input parameters appear as a label attached to the input in question. . . . 63
4.15 Transmission of parameters and derived inputs. 63
4.16 Internal storage of the connected value. 64

iii

4.17 Nominated inputs. When an input with an ‘expected inputs’ parameter is
connected to a node, an input of the incoming function must be nominated
as the one to be associated with each expected input. 64

4.18 Implicit nomination. In cases where the incoming function has only one
input, the nomination is not required, and is not always shown in drawings. 65

4.19 Name-only nomination. In cases where the nominated input name is unique,
it can be nominated using its input name alone. 65

4.20 Where the input name being nominated is not unique, it can be uniquely
identified using its originating node name and input name. 65

4.21 Table structure. 66
4.22 List in — list out. The input is overloaded by one dimension, so creates a

list as an output. 68
4.23 Table In — Table Out. The input is overloaded by two dimensions, so

creates a table as an output. 69
4.24 Multiple Lists In — Table Out. The inputs add one dimension each to the

ouptut, resulting in a two-dimensional table. 69
4.25 Applying a list of functions to an input. 70
4.26 Visual depiction of the ‘dimensions’ input parameter. 70
4.27 Dimensionally overloading an input with a ‘dimensions’ parameter. 71
4.28 Depiction of dependent iteration. 72
4.29 Using dependent iteration to count to ten. 73
4.30 A dataflow structure similar to a ‘for’ loop. 74
4.31 Loop-like iteration, step 1. The central node is an ‘ID’ node, meaning it

returns its input unaltered. 77
4.32 Loop-like iteration, step 2. The ‘expected inputs’ parameter is set. 77
4.33 Loop-like iteration, step 3. The node is set to iterate. 77
4.34 Generalised Iteration — The split-recombination form. 78
4.35 The generalised iteration requires three components: the ‘Combiner’ node,

the ‘GetValue’ node and the ‘GetCounter’ node. 79
4.36 Loop-like iteration, step 4. Using the three components. 79
4.37 Loop-like iteration, step 5. The nodes are connected together. The open

inputs cascade down the graph and are inherited by the ‘IterationFn’ node
at the end. 80

4.38 Loop-like iteration, step 6. The termination Function 81
4.39 Loop-like iteration, step 7. The starting value. 81
4.40 Loop-like iteration, step 8. The components are combined to create the

‘GeneralIterator’ node as a result. 82
4.41 The Generalised Iteration Node. 83
4.42 Parsing code for non-isolated environments. Untrusted code could be parsed

and recompiled into a trusted version. 84
4.43 Defining a new language. A parser can be used to make code safe. 85
4.44 Update arriving via two routes. 87
4.45 Multiple connections with high frequency updates. 89
4.46 High frequency updates time chart. 90

iv

4.47 Verifying a node’s functionality. Without interrupting the flow of the graph,
a node can be tested to verify it generates the expected outputs. 91

4.48 Obtaining a true/false test result. 91
4.49 Summary test results. A summary node can be created to aggregate the

results of all test nodes. 92
4.50 Tests using the ‘expected inputs’ feature. With expected inputs, a generic

test can be created in the absence of the node being tested. 92
4.51 Using a generic test node. 93
4.52 Testing multiple values. In another extension of the generic test, in this

example all inputs are left open, so that different combinations of input
and output values can be tested. 94

4.53 Testing multiple nodes. In this example, the same combination of input
and expected output values is used to test two different nodes. 94

4.54 A test for use with dimensions. The resulting node allows the user to apply
a list of input/result pairs. 95

4.55 Testing with dimensions. A node is tested on a list of three pairs of inputs
and results. 96

4.56 Example Application — A node to buy and sell stocks based on the valua-
tion and the price . 97

4.57 Example Application — with an input to make it active or inactive 97
4.58 Example Application — Stock valuation . 98
4.59 Example application — the complete graph 99
4.60 Example application — two restricted views of the same graph 99

5.1 Unification of inputs. An input that is inherited at a downstream node via
more than one route is inherited only once. 107

5.2 Connecting a root and inherited input simultaneously. 113
5.3 Factorial — The central ID node. 115
5.4 The Split-Recombination Form. 116
5.5 The iteration requires three components: the ‘Combiner’ node, the ‘Get-

Value’ node and the ‘GetCounter’ node. 116
5.6 Factorial — components are assembled into the split-recombination form

but not yet connected. 117
5.7 Factorial — Split-Recombination form with the nodes connected. 118
5.8 Factorial — connecting the iteration function. 118
5.9 The termination condition for the factorial algorithm. 119
5.10 The components of the factorial algorithm are now connected together,

resulting in the ‘Factorial’ node. 120
5.11 The Fibonacci sequence algorithm is based on the ‘AppendItem’ node,

which takes an array of values as an input and provides a copy of it as
an output with the next value appended to the end. 121

5.12 The merge-sort algorithm starts with a central ID node (one which returns
its sole input unchanged). 123

5.13 Iteration function skeleton. 123

v

5.14 Iteration function with connections. Once connected, the open inputs cas-
cade through the graph and are inherited by downstream nodes. 124

5.15 Connecting the ‘IterationFn’ node. 124
5.16 Defining the starting value. 125
5.17 Defining the termination function. 125
5.18 The components are connected to create a final ‘MergeSort’ node. 126
5.19 An Execution Tree . 126
5.20 An execution tree where the slowest node at each level lies on the same path127
5.21 An execution tree where the slowest node at every level lies on a different

path . 127

7.1 Using a group to define a collection. 138
7.2 Using a group to define an object. 140
7.3 A visualisation node. In this example, the visualisation is a graph. 141
7.4 Use of interactive components to replace the interaction for an underlying

node. 142
7.5 A component with two interactions controlling the same underlying value. . 143

B.1 Lens-shaped depiction of a node. 156
B.2 Shallow and deep node notation. 157
B.3 Node inputs are depicted as a ‘V’ shape in the top part of the node, with

an adjacent input name if applicable. 157
B.4 Providing inputs with values. 157
B.5 Derived inputs. 158
B.6 Input parameters are shown in a label attached to the input they relate to. 158
B.7 Nominated inputs. 158
B.8 Inherited content. 159
B.9 Depiction of Tables . 159
B.10 Node iteration. 160

vi

Chapter 1

Introduction

1.1. Purpose

Dataflow captures much of the essence of how programming should be done. Its cause-
and-effect nature reflects the way we think about the world, with nodes representing
events or objects and their behaviours, incoming connections representing causes, outgoing
connections and node actions representing results or outcomes, and chains of connected
nodes representing processes or sets of instructions.

Dataflow has been founded on understandability from the start: its origin in the concept
of a flow chart was itself motivated by wanting to communicate complex ideas between
expert and non-expert users (Gilbreth and Gilbreth [1921]). It has been shown to be
a productive paradigm for programming — even with a basic and incomplete interface,
researchers have demonstrated productivity gains for both expert and non-expert users,
that increase with the complexity of the tasks involved (Baroth and Hartsough [1995],
Whitley [1997], Morrison [2010]).

Carriero and Gelernter [1989] made a case for regarding the coordination and compu-
tational components of a program as separate and orthogonal (see also Gelernter and
Carriero [1992]). As a coordination system, dataflow has huge advantages. With nodes
regarded as black boxes, the system is by its nature indifferent to the inner workings of
nodes, allowing for, as Carriero and Gelernter argued, an entirely heterogeneous ensemble
of components containing a diversity of systems, platforms and languages. A dataflow
coordination system could be powerfully exploited to coordinate the full global ensemble
of computing components that currently exists and much more besides.

Dataflow has historically been motivated either by parallelism or programmability or some
combination of the two. This work, rather than being directed primarily at parallelism
or programmability, is instead aimed at maximising the overall utility to the programmer
of the system at large. This means that it aims to result in a system in which it is easy
to create well-constructed, flexible programs that comply with the principles of software
engineering and architecture (described in Chapter 3), but also that the system should be

1

1. Introduction

capable at performing practical real-life tasks and should be as widely applicable as can
be achieved.

The principles of software engineering and architecture are usually seen as instructions for
programmers on how they should run projects or construct their programs. In this docu-
ment, instead, the whole system is designed around them, with the intention of conceiving
a system in which programmers are freed up to focus on their core logic rather than the
architecture of their software.

As well as the architecture of the programs created, the architecture of the system itself
plays a part. Its parallelisability is valuable for utilisation of processors, but also makes
programs distributable over multiple machines, locations and users. The modularity of the
system means that components within the same program can be divided between different
providers, making them more easily interchangeable and leaving users free to choose the
providers of components that best suit them. Such interchangeable components include
user interfaces, storage components, processing resources and, in general, cloud service
provision.

Much of the work in this document is aimed at improving the functionality of the system
— thereby increasing its applicability, so that the widest possible range of tasks can be
achieved using it. The use of partial evaluation to achieve iteration, for example, is partly
presentational, allowing iteration to fit more easily within the the dataflow paradigm, but
also affects the architecture of the system; resulting in functions being executed at different
times and on different machines than would otherwise have been the case.

With those general aims in mind, the goals of this work are:

• to argue for a unified global dataflow coordination system, consisting of a protocol for
communication between nodes and providing interfaces for interchangeable resources
such as node hardware (storage and computation), user interfaces and a directory
of available nodes, a system that would be extensible to be able to work with any
form of computational components that may exist now or in the future;

• to establish a link between the design of such a system and the principles of software
engineering and architecture, with those principles ideally embedded into the design
of the system so that they become easy or unthinking for programmers to apply,
even without necessarily knowing or understanding the principles themselves. While
the list of principles and the manner in which they are embedded may be open to
question, the importance of embedding them should be clear;

• to design a dataflow system based on such principles, utilising those ideas from the
previous literature that most closely embed them, and adding new features and meth-
ods where needed (most notably using partial evaluation and data dimensionality to
represent iteration in an acyclic graph); and

• to implement and test components of the proposed system, using it to build a set
of three sample iterative algorithms (calculating a factorial, generating terms of the
Fibonacci sequence and performing a merge-sort).

2

1. Introduction

Among the ideas previously proposed in dataflow that are utilised in this document are
acyclicity (which leads to simplicity), node heterogeneity and separation between the pro-
gramming language and the system of coordination between components. Some of the
most important principles of software engineering are flexibility, modularity and platform
independence. Dataflow is a good fit for such principles because it is inherently modular
and therefore flexible.

The design of a unified global dataflow coordination system requires two classes of fea-
tures and components: features that are intrinsic to the system, and components that are
necessary but interchangeable. The intrinsic features have characteristics determined by
the system design. Examples are the addressing of nodes, the protocol for communication
between nodes, and the API (Application Programming Interface) through which nodes
communicate with other components of the system and the outside world. A node must be
able to communicate with the user interface via the API, nodes must be able to communi-
cate with each other using the same protocol, they must understand the user interactions,
and be able to receive inputs and deliver outputs in the required data formats.

However, the intention in the design is to retain the maximum flexibility by making most
components of the system interchangeable. The system at large can be indifferent to the
internal node implementation: whereas some internal implementation is needed, and one is
built for the purpose of testing, it is interchangeable, and could equally well be exchanged
for any other, provided it exhibits the required behaviour. Likewise, the user interface,
the programming languages in which node functions are written, and the hardware used
for data storage and function execution are all interchangeable. The system is indifferent
to the implementation of all such components.

Whereas an implementation has been provided here for demonstration purposes, there is no
suggestion that this implementation is in any way optimal or ideal; it is simply one of many
that could have been constructed. Discussion of any idealised or optimised implementation
of the system is largely omitted from this work. The application of the existing field of
Functional Programming, and in particular Graph Reduction, would mostly fit within
the realm of implementation and optimisation. The technique of Partial Evaluation, for
example, discussed in Section 4.8, would most probably benefit from existing approaches
to Graph Reduction used in Functional Programming.

This document attempts to make use of the solutions previously suggested that fit the
goals most closely. As described in Section 2.3 (Side-Effects), although many in the past
have adopted purely functional approaches there are many others (for example, Rumbaugh
[1977]; Davis and Keller [1982]; Hudak [1989]; Johnston et al. [2004]), who have recognised
the need for non-determinism in practical systems. Where approaches in this document
deviate from the principles of purely functional languages, or from a notion of ‘pure’
dataflow, this has been done for the sake of achieving the project goal of maximising the
utility of the system at large to its users. An example of this would be where nodes
are allowed to maintain state, fetch external data and to have side-effects external to the
system. By allowing them these abilities we sacrifice functional purity, but also gain useful
capabilities for real-life applications.

3

1. Introduction

In advocating a unified global dataflow coordination system, the conclusion of this thesis
makes an appeal for cooperation: for those working on dataflow to collaborate to bring
such a system into being, working together on the same open system rather than allowing
a proliferation of competing or proprietary systems. The important principles of node
heterogeneity and interchangeability of components and resources allow such a system to
embrace a multitude of possible implementations of node internals and user interactions,
all living within the same system of node coordination and communication. The conclusion
argues, finally, that such a system can only work, or will work best, if it is open, available
to all, and managed by a non-profit body in the interests of its users, on something like
the model of the World Wide Web Consortium1, rather than by private companies that
would be subject to narrower goals.

1.2. What Is Dataflow?

The concept of dataflow is simple enough: a program is represented as a directed graph in
which units of data or functionality, represented by nodes, are depicted as being connected
by arcs, representing data dependencies between them.

It reflects the way we think about the world: the cause-and-effect nature of a node is
similar to the way we think about objects and events, and the connections give us chains
of actions, similar to the way we think about processes or sets of instructions.

Dataflow lends itself to visual representation, not least because visual representation gives
us access to two dimensions. Whereas the one dimension available to us in text requires
flow control commands to represent forks and convergence by moving the position of the
control point, two dimensions represent these more easily, in a way that can be perceived
and rapidly understood by the human eye, whilst also providing the data dependency
chain necessary to be able to parallelise the operations involved.

Dataflow as a programming paradigm started being proposed and discussed by a number of
people independently in the 1960s and late 1950s, although all were rooted in the concept
of a flow-chart, which was seeded much earlier, as a business tool, in 1921.

Work on dataflow has usually been motivated either by parallelisability or programmabil-
ity. Whereas dataflow does produce parallelisable code, this has not always translated into
efficiency. Dataflow necessarily avoids any underlying state, which means data must be
copied in order for nodes to perform their operations. Various proposals have been made
to mitigate this problem, the simplest of which is simply to avoid fine-grained node oper-
ations, in which the copying overhead is higher and tend instead towards coarse-grained
operations where the copying overhead is lower. Another proposal often cited is to im-
prove efficiency by compiling sections of a dataflow graph into sequential (control-flow)
code that can be executed more efficiently. How efficiency concerns are best addressed
depends on the nature of the programs in question, the balance of priorities between the
various aspects of overhead cost (communication, memory and computation), and the rel-
ative costs of having large numbers of small processors compared with small numbers of

1https://www.w3.org/

4

https://www.w3.org/

1. Introduction

fast ones. Efficiency issues are not addressed in this document.

Greater success has been reported in achieving programmability with dataflow, with mea-
surably better programming productivity at all levels of programming experience and
complexity, but with the benefits increasing with the complexity of the tasks at hand
(Baroth and Hartsough [1995], Whitley [1997], Morrison [2010]).

It is the desire to exploit and enhance these benefits in programmability and programming
productivity that motivates the desire for a unified global dataflow coordination system,
coordinating the global ensemble of computational components that already exists, and
extensible to those not yet created or conceived of (including such biological computational
machines as ourselves).

1.3. What Is A Coordination System

A Coordination System, in this context, is a system for coordinating computing com-
ponents. Gelernter and Carriero [1992], in designing their language Linda (which they
referred to as a Coordination Language), treated the coordination model as orthogonal to
the computation model, such that the two could be chosen separately. The coordination
language was described by them as a way of controlling asynchronous ensembles of activi-
ties — which could be programs, processes, threads or “any agent[s] capable in principle of
simulating a Turing Machine”. They saw ensembles as heterogeneous, incorporating “dif-
ferent machines, or different computing models”, and their vision was grand: an activity
could also, they said, be a person or another whole ensemble. As they put it, ensembles
are “fundamental and ubiquitous” in computing, and their conception of a coordination
system attempted to address how these heterogeneous components could be made to work
together.

Linda involved creating what they called tuples: items of data that were that were ‘cast
adrift’ into a global space, from which other processes would fetch them. There could also
be what they called active tuples, meaning that an execution would take place before it
produced a result which became a standard tuple.

Several different approaches to coordination have since been proposed and implemented.
The most obvious succession to Linda was Laura (Tolksdorf [1998]). Laura focussed pri-
marily on the implications of a system being not just distributed but also open, with no
central control over the components that join or leave. Rather than having explicit con-
nections between nodes, they used what they called a service offer form to define the name
of a service together with the format of its expected inputs and outputs, which would be
shared globally. These were then retrieved by submitting a service request form, for which
a matching service offer would be found. This was aimed at achieving a loose coupling
between providers and consumers of services, enabling any service to be substituted by
another with the same name, and thereby accommodating dynamic joining and leaving of
components in a system that exerted no overall control over such availability.

Others, over the years, have focussed on a variety of applications, environments and imple-

5

1. Introduction

mentation issues. Opus (Chapman et al. [1997]) was an approach centred around entities
referred to as ‘Shared Abstractions’. Analogous to Objects in Object-Oriented Program-
ming, these contained both properties and functions that could be called by other such
entities. S-Net (Penczek et al. [2010]) was directed primarily at Signal Processing and
the problems that prevail in that domain. PaCE (Caporuscio et al. [2012]) was a system
composed of independent and autonomous nodes (which they called ‘Actors’), distributed
over a network, and focussed significantly on dealing with asynchronicity in such a system.
Swift (Wozniak et al. [2013]) addressed implementation issues, aimed primarily at scala-
bility. Not all approaches enabled iteration. PaCE, for example, did; S-Net did not. Most
approaches accepted at least a limited form of non-determinism, although PaCE specifi-
cally excluded it. The most natural ancestors of the ideas discussed in this document are
those put forward in the development of Linda and Laura (Gelernter and Carriero [1992];
Carriero and Gelernter [1989]; Tolksdorf [1998]) —- at least in some of their aims and
ambitions, if not in their specific approaches.

The proposals in this document avoid being too specific about implementation or the
nature of the communication protocol –– believing instead that the need for global accep-
tance dictates that such details should be agreed collaboratively through wide discussion,
in order to gain agreement and adoption. The aim is to conceive a generalised computing
tool that can accommodate as many as possible of the optimisations that may emerge in
future. Carriero and Gelernter commented that for Linda they would use or “at any rate
. . . gratefully appropriate” alternative approaches (Carriero and Gelernter [1989]), and a
similar attitude to future development is advocated here.

The system described here deviates from other approaches in the use of partial evaluation
to avoid explicit loops in the graph and in its conception of the system as forming a
single, interactive, always-available constantly running program, responding in real-time
to changes in both data and the program itself as they occur. The interactive nature of
it has implications for non-determinism and referential transparency. In this system, the
arrival of new input data signifies the correct moment to run, meaning that the result
computed at that time is correct as corresponding to the inputs and outside environment
that prevail at that moment.

Whereas previous efforts have been driven by a range of motivations — for example,
parallelism, performance, expressiveness and programmability — this system is designed
to be as general as possible, and must therefore be able to accommodate widest range of
users’ priorities. These potentially varying priorities are accommodated by giving nodes
(or their owners) the flexibility to vary their behaviour accordingly.

Overall, the focus here is on the need for a single generalised distributed computing system.
This document attempts to take a principled approach to decision-making, through the
principles of software engineering and architecture (discussed in Chapter 3). However,
anyone disagreeing with decisions presented here is urged to engage in discussion about
how to broaden the applicability of such a system, wherever possible, in order to keep it as a
unified generalised system rather than allowing a fragmentation of alternative approaches.

6

1. Introduction

1.4. Document Structure

Chapter 2 (The History of Dataflow) describes the history of dataflow and the devel-
opments that have marked its progress. It highlights the use of partial evaluation, the
question of allowing side-effects, the representation of iteration and the proposed use of
dataflow as a coordination system.

Chapter 3 (Software Engineering) summarises the history of software engineering and the
principles of software architecture. The goal is to establish a link between the principles
and the design of a programming paradigm, ideally embedding the principles in the design
and making it easy, unthinking or automatic for programmers to apply them.

Chapter 4 (Definition) attempts to use the best features of dataflow systems that have
been proposed previously to design a skeletal system, based as far as possible on the
engineering principles, and extending them with new features, in particular using partial
evaluation and data dimensionality to represent iteration in acyclic dataflow.

Chapter 5 (Implementation) describes how the ideas in Chapter 4 have been put into
practice. In most cases, a subset has been implemented, sufficient to prove that algorithms
can be run but without including all features that would be necessary for a production or
fully functional system run on untrusted code, and without any form of optimisation.

Chapter 6 (Evaluation and Results) gives an assessment of the definition and implemen-
tation for its programmability and ability to run a series of test algorithms successfully.

Chapter 7 (Further Work) describes three areas of further work: designing a full specifica-
tion of the system; investigating additional features to enhance or extend the functionality;
and further developing and testing the implementation.

Chapter 8 (Conclusion) concludes with a summary of the achievements and areas left
open for further work, and finally an appeal for cooperation in developing a single system
managed by a non-profit body in the interests of its users, rather than a multitude of
competing private systems run for commercial gain.

The terms and abbreviations used in this document can be found in Appendix A, and a
summary of the visual notation used to depict graphs can be found in Appendix B.

7

Chapter 2

The History of Dataflow

This chapter summarises the history of dataflow programming. It describes its origin and
some of the most important developments and ideas that have been proposed. Ideas of
particular importance to this project include the use of partial evaluation, the question of
whether side-effects should be allowed, the representation of iteration and the proposed
separation between the coordination and computation components of a programming en-
vironment.

2.1. Origin and Motivation

Dataflow was first conceived as a programming paradigm during the 1960s and late 1950s.
Whiting and Pascoe [1994], in their history of dataflow languages, attributed its earliest
invention to Karp and Miller [1966], and the coining of the term (independently) to Adams
[1969], with Rodriquez [1969] (also independently) following. All three were preceded in
publication date by Sutherland [1966]. Whiting and Pascoe also referred to work as early
as 1958 (Young Jr and Kent [1958]) as having “overtones of the data-flow model”.

There is an earlier precedent, in that all were rooted in the concept of a flowchart, at-
tributed to Gilbreth and Gilbreth [1921], whose paper pre-dated the idea of dataflow in
computation by decades.

In their paper, the Gilbreths described their notion of a flowchart (termed by them a
‘process chart’) as a clear way to view and understand the details of a business process, to
help engineers and executives to improve processes and seek efficiencies. They envisaged
process charts containing a multitude of symbols that could be adapted according to the
process at hand, with any symbol made into its own more detailed sub-chart if required.

Their process charts were arranged as directed graphs, with flow from top to bottom. Ini-
tial nodes represented physical inputs or instructions, with subsequent nodes representing
processes resulting, finally, in outputs — a physical item or an event. The examples they
provided were acyclic: they did not explicitly preclude cyclicity, but because their process
charts were aimed at producing an output, any loop would have to have an end point if
the process chart’s output were to be delivered.

8

2. The History of Dataflow

They justified their creation in terms of its clarity and understandability. As they put it,
their process charts enabled a process to be “visualised all at once”, presenting information
“in such simple form that such information can become available to and usable by the
greatest possible number of people in an organisation”. In particular, it satisfied, they
claimed, the twin goals of being understandable by non-experts and useful for experts,
saying it “presents both simple and complicated problems easily and successfully” and “the
process chart has met the tests of a satisfactory teaching device from the psychological
standpoint, as well as of a satisfactory working device from an engineering standpoint”.

Of particular resonance in computing was the claim that a process chart “makes possible
the more efficient utilisation of similarities in different kinds of work”, which has echoes
in the need for writing reusable code. As the Gilbreths noted in the final line of their
report: “Process charts pay”.

Sutherland [1966], in his PhD thesis, described dataflow as a graphical interactive system
to be used for “describing procedures in a two-dimensional programming language”, with
procedures to be applied to “data obtained from any source”. Although the programs
Sutherland used to illustrate the concept used low level operations (mostly arithmetic), his
vision was more far-sighted — Sutherland described what he called a ‘macro’ functionality,
in which a new symbol could be defined to represent a combination of operators, allowing
complex programs to retain their simplicity of representation.

Sutherland described dataflow as being beneficial in providing a “natural way of expressing
parallel operations” pointing out that, whereas written languages are linear (one dimen-
sional), a graphical language is two dimensional, and that we (humans), via our sense of
vision, have “considerable parallel input capability”. Karp and Miller [1966], who published
their work later the same year, described a directed graph as a “natural way to depict the
sequencing of parallel computation”.

Sutherland mentioned in passing a key difference between dataflow and sequential pro-
gramming: that in dataflow the system could “[repeatedly scan] the total procedure to
determine which parts are ready to be activated next” (Sutherland [1966]). This difference
was expressed in a later survey paper (Yazdanpanah et al. [2014]) by saying “dataflow
architectures use the availability of data to fetch instructions rather than the availability
of instructions to fetch data”. Agerwala and Arvind [1982] expressed the difference dif-
ferently, by contrasting the absence in dataflow of the shared global memory or single
program counter that exist in a von Neumann architecture.

Much of the early work was aimed particularly at parallelism, and often using fine-grained
dataflow. Dennis and Misunas [1975] built on the model of Karp and Miller [1966] by
proposing a processor architecture aimed at improving the efficiency of concurrent op-
erations, attempting to overcome some of the problems encountered when adapting von
Neumann machines for parallel computation. Ackerman and Dennis [1979] built a lan-
guage, named VAL, with similar aims, commenting that most previous languages “reflect
the storage structure of the von Neumann concept”. Arvind and Gostelow [1982], likewise,
devised an approach aimed at overcoming previous bottlenecks to parallelism, in their

9

2. The History of Dataflow

case through an interpreter for functional languages. Dennis [1980] made a general case
for dataflow multiprocessors as a solution to those processor bottlenecks. However, the
suspicion was starting to be raised that other advantages, such as modularity, extensibility
and programmability (‘easier program verification’) could eventually come to eclipse the
advantages of parallelisability (Agerwala and Arvind [1982]).

In later work, some effort was dedicated to development of textual dataflow languages.
Davis and Keller [1982] compared the two approaches, noting that textual dataflow has
often been motivated by concurrent execution, whereas in visual dataflow ‘human engi-
neering’ became the primary motivating factor, reiterating points made by Agerwala and
Arvind [1982], and by Sutherland [1966] and others before them.

Davis and Keller also decoupled the basic concept of dataflow (actions sequenced by the
“data availability firing rule”) from the visual representation of this behaviour as a directed
graph. They specified an arc as a ‘conceptual medium’, differentiating their treatment
of it from that of others, including Karp and Miller [1966], who viewed arcs more as
physical storage queues that might have limited capacity. However, they did still treat
arcs very much as pipes, introducing conditional constructs (‘selectors’ and ‘distributors’)
that would, respectively, choose which of two incoming arcs to ‘absorb’ a token from, or
choosing which of two outgoing arcs to ‘emit’ a token to.

Cox et al. [1989] later published a critique of textual programming languages in general,
making an argument for greater use of graphics in programming and introducing their own
creation, Prograph. They reiterated another point made previously by Sutherland, that
text is inherently one-dimensional whereas visualisations are two-dimensional. Text-based
programming forces the programmer, they argued, “to consider how to linearly organise
every program, whether or not the algorithm requires it”. They went further, by pointing
out that textual programming has inherited a complex syntax from its natural language
counterparts, but with the detrimental flaw of being inflexible and unforgiving, “forcing
the programmer to deal with small syntactic details, rather than the important concepts
of algorithms”. They cited Aczél and Daróczy [1975] in pointing out the low information
density of textual languages.

Cox et al. also had concerns about the use of variables, on the basis that they embed the
additional concept of scope and, they argued, introduce unnecessary confusion and poten-
tial for error; problems which are exacerbated when used to express object orientation.
Pictorial representations, they argued, can overcome these problems. Without going into
as much detail, Hudak [1989], in his survey of functional programming languages, listed a
range of motivations including both programmability and parallelisability.

The theme of usability, particularly by non-expert programmers, comes up repeatedly.
Suárez [2013], in an undergraduate thesis, complained of a mismatch between the pro-
gramming skill needed to program high performance computers and the programming skill
that could reasonably be expected of ‘domain experts’ — people who have devoted their
time to learning their fields rather than the technical skill of representing their knowledge
in code.

10

2. The History of Dataflow

McPhillips et al. [2009] conveyed a similar belief in the title of their paper, “Scientific
workflow design for mere mortals”. Their paper described a category of software the
authors called ‘scientific workflow systems’, typically based on dataflow. They used an
open source system called Kepler1 for their examples. They identified a list of what they
saw as desirable characteristics, and defined a framework for design of programs, follow-
ing the principles described by Morrison [2010] in the earlier (1994) version of his book.
The desirable characteristics were: clarity, well-formedness, predictability, recordability,
reportability, reusability, scientific data modelling, and automatic optimisation. Similar
principles appear amongst the established principles of software engineering good practice,
described in Section 3.4.

2.2. Partial Evaluation

Sutherland [1966] pointed out one of the capabilities that gives dataflow its most important
tool. In discussing what might happen if an input is not provided, he mooted the idea of
dummy inputs, pointing out that any operator could then be used as a flow output, so
that the operator could be initiated later, once its inputs became available.

Rumbaugh [1977] attempted to develop the idea into a more formal framework. He defined
the system as being composed of purely functional (side-effect free) nodes, and introduced
switches and joins, as flow control structures. This involved modelling the connections
between nodes as pipes, along which ‘tokens’ (items of data) would flow. His definition
reiterated Sutherland’s ‘macros’ in different words, by stating that a dataflow graph could
be “an acyclic graph of dataflow programs” (in other words, that a node could itself be a
dataflow program).

He also reiterated the principle that a portion of a dataflow graph could be conveyed as
an item of data. As Rumbaugh put it, “any data flow program (without tokens) can be
considered to be a procedure, which itself can be held as a token value”. As he saw it, a
portion of a dataflow graph with missing tokens could be conveyed through the graph and
later invoked by using an ‘Apply’ operator, together with values for the missing tokens. In
Functional Programming, a similar idea is conveyed by the term ‘higher order’. Darlington
and Reeve [1981] defined higher order functional languages as those with “the ability to
pass functions as arguments and return them as values”. Such a scheme must necessarily
be paired with a mechanism by which to evaluate those functions with a set of arguments
at a later time (usually referred to as ‘applying’ them). In that paper, the authors claimed
their own graph reduction scheme, named ALICE, as one that could support higher order
languages.

Whereas Sutherland, and later Rumbaugh, only mentioned in passing this idea of con-
veying functions together with associated data through the graph, Keller [1980] went into
detail on the subject. He called it a ‘serial composition’, and wrapped it inside an ‘en-
velope’, together with the tokens that had already been provided. He related this to the
concept of closures, in which a function can be packaged with a set of variables, and ‘Cur-

1https://kepler-project.org/

11

https://kepler-project.org/

2. The History of Dataflow

rying’, which describes the representation of a function of many arguments as a chain of
functions of one argument each2.

Keller also, in his paper, designated what he saw as three fundamental data types: atoms
(units of information), tuples (lists of atoms) and graphs (sections of a dataflow graph,
which he also referred to as functions), along with a set of functions for operating on these
data types. The notion of functions as values was reiterated later by Davis and Keller
[1982].

In Functional Programming, graph reductions and their sub-type Beta-reductions (the
substitution of variables in a Lambda expression with their values3) provide a form of
partial evaluation. Generally, graph reduction (for example, of the kind described at
length by Peyton Jones [1987]) provides a method of evaluating functional statements by
evaluating the end branches of its function tree and replacing the functions with values,
reducing the size of the tree with each step until the function is evaluated in full. After
each stage of this process, the result is a reduced version of the original tree. Each step
could reasonably be described as a partial evaluation of the tree.

Graph reduction techniques have, over a long period of time, suffered from accusations of
inefficiency (for example, by Darlington and Reeve [1981], who attributed this partly to
their being computed on hardware designed for a von Neumann architecture). Darlington
and Reeve, in describing their scheme for performing graph reduction (named ‘ALICE’),
claimed inspiration from preceding dataflow projects in their acknowledgements. Compar-
ing it with dataflow, they suggested that their scheme allowed them to “support a wider
range of applicative [functional] languages”. They also argued that it provided easier sup-
port for data structures (although the method they suggested of handling data structures
could be applied equally to dataflow).

Hughes [1982] addressed the efficiency of graph reduction through their concept of ‘super-
combinators’, a way of implementing graph reduction for which the authors claimed greater
efficiency than pre-existing methods. They devised a method of achieving what they called
‘fully-lazy evaluation’, contrasting it with simple ‘lazy evaluation’ by saying that whereas
fully-lazy evaluation ensured that every expression would be evaluated at most once, simple
lazy evaluation would ensure only that “every expression passed as a parameter to a λ-
expression is evaluated at most once”. Their technique, they claimed, overcame a collection
of disadvantages of previous methods, including avoiding the need to make multiple passes
over expressions containing nested Lambda expressions and reducing the overhead involved
in linking steps in the execution.

2.3. Side-Effects

Hudak [1989] described the existence of an underlying state as a key difference between

2The term ‘Currying’ is a reference to Haskell Curry, who developed the idea in his book, Combinatorial
Logic (Curry et al. [1972]). Others (eg. Reynolds [1972]), have suggested that Moses Schönfinkel would
be more rightly credited with the idea.

3Beta-reductions have continued to be widely deployed in Lambda Calculus. Lambda Calculus is other-
wise not covered in this document.

12

2. The History of Dataflow

imperative and declarative languages. Whereas imperative programs “are characterised
as having an implicit state that is modified (i.e. side effected) by constructs”, declarative
languages, he suggested, “are characterised as having no implicit state, and thus the em-
phasis is placed entirely on programming with expressions”. With reference to functional
programming in particular, he went on to suggest that “what is important is the functional
programming style, in which [features such as higher-order functions, lazy evaluation, pat-
tern matching and various kinds of data abstraction] are manifest and in which side ef-
fects are strongly discouraged but not necessarily eliminated”. He acknowledged, however,
a “very large contingency of purists ... who believe that purely functional languages are
not only sufficient for general computing needs but also better because of their ‘purity’”.
Indeed, in early papers on dataflow it was sometimes taken as axiomatic that functional
languages, including dataflow languages, must be side-effect free (Vegdahl [1984]; Agerwala
and Arvind [1982]; Whiting and Pascoe [1994]). Hudak’s characterisation of imperative
and declarative languages, however, while restricting a declarative language by definition
from using state as a means of computation, did not necessarily preclude components of
declarative programs (particularly dataflow programs) from causing side-effects external
to the program, or from maintaining their own internal state, provided those side-effects
and state were not used as means of conveying data between components.

Part of the problem with a restriction on side-effects is its inhibiting of required forms of
non-determinism from the system. Many of those who have worked on dataflow languages
have recognised the need for some form of non-determinism (for example, Rumbaugh
[1977]; Davis and Keller [1982]; Johnston et al. [2004]), despite in many cases developing
systems that precluded it. Dennis [1974] advocated the inclusion of non-determinism in
dataflow through an explicit non-deterministic construct, such that its absence could guar-
antee determinism where needed. Building partly on that work, Arvind et al. [1977] argued
that explicit distinction between determinate and non-determinate parts of a programme
would in fact give dataflow a key advantage over conventional languages, preventing non-
determinacy from being able to “sneak in through the back door”. They argued, in fact,
that the explicit scheduling used in dataflow allows for better handling of non-determinism
in general.

The choice of whether to allow side-effects divides languages that are purely functional
(which do not allow side-effects) from those that take a more pragmatic approach, recog-
nising the occasional need for side-effects and allowing them, but to some extent sacrificing
their functional purity and referential transparency in the process. Hudak [1989] gave ML
and Scheme as two examples of such languages.

Barth et al. [1991] divided the functional language approaches (that had been devised up
to that point) into two categories: those they described as “purely functional (strict or
non-strict) with implicit parallelism or annotations for parallelism”; and those they de-
scribed as “strict functional + sequential evaluation + imperative extensions + threads and
semaphores for parallelism”. ML and Scheme would, they suggested, be in the second cat-
egory. To those existing categories they added their own approach, called ‘M-Structures’,
and put it in a third category, described as “non-strict functional + implicitly parallel
evaluation + M-structures + occasional sequentialisation”.

13

2. The History of Dataflow

In Imperative Programming, work was directed towards solving the problems of using
shared memory in a parallel or distributed environment. In 1993, Herlihy and Moss [1993]
published their concept of Transactional Memory as a solution to the problems caused by
locking techniques in shared data structures. The concept behind Transactional Memory
was for certain blocks of code to be considered atomic; such that the entire block and
its resulting changes to memory could be committed to memory as a unit if ‘valid’ (that
is, if no other changes had taken place during execution), or aborted and the execution
repeated if not. Although this solution mitigated some of the problems of locks, such
as scalability and the possibility of deadlock, Harris et al. [2005] identified the problem
that its abstractions “cannot be composed together to form larger abstractions”. They
proposed a solution, referred to as ‘Composable Memory Transactions’, which involved
explicitly distinguishing memory operations (which can be safely re-executed if needed),
from input/output operations (which cannot). They supplemented this with a program-
ming construct (named ‘retry’) for triggering re-execution of a block of code only when the
variables it depends upon have changed, and another (named ‘orElse’) for choosing one
of two abstractions to run. Together these enabled abstractions to be safely composed.
Harris et al. implemented their idea in Concurrent Haskell, a language which they de-
scribed as a “pure, lazy, functional language”, but with a mechanism to allow side-effects
explicitly where needed.

Søndergaard and Sestoft [1990] drew a detailed distinction between four terms which are
often associated, but which they argued need to be separated. The terms were: determi-
nacy, definiteness, unfoldability and referential transparency. One such property should
not necessarily, they argued, imply anything about the others. They cover “different
aspects of languages, and they all provide useful dimensions along which to characterise
programming languages”. They proposed, for example, that a language could be non-
determinate, definite, and referentially transparent.

In dataflow, connections (represented visually as arcs connecting two nodes) are used to
express explicitly where and how pairs of nodes are permitted to communicate. For nodes
to interact, directly or indirectly, in any other way, would undermine that principle. While
this precludes the use of shared state, as with functional languages, functional purity can
potentially be sacrificed to allow state or side-effects explicitly where needed, provided that
principle of explicit communication between nodes is not broken. Johnston et al. [2004]
suggested that most dataflow languages had indeed been determinate up to that point,
naming only Valid, Cajole and DL1 (a set of examples that Whiting and Pascoe [1994]
concurred with) as examples of those with, as they put it, “very limited non-determinate
features”. Nevertheless, they acknowledged the need for non-determinacy (“if dataflow is
to become an acceptable basis for general-usage programming languages, non-determinacy
is essential.”). Accordingly, they named it as an open issue in their survey.

2.4. Data-Driven vs. Demand-Driven Execution

Davis and Keller [1982] drew a distinction between two models of execution: data-driven
and demand-driven. In data-driven execution the graph is executed when new data be-

14

2. The History of Dataflow

comes available at the inputs; in demand-driven execution it is triggered by requests for
data at the outputs. They thought of it in terms of a ‘demand token’ that flows against
the direction of the arcs.

Treleaven et al. [1982] claimed that, at that time, the search was on for “the next generation
of computer to replace von Neumann organisation”. They considered the two variations
of dataflow systems — data-driven and demand-driven — as potential candidates, and
listed examples of each (13 data-driven and 8 demand-driven) that had been implemented
or were under way at that time. They identified advantages and disadvantages of each,
but noted that for a machine to achieve general-purpose goals, it might need to utilise the
advantages of both, together with those of the more traditional control-flow mechanism in a
synthesis of the three. As they put it, the three organisations, “instead of being competitive,
seem in fact to be complementary organisations”. In their minds, there would need to be
a centralised organisation that defined multiple self-contained computing elements that
could be plugged together to increase concurrency.

Darlington and Reeve [1981] discussed the issue using the terms eager evaluation (data-
driven) and lazy evaluation (demand-driven). Acknowledging the advantages and disad-
vantages of each (for example, the potential of eager evaluation to waste resources but
also to utilise under-utilised resources to pre-evaluate expressions), they chose a hybrid
approach for their ‘ALICE’ project, which “allows the user to determine which of the
two modes is appropriate to each expression evaluated”. Peyton Jones [1987] pointed out
that other languages, such as ML and Hope, also took a hybrid approach by using eager
evaluation by default but lazy evaluation when requested by the programmer.

2.5. Iteration

Mosconi and Porta [2000] distinguished between two forms of iteration, which they called
‘horizontally parallel’, and ‘temporally dependent’ or ‘sequential’. Horizontally parallel
iteration (referred to in this document as ‘independent’ iteration) can be dealt with using
what they called a ‘for-all’ construct — a command which executes a set of instructions
once for every value in an array. For ‘temporally dependent’ iteration, which they also
called ‘sequential’ (referred to in this document as ‘dependent’ iteration), they described
two approaches that have been used — one using recursion and the other using switches
and cycles.

The Vipers system (Ghittori et al. [1998]) was an example of a system that implemented
both forms of iteration, using switch nodes for dependent iteration and a ‘for-all’ structure
(referred to by them as ‘for-each’) for independent iteration. Dennis and Misunas [1975],
similarly, achieved iteration using ‘actors’ to perform various forms of flow-control to direct
flow back into the body of the iteration or out of it when finished. Mosconi and Porta
noted the conflict that occurred when iteration was achieved using cycles, violating the
principle that dataflow should be acyclic. There is a tendency, they pointed out, “to
consider cycles with visual program graphs as something to be avoided at all costs”. They
went on to classify dataflow paradigms as ‘pure’ or not.

15

2. The History of Dataflow

Keller [1980] discussed iteration in terms of loops in dataflow. He showed that any loop
can be replaced with an appropriate recursion and that recursion can in turn be elimi-
nated using an ‘Apply’ operator as described by Rumbaugh [1977] to create loops over an
individual node, making the graph at large acyclic. He described as an example the appli-
cation of this principle to calculating a factorial. Departing from Keller’s previous work
(Keller [1980]), Davis and Keller [1982] returned to the idea of cyclic data flow graphs,
although for the sake of visual simplicity they then attempted to eliminate cycles from
the visual display by naming the cyclical sections of the graph as subroutines. Auguston
and Delgado [1997] proposed a solution involving a line signifying a loop over an array,
with text describing the operation to be performed on its members, but using switches to
achieve dependent iteration.

Despite the approaches above, along with many other similar solutions, iteration has con-
tinued to be cited as an open problem. The issue is that it has generally been achieved
using special purpose nodes (eg. Rasure and Williams [1991]), which are limited in func-
tionality, loops over the graph with switch nodes (eg. Ghittori et al. [1998]; Mosconi and
Porta [2000]; Arvind and Gostelow [1982]), which lose visual simplicity, or boxes that
enclose a section of the graph (eg. McLain and Kimura [1986]; National Instruments Cor-
poration [1998]), which find a compromise but suffer both drawbacks to a lesser degree.
Johnston et al. [2004] listed many of the approaches that had been taken up until that
time, but suggested that they do not fit neatly into the dataflow paradigm, and further-
more that the efficient execution of such loops continues to cause a problem. It is a related
but separate issue to decide how such structures should be expressed visually, and they
listed examples too, of approaches that had been taken to this problem.

2.6. Pessimism ... and the Recovery

Vegdahl [1984] noted some of the inefficiencies in functional programming; in particular,
the overhead involved in passing parameters and the lack of destructive updating (“to
return a modified version of a structure, it is necessary (logically) to return a new copy
of the structure with the modification”). In mitigation, he pointed out that these may
reflect the implementations rather than being inherent to the execution model, and high-
lighted a number of techniques that had been proposed by others for improving efficiency.
Amongst these was the idea of transforming a program to an alternative form at com-
pilation time, combining the programmability of dataflow with the speed of sequential
(imperative) programming.

Nikhil et al. [1989] proposed a partial solution to this problem using a concept they called
‘I-Structures’. I-Structures were arrays of arrays in which each new write created a new
array position, meaning that new data was stored only when it changed, rather than being
copied routinely during transitions between nodes or at the start of every iteration in a
loop. This reduced the overhead, but only partially and at the cost of increased memory
and a loss of programmability.

Peyton Jones [1987] made a case for lazy evaluation as a way to avoid unnecessary com-
putation, but also pointed out the down-side that it comes at the cost of execution speed.

16

2. The History of Dataflow

The choice depends on the balance of priorities between execution speed and resource cost.
As a result, some languages, he pointed out, use eager evaluation by default but support
lazy evaluation when explicitly requested by the programmer.

By the early 1990s, there was a growing feeling that dataflow appeared not to be fulfilling
its potential. Lee and Hurson [1993] published a paper exploring why this might have
been. In their abstract, they suggested that “a direct implementation of computers based
on the dataflow model has been found to be a monumental challenge”. The problems they
discussed revolved predominantly around the resource overhead, and in particular the
communication overhead in parallel computations and the copying and resource allocation
needed when dealing with data structures, questioning whether dataflow may have been
too successful at finding concurrency. One school of thought at the time was that the
solution lay in compiling technology rather than hardware support, making dataflow the
programming solution to overlay other underlying technology. However, they believed
that the search for solutions posed an “arduous challenge” and required “extensive study”.

In the conclusion to their survey, Whiting and Pascoe [1994] quoted one of the early
proponents of dataflow, Alan Davis of the University of Utah, as reflecting the gloomy
assessment of the time by saying that dataflow had been “mostly ... a failure”. However,
they struck a more optimistic note in pointing out a number of its successes and its
influence on developments in other fields.

Only a year after their previous pessimistic paper, Lee and Hurson published an article
suggesting there was renewed interested in dataflow, despite its well-documented short-
comings (Lee and Hurson [1994]). A key factor in this resurgence, they suggested, was
a convergence between dataflow and control-flow models — the use of dataflow for coor-
dination between control-flow nodes. Their paper described a categorisation of dataflow
as centralised or distributed. It referred to machine architecture rather than a wider sys-
tem architecture, but pointed towards the more dramatic idea of distributing a dataflow
system over more than just components of a single machine.

Hils [1992], in his survey of dataflow programming, expressed optimism for dataflow, but
also listed a number of weaknesses, including that dataflow languages tend to take up a
lot of screen-space relative to the amount of information conveyed, requiring procedural
abstraction to hide unimportant details. He also expressed his view that any language
must have a large library of predefined functions in order to be powerful. Bernini and
Mosconi [1994] agreed, arguing it would be crucial for widespread adoption.

The onset of optimism seemed to have gained ground again a little later, when Baroth and
Hartsough [1995] published their report on using visual programming in the real world.
They touted “productivity improvements of four to ten times compared to conventional
text-based programming”, attributing the gains to improved communication between cus-
tomer, developer and computer. Their tests used two products: LabView — one of the
few dataflow products of the time that is still commercially available today; and HP’s Vee.
They described their customers as non-programmers, but who were able to understand the
visual dataflow diagrams well enough to assist the developers in programming together,

17

2. The History of Dataflow

and described new recruits being able to learn the paradigm quickly, to the point of being
able to deliver working code to their customers. As well as supporting communication,
they found that dataflow brought benefits in ease, reduced number of mistakes, and flex-
ibility, although they expressed some doubt about long term scalability (having not yet
experimented with larger or longer-lived applications). Morrison [2010], whose first edition
was published at a similar time, in 1994, also justified work on his concept of ‘Flow-Based
Programming’ in terms of programming productivity, and it was one of the motivations
behind the development of DFScala nearly two decades later (Goodman et al. [2013]).

Whitley [1997] attempted to sum up the empirical evidence on the benefits of dataflow. He
complained about the prevalence of unsupported speculation regarding ease of use. While
the invention of flowcharts was motivated by improving understandability, its benefits had
not been widely tested with code. Whitley cited evidence in research results that (with
some caveats) found “a significant advantage for all dependent variables and for all levels
of algorithm complexity”, with benefits that “increased as the algorithms became more
complex”, by a ratio of up to 2.5 in the more complex cases and also with fewer errors.
Looking for possible disadvantages, he cited findings that the effect depended on the task,
and that if the visual interface were poorly designed then the beneficial effects would not
appear, but found that, at worst, studies were suggesting a lack of productivity gain rather
than any productivity cost. Providing support to the view of Baroth and Hartsough [1995],
he concluded that dataflow has benefits in communicating with non-programmers, while
also emphasising the productivity gains for expert programmers, even for simple tasks but
with increasing benefits with increased complexity. He made a plea for greater use of the
scientific method in designing interfaces, although acknowledged that this is not always
required for success, citing spreadsheets as an example of huge success without empirical
support.

Seeking to combine the efficient memory use (particularly with respect to data struc-
tures) of the von-Neumann model, with the parallelism and power-efficiency of dataflow
for scheduling between components, Yazdanpanah et al. [2014] argued in favour of us-
ing a hybrid of the two architectures. The authors expressed a preference for ultimately
combining or unifying the two. In making their case, they created a taxonomy of schedul-
ing models, based on how the two approaches were combined. A reproduction of their
taxonomy is shown in Figure 2.1.

Furthering this goal, Gajinov et al. [2014] published a benchmarking suite (named ‘DaSH’)
for hybrid models, applying a collection of sample problems referred to as the Berkeley
Dwarfs (devised originally by Asanovic et al. [2009]). They found shortcomings and ex-
pressed dissatisfaction with the API support of the three models tested but, like many
before them, expressed hope for the future of dataflow.

Kyriacou et al. [2006] provided one example of Yazdanpanah et al.’s ‘dataflow / control
flow’ model with an approach they termed ‘Data-Driven Multithreading’ (DDM). They
pointed out that the sequencing overhead was relatively lower when using coarse-grained
nodes (as they put it — “the effect of the data-driven sequencing overhead is amortised”),
albeit at the cost of some parallelism. In tests they found that efficiency improved as gran-

18

2. The History of Dataflow

PC

PC+N

(a) (b) (c) (d)

PC

PC+1
PC3 ->

PC3+1 ->

.

.

PC2 ->

PC2+1 ->

.

.

PC1 ->

PC1+1 ->

.

.

PC4 ->

PC4+1 ->

.

.

PC5 ->

PC5+1 ->

.

.

PC ->

PC+1 ->

.

PC+N-1

PC ->

PC+1 ->

.

PC+N-1

PC ->

PC+1 ->

.

PC+N-1

...

...

Figure 2.1. Reproduction of Yazdanpanah et al. [2014] Fig 2 — “Inter- and intrablock scheduling
of organizations of hybrid dataflow/ von-Neumann architectures. (a) Enhanced control flow, (b)
control flow/ dataflow, (c) dataflow/control flow, and (d) enhanced dataflow. Blocks are squares
and big circles.”

ularity increased, until the point where the computational operations took long enough to
allow scheduling operations to complete. While their exact results and peak granularities
are specific to the architectures and algorithms used, the broader principle that granularity
is beneficial up to a point, is more widely applicable.

The Codelet Program Execution Model developed by Zuckerman et al. [2011] also used
Yazdanpanah et al.’s ‘dataflow / control flow’ model. As they put it, a Codelet was “a
collection of machine instructions that can be scheduled ‘atomically’ as a unit of compu-
tation”. They were to be, they suggested, more coarse than traditional dataflow but more
fine-grained than a traditional thread. Codelets were also grouped together into contain-
ers, referred to as ‘Threaded Procedures’, in the process combining two of Yazdanpanah
et al’s four models — the ‘dataflow / control flow’ model with the ‘enhanced dataflow’
model.

The Teraflux project (Solinas et al. [2013]; Giorgi et al. [2014]), incorporating the coarse-
grained DFScala language (Goodman et al. [2013]), made simultaneous use of many of
the earlier innovations, including both DDM and the Codelet Program Execution Model.
This encompassing approach resulted in Teraflux delivering both good performance and
good scaling (within the ranges tested) as the number of cores was increased.

2.7. Coordination Languages

Carriero and Gelernter [1989] discussed the concept of a coordination language, aiming
for generality by separating the coordination model from the computation model. They
described the coordination component as “orthogonal to the base language in which it’s
embedded”, and implemented a combined computation and coordination language in a
system they called Linda.

The coordination aspect of it was similar to one proposed slightly later (independently) by
Rasure and Williams [1991] in their visual language Cantata. At a similar time, Schwanke
et al. [1989] also discussed the idea of a coordination system as a way of maintaining large
software systems, visualised as a directed acyclic graph. In their vision, the graph would

19

2. The History of Dataflow

be created automatically from the program and the program could in turn be recreated
from the graph, making it possible to use the graph to edit the underlying program.

Carriero and Gelernter made the suggestion that both the computation and the coordi-
nation components are necessary for any language to be considered complete. In their
model, the coordination language controls an ensemble of asynchronous activities, each of
which could be a “program, process, thread or any agent capable in principle of simulating
a Turing Machine”, suggesting that this could be a person or another whole ensemble.
They pointed out that ensembles are already ubiquitous, existing in some form whenever
a human and computer communicate, or when computers communicate with each other.
Their most contentious claims, they suggested, were that the coordination and computa-
tion components were orthogonal, and that it would be possible and desirable to create a
coordination system that is general, being able to coordinate other ensembles of any kind.

They attributed Kahn and Miller [1988], approvingly, as having made the case for ‘concep-
tual economy’ as a way to retain flexibility. In their words: “simple, economical languages
tend to be supple and powerful, complex ones tend to be rigidly inflexible — a stubborn
fact that emerges screaming from programming language history, only to be repeatedly ig-
nored”. This was part of the reason for wanting generality in their coordination system, to
avoid the apparent “intellectually crippling” consensus that “every twist and turn in the
hardware development path ... calls for a new language or programming model”.

They argued later (Gelernter and Carriero [1992]) that a coordination language would
need to be able to coordinate an “interconnected computer jungle” of components, featur-
ing “diversity with respect to language, hardware platform, physical location, even basic
computing model”. While others had argued for coordination and computation to be inte-
grated and provided together within the same language, they made a case for the opposite,
separating the coordination language to accommodate the diversity of components in an
asynchronous ensemble of computers.

Johnston et al. [2004] pointed out in their survey paper that, by 2004, the notion of
dataflow as a coordination system had gained increasing traction, citing Vipers (Bernini
and Mosconi [1994]) as one such system. They also made it one of their five conclusions
that, with the advent of heterogeneous distributed systems, dataflow as a coordination
system was an important area of research.

2.8. Dataflow Classification

Whiting and Pascoe [1994] provided a useful classification of dataflow languages along
seven axes according to their features. The axes were:

• The dataflow execution model

The authors distinguished between a static execution model, a dynamic execution
model, and a hybrid of the two.

A static model is one in which a node is not allowed to compute its next value until

20

2. The History of Dataflow

its previous value has been consumed by its destination nodes. This was described as
making formal proofs easier, and was therefore more attractive to some researchers.
A dynamic system is one that allows a node to execute as soon as its input data is
available, but because multiple outputs can be sent along the same connection, it
requires what the authors called ‘colour’ — a tag uniquely identifying each token.

• Representation of iteration

Languages seemed to have chosen tail-recursion, special purpose iteration nodes, or
switch nodes. They also mentioned what they called ‘data-independent’ iteration,
in which every iteration is independent of every other iteration, and which can be
performed using a ‘for-all’ loop.

• Recursion

Most implementations, they suggested, had supported recursion, although some,
such as SISAL4, did not.

• Data structures

The value-passing model can appear “unpleasingly inefficient”, the authors sug-
gested. The approaches to this problem included the ‘I-Structures’ method used by
the Id language, as described above.

• Non-determinacy

Determinacy is the property of a computation that, for a certain set of inputs, it will
always proceed through the same set of steps, producing the same internal states
as it does so and therefore producing the same output. An alternative (weaker)
definition is the property that a computation will always produce the same output
for a given set of inputs, regardless of the underlying steps. Johnston et al. [2004]
used booking systems and database access systems as examples of applications in
which non-determinacy would be needed, in both cases because the outcome depends
on some internal or external state that is independent of the inputs.

• I/O support

This had not been well addressed in dataflow, with the authors suggesting this may
have been due to its mundanity. Their description suggested there may also have
been reticence about introducing non-determinacy as a result.

• ‘Lazy’, ‘Lenient’ and ‘Eager’ evaluation

While dataflow is fundamentally based on eager evaluation, this has the drawback
of leading to infinite recursion. Some languages, they suggested, allowed program-
mers to explicitly choose portions of a program to use lazy evaluation. Others had
adopted a middle-ground between the two extremes, which they referred to as ‘le-
nient evaluation’.

4‘Streams and Iteration in a Single Assignment Language, McGraw et al. [1983]

21

2. The History of Dataflow

2.9. Implementations

A great many implementations of the dataflow concept have been built over the years.
This section highlights a small number of them.

An early attempt to design hardware for dataflow was made by Dennis and Misunas [1975],
using the concept of ‘actors’ — nodes which were capable of merging, splitting or directing
flow around the graph. Building on their ideas, Davis [1978] proposed a system they named
‘Data Driven Machine 1’ (DDM1), later classified by Vegdahl [1984] as a ‘Tree-Structured
Machine’. It was extensible to an arbitrary degree but, as described by its designers, its
major disadvantage (and the major disadvantage of any tree-structured machine) was that
the “hard-wired, fixed-tree structure prohibits reallocation of unused PSEs [processor-store
elements] to other branches”, meaning it needed significant redundancy in the size of the
tree in order to capitalise fully on the concurrency of the algorithms in question. The
designers also cited the need for redundant data storage as a major drawback.

Another early implementation, focussing on the software rather than hardware, was the
programming language VAL (Ackerman and Dennis [1979]), which evolved eventually into
SISAL (McGraw et al. [1983]). By the creators’ account, Val was designed primarily
for concurrency, in an attempt to move away from languages that closely reflect the von
Newmann model of the underlying hardware. The introduction to its manual expressed a
desire for a general decoupling of the design of the language from the computer hardware
on which it could be expected to run. A similar motivation was expressed later by Nikhil
et al. [1986] as an explanation for the development of their dataflow language Id Nouveau.

McGraw [1982] published a description and assessment of Val, which expressed approval for
its general aims and aspects of its implementation, in particular its ‘for-all’ feature, which
allowed a very high level of concurrency (“orders of magnitude more concurrency than
a machine can exploit”) in independent iteration. He noted, however, that optimisation
techniques required further study. It was McGraw who went on to develop SISAL.

Arvind and Gostelow [1982] identified a further opportunity for concurrency in the fact
that, in dependent iteration, it may still be possible to execute more than one iteration
concurrently. In their proposed system, named the ‘U-Interpreter’, they suggested achiev-
ing this using a version of dataflow that used switches, allowing an arc to store more than
one data token, and allowing concurrent invocations of the same node. They did not build
an implementation, but suggested that their system could have been implemented on the
Manchester machine, which was cited by them as having been under way since 1980 and
was described in more detail by its creators a few years later, in 1985 (Gurd et al. [1985]).

Davis and Keller [1982] listed a handful of implementations that had been created by
the time their paper was published, including Dynamo (Forrester [1961]), FGL (‘Function
Graph Language’, Keller and Yen [1981]) and GPL (‘Graphical data-driven Programming
Language’, Davis and Lowder [1981]). FGL and GPL, he noted, allowed the programmer to
“draw the program and execute its graphical form”. He lamented the burdensome overhead
of graphical displays, but assumed that with improvements in hardware such obstacles

22

2. The History of Dataflow

would quickly dissolve. He also pointed out that it was the display of text within nodes
that required the greatest resolution, signposting the need, even with very high resolution
displays, for a user interface with zoom and pan functionality and allowing pertinent data
to be displayed and irrelevant data hidden to avoid unnecessary screen clutter.

By 1984 there had been a wider proliferation of dataflow implementations. Vegdahl [1984],
in his survey paper of proposed architectures for functional language execution, listed 23
functional languages under the five different categories, including six data-driven dataflow
implementations and a further four demand-driven machines. He also pointed that all still
suffered from problems of efficiency.

‘The Manchester Project’ (Gurd et al. [1985]) was one of those. Its creators claimed “im-
pressive speedup for programs with sufficient parallelism”. Their system was data-driven
and allowed cyclical graphs, using switches (‘branch instructions’) to exit the loop when
appropriate conditions were met, using constructs similar to the ‘distributors’ described
by Davis and Keller [1982]. They had a limited number of ‘instruction processors’, which
were separate from the nodes themselves, meaning that nodes were added to a queue and
would be executed when a processor next became available. They evaluated their results
for the speedup obtained when adding processors. The results for their test algorithms
were slower than a sequential system, but they asserted their belief that system perfor-
mance could eventually exceed that of conventional language systems “for a variety of
applications”.

Expressing a desire to be consistent with interfaces that programmers will be familiar with,
Cox et al. [1989] created a dataflow implementation, Prograph, that was influenced by Mi-
crosoft’s Windows operating system as it was in 1989. Although the authors tried not to be
influenced by textual programming languages, the operations made available were similar
to those in textual languages, with their object-oriented class definitions closely reflecting
object-oriented programming in textual languages. While arguing that visual languages
can be more easily understood, they introduced a range of symbols, resulting in graphs
that could not be intuitively understood and required a key to interpret. Like the devel-
opment of flow-charts that led eventually to the introduction of a 26-page international
standard with tables of symbols (International Organization for Standardization (ISO)
[1985]), the creators of Prograph appeared to have lost some of the motivating simplicity
of the concept.

The Cantata visual programming environment (Rasure and Williams [1991]) was claimed
by its creators to be a ‘multiparadigm language’, with the aim of being able to choose
whichever of three paradigms (dataflow, text or form) most suited any particular compo-
nent of a problem. Dataflow was the principal paradigm, coordinating connections between
nodes that utilised either forms for data input or textual languages to define functionality.
The code associated with a particular node could be written in a language of the user’s
choice (compiled to run on the machine in question), could be arbitrarily large and could
be imported from external libraries if necessary. They aimed to reduce the relative size
of the overhead of dataflow by using the dataflow component at a high level where the
computation was large in comparison with the overhead (although did not restrict the

23

2. The History of Dataflow

programmer to a predefined level of granularity). They used switches to enable loops and
a ‘visual hierarchy of workspaces’ to reduce visual complexity.

By the time Hils [1992] published his review paper, he was able to refer to 15 different
implementations as examples, divided into six application domains. The domains were:
sound processing, constructing user interfaces, image processing, science (including Lab-
View, which is still in use today), graphics and general purpose. Of these six domains,
at least three — sound engineering, science and graphics — have popular products today
that use dataflow as their programming interface.

Vipers (Bernini and Mosconi [1994]) partially implemented the approach advocated by
Gelernter and Carriero [1992], by separating the coordination from the computation com-
ponents. Although they used one sequential language to define node functions, their
vision was that any language could be used, and the nodes triggered and coordinated
through Vipers without the programmer needing any knowledge of the languages used.
A significant amount of effort appeared to have been devoted to devising suitable visual
representations, although they stressed that the interface should be reconfigurable, even
by users while the system was running.

Forms/3 (Burnett et al. [2001]) was described by its creators as an attempt to explore the
boundaries of functional programming and spreadsheets. Starting with spreadsheets as a
foundation and seeking to solve its problems, the solutions they suggested had similarities
to dataflow graphs. They pointed out the benefit of being able to see the changes on the
screen as values are computed.

DFScala (Goodman et al. [2013]) was a library for building dataflow graphs in the Scala
programming language, created at the University of Manchester. The authors noted a
revival in interest in dataflow programming preceding it. It was part of a large-scale multi-
institution project named Teraflux (Giorgi et al. [2014]), commenced in 2009, investigating
‘teradevices’ (those with 1000 billion transistors and 1000+ cores) and ‘extreme-scale’
systems. Teraflux took an integrated approach, targeting all aspects of system design, from
the programming model at the high level, to hardware design at the low level. DFScala
was the dataflow programming component of this project. It was acyclic, side-effect-
free, achieved iteration using recursion and allowed a dataflow graph to be nested within
another, although it did not fulfil Sousa’s (Sousa [2012]) desire for dynamically expanding
and collapsing sub-graphs. It was coarse-grained, enabling it to avoid the worst overhead
costs, and was further compiled for more efficient execution. Accordingly, it was one of
the first implementations for which the creators claimed objectively good performance, as
opposed to simple speed-up with increasing concurrency (Goodman et al. [2013]).

Bravo et al. [2014] wrote about their implementation of dataflow (named ‘Derflow’) in
Erlang. They described problems achieving determinacy in Erlang and proposed solving
them using a single-assignment data store, in an approach with echoes of the concept of
the ‘I-Structures’ (Nikhil et al. [1989]).

A project with a very different objective but dataflow-like features emerged with the
publication of “Ur/Web: A Simple Model for Programming the Web” the following year

24

2. The History of Dataflow

(Chlipala [2015]). The author noted that the World Wide Web had evolved from docu-
ment delivery to an architecture for distributed programming, explaining his aim to build
a language infrastructure that would make that easier. He aimed to abstract away some
details of web programming such as communication with the server, and utilised ideas on
reactive programming by implementing the user interface in dataflow. He listed six ap-
plications that, at the time, were using Ur/Web for commercial applications, and claimed
good performance for some applications on multi-processor machines (but conceded poor
performance in tests involving multiple database writes).

More recent products that use dataflow include Nuke (video compositing)5, Max6 (sound
engineering)6, Intel TBB7, Tensorflow8, and Google’s Cloud Dataflow9 product.

2.10. Open Problems

Johnston et al. [2004] published one of the most comprehensive surveys of the field to
date. They covered the origins of dataflow, its evolution through experimental hardware
architectures and execution models, described approaches to problems, including iteration,
synchronisation and efficiency, and summarised the notable implementations. Amongst
the developments they described was the advent of hybrid dataflow, combining dataflow
coordination of nodes combined with von-Neumann execution within nodes, suggesting
that hybrids could deliver better performance than either model alone.

They listed four open problems, as they saw them at that time: provision of iteration in
textual dataflow languages, iteration in visual dataflow languages, use of data structures
and non-determinacy. With data structures they also listed examples of approaches to
operating on them efficiently, but express dissatisfaction with progress at that time. They
believed that “any practical implementation of dataflow must include an efficient way of
providing data structures”. The determinacy of dataflow, they noted, had often been pro-
moted as an advantage, but they observed that in practical applications non-determinacy
is often mandatory, leaving the successful control of non-determinacy as an open problem.

Sousa [2012] wrote a short survey which identified two additional open problems — ab-
straction of complex graphs, and debugging. He suggested grouping nodes hierarchically
as a solution to the first problem, and visual feedback as a solution to the second. He saw
the lack of good quality visual editors as the primary problem to be solved.

Vegdahl [1984] had, much earlier, made the point that it is the existence of a static tree
in functional languages that makes them, in principle, easier to debug, compared with
the dynamically changing underlying state that characterises sequential languages. He
pointed out that one language in particular, Poplar (Morris et al. [1980]), included a
function specifically for debugging which allowed nodes to be tested for expected values
as they were computed.

5https://www.foundry.com/products/nuke
6https://cycling74.com/products/max/
7https://software.intel.com/en-us/intel-tbb
8https://www.tensorflow.org/
9https://cloud.google.com/dataflow/

25

https://www.foundry.com/products/nuke
https://cycling74.com/products/max/
https://software.intel.com/en-us/intel-tbb
https://www.tensorflow.org/
https://cloud.google.com/dataflow/

2. The History of Dataflow

Bainomugisha et al. [2013] included, in their survey on reactive programming, a discussion
of the problems when dataflow is used to build a user interface, and highlighted two
as unsolved problems: multi-directionality, and what they called ‘glitches’ — when an
incorrect output momentarily appears, as can happen particularly in distributed systems.
They identified glitches as “a potential sweet spot for future research”.

Multi-directionality issues apply in particular to user interfaces. The example the au-
thors provide is a tool to convert between Celsius and Fahrenheit, with two data entry
boxes, in which whenever a user enters one, the other should update. This seems to have
been addressed in the past by allowing multi-directionality with some termination clause,
or by introducing phases into the interface, each phase being one-directional in a differ-
ent direction, or bypassing the problem by attaching the directionality to more abstract
components such as ‘event sources’.

2.11. Summary

This chapter summarises the key concepts in dataflow. Areas of particular interest are the
concept of dataflow as a coordination language (Section 2.7), the search for a representation
of iteration consistent with the dataflow paradigm (Section 2.5) and the partial evaluation
of functions (Section 2.2). The next chapter discusses the principles of software engineering
and architecture that can be applied to the design of a programming paradigm.

26

Chapter 3

Software Engineering

This chapter summarises previous literature on software engineering and describes the
evolution of the development methodologies and the principles of software architecture.
The purpose is for us to be able to use those principles to design a paradigm which, ideally,
embeds them so tightly that it becomes easy, unthinking or automatic for a programmer
to apply them without needing detailed knowledge of programming good practice. The
aim is to establish a link between principles and the programming paradigm design, such
that changes in the consensus on software engineering good practice will lead to changes
in the design. Both the principles and the manner in which they are applied may be open
to debate. The importance of applying them should be less controversial.

3.1. Origins

In 1968, the NATO Science Committee1 sponsored a conference in Garmisch, Germany to
try to solve the prevailing problems in software (Naur and Randell [1969]). The confer-
ence was named the ‘NATO Software Engineering Conference’, coining the term ‘Software
Engineering’ in the process. The organisers described their choice of that term as “deliber-
ately provocative”. A glimpse of how this may have been perceived at the time is provided
by the fact that, at a follow-up conference a year later, a participant wrote a parody that
likened it to trying to ‘engineer’ great works of art (Randell [1996]). Despite such mockery,
the term caught on (Randell [1996]).

According to the report on the 1968 conference (Naur and Randell [1969]), participants
wanted to tackle the reputation of software projects for cost and schedule overruns, a prob-
lem that some participants referred to as the ‘software crisis’ or ‘software gap’ (meaning
the gap between project estimates and delivery). The idea of a software crisis also took
hold and was still in vogue nearly three decades later, with the publication of articles and
papers such as ‘Software’s Chronic Crisis’ (Gibbs [1994]) and ‘The Systems Engineer and
the Software Crisis’ (Johnson [1996]).

1The NATO Science Committee was formed in 1958 to “improve corporate effectiveness in the area of
the Alliance’s scientific and technological resources”, and operated until 1996, when its functions were
taken over by the NATO Research and Technology Organisation. A brief history, provided by NATO,
is available at: https://www.sto.nato.int/Pages/drg-history.aspx

27

https://www.sto.nato.int/Pages/drg-history.aspx

3. Software Engineering

Design

Testing

Operational Plan

Machine
Specifications

Operational
Specifications

Coding Specifications

Coding

Shakedown

System Evaluation

Parameter Testing
(Specifications)

Assembly Testing
(Specifications)

Program
Specifications

Figure 3.1. An example of a stage-wise process model, reproduced from Benington [1956]. Ben-
ington provided this as an example of a program production process, involving specification of the
whole system before embarking on any coding of the system.

The field of Software Engineering came to focus substantially on efforts to solve this prob-
lem through better project management. To this end, a number of project management
methodologies were proposed (also called ‘process models’ or ‘development methodolo-
gies’).

3.2. Development Methodologies

One early account of a project management methodology was given by Benington (Ben-
ington [1956]), illustrated in Figure 3.1. Its aim was to reduce the risk and uncertainty
through upfront design and analysis; it involved a series of (mostly) sequential steps,
starting with planning and specification, followed by coding and ending with testing and
evaluation. Processes similar to this have been called, by some, the ‘stage-wise’ model
(Boehm [1986]).

There has been a certain amount of confusion over the origin of and terminology used
for stage-wise models of this form. The term ‘waterfall’ is often used to refer to a similar
sequential process, with Royce [1970] credited as its inventor. Royce’s paper included
a diagram (reproduced in Figure 3.2), versions of which are usually used to illustrate
the waterfall process without mentioning his own comment about it, that the process it
describes is “risky and invites failure”. Boehm [1976], who has also been credited with the
waterfall model (for example, by Basili and Rombach [1988] and Giddings [1984]), included
a similar diagram, calling it the ‘Software Life Cycle’. Others, such as Holthouse and
Greenberg [1978], referred to diagrams of this form as the ‘Traditional Software Life Cycle’.
Royce actually advocated iteration in the development process, and his recommended
process model involved completing every step twice, as shown in Figure 3.3.

28

3. Software Engineering

System

Requirements

Software

Requirements

Analysis

Program

Design

Coding

Testing

Operations

Figure 3.2. Not Royce’s recommendation. Royce commented about this process that it is “risky
and invites failure”. Reproduced from Royce [1970].

Preliminary
Program
Design

Analysis

Program
Design

Coding

Testing

Operations

Preliminary
Design

Analysis

Program
Design

Coding

Testing

Usage

Figure 3.3. Royce’s recommended process model. He advocated completing “the entire process ...
in miniature, to a time scale that is relatively small with respect to the overall effort”, so that the
“the version finally delivered to the customer ... is actually the second version”. Reproduced from
Royce [1970].

29

3. Software Engineering

Project management methodologies emanating from Computer Science and Software En-
gineering have, in general, been iterative. Iterative methodologies for managing soft-
ware projects have included ‘Stepwise Refinement’ (Wirth [1971]), ‘Iterative Enhancement’
(Basili and Turner [1975]), the ‘Domain Dependent Life Cycle’ (Giddings [1984]), the Spi-
ral model (Boehm [1986]), the Rational Unified Process (Kruchten [1995, 1996])2, Scrum
(Schwaber [1995]), Extreme Programming (‘XP’ — Beck [1999b,a]) and Agile (Beck et al.
[2001]).

Even at the time of the earliest of those, iteration in software development was not a
new innovation. The report on the 1968 NATO Software Engineering Conference stated
that “the need for feedback was stressed many times” and Boehm [2006] referred to the
avoidance of sequential processes as a key lesson of the 1950s. According to a history of
the subject written by Larman and Basili [2003], the idea of iterative development had
origins as early as the 1930s, was used for a significant military hardware project in the
1950s, and the recollection of a team member suggested iterative methods being used in
software in 1957.

The wider adoption of iterative methodologies may, however, have been inhibited by the
desire of government and commercial procurement departments for upfront estimation.
With iteration being inherently open ended, estimation procedures dating back to the
late 1960s were prone to assuming a stage-wise approach (for example, Nelson [1967];
Wolverton [1974]; Lord et al. [1977]). UK government project management guidelines
encouraged a stage-wise development model through the project management methodology
PRINCE2 (1996) and before that PRINCE (1989) and PROMPT (1979) (Newman [1997];
Weaver [2007]). US military documents encouraged or imposed similar principles through
published standards such as MIL-STD-498 (1994) and others dating back to the early
1970s (US Department of Defense [1994, 1985a,b, 1983, 1972]; Cooper [1981]).

Despite many dissenting voices and being contradicted by empirical evidence, variations
of the stage-wise development process continued to be seen by many as the ‘correct’ way
to develop software. Exemplifying this, Madden and Rone [1984] described a variation of
the stage-wise model as ‘ideal’, even while explaining why the stage-wise approach could
not work for the Space Shuttle project and had to be abandoned in favour of an iterative
process.

The problem seems to have been that, in opting for upfront specification, managers had
failed to realise the high likelihood of change taking place within the project and its
environment, and that a great deal of the uncertainty and risk originated at the very root
of the project, in the project goals or specification. As described by Gilb [1981], the project
goals are “usually poorly stated and incomplete”. Boehm [1986] put it in more general
terms, saying of the waterfall model that it “does not adequately address the concerns of
... organising software to accommodate change”. On a similar theme, Cave and Salisbury
[1978] stressed the high likelihood of change on long-running projects and the need for

2At the time, Kruchten called it the Rational Development Process, ‘Rational’ being the name of the
company he worked for. The term ‘Rational Unified Process’ and its acronym RUP were attached to
it later.

30

3. Software Engineering

Project Start

Reversion
Point

Waste

Change
Point

Useful Work

A B

Work Done

Figure 3.4. An Efficiency Chart. The horizontal axis represents work done; the project starts at
the left and moves to the right as it progresses. At point B, the ‘Change Point’, new information
is discovered that requires a change of direction and invalidates some of the work already done.
As a result, the project must revert to some earlier point — point A, the ‘Reversion Point’. This
chart shows the amount of useful work done and the work wasted as a result of having to revert
from point B to point A.

“continual user interaction, refinement, and review of specifications”.

A detailed upfront specification meant that a large amount of work followed on from
potentially flawed goals. This served to delay the point at which errors were discovered
and maximise the work wasted before they were. Equally detrimental to the project was
that a rigidly defined specification was unable to bend when technical difficulties were
encountered. Whereas a small change to the specification can sometimes make a difficult
project achievable, an immovable specification can lead instead to uncontrollably escalating
costs and timescales. It is better to allow the specification to change and the management
to make new prioritisation decisions when needed.

Errors in the specification, which can occur for many reasons, may not be discovered until
a working version of the software is delivered and users are able to test it. In the worst
case, this might mean having to rewind the project almost to the beginning; and even then,
when a new specification is written, it might yet be subject to further change. This process
can result in a great deal of wasted work. Furthermore, the longer a project lasts the more
likely it is that external changes in the business, technological or legal environment of the
project will invalidate previous decisions, requiring yet more changes to the project or its
goals.

I propose the introduction of a type of diagram with which to view this process, shown in
Figure 3.4. This could be called an efficiency chart. Movement along the horizontal access
represents work done. At point ‘B’, labelled the ‘Change Point’, a change has to be made.
This could be because knowledge is uncovered, such as an error in the specification or an
incorrect technological assumption; or because an event has occurred, such as a change to
the business or technological environment. The project is set back and has to revert to
some earlier point, labelled point ‘A’, the ‘Reversion Point’.

The position of reversion point represents the head-start in the new direction provided by
the work already done. The work to the left of the Reversion Point is still useful; the work
to the right of the Reversion Point has been wasted and would not have been done had
the new information been available at the start.

31

3. Software Engineering

Work Done

Phase 1 - project begins Change is needed and the
project must revert to the earlier
point A, triggering phase 2

Waste

Phase 2

Useful Work

Phase 3

A B

Total useful work done

Reversion
Point

Change
Point

Figure 3.5. Multiple phases of work. A series of phases of work in which each change to the project
triggers a new phase. The project begins at the top left with Phase 1. At point B, the first ‘Change
Point’, a change is needed and the project reverts to the earlier point A, its ‘Reversion Point’; at
which point a new phase begins. The total useful work done, shown at the bottom, is the work
that would have been required to make the same progress had the knowledge that triggered the
change points been available at the start. The total waste is the sum of the shaded areas.

If Figure 3.4 represents the first phase, we could plot sequential phases of the project as
shown in Figure 3.5. Here we see a similar process repeated three times, labelled as phases
1, 2 and 3. Each phase features a change point, triggering reversion to a previous position
and the start of a new phase. This chart shows the total useful work done — the work
that would have been required to get to the current position had the information that
triggered all previous change points been available at the start — together with the work
wasted in each phase. There could be many such phases in a project.

Although Figure 3.5 gives the impression that a phase necessarily takes a project forwards,
there is no reason why a change could not also cause a reversion to before the start of the
current phase, eliminating the progress of the current phase and eating into the progress
of a previous one. The project will continue in this manner, some phases bringing about
progress, others not, until the project achieves its goals or is halted for some other reason.

The purpose of a development methodology is to maximise the efficiency with which the
project goals can be achieved, while accommodating the fact that those goals themselves
may change during the project. As suggested by Boehm [1986], the biggest component of
this task has always been the need to manage change in the project. Such changes can
emanate from a variety of places, including errors in the project goals or specification,
the discovery of technical knowledge or changes in the business, financial or technological
environment of the project.

As is clear from Figure 3.5, the efficiency of the response to this change can be improved
by doing two things: moving Change Points to the left (uncovering changes sooner) and
moving Reversion Points to the right (minimising the impact of those changes). Kent Beck,
in his book Extreme Programming Explained (Beck [1999b]), made the assertion that the
cost of making a change to software increases exponentially as the project progresses.
Possible hyperbole aside, his general point, that change become more difficult as a project

32

3. Software Engineering

progresses, highlights the importance of uncovering change sooner, and the cost of failing
to do so.

The assumption on which iterative development methodologies are based is that the best
way to uncover the most important changes is to obtain rapid feedback — to build a
working version and put it to the test as quickly as possible. This uncovers errors in
the goals and specification by giving users a cheap working version, and uncovers bad
technological assumptions by putting them into practice in skeleton form.

It is this thinking, and perhaps the validation of it, that has seen recommended iteration
times shrink over time. Whereas the stage-wise process (Benington [1956]) did not use
iteration at all, Royce [1970] proposed that a project should have at least two iterations;
and methodologies specifically intended to be iterative have included Madden and Rone
[1984], who proposed six month iterations and Schwaber [1995], who proposed iterations
lasting a few weeks. Many development teams have put the principle into practice by
using time-boxed iterations as short as a day or less (Larman and Basili [2003]; Meyer
[2014]).

The choice of iteration time is a balance between the cost of obtaining feedback and the
value of having feedback. As automated deployment tools have improved, the cost of
obtaining feedback has shrunk. For web-based applications, the technique of ‘continuous
integration’ enables the immediate automated roll-out of changes to end users as they are
made, making iterations of a day or less more common (Meyer [2014]).

Although development methodologies are designed to provide general guidance, they do
not substitute entirely for intelligent decision-making about which activities should occur
when. They encourage managers to focus on making the high-value discoveries early
on, and the iterative methodologies in particular direct managers towards unknowns in
the goals and specification. However, while goals and specifications are a focus, what
constitutes high-value knowledge does still vary from one project to another. We can say,
more generally, that to minimise waste projects should be planned in such a way as to
make the most critical discoveries early on, and to maximise the flexibility to change when
those discoveries are made. It is the goal of the development methodology, in general, to
narrow the gap between each change point and corresponding reversion point.

One component of narrowing the gap is about how the project activities are organised;
another is about how the software is structured — its architecture — which is discussed
in the next section.

3.3. Software Architecture

In the late 1980s the field of Software Architecture emerged as the branch of Software En-
gineering concerned with system and software structure. Zachman [1987] used (and sought
to define) the term ‘information systems architecture’, through a direct analogy with the
processes involved in classical architecture and the architect’s role in translating require-
ments of the client and the real-world constraints into plans for the builder. He sought to

33

3. Software Engineering

distinguish the discussion about systems architecture from the orthogonal discussion about
development methodologies (which he called ‘strategic planning’ methodologies) that had
been the focus of much of the previous literature in Software Engineering. Before this
point, software architecture was more often referred to as the software ‘structure’.

Shaw [1989], two years later, had started referring to it as ‘Software Architecture’, and
presented a roadmap for defining and formalising a set of architectural styles that would
put the field on a firmer footing. Perry and Wolf [1992] took a step along that road,
attempting to determine how Software Architecture should be defined. At that time they
still felt the need to justify their use of the term, but expressed their belief that the
1990s would be be, as they put it “the decade of software architecture”. They listed a few
architectural styles as examples but avoided any definitive list, instead leaving open the
possibility of new styles being developed.

In an introduction to the fledgling field of Software Architecture in 1993 (Garlan and Shaw
[1993]), the authors listed what they saw as the common architectural styles at that time,
while acknowledging that real-world systems would usually utilise several. They also made
reference to overriding architectural principles (without listing them), which they claimed
were already in use by software engineers.

By 2006, Shaw and Clements [2006] claimed that the previous fifteen years had been
a golden age of Software Architecture, in which the term had caught on, spawned a
proliferation of ideas and become a mature discipline. It had entered university courses,
moving over that time from post-graduate to undergraduate level. As pointed out by
Kruchten et al. [2006], Software Architecture conferences had been held, journals had
published special issues on the subject, and a good handful of books had been published.

Books on Software Architecture list both the architectural principles that guide the design
of a computer system, and the architectural styles that can be utilised. The principles
of software architecture are fundamental to system quality. A good design should obey
all of the principles. The architectural styles are, rather, a way of classifying systems; a
menu from which system designers can pick. The choice of architectural style is driven
by the requirements and constraints of the project, accommodating the organisation and
distribution of the system’s users and components. A system may utilise one or more ar-
chitectural styles, or devise new ones if required, but should, in any configuration, obey the
principles. The architectural principles and styles are discussed in the following sections.

3.4. Architectural Principles

As with the software development methodology, it is useful to view the architectural prin-
ciples from the perspective of the efficiency chart, shown again in Figure 3.6. Like the
development methodology, the architectural principles are also aimed at narrowing the
gap between the change point and reversion point. Whereas the development methodol-
ogy does so through project management, the architectural principles do it through the
structure of the software. This means making it easier to discover knowledge early on,
with principles such as ‘testability’; and making the software more flexible with principles

34

3. Software Engineering

Project Start

Reversion
Point

Waste

Change
Point

Move the reversion point
by creating flexible software

Move the change point
by uncovering knowledge

Useful Work

Figure 3.6. Narrowing the gap. Seen on an efficiency chart, software engineering has two goals: to
move change points to the left by uncovering knowledge; and to move reversion points to the right
by making the system flexible.

such as — surprisingly — ‘flexibility’. Good management and good architecture are both
necessary to be able to narrow the gap: ‘testability’ is no use if nobody is trying to test
anything and trying to test things will be an arduous process if the software is not testable.

We can classify the principles by their goal. Some are aimed at making it easier to uncover
knowledge (with the intention of moving change points to the left), some are aimed at
increasing flexibility (with the intention of moving reversion points to the right), and
many are lower level structural characteristics aimed at helping to achieve those higher
level goals. Finally, there are characteristics that could be classed as desirable traits,
whose relative importance varies depending on the project environment.

3.4.1. Uncovering Knowledge

These principles are aimed at moving the change point in the efficiency chart to the left
by making it easier to uncover relevant knowledge (and, therefore, to make the required
changes) earlier in the project.

Team Communication
In his book ‘Domain Driven Design’ (Evans [2004]), Evans’ key insights revolved around
the importance of communication in software development, in particular between what he
called ‘domain experts’ (usually clients) and software developers. He described projects
in which key terminology was understood differently by the two groups for prolonged
periods of time. His suggested solution was to develop a simplified ‘domain model’ and
corresponding ‘ubiquitous language’, through extensive discussion between the two groups,
to express as clearly and simply as possible the important parts of the business as well as
the technical functionality involved in implementation. This helps programmers to better
understand the requirements and constraints, and helps clients to spot when the project
deviates from their goals.

Evans went into greater detail on the subject, but the point that underlies it is that
software development is a collaborative pursuit, in which communication is of critical
importance. Meier et al. [2009] also listed team communication as a benefit of the Domain
Driven architectural style, explaining that it helps to communicate knowledge between
team members.

35

3. Software Engineering

Incrementality
Incrementality is the main goal of the development methodologies discussed in Section
3.2. In the context of the architectural principles, incrementality means that the structure
of the software should be able to accommodate making many small changes and exten-
sions to its functionality rather than having assumptions so deeply embedded that small
changes to assumptions result in large changes to the code. This may mean, for example,
avoiding unnecessary details at an early stage and building components to be flexible and
interchangeable. The software should, at all stages, be flexible enough to accommodate
later changes and extensions to its functionality.

The principle of incrementality is sometimes expressed through a related principle as
the need to ‘minimise upfront design’. Vogel et al. [2011] suggested that attempts to
design a system upfront often fail, blaming communication problems between software
designers and domain experts, and a tendency of software designers to focus too much on
technical details without noticing their embedded assumptions about the requirements. If
application requirements are unclear or subject to change, heavy upfront design based on
those shaky foundations is likely to be wasteful.

The suggestion to ‘minimise upfront design’ should not necessarily be taken as an excuse
to be lazy. Rather than being thoughtless in design decisions, its key point is to avoid
committing too deeply to design decisions that are likely to change; decisions should be
made with a view to that potential change. That said, in some cases it may be cheaper
to build twice than to build with every flexibility built-in — it is a decision the designer
should consciously make.

Reference to Use Cases
This principle, included by Vogel et al. [2011] in their list of principles, suggests that use
cases help to reduce the number of specification errors. Vogel et al. also pointed out that
it helps reduce the likelihood of an architecture exceeding the requirements of the system.
It contributes to the principle of team communication, as well as helping domain experts
or project sponsors themselves understand the goals they are setting for the project.

Testability
Testability both uncovers knowledge and improves flexibility. It helps to expose bugs early
in the development process, which brings change-points forwards, and improves flexibility
by making the software less susceptible to breakage when changed. Meier et al. [2009]
recommended, specifically, using automated quality assurance techniques.

Structural characteristics such as modularity, abstraction and explicit communication (dis-
cussed below) contribute to testability by providing clear units of functionality on which
tests can be carried out and clear behaviours that can be tested. Automated tests con-
tribute to the goal of incrementality (discussed above) as well as maintainability and
traceability (discussed below) by catching errors and providing an explicit expression of
how the module being tested is expected to behave.

36

3. Software Engineering

3.4.2. Increasing Flexibility

These principles are aimed at moving the reversion point in the efficiency chart to the
right by making the software more flexible. The principle of testability falls into both
categories by uncovering knowledge and improving flexibility and, since it was included in
the previous section, is not included separately in this list. Other principles that contribute
to flexibility are discussed below.

Flexibility
Flexibility is the most self-evident principle in this category. It is the ultimate goal of all
others and is stressed repeatedly throughout the literature on software architecture (for
example, by Gamma et al. [1995]; Evans [2004]; Vogel et al. [2011]). It is also the most
important way to achieve the principle of incrementality. Some texts include the similar
principle of ‘extensibility’ (for example, Meier et al. [2009]; Gamma et al. [1995]) or the
instruction to ‘design for change’ (Vogel et al. [2011]; Gamma et al. [1995]).

As simple as it is to express the need for flexibility, its implementation is not necessarily
easy; it requires the other principles and of all the structural characteristics discussed in
Section 3.4.3. As pointed out by Vogel et al. [2011], it is difficult to know where to expect
changes to occur. They suggested that, although clues may be provided by ambiguities
in the specification or the designer’s prior experience of similar systems, the best way to
accommodate unexpected change is to apply the principle of low coupling (introduced
below, in Section 3.4.3).

Simplicity
Vogel et al. [2011] called it ‘avoidance of superfluous complexity’, Meier et al. [2009] called
it ‘low complexity’ and ‘management of complexity’. All stressed the need for software
systems to be easily understood. As Vogel et al. pointed out, “complex architectures are
prone to error”.

Simplicity contributes to flexibility and improves communication between members of
the team and between software developers and domain experts. As with the principle
of flexibility, most of the other principles are ultimately aimed at helping to achieve it,
reducing complexity and achieving some level of simplicity — of structure, of behaviour,
and of interactions between components.

The actual simplicity of a system may in fact be less important than its understandability
by those working with it. Some complexities lend themselves to human aptitudes better
than others. Conceptual tools, visualisations and expressive terminology all help to make
a system more understandable. Programming environments have a big part to play. If a
programming environment can present an appropriate subset of the system, it can increase
its understandability significantly, whether that is a simplified overview or focussed detail
of a single module. A range of levels of detail is needed to be able to understand every
aspect of the system, in every case making important details visible while hiding the rest.

Others principles also help: modularity, abstraction, high cohesion, low coupling and
explicit communication, all introduced below in Section 3.4.3, contribute to the under-
standability of a system.

37

3. Software Engineering

Maintainability
Maintainability — being cheap and easy to maintain — is inherently desirable, since all
software systems must eventually move into a phase of being maintained. Cave and Salis-
bury [1978] considered it so important that they included it as one of only two attributes
measured when quantifying software quality (together with availability). Meier et al. [2009]
described maintainability as one of the goals of software architecture, and they described
many of their recommendations as being aimed at improving maintainability.

Maintainability usually requires flexibility, since the need for maintenance only comes
about when something in the external environment changes and the system must be
changed accordingly. As with flexibility and simplicity, most of the structural charac-
teristics described in Section 3.4.3 contribute to it in some way.

Traceability
Vogel et al. [2011] listed traceability as one of the key principles of software architecture.
It refers to the ability to trace the origin of architectural decisions. There are generally two
approaches to achieving traceability: through documentation, and through the use of self-
documenting code. As described in the principle of ‘self-documentation’ in Section 3.4.3,
traceability through self-documentation is generally seen as preferable. This means using
well-designed structures, well-chosen and consistent names and appropriate commenting
within the code, all of which reduce the time-consuming need to maintain and refer to
separate documentation to understand the structures that have been built.

Reusability
Reusability of components makes it easier to make changes because it reduces the number
of places in which changes have to be made, and thereby reduces the likelihood of errors
being made. Meier et al. [2009] referred repeatedly to the importance of reusability, and
listed a principle they called ‘Don’t Repeat Yourself’ (or ‘DRY’) as one of their five key
principles of software architecture. Shaw and Garlan [1996] included reusability as a key
requirement of an architectural style, and Gamma et al. [1995] stressed its importance,
with many of their design patterns aimed at improving reusability.

The principle of reusability applies not just within software systems but also between
them. Van Der Linden and Müller [1994] and Garlan et al. [1995] (and many others)
argued for wider interchangeability and interoperability of components that would enable
large-scale software systems to be built from previously existing reusable building blocks
provided by others. Both discussed approaches to achieving that goal, suggesting the use
of other architectural principles (such as abstraction, high cohesion and low coupling, all
introduced below in Section 3.4.3) to help achieve it.

Interchangeability
Meier et al. [2009] listed interchangeability as a benefit of some of their software architec-
tures (such as a component-based architecture). This is aided by a principle discussed by
Gamma et al. [1995] which they referred to as ‘program to an interface, not an implemen-
tation’. It is also assisted by the principles of low coupling and explicit communication,
both introduced in the next section.

38

3. Software Engineering

3.4.3. Structural Characteristics

These principles relate to the software and system structure and are aimed at making it
easier to deliver the higher level principles of uncovering knowledge (Section 3.4.1) and
increasing flexibility (Section 3.4.2).

Modularity
This principle was described by Vogel et al. [2011] by saying “the architecture should
consist of well-defined system building blocks with clearly distinguishable functional re-
sponsibilities”. They went on to describe its contribution to other principles, including
interchangeability, high cohesion, flexibility, extensibility and reusability. Similarly, Wirth
[1971] argued that the degree of modularity of a system determines its adaptability to
change or extension.

Modularity also makes it easier for large teams to work on a project by increasing the
number of separate components that team members can work on simultaneously without
risk of interfering with each other’s work. Some of the design patterns described by Gamma
et al. [1995], such as the Builder pattern, were described as helping to improve modularity.

Abstraction
Abstraction usually means exposing the important details of an object while hiding the
rest. It was included as an architectural principle or used as a basis for other principles by
Gamma et al. [1995], Evans [2004], Vogel et al. [2011] and Meier et al. [2009]; with some
also expressing it using phrases such as ‘hiding implementation details’ or ‘information
hiding’. Meier et al. described a principle they called ‘encapsulation’ as having similar
goals.

A similar principle is one listed by Meier et al. [2009], referred to as the ‘Law of Demeter’
(‘LoD’) or the ‘Principle of Least Knowledge’, that the programmer should avoid compo-
nents utilising knowledge of the implementation details of other components. It achieves
broadly the same effect as abstraction, but putting the onus on the user of the module to
avoid using internal details rather than on the module to hide them.

Another similar principle was listed by Gamma et al. [1995], which they called ‘program
to an interface, not an implementation’, suggesting that a programmer should commit
only to an interface, not its implementation details. It was a common theme of the design
patterns in their book.

Abstraction was described by Shaw and Garlan [1996] as a key requirement of an archi-
tectural style and was used by Shaw [1995] as a criterion on which to assess architectural
styles. As pointed out by Meier et al. [2009], abstraction helps achieve the principles of
low coupling and explicit communication (both described below).

High Cohesion
Vogel et al. [2011] described cohesion as “a measure of how much a building block is self-
contained. Gamma et al. [1995] described it as gathering related operations together and,
by implication, separating unrelated ones. This principle is sometimes described as the
‘single responsibility’ principle (for example, by Meier et al. [2009]) or simply ‘isolation’
(by Gamma et al. [1995])

39

3. Software Engineering

High cohesion ensures that if something related to a particular area of functionality needs
to change, the code for achieving is all in the same place and is not intricately linked (or
‘coupled’) with other unrelated functionality. For this reason it is often paired with the
principle of low coupling (described below), and the two are sometimes tied together by
another principle, not listed independently here, referred to as ‘Separation of Concerns’.

Meier et al. [2009] included ‘Separation of Concerns’ as a principle its own right; and Shaw
[1995] compared architectural styles by assessing them partly on the extent to which they
were able to separate concerns within a system. The principle of ‘Separation of Concerns’
asserts that parts of the software ‘concerned with’ different aspects of its functionality
(or acting on unrelated objects) should be kept separate and that code concerned with
related functionality should be kept together. As described by Meier et al. [2009], its aim
is to “minimise interaction points to achieve high cohesion and low coupling”. It is of little
value in itself unless it does indeed achieve high cohesion and low coupling. As Meier et
al. pointed out, separation at the wrong boundaries would defeat the point by causing
low cohesion and high coupling.

Low Coupling
Also referred to as ‘weak’ or ‘loose’ coupling. The strength of coupling between two
components is the extent to which changes in one affect or require changes in the other.
By reducing that need, low coupling improves flexibility. Meier et al. [2009] and Vogel
et al. [2011] listed it as a principle, and it was a goal behind many of the design principles
described by Gamma et al. [1995]. Other principles such as abstraction and high cohesion
help to reduce coupling between components.

The principle of low coupling applies not just between modules but between the program
and the platform on which it runs — its hardware and operating system. Gamma et al.
[1995] argued that platform dependencies should be limited as a way to increase flexibility
and improve maintainability. Java is an example of a programming language designed to
do this, by running programs within a platform-specific virtual machine. Although the
program is still dependent on the presence of a virtual machine, and the virtual machine
is platform-specific, this structure obscures the underlying architecture from the program,
making the program indifferent to the platform on which it runs (Lindholm et al. [2014]).

Explicit Communication
Explicit communication provides clarity about how components interact with other parts
of the system, which helps achieve the principles of abstraction and interchangeability.

Meier et al. [2009] made multiple recommendations on this theme, such as “be explicit about
how layers communicate with each other”, “understand how components will communicate
with each other” and “define a clear contract for components”. Gamma et al. [1995] and
Evans [2004] also made multiple recommendations along similar lines.

Acyclicity
Circular dependencies increase coupling and make it difficult to keep track of dependencies
between components. Vogel et al. [2011] included the avoidance of circular dependencies
as a sub-principle of low coupling, pointing out that circular dependencies involve “par-
ticularly high coupling” and that “none of the circularly dependent building blocks can

40

3. Software Engineering

be understood or tested without understanding or testing the entire cycle”. Evans [2004]
agreed, pointing out that one-directional flow makes software easier to understand; his
book assumed use of a layered architecture that made this easier to achieve.

Consistency
Consistency reduces the need for programmers to memorise every characteristic of their
components and their interfaces. It makes functionality more predictable and makes the
program easier to learn and understand. It is stressed repeatedly in the literature on
software architecture and is seen in recommendations from Meier et al. [2009] such as
“keep design patterns consistent within each layer”, “establish a coding style and nam-
ing convention for development” and “keep the data format consistent within a layer or
component”;

It also manifests itself as part of the motivation behind a principle included by Vogel et al.
[2011] which they called the principle of ‘convention over configuration’. It is better, they
explained, for components to use standard assumptions that cover most common usages,
so that only adjustments to those standard assumptions have to be configured.

Self-Documentation
Self-documentation reduces the time-consuming need to maintain separate documentation,
which is prone to becoming outdated. It was included as a principle by Vogel et al.
[2011], and it was a key theme of Evans [2004] that code should be expressive, designed to
communicate with people as much as with the machine. Evans recommended minimising
the number of separate design documents and stressed the importance of keeping them
synchronised with the code. Some sources (such as Meier et al. [2009]) included a related
principle they called ‘minimise upfront design’; and Aitken and Ilango [2013] found the
reduction in separate design documents to be a key difference between agile methodologies3

and more traditional software engineering techniques.

Vogel et al. quoted Meyer [1988] in saying that the designer should “try to make every
item of information about the system building block part of the system building block”. Well
chosen names and naming conventions help to make code self-documenting, as do the other
principles, such as abstraction, explicit communication, high cohesion, low coupling and
consistency.

3.4.4. Desirable Characteristics

In discussing the principles of software architecture, various desirable characteristics of
software are often named as goals. Alongside the obvious performance measures such as
speed and low resource use are a number of others that are beneficial to varying degrees
depending on the project environment. A generalised system for programming will be
used in a wide range of environments so needs to be be flexible to those diverse priorities.
Desirable characteristics often mentioned (including by Vogel et al. [2011] and Meier et al.

3By ‘agile’, they meant methodologies that were broadly consistent with the principles of the Agile
Manifesto, published in 2001 (Beck et al. [2001]). They included amongst these the Rational Unified
Process (Kruchten [1995, 1996]), Scrum (Schwaber [1995]), Extreme Programming (Beck [1999b,a])
and others.

41

3. Software Engineering

[2009], in describing the relative benefits of the different architectural styles) include those
shown below.

• Scalability The ability to increase its scale without suffering unacceptable perfor-
mance costs.

• Distributability The ability to distribute its components over multiple machines
and locations. As well as being beneficial in its own right, it can add resilience, speed,
parallelisability and can improve response times (if it means a service provider can
be physically closer to its users).

• Availability For a program to be continuously available so that other programs can
connect to its interface at any time.

• Interoperability For a program to be able to operate easily with other related
programs.

• Discoverability When a service advertises its existence and publishes the specifi-
cation of its interface, enabling clients to connect to it automatically. If all programs
and modules were services, and were distributed, available, discoverable and interop-
erable, it would reduce the need for programmers to rewrite functionality that had
been written before, and would deliver the much sought-after ability (for example,
by Van Der Linden and Müller [1994] and Garlan et al. [1995]) to compose new
programs from reusable components.

3.5. Architectural Styles

Architectural styles are chosen based on the goals and constraints of the project, and the
balance of priorities of their relative benefits. In Chapter 3 of their book, Meier et al. [2009]
described eight architectural styles (‘client / server’, ‘component-based’, ‘domain driven
design’, ‘layered’, ‘message bus’, ‘n-tier / 3-tier’, ‘object-oriented’ and ‘service-oriented’)
which, in practice, are often combined. They listed the benefits of each, including amongst
them their ability to deliver many of the architectural principles listed in Section 3.4, such
as flexibility, simplicity, reusability and testability, as well as desirable characteristics such
as scalability, discoverability and interoperability.

Evans [2004] assumed as a basis for his book the use of a layered architecture and the
architectural style that gave the book its title, Domain Driven (or Model Driven) Design.
In his model of layered architecture, each layer was a service provider to the layer above,
providing high cohesion within layers with abstraction and low coupling between them.
Evans’s book focussed heavily on the principle of team communication, and in particular on
the importance of rich ongoing communication between ‘domain experts’ (usually clients)
and software experts.

Vogel et al. [2011] provided a longer list of architectural styles including, in addition to
those listed above, Dataflow, Repositories, Rich client, Thin client, Peer-to-peer, Pub-
lish/Subscribe, Middleware, Service-Oriented, Security, and Cloud Computing.

42

3. Software Engineering

3.6. Summary

This chapter describes the evolution of software development methodologies, highlight-
ing their common emphasis on iterative and incremental development; and distilled and
categorised the principles of software architecture applied in designing the structure of
computer systems. It introduced the concept of an efficiency chart, showing the process
of developing software as a series of blocks of work interrupted by ‘change points’, at each
of which new knowledge or a change in the project environment invalidates some of the
work done and means the project must revert to some earlier point, referred to as the
‘reversion point’, causing the work in between to be wasted (see Figure 3.7). The software
development methodologies and the principles of software architecture are both aimed
at ‘narrowing the gap’ — reducing the amount of work wasted when a change point oc-
curs. This is done by moving change points left (uncovering new knowledge and required
changes sooner) and moving reversion points right (maximising the previous work that
remains useful by making the software flexible).

Work Done

Phase 1 - project begins

Waste

Phase 2

Useful Work

Phase 3

Total useful work done

Reversion
Point

Change
Point

Move reversion points
by creating flexible software

Move change points
by uncovering knowledge

Figure 3.7. An Efficiency Chart. The project begins at the top left with Phase 1. At the first
‘Change Point’, a change is needed and the project must revert to the ‘Reversion Point’, with only
a portion of the work being salvageable. The process repeats itself, with each phase taking the
project a step closer to its goal. Development methodologies and architectural principles improve
the efficiency of this process — ‘narrow the gap’ — by helping uncover knowledge sooner (moving
change points to the left) and making the software more flexible (moving reversion points to the
right).

In the next chapter the principles of software architecture and iterative development are
used to select the most important existing concepts and extend them, developing a model
of dataflow as a system of coordination over a distributed network of independent au-
tonomous nodes. Throughout the process, the goal of ‘narrowing the gap’ is used as a

43

3. Software Engineering

guide in the design of the system, with the ultimate aim of designing a unified global
dataflow coordination system that is simple, understandable, highly programmable and
flexible, and can be applied in the widest possible range of applications.

44

Chapter 4

Definition

Chapter 2 described the history of dataflow with some of its significant advances; Chapter
3 outlined the goals of Software Engineering and the principles of Software Architecture.
In this chapter, the two are brought together. Guided by engineering and architectural
principles, we unify and extend the best aspects of previous solutions in this field, and
discuss how a dataflow system might be used to coordinate communication between a
distributed network of autonomous nodes.

Where applicable, the visual notation used to describe it is introduced as we progress. For
reference, it is also described in Appendix B. For simplicity, visual components that are
unimportant to the discussion at hand are excluded.

4.1. A Coordination System

As described in Section 2.7, Carriero and Gelernter [1989] suggested that the coordination
component of a programming system should be regarded as orthogonal to its computation
component. Taking this idea, our first step in defining a dataflow system is to think of it
as a coordination system rather than a language.

This allows us to make it platform-independent (obeying the principle of low coupling
between the system and its hardware, as described in Section 3.4.3) and distributable (one
of the desirable characteristics listed in Section 3.4.4), with its only completely necessary
requirement being interoperability between nodes. Dataflow in general helps to achieve
the principle of incrementality listed in Section 3.4.1 by enabling the programmer to start
with the end-product — a node with the described functionality — and work backwards
by filling in its functionality later. The inherent distributability of dataflow also means
that a program (in this case, a dataflow graph) can be distributed not only over multiple
machines, but over multiple owners. Within one dataflow graph, different nodes could be
controlled by different people.

Restricting ourselves to a coordination system moves many of the implementation details
out of our problem domain. The system itself has no need to know (or care) how data is

45

4. Definition

stored, what form data takes or how computations are computed. We only need to know
that data and instructions can be communicated appropriately between nodes.

Such a system could, for example, be used for computing stock valuations, based on
inputs and functions provided by a whole ensemble of different machines and users. One
could imagine a stream of currency exchange rate data coming from one provider, weather
forecasts coming from a second, a function for forecasting future prices from weather
forecasts, current prices and interest rate data from a third and prices for raw ingredients
coming from several others. The final output would depend on up-to-date data from every
participant; with each node recomputing its output in response to every update to its
inputs and passing its outputs in turn to its dependent nodes. An example of such a
system is described in a little more detail in Section 4.18.

The most basic definition of our dataflow system will be that it is composed of nodes (mak-
ing it modular, complying with the principle of modularity listed in Section 3.4.3), with
nodes being autonomous data-containing computation-capable entities, connected by di-
rected arcs, each of which connects two nodes and symbolically represents a dependency of
one node on data from the other (complying with the principle of explicit communication,
also listed in Section 3.4.3). From this base we can start to fill in the details.

Two classes of features are required. First is the set of node behaviours and interac-
tions that are intrinsic to the system. Intrinsic characteristics include the protocol by
which nodes communicate with each other, the outward node behaviours and the inter-
faces through which different components of the system, including nodes, must interact.
Features in this category, whilst open to discussion at this stage, must eventually be re-
solved into an exact specification so that components can be built that comply with the
requirements and can interact consistently. This document does not define details of a
protocol, but assumes one can be designed in future. We will take for granted that nodes
must have an addressing system that allows them to be identified uniquely and to direct
messages to each other.

The second class of features is the set of interchangeable components of the system. The
user interface, the internal implementation of node behaviour, data storage and processors
are interchangeable components. Whereas the system needs a user interface, nodes need
an internal implementation and they need access to computing resources, there is no need
for the system to specify exactly how the user interface should look, how the internal
node implementation should be built or what form the computing resources should take.
Components of this type could equally well be substituted with alternatives, with more
than one implementation of each existing concurrently within the same system. Features
of this type discussed in this document are suggestions only, and are amongst many that
could be built.

4.2. Functional Purity

As described in Section 2.3 (Side-Effects), although there are those who believe that
purely functional languages are better for their purity, many others (for example, Rum-

46

4. Definition

baugh [1977]; Davis and Keller [1982]; Hudak [1989]), have recognised the need for non-
determinism in practical systems and several (such as Dennis [1974] and Arvind et al.
[1977]) have proposed doing so in dataflow through the provision of explicit non-deterministic
structures. Whiting and Pascoe [1994] listed six languages that allowed non-determinism
of some kind. One problem with the notion of functional purity is that it appears not
to have had a universally agreed definition. Sabry [1998] noted that two frequently-used
informal definitions (referential transparency and independence of order of evaluation)
themselves lack universally agreed definitions — echoing a similar point made earlier by
Søndergaard and Sestoft [1990]. In attempting to formalise a definition of functional pu-
rity, Sabry based his instead on the commonalities between the languages that people
seemed to agree were strictly pure. In dataflow specifically, Johnston et al. [2004] defined
a notion of pure dataflow as including both determinism and the exclusion of side effects
(relating it closely to functional purity), whilst acknowledging that “if dataflow is to be-
come an acceptable basis for general-usage programming languages, non-determinacy is
essential”.

Since the design of a purely functional language or a pure dataflow language has never
been the intention here, we do not explore the formal or informal definitions in any greater
depth. As described in Chapter 3 (Software Engineering), rather than attaching rigidly
to any notion of purity, the aim of this work is to devise a system to maximise overall
utility and programmability by designing it around the principles of software engineering
and architecture. It is led, primarily, by consideration of how such a system might be
used. It deviates from more traditional discussions of dataflow in being envisaged as a
live, interactive system, existing in a dynamic environment in which it must continue
to operate effectively even with programs in active development, and with data, node
contents and the connections between them potentially subject to frequent change.

It is worth pointing out a few things about the system being designed here. First that we
can, if needed, include in the node definition a mechanism with which to identify nodes
explicitly as being deterministic or not, in an approach with similarities to those proposed
by Dennis [1974] and Arvind et al. [1977]. In our design process we make a presumption
that nodes will not have side-effects and will result in deterministic outputs, but include
capability to have side-effects and be non-deterministic where needed. To account for the
need for side-effects, a discussion of deliberately triggering nodes is included in Section
4.7. Likewise, non-deterministic nodes could be executed in the same way, or could be
triggered by external sources or run to a schedule as discussed briefly in the Further Work
chapter (see Section 7.1.2 — Subscription Types, Scheduling and Throttling). In this
way, the programmer can deliberately cause non-deterministic code to run by providing
an updated input as a trigger, or could prevent it from running by omitting to provide
that input. Conversely, nodes whose outputs are purely deterministic and free of side-
effects can be provided with their required input values and ‘reduced’ through the partial
evaluation process, as they would be in a normal graph reduction.

The second point to make is that we do not, in any case, have complete freedom to choose
the order of evaluation in this environment. Since the graph is dynamic rather than static,
the time at which each node is executed is determined by the moment in time at which

47

4. Definition

its inputs arrive. The output that node generates at that time is by definition the correct
result at that time, corresponding to that particular update at that time but not to other
updates at other times.

Finally, where limited freedom to choose the order of execution does exist (for example,
in independent iteration, or where a node receives several partially evaluated functions as
inputs that in turn share some of their inputs), the different branches could potentially
be executed concurrently, which could indeed result in unpredictabilities in their timings.
Since Dennis [1974] and Arvind et al. [1977] both used the example of a ticket booking
system, we can perhaps do the same. Imagine we want our graph to contact an external
system to book ten tickets, separately, for named individuals, for a flight on which only
five seats are available. In a dataflow system, they can be booked in parallel (as described
in Section 4.11.1 — Independent Iteration), which has advantages but also results in
unpredictable differences in timing: we have no way of knowing which five passengers will
end up with seats. This uncertainty is a natural consequence of parallelising the booking.
In general, we would expect these uncertainties to be known and well-understood by the
programmer and accepted as a deliberate trade-off against the parallelism. In the example
of the booking system, it remains within their power to structure the program differently
if they want to guarantee an order in which seats will be booked.

Our design incorporates a few behaviours, to be used individually or in combination, that
would usually be seen as functionally impure. One is for nodes to maintain state, which
could be used to compute values that depend on previous executions, to append new
incoming values to an outgoing list, or in any other way the programmer sees fit. Another
is for a node to fetch values from outside the system; for example, a node could query an
external sensor for data or an external database for its current state. Finally, a node could
trigger external actions; for example, as described above, booking a ticket and returning
a confirmation, or simply sending a message to an external system.

These deviations from traditional notions of functional purity have been chosen in order
to fit more closely with the practicalities of real problems and the characteristics of the
underlying environment. Problems such as synchronisation and latency, which would be
nonsensical in a traditional functional language, are acutely important in this dynamic
distributed environment, and the discussion on those subjects in Section 4.16 is simply a
recognition of the physical characteristics of the system and the underlying universe that
such a system would, in the real world, have to face. The deviations from functional purity
and the freedoms given to nodes — to store state, fetch data and act externally — are
chosen deliberately to enhance the overall power and flexibility of such a system.

4.3. What Are Nodes And Connections?

Since the system is a means of coordination, linking a distributed network of autonomous
nodes, there are few constraints on what a node could do, other than that it should obey a
defined communication protocol in its interactions with other nodes (obeying the principle
of explicit communication listed in Section 3.4.3). This protocol would have the purpose of
standardising, across all nodes and implementations, the means of conveying the messages

48

4. Definition

between nodes discussed in this Chapter, together will all the messages between users
or user interfaces and nodes, through which the nodes and the node graph would be
controlled. These messages would include:

• data updates between nodes;

• notifications between nodes;

• identification and authentication between nodes;

• the creation and destruction of nodes by users or user interfaces;

• the setting of node parameters by users or user interfaces;

• creation of connections between nodes by users or user interfaces;

• the constraints and limits on external actions by node functions;

• the behaviour of any external node API (through which nodes might expose their
functionality to the world outside the system).

Since the purpose of connections is to represent data dependencies, a node must have a
data output port. It does not need to, but may, have inputs ports, through which it will
receive data from other nodes. Being distributed means that nodes may reside on different
machines, in different locations and be owned by different people. Being autonomous
builds on the notion of node heterogeneity described by Gelernter and Carriero [1992].
The principle is that the system should be indifferent to the workings of its components,
provided they obey a few rules of behaviour and the defined communication protocol.
Autonomy takes the principle a step further by saying not only that many different types
of nodes may be included but that many aspects of their behaviour may be decided by
their owners, or even by nodes themselves based on their owners’ stated priorities. In
particular, this allows nodes to optimise for cost, speed and resource use. The notion
of node autonomy is also used to refer more generally to the flexibility of the system to
accommodate a wide range of node behaviours. This widens the applicability of the system
and helps comply with the principle of flexibility listed in Section 3.4.2 and the principles
of abstraction, high cohesion and low coupling listed in Section 3.4.3.

As described in Section 2.3 (Side-Effects), it has long been a point of discussion in the
literature whether dataflow, regarded as a functional language, should be purely functional
and free of side-effects. As Hudak [1989] pointed out, there are functional languages that
have opted for functional purity as well as those, such as ML and Scheme, that have
taken a more pragmatic approach, sacrificing functional purity and a degree of referential
transparency in order to allow state and side-effects where needed.

In this document the choice has been made to sacrifice functional purity, and referen-
tial transparency in some cases (see Section 4.8.6 — Referential Transparency), in order
to capture the benefits of node state and external side-effects, provided the principle of
explicit communication between nodes is maintained. On this basis, internal node state
and external side-effects by nodes are allowed, provided they do not act together on a

49

4. Definition

shared program state or use the side-effects as a way of bypassing the principle of explicit
communication between nodes (that it should take place only through their connections
using the protocol defined for them).

Nodes in our system can, therefore, maintain their own internal state, manipulate that
state, use it to calculate their outputs, cause side-effects external to the system or fetch
external data. Nodes may also perform external actions, including sending data, storing
data, fetching data, and performing external actions of any other kind, provided the
integrity of node connections is maintained and these actions are not used to bypass
them.

The requirement to avoid using external communication as a way to bypass connections
between nodes can never be rigidly enforced. It can only be good-practice guidance that
users should avoid such behaviour. Perhaps the most safeguarding against this that could
be expected of the system itself is that it capture inadvertent circularity that relies on ex-
ternal systems, by monitoring nodes for unexpectedly high usage or unexpectedly rhythmic
patterns of updates.

Because the system does not specify anything about the underlying platform, the system at
large is completely indifferent to the computer architecture, and therefore able to embrace
any model of computation, past, present or future. Taking this platform-independence to
an extreme, there is no reason for the underlying hardware to be silicon-based; it could
just as well be biological. We could, for example, have a node whose purpose is to tell
us how a particular person is feeling. Let’s call the person Bob. When executed, the
function is to ask Bob how he feels and report the result. Bob, who is the hardware in this
computation, would decide how he feels and reply, and the response would be provided as
the output to the node. As a unit, this entity, illustrated in Figure 4.1, would be a valid
node.

Bob (hardware)
Communicate

to hardware

How are you feeling, Bob?

Not too bad, I suppose

Figure 4.1. The ‘How Is Bob Feeling?’ node. A node’s computational power could come from any
source. A human being would make a valid computational component of a node. The programming
language used to specify the task must be appropriate to the hardware; in this case, spoken English.

To combine this with external effects, if Bob is a competent chef, we might pass him an

50

4. Definition

‘algorithm’, in the form of a recipe, and request that he produce some number of such
items. In Figure 4.2, Bob is provided with an apple pie recipe and a quantity, and in
response creates some apple pies.

Here's a recipe for apple pies, Bob.

Could you make three please?
If I must

Figure 4.2. Bob’s pie-making node. A node could have the job of creating some output or external
effect; and the system is indifferent to the means of producing it. A human being would make a
valid computational component responsible for producing the output and reporting the result.

The most important property of a node is its content. Its content is a unit of data. The
system is indifferent to the type of data, and there is no requirement as to where the data
should be stored. It can be stored away from the machine hosting the node, provided that
the node is able to access and modify the data when needed. This flexibility helps achieve
scalability (listed as a desirable characteristic in Section 3.4.4).

The system needs a number of data types that are universally understood by all nodes;
these will be defined as needed, and additional types may be added at any time in future.
In our system, these universally understood data types will include the usual primitives
(number, string, Boolean), and also functions.

Since it is a coordination system and not a language, and the system itself is indifferent to
underlying language and hardware, a function is defined very loosely as comprising four
things: an algorithm, a set of zero or more inputs, information about how to execute the
algorithm (for example, the language the system is written in or the hardware needed to
run it), and the ability for the function to produce a data output1. The inputs belonging
to a node’s function are referred to as its ‘root’ inputs.

Nodes should have the capability to execute these functions, but not necessarily on the
machine where the node resides. The work of executing a function may be delegated to
some other machine, provided the node has the ability to trigger execution on request,
and to retrieve outputs when finished. Again, this achieves scalability.

In addition to its content, we will give nodes some optional fields of meta-data to add

1A node always has an output port, whereas a function may or may not produce an output value. If it
does, the function’s output value is provided as the node’s output; if not, the node’s output value will
be null.

51

4. Definition

usability. These include a name by which a user may refer to a node (but which need not
be unique), documentation to describe how to use the node and the meanings of its inputs
and output, and parameters to control the behaviour of the node.

A minimal set of behaviours of a node, and the interactions between nodes needs to be
defined; the rest can be left to the autonomy of nodes to decide. Although nodes are
allowed to cause side-effects external to the system, they will only interact with each other
through their connections.

The hardware-independence of both data and function execution gives owners the ability
to choose the hardware, or supplier from which those services could be provided. They
may switch suppliers based on their own balance of priorities, such as cost, security, level
of redundancy, speed, or any number of other factors on which such a decision may be
made.

A ‘connection’ in the graph is a directed arc connecting two nodes and provides a symbolic
representation of a flow of data, describing a data dependency of the downstream node on
the upstream node. Reflecting a consensus in the literature — described in Chapter 2 —
that cycles are best avoided, and the principle of acyclicity listed in Section 3.4.3, we will
apply the principle to our system that graphs must be acyclic. This provides clarity and
simplicity of programs and better obeys the principles of explicit communication (Section
3.4.3) and simplicity (Section 3.4.2). Where iteration is needed, it will be defined explicitly
and deliberately (see Section 4.11), not implicitly or unintentionally.

4.4. Separation Between Nodes And Resources

While a node can be thought of as an autonomous entity, with its own behaviour and a
point of contact for communication with the rest of the system, that entity does not need
to ‘own’ its own computing resources. If it did, it would risk leaving those resources idle
most of the time. The only requirement of a node is that it must have access to resources
when needed, not that it must control them completely.

Instead of dedicating resources to individual nodes, a better option is to make a pool
of shared resources available to a collection of nodes. This makes more efficient use of
memory and processing power, making resources more easily available when needed, and
makes for easy scalability (listed as a desirable characteristic in Section 3.4.4) by adding
additional, possibly remote, resources to the pool. It also maximises the flexibility of the
system by allowing a user to choose whatever hardware or cloud provider they wish to
provide their nodes with the resources they need (reducing coupling between the software
and its platform, obeying the principle of low coupling listed in Section 3.4.3).

4.5. Visual Representation

Nodes and connections are represented visually as described below. For reference, the
visual notation is summarised in Appendix B.

52

4. Definition

4.5.1. Nodes

A node is represented visually, in this document, as lens-shaped object, either shallow or
deep, as shown in Figure 4.3. This is different from the more common depiction of node
graphs, in which nodes are depicted as circles or squares, and has been chosen to make
more space for inputs at the top of the node, and to draw a clear distinction between
inputs at the top, and outputs at the bottom.

Node Content Area

Node Output Area

Node Content

Node Output

A

Deep notation

Shallow notation

Top of node, where 0 or

more inputs are received

Bottom of node, which has

one output that can be

connected to 0 or more

downstream nodes.

Node name A

Figure 4.3. Nodes in shallow and deep notation. A node can be stretched vertically as far as
necessary to contain the content and node output.

Node names are not required, but are sometimes shown for ease of reference in the discus-
sion. For clarity, a convention is used in this document that node names always begin with
an upper case letter. Node content and node output are both optional in the drawings,
and either or both are sometimes excluded if not applicable to the discussion at hand.
Nodes that are peripheral to the discussion may only be partially shown, or not at all, to
exclude unimportant details from the drawing.

4.5.2. Node Connections

Data within a graph is depicted as flowing from top to bottom. At the top of a node, zero
or more inputs can be made available, each of which can receive, at most, one value or
connection. An input is depicted as a ‘V’ shape in the top part of a node, and may be
labelled with a name if necessary. Where input names are included, a convention is used
in this document that they always start with a lower case letter.

At the bottom of a node, its output can be connected to zero or more downstream nodes.
Connections between nodes are shown as lines flowing from the output (the bottom part) of
one node to an input of another. Neither inputs nor outputs need necessarily be connected.
Inputs can also be provided with a value directly, which is depicted by showing the value
above the input in question. Figure 4.4 shows a node with three inputs (one not connected,
one connected to an upstream node and one provided with a value directly) and an output
with multiple connections.

If a node’s content is a function, it will have ‘root’ inputs corresponding to the arguments
of the function. A node may also have further inputs that are derived from its root inputs.
These derived inputs will either be inherited from an upstream node (see Section 4.8) or
derived from a root input’s input parameters (see sections 4.9 and 4.11.2).

53

4. Definition

Root Input (not connected)

Upstream node (details not relevant, so only partially shown)

Root Input (connected)

p

1

An input can be provided

with a value directly

r

Input name

q

Output connections to downstream nodes. The three

downstream nodes connected with these lines are

unimportant in this context, so are not shown.

Figure 4.4. Inputs, outputs and connections. Inputs are shown as a ‘V’ shape in the top of the
node, together with an associated name label where appropriate. Inputs can be provided with
values either by connecting them to an upstream node (as in the case of input ‘q’) or by providing
a value directly (as with input ‘r’). Nodes have a single output value which can be connected to
multiple downstream nodes.

A node with just one input that provides its input, unaltered, as an output, is referred to
as an ‘ID’ node. Its input may have any name. ID nodes are depicted with their content
shown as ‘ID’, as shown in Figure 4.5.

The input to an ID node

can have any name

It provides its input,

unchanged, as an output

ID
input

Figure 4.5. ID Node. An ID node is a node with one input, which provides its input, unaltered,
as an output. Its content is shown as ‘ID’. Its input may have any name.

4.6. The Service-Provider Model

Node interactions are based on a ‘service-provider’ model. This model of interaction was as
advocated by Evans [2004] and described by Meier et al. [2009] as delivering the principles
of abstraction and low coupling (listed in Section 3.4.3) and distributability (listed as a
desirable characteristic in Section 3.4.4). Meier et al. [2009] described a service-oriented
architecture as being one in which “applications ... expose and consume functionality as a
service using contracts and messages”. In this context it means that each node is a service
provider to its downstream connected nodes (that is, it offers services and agrees contracts
to provide those services to its downstream nodes); and is a service user of its upstream

54

4. Definition

connected nodes.

A range of services may be provided to downstream connected nodes including, for ex-
ample, subscriptions (meaning the downstream node receives new outputs when avail-
able, possibly subject to constraints specified in the subscription contract) or that the
downstream node may at any time request a value. It may also agree a contract with a
downstream node to keep itself current, perhaps with associated financial transactions or
agreements, as discussed in Section 4.15.

One of the consequences of the use of the service-provider model is that nodes are largely
indifferent to and ignorant of their downstream nodes (complying with the principles of
abstraction and low coupling described in Section 3.4.3). Accordingly, connections are
properties of inputs, not outputs.

If a node has no knowledge of its downstream connected nodes, the system needs a way for
data to flow down the graph. This can be done by adding the concept of subscriptions. A
downstream node that requires data from an upstream node can ‘subscribe’ to it, notifying
the upstream node that it wants to be informed of updates to its value. Each node
will maintain a list of its subscribers, and will notify every subscriber whenever new
data is available. The benefit of using this model is that it allows nodes to ‘switch off’.
Subscriptions signify that a client is interested in a node’s updates. If a node has no
subscribers it can ‘switch off’ by unsubscribing from its upstream nodes. It will then no
longer receive updates or waste resources computing values that nobody needs, and will
no longer require upstream nodes to compute values on its behalf either.

Using subscriptions, whole sections of a graph may end up switching off and becoming
dormant, yet remain available when needed. Nodes will then refresh themselves only when
data is requested by their downstream ‘clients’, rather than computing an update every
time new data becomes available. Although it may be premature to discuss optimisation,
if we have an always-on fully-available interconnected system, it is important to be able
to avoid unnecessary computation.

This delivers the best of both the data-driven and demand-driven execution models de-
scribed by Davis and Keller [1982] (see Section 2.4). As pointed out by Treleaven et al.
[1982], the two models are complementary rather than competitive and, as they also
pointed out, a system that utilises all three execution models (including also the sequen-
tial control-flow model used by most conventional programming languages) may be better
able to achieve general purpose goals. Our system achieves this by utilising a hybrid
demand-driven and data-driven dataflow mechanism to coordinate scheduling between
control-flow nodes.

Using the service-provider model, each node is dependent on the service provided by its
upstream nodes for its ability to compute its own output value. Given that nodes may be
owned by different owners, we may also need node connections to be supported by contracts
between node owners determining the quality of the service provided. The nature of the
contract does not need to be dictated by the system, but for consistency it may be desirable
for it to provide set contracts, so that such agreements can be automated. The service-

55

4. Definition

provider model supports such contracts by enabling cost accounting, in which usage could
be measured and associated costs or charges assigned to nodes and their human owners.

It was mentioned in Section 4.3 (What Are Nodes And Connections?) that nodes are
autonomous, leaving the owner free to optimise the behaviour of a node according to
their resource and cost priorities. This applies equally to the service provision: service
users could be offered the ability to pay for more expensive prioritisation preferences. For
example, a user might want to pay more to be notified of every data update than just
to receive the current output value; or to pay more for the computation to be executed
on faster hardware than on slower hardware. Any such service could be charged by a
node to its clients. The service-provider model need not just apply internally: nodes could
equally well provide their service externally, delivering data and notifications in response
to requests or subscriptions, as a chargeable service if required.

The model proposed here differs from many traditional approaches. In a traditional model
of dataflow a node graph represents a static program. It purpose is to run, produce an
output and then stop. Referential transparency allows the freedom to choose an execution
strategy, with the knowledge that any execution strategy or means of graph reduction will
lead to the same output. In our model, the graph represents an interactive program that
may be distributed over many users and locations and constantly maintains its outputs,
computing them dynamically as changes take place within the graph (to its inputs, node
contents and graph structures). When a change takes place to a node’s content or inputs,
its output value and those of its downstream nodes cease to be current. The change and
resulting outputs must therefore be propagated through the graph as quickly as possible in
order to minimise latency between the originating update and the corresponding changes
to outputs in the downstream graph. By design, computation of each node is triggered by
arrival of data at its inputs; and functions are, by definition, substitutable by the values
they create when computed at that time. Provided the user has not violated the principle
of explicit communication by encoding hidden communication between nodes through
their external connections, differences in outputs for different execution strategies will
relate only to the differences in the time at which continuously varying external variables
are sampled. This variability is intrinsic to the sampling of external variables and would
apply to any system that included that capability.

While this deviates from traditional models of functional programming and dataflow, it is
also highly pragmatic. It provides necessary access to the external world (to be declared
explicitly when needed) and provides greater flexibility in the development process, closer
alignment with the principles of Software Engineering described in Chapter 3 (Software
Engineering) and can accommodate the frequent updates to data inputs, functionality and
objectives that need to be accommodated in real-life projects.

4.7. Triggering Execution

One of the defining features of dataflow (as expressed by Yazdanpanah et al. [2014]) is that
execution is triggered by the availability of data, rather than the availability of instructions.
When new data arrives at a node, it recomputes. For a node that is deterministic and

56

4. Definition

side-effect free, this works perfectly. Its sole purpose is to produce an output value, and
we can guarantee the same input will always produce the same output. The node can take
a ‘lazy’ approach to evaluation: each new input value can be compared with the previous
input value and computation avoided if the two consecutive input values are the same.
Although this would be a deviation from the traditional dataflow model, in this dynamic
system (as discussed in Section 4.2), it can be a useful optimisation for side-effect free
nodes.

However, as discussed in Section 4.3, nodes are not always deterministic and side-effect
free, and this lazy approach works less well for nodes that are not. For nodes that are non-
deterministic, depend on external data, modify internal state or cause external side-effects,
we need to be able to trigger execution of a node even if its inputs are unchanged.

In Section 4.3 we asked Bob’s pie-making node to make three apple pies. What if we need
another three? As the inputs are the same, a lazy approach to evaluation would prevent
the node from calculating. And yet, we still need three more pies.

An example sometimes used when discussing side-effects is that of a ticket booking system
(see Section 2.3 — Side-Effects). In a ticket-booking system, the number of available
tickets is an external state that must be queried by the node, meaning that the result of
booking one ticket may not be the same as the result of booking the next. As with the
pies, the function must be executed even if the inputs are the same.

One way of achieving the required triggering for nodes that need it, whilst retaining the
more efficient lazy execution for the rest, would be for the programmer to provide an
input to the node in question for some arbitrary ‘trigger data’. This input would have
no purpose other than to cause the node to execute. The value provided to it could be
an integer that incremented each time, or a time-stamp, or anything else that suited the
situation.

Would a continuously incrementing integer constitute a memory leak? The memory foot-
print of an integer increases only logarithmically with the magnitude of the number, so
would not have an undue impact but, if concerned, the number could be made to loop,
provided the modulus of the loop were high enough to preclude the possibility of the node
mistaking one update for another. With suitable triggering being achievable within the
existing functionality, there is no need for additional or explicit functionality to achieve
this aim.

4.8. Partial Evaluation

Partial evaluation of a form was mentioned in conjunction with some of the earlier work
on dataflow programming (Sutherland [1966]; Rumbaugh [1977]; Keller [1980]). In those
earlier contexts, it was often discussed in terms of ‘envelopes’, and ‘composition’ of graphs.
Keller [1980] compared it to two related concepts: closures, and ‘Currying’. Davis and
Keller [1982] pointed out that this concept (referred to by them as “data objects that can
represent functions”) can “enhance the power of data flow programming considerably”,

57

4. Definition

explaining that “many versions of the encapsulated graph can be generated, each customised
by different import values”.

Most of the terms that were suggested (with the exception of Currying) conveyed details
about the implementation rather than the effect. Although Currying is in some ways
similar, it is not similar enough, and does not leave us with as much generality as we need.
This document instead uses the term ‘Partial Evaluation’, which expresses the effect of
the concept rather than the implementation. This term is more relevant to the user and
leaves our implementation options open. The implementation described in Chapter 5 is
only one of many that could have been used; any other that achieves the same goal could
equally well fall within the term.

4.8.1. Full vs Partial Evaluation

To define our terms, ‘full’ evaluation is where you start with a function, provide values
for all of its inputs, execute the function and then provide its return value (if applicable)
as an output. The purpose of a partial evaluation is for a node to provide a function as
an output in every other case. In a partial evaluation, a node containing a function will
produce, as an output, another function containing only the inputs whose values were not
provided to the node. This concept is illustrated in Figure 4.6.

a
cb

1

Produces a function of 'a' and 'c' as an output

Figure 4.6. Partial evaluation. When a node partially evaluates, it generates an output that
subsumes the provided values, and has an input for each of the node’s inputs whose values were
not provided. In this example, input ‘b’ has been provided with a value and the output is a function
of ‘a’ and ‘c’.

In this example, the node has three inputs, labelled ‘a’, ‘b’ and ‘c’. Input ‘b’ is provided
with the value ‘1’ and the node partially evaluates. It subsumes the value of the input ‘b’
and provides, as an output, a new function with inputs ‘a’ and ‘c’. Partial evaluation helps
comply with the principle of reusability (sometimes called the ‘Don’t Repeat Yourself’
principle) listed in Section 3.4.2.

4.8.2. Inheriting Inputs

Having generated a function as an output of a node, we want to be able to use that
function. When a partially evaluated function is received by a downstream node, its
inputs still need values before it can be fully evaluated. To represent this, the inputs
of the received function are ‘inherited’ by the receiving node, and are referred to in the
downstream node as ‘derived’ inputs. Derived inputs are depicted in node diagrams as
shaded and slightly smaller than root inputs, as shown in Figure 4.7.

58

4. Definition

a cb

1

x a c

Upstream

Downstream

Root input 'x' Derived inputs 'a' and 'c'

Figure 4.7. Derived inputs. When an input is connected to a node whose output is a partially
evaluated function, the node ‘inherits’ the inputs of the function it receives and displays them as
‘derived’ inputs. Derived inputs are shaded and slightly smaller than root inputs.

If the example shown, the ‘Downstream’ node inherits inputs ‘a’ and ‘c’ from the ‘Up-
stream’ node. If these two derived inputs are provided with values then the ‘Downstream’
node can fully evaluate and produce an output. Alternatively, it may in turn be left to
partially evaluate and output another function with inputs ‘a’ and ‘c’. A derived input
behaves the same way as a root input: it can be provided with a value or can be connected
to an upstream node, including one that delivers a partially evaluated function, causing
the receiving node to inherit further inputs.

4.8.3. Inheriting Content

The architectural principle of Reusability, listed in Section 3.4.2, is helpful in testing and
development (see Section 4.17). The features of partial evaluation and input inheritance
make nodes reusable, but only when mediated by ID nodes. As shown in Figure 4.8,
functionality defined by one node can be reused by multiple others, but this use of an
ID node requires the node to have the ID function as its content and to display the ID
function’s argument as its root input.

a
b

x a bReuse1

Reusable

x a bReuse2

x a bReuse3

ID

ID

ID

Figure 4.8. Reusing nodes. The functionality defined by the ‘Reusable’ node is reused by three
other nodes (‘Reuse1’, ‘Reuse2’ and ‘Reuse3’), each of which is an ID node with one input, ‘x’,
inheriting the inputs ‘a’ and ‘b’ from the ‘Reusable’ node.

To simplify this process and eliminate unnecessary clutter, a node’s content can instead
be connected to an upstream node. When this is done, the node’s content is set to the

59

4. Definition

value received from the upstream node and, if that value is a partially evaluated function,
it will inherit the inputs of that function.

A connection to a node’s content is depicted as a connection directly to the top side of the
node. Since this sets a node’s content, a node can only have one connection of this type,
and cannot also have its own content. When the content is connected to an upstream
node, the inputs inherited from the upstream node are all shown with equal status as root
inputs.

In the example shown in Figure 4.9, the ‘Reusable’ node’s functionality is reused by three
other nodes, by connecting their content to the upstream node. They then inherit the
inputs of the partially evaluated function they receive and replicate the functionality of
the upstream node.

a
b

a bReuse1

Reusable

a bReuse2

a bReuse3

Figure 4.9. Connecting a node’s content to an upstream node. In this example, the ‘Reusable’
node’s output is a partially evaluated function, which is reused by three other nodes, ‘Reuse1’,
‘Reuse2’ and ‘Reuse3’, by connecting the content of each to the ‘Reusable’ node. They all, in turn,
inherit the inputs of the partially evaluated function they receive.

4.8.4. Input Name Clashes

In the case of a name clash, where two inherited inputs have the same name, or where
an inherited input has the same name as a root input, the inherited inputs are uniquely
identified using their node of origin and name, in curly brackets, as shown in Figure 4.10.
This is referred to as a ‘fully resolved’ input name.

Q a

x {P,a} {Q,a}

P a

y

Figure 4.10. Fully resolved input names. Inputs can be uniquely identified by their name and node
of origin, depicted in curly brackets as {nodeName,inputName}. This notation is used if the input
cannot be uniquely identified from the input name alone.

60

4. Definition

4.8.5. Input Unification

Each input can be only inherited once. If an input is inherited via two separate routes,
as shown in Figure 4.11, it is re-combined. In this instance, a different partially evaluated
function containing the input has been received via each of the two routes. If a value is
now provided for that input, it must be applied to both partially evaluated functions. In
the example in Figure 4.11, the input ‘a’ originates at node ‘P’. It arrives at node ‘Q’ via
input ‘x’ and input ‘y’, but appears only once in Node ‘Q’.

a

x
a

a

y

a b

b b

1 2

P

Q

Figure 4.11. Inputs that arrive by multiple routes. Each input, identified by its name and node of
origin, can only be inherited once by each node. If it is inherited via two routes, as in this case, it
is displayed only once.

4.8.6. Referential Transparency

Referential transparency is usually defined in terms of replaceability of sub-expressions
with their resulting values, and is sometimes characterised as a key difference between
imperative and functional languages (Hudak [1989]; Sabry [1998]). The concept of partial
evaluation depends on the ability to replace a function with its resulting value; allowing
node state, side effects and external data sources, as discussed in Section 4.3 (What Are
Nodes And Connections?) would seem to undermine that ability. Indeed, by some the
existence of side-effects is used as a shorthand for referentially opaque2.

To resolve this apparent contradiction it is worth pointing out that although the system
described here allows nodes to have their own state, that state is not shared between
nodes. The intention is, additionally, that state, side-effects and external data sources
should be explicit, and therefore only ever included as deliberate features of a program
rather than as a mechanism by which nodes could interact with each other or as a means of
bypassing the explicit connections between nodes that are intended to be the only means
of communication between them. Where purely deterministic behaviour is required, it can
be achieved by building the program without using those features.

2Søndergaard and Sestoft [1990] summarised and provided a good discussion on the varying definitions
of the term referentially transparent that have been used.

61

4. Definition

Where those features are needed, using them sacrifices the referential transparency and
determinism of the program, but doing so will be amongst the goals of the program. Using
those features would not mean we sacrifice all control over the values or that they would
become random or meaningless. Instead, inputs to nodes are used to control when nodes
execute and are used, in some cases, solely for the purpose of triggering that execution,
as described in Section 4.7 (Triggering Execution).

Whereas each execution of a non-deterministic node may result in a different value, in any
particular execution of such a node, the result of executing it will be by definition correct
at that time and replaceable by the value obtained at that time. The node outputs the
value that was correct at the time it was computed, together with a stamp identifying
the time and node at which the triggering change originated, and transmits it through
the graph with only that promise; that it was correct at the time it was produced. It
is distinguished from a future (different) value by being produced at a different time in
response to arrival of a different input value.

4.9. Expected Inputs

If we have a function but not its inputs, partial evaluation allows us to provide its inputs
later, downstream. Sometimes we need to be able to reverse this, by setting inputs for an
as-yet unknown function and providing the function later, downstream.

Returning to the example of Bob’s Pies used in Section 4.3, imagine that we know we
want three pies but have yet to decide on the recipe (or algorithm) for making the pies.
We know we need a recipe, and that it should take ‘quantity’ as an input. If we had the
recipe in advance, we would set up our node as shown in Figure 4.12. In this scenario, we
have set up our ‘Main’ node, which has an input named ‘recipe’. We then connect ‘recipe’
to the upstream node, at which point we inherit the input ‘quantity’ and can provide it
with the value ‘3’. However, if we do not yet have the upstream ‘Recipe’ node, we cannot
inherit the ‘quantity’ input, and there is no way for us to provide the value (Figure 4.13).

Main recipe quantity

3

Recipe quantity

Figure 4.12. Inheriting the ‘quantity’ input. Once you have the recipe, you can set the quantity
required.

To provide the capability to do this, we need a new feature, which we will call ‘expected
inputs’. The purpose of the ‘expected inputs’ feature is to be able to tell a node that we
expect one of its inputs to receive a partially evaluated function and to specify the names
of the inputs we expect that partially evaluated function to have. Upon doing so, the node
should provide a way for us to provide values for those inputs, even though the partially

62

4. Definition

Main recipe

There is nowhere for us to put the quantity

Figure 4.13. Without connecting the recipe, it would be impossible to set the quantity required.
Sometimes the quantity might be known but not the recipe. This requires a new feature, named
‘expected inputs’.

evaluated function in question is not yet available. To do this, we have to provide a list of
names of the inputs we expect, as a parameter of an input. We will call this the ‘expected
inputs’ parameter.

An input parameter is denoted visually, in this document, with a box connected to the
input, as shown in Figure 4.14. The ‘expected inputs’ parameter is a list of names of
the inputs we expect the partially evaluated function eventually received by that input to
have. In the example shown, there is just one expected input, ‘quantity’.

Main recipe quantity

Input parameters box

For each 'expected input', the
node will display a 'derived
input' of the same name

Figure 4.14. The input parameters label. Input parameters appear as a label attached to the
input in question. The ‘expected inputs’ parameter is a list of input names. The node generates
a derived input for each item in that list. In this case, there is only one expected input, named
‘quantity’, and the node generates a derived input for it.

In response to this property having been set, to allow the user to set a value for it, the
node should generate a ‘derived’ input for each expected input (also shown in Figure 4.14).
If this node is partially evaluated and connected to downstream nodes, this derived input
gets inherited by downstream nodes in the same way as any other input. Likewise, the
input parameter gets transmitted through the graph (Figure 4.15).

Main recipe quantity

recipe quantity

Both input parameter and
derived input are transmitted
via the graph

Figure 4.15. Transmission of parameters and derived inputs. Input parameters are inherited
by downstream nodes together with the input they are associated with, and derived inputs are
inherited by downstream nodes in the same way as other inputs. In this example, the derived
input appears in the downstream node as a root input because its content is connected to the
upstream node.

63

4. Definition

A derived input behaves the same as other inputs. If a value is provided for it then, when
partially evaluated, the value is stored internally in the partially evaluated function and
the derived input will not appear as an input to downstream nodes (Figure 4.16).

recipe quantity

3

recipe

Since 'quantity' has a value
stored internally, it does not
appear as an input in the
downstream node

Figure 4.16. Internal storage of the connected value. If the derived input is provided with a value,
it is stored internally in the partially evaluated function until the expected function is received. In
this example, the ‘quantity’ input is provided with the value ‘3’, which is then transmitted in the
partially evaluated function and does not not appear as an input downstream.

When the expected function arrives, its inputs may not correspond with the expected
inputs in the input parameter. To allow for this, we need the ability to associate the ex-
pected inputs with the inputs the function actually has. This is referred to as ‘nominating’
which of its inputs should correspond to each expected input.

Again, this requires us to introduce parameters, this time for connections. The ‘nominated
inputs’ parameter of a connection will be a list of associations between expected inputs and
actual inputs of the incoming function. The ‘nominated inputs’ connection parameters are
depicted visually in this document as a box connected to the connection. One input of the
incoming function must be nominated for each expected input. This is shown, applied to
our example, in Figure 4.17.

howManyRecipe

recipe

A property is attached to the connection to
designate an input of the 'Recipe' node for
each expected input.

Figure 4.17. Nominated inputs. When an input with an ‘expected inputs’ parameter is connected
to a node, an input of the incoming function must be nominated as the one to be associated with
each expected input. This is depicted using a label attached to the connection. In this example, the
expected input named ‘quantity’ is associated with the ‘howMany’ input of the incoming partially
evaluated function.

In this document, nominated inputs are depicted if they would not otherwise be obvious to
the reader, and only with as much information as is needed to uniquely identify the input
in question. In cases where multiple inputs have the same name, they can be distinguished
by their originating node. There are three possible ways to show a nominated input:

64

4. Definition

1. If there is only one expected input, and the incoming function has only one input,
there is no need to nominate it (Figure 4.18).

expected inputs: a
No need to show nominated inputs because the
upstream node has only one input

Figure 4.18. Implicit nomination. In cases where the incoming function has only one input, the
nomination is not required, and is not always shown in drawings.

2. If the input name being nominated is unique, it can be nominated using only its
name (Figure 4.19).

expected inputs: a

c d

The upstream input 'c' can be uniquely identified
by its name alonea:c

Figure 4.19. Name-only nomination. In cases where the nominated input name is unique, it can
be nominated using its input name alone.

3. If the input name being nominated is not unique, its fully resolved name must be
used (specifying its node of origin as well as the input name). This is done by using
curly braces containing the node at which the input originates, followed by the input
name (Figure 4.20).

expected inputs: a

c {Q:c}

Both inputs of the incoming partially evaluated
function have the input name 'c', so the fully
resolved input name must be used. In this case
we have nominated the input 'c' that originates at
node 'P', not the one that originates at node 'Q'.

a:{P,c}

P b

Figure 4.20. Originating Node / Input Name nomination. In cases where the input name being
nominated is not unique, it can be uniquely identified using its originating node name and input
name, in curly braces.

4.10. Dimensions

We are going to adopt three ‘shapes’ in which we will consider data to occur: units, lists,
and tables. This is an extension of the three fundamental data types originally listed
by Keller [1980], which included atoms, tuples and graphs. Atoms were similar to our
‘units’, tuples were similar to our ‘lists’ and graphs were somewhat similar to our partially
evaluated functions, described in Section 4.8.

65

4. Definition

A Unit is a container for any item of data as we would normally know it. A number, a
block of text, a file, or an object comprising properties. A unit is zero-dimensional.
It may contain any other item of data, including a list or a table.

A List is an ordered array of units. As with any unit, each could contain a raw data of
any kind, a list or a table. A list is one-dimensional.

A Table is a hyperrectangle — a multi-dimensional rectangle of units of data. It can have
zero or more dimensions.

A table’s shape is defined by a list of its dimensions, each member of which is itself a list
defining that dimension’s column headings. In this document, the word ‘column’ is used
to refer generically to columns and rows since, in a multi-dimensional table there is no
useful distinction between the two. A depiction of a table structure is shown in Figure
4.21.

A B

X

Y

Z

1 2

3 4

5 6

Column headings

for dimension 1

Column headings

for dimension 2

Data

Figure 4.21. Table structure. Tables are depicted with shaded column headings on the left and top
of the table, providing a cross-reference for the table data. Tables of more than two dimensions
are not depicted visually in this document.

In this example, there are two dimensions, so the dimension list would consist of two
members, each of which would be a list: the first dimension would be the list ‘[X,Y,Z]’
and the second dimension would be the list ‘[A,B]’. There is no set order in which the
table’s dimensions must be displayed when depicted visually.

Multi-dimensional tables of more than two dimensions are difficult to depict visually due
to the limitations of paper, space, and common human experience. Tables of more than
three dimensions are even more difficult to depict. Data visualisation tools usually circum-
vent the problem by choosing two dimensions and summarising over the rest, or showing
subcategories within column headings or combining both approaches. In this document,
no data of more than two dimensions is depicted, and the problem is therefore avoided.

4.11. Iteration

As described in Section 2.5, three main approaches to iteration have been considered in
the past: special purpose nodes, enclosures and switch nodes. Special purpose nodes are
nodes which perform an iteration internally. They provide fields for the function, the
initialisation statement and the termination condition, analogous to a ‘for’ statement in a
C-family programming language. Cantata (Mosconi and Porta [2000]) took this approach.

66

4. Definition

Enclosures are where a section of the graph is enclosed by a special node which performs the
looping operation over the graph it encloses. LabView (National Instruments Corporation
[1998]) took this approach.

Switch nodes are the most common approach, but depend on a model of dataflow that
allows cyclicity (violating the principle of acyclicity listed in Section 3.4.3). With switch
nodes, instead of using the service-provider model as we have done here (see Section 4.6),
the connections must be seen as pipes, along which the data ‘flows’, with the node directing
flow down one pipe or another, providing a cyclical graph with an escape condition. The
U-Interpreter (Arvind and Gostelow [1982]) used this approach.

Special purpose nodes provide the better solution because they avoid cyclical graphs, but
without the benefit of partial evaluation they lose flexibility and reusability. Here we
propose a slightly different approach — a variation of the special-purpose node concept,
but which maintains acyclicity, flexibility and reusability by using partial evaluation.

Mosconi and Porta [2000] proposed breaking down the problem into two types of iteration,
which they called ‘horizontally parallel’ and ‘temporally dependent’, or ‘sequential’. These
classifications are useful, and are adopted here using the simpler terms ‘independent’
(horizontally parallel) and ‘dependent’ (sequential). Every iteration can be classed as
either one or the other of these two types.

• Independent — every iteration is independent of every other iteration;

• Dependent — there is at least one iteration that depends on the result of at least
one other iteration.

A series of iterations in which every iteration is independent of every other iteration would
not be called iterative in a mathematical sense. However, in a sequential programming
environment, because there is no additional cost involved in using iterative flow control
constructs to perform independent iterations, they are frequently used for independent
iteration. However, because independent iterations can be executed in parallel and depen-
dent iterations cannot, it is worth distinguishing between the two in a parallel program-
ming environment. Independent iteration is the easier to deal with, and is often addressed
using some form of ‘for-all’ loop (as described by McGraw [1982]). We will deal with
independent iteration first.

4.11.1. Independent Iteration

For independent iterations to be parallelised, the inputs for all iterations must be available
at the start. This may involve a set of different data inputs for the different iterations, or
a set of different functions for the different iterations (or both).

Dimensions provide a natural way to represent the functionality of a ‘for-all’ loop. If a
function is written to receive zero-dimensional inputs, what happens when data arrives
that has more dimensions? In this situation, where the incoming data has more dimensions
than the input can process, we can refer to the input as being ‘dimensionally overloaded’.

67

4. Definition

Imagine the data delivered to an input is a list of zero-dimensional members. The function
can compute the result for any particular member of the list but not the list as a whole.
A simple way to deal with this situation would be to compute the result once for each
member of the list, creating a corresponding list of output values as a result.

Figure 4.22 illustrates this with a function that adds the number ‘1’ to its input. In this
example, it receives a list of numbers as an input, meaning the input is dimensionally
overloaded, so it executes its function once for each member of the list, generating a list
as an output.

a

a+1

1

2

3

2

3

4

Figure 4.22. List in — list out. In this example, input ‘a’ expects zero-dimensional data but
receives one-dimensional data, so is overloaded by one dimension. It responds by computing its
output once for each dimension in the list — creating a list as an output.

Similarly, if a node receives a two dimensional table at one of its inputs, it can perform the
node function once for each item of data in the table, and output a corresponding table
of results (Figure 4.23).

The arithmetic is very simple: for each input that is dimensionally overloaded, the number
of dimensions by which it is overloaded is added to the number of dimensions in the output.
If lists added in this way lead to tables as outputs, each list becomes a column header of
the output table. Figure 4.24 shows a node that has two lists (one dimension each) as
inputs, resulting in a table of two dimensions as an output, using the input lists as column
headings. The number of dimensions in the output table is a simple sum of the numbers
of dimensions by which its inputs are overloaded.

It might be that what varies between iterations is not a number, but the function being
applied to the number. In Figure 4.25, we have three nodes, ‘Square’, ‘Root’ and ‘Log’,
which calculate the square, root and log, respectively, of their inputs. All three inputs are
connected to an upstream ID node with the input ‘a’, meaning they all inherit the input
‘a’. Their outputs are, in turn, connected to the ‘MakeList’ node, which takes three inputs
and generates a list of the three received values. The ‘MakeList’ node also inherits the
input ‘a’.

68

4. Definition

A B

X

Y

Z

2 3

4 5

6 7

a

a+1

A B

X

Y

Z

1 2

3 4

5 6

Figure 4.23. Table In — Table Out. In this example, input ‘a’ expects zero-dimensional data but
receives two-dimensional data, so is overloaded by two dimensions, adding two extra dimensions
to the output and resulting in another table.

10 20

1

2

3

11 21

12 22

13 23

a

a+b

1

2

3

b

10

20

Figure 4.24. Multiple Lists In — Table Out. Both inputs ‘a’ and ‘b’ expect zero-dimensional data
but receive one-dimensional data, meaning they add one dimension each to the output, resulting
in a two-dimensional table with the input lists as column headers.

The purpose of this structure is that it results in an output that consists of a list of three
different functions of the same input. When this is connected to input of the ‘AddOne’

69

4. Definition

node, the ‘AddOne’ node inherits input ‘a’. In this example, the inherited input ‘a’ is
provided with the value ‘2’ and a list of three values is generated as the output of the
‘AddOne’ node.

b
b+1

5

2.414

1.301

a

2

a

Root LogSquare

MakeList

a a a

a

AddOne

Figure 4.25. Applying a list of functions to an input. In this example, the graph is used to create
a list of three functions of the same input, ‘a’. When connected to the ‘AddOne’ node’s input ‘b’,
input ‘b’ is dimensionally overloaded. If we then provide a value for input ‘a’, the ‘AddOne’ node
generates a list of three values as its output.

Sometimes, we need to allow node functions to process dimensional data directly. This
applies for some very simple uses, such as where we want to obtain a sum or average of a
list of numbers. We need to be able to ‘tell’ the node that we want it to pass dimensional
data into the node function, rather than intercepting it.

This requires a second input parameter (in addition to the ‘expected inputs’ parameter
introduced in Section 4.9) to signify the number of expected dimensions. This is called the
‘dimensions’ parameter. The ‘dimensions’ parameter for an input signifies the maximum
number of dimensions the function expects to receive on that input, and can be an integer
0 or greater, or can be set to ‘Infinity’. As with the ‘expected inputs’ parameter, the
‘dimensions’ parameter is specified in a label attached to the input (Figure 4.26), which
will also contain the ‘expected inputs’ parameter if applicable.

dimensions: 1

Figure 4.26. Visual depiction of the ‘dimensions’ input parameter. The ‘dimensions’ input param-
eter is shown, together with other input parameters, in a label attached to the input in question.

The default value for this parameter, if not set explicitly (and if not depicted in diagrams),
is zero. The ‘dimensions’ parameter defines the maximum number of dimensions that can

70

4. Definition

be processed by the node’s function. If the number of dimensions received is fewer than or
equal to the ‘dimensions’ parameter, all received data will be passed into the function. If
the number of dimensions received is greater than the ‘dimensions’ parameter, the input
is overloaded and only the set number of dimensions will be passed into the function at a
time. The first set number of dimensions will be passed in, and the node will iterate over
the rest.

As an example, we can modify the example given in Figure 4.24. In Figure 4.27, input
‘a’ is set to expect one dimension — a list — which it then sums in the function. When
this input is provided with a table, it is overloaded by one dimension. The first dimension
([X,Y,Z]) gets passed into the function, and it iterates over the second dimension ([A,B]).
Input ‘b’ does not have a ‘dimensions’ parameter, meaning it will take the default value
of zero and, since it is provided with a list (one dimension), is also overloaded by one
dimension, so iterates over that list. The result is a table with two dimensions, with [A,B]
as the list of column headings for its first dimension and [10,20] as the list of column
headings for its second dimension.

10 20

A

B

19 29

22 32

a

sum(a)+b
b

10

20

A B

X

Y

Z

1 2

3 4

5 6

Figure 4.27. Dimensionally overloading an input with a ‘dimensions’ parameter. In this example,
inputs ‘a’ and ‘b’ are overloaded by one dimension each, meaning they add a dimension each to
the output, resulting in a two dimensional table.

Any of the functionality described so far could be combined with any other functionality
in any combination; meaning a node could use dimensional overloading as well as be-
ing partially evaluated and using ‘expected inputs’ to designate an input as expecting a
function.

4.11.2. Dependent Iteration

Dependent iteration is where at least one iteration is dependent on the result of at least
one other. Some previous approaches to this functionality have involved setting up loops
in the graph, with a node acting as a ‘switch’ to break the loop. This breaks the principle
of acyclicity (Section 3.4.3) and relies on a model of dataflow in which connections act as
pipes, rather than using the service-provider model.

With partial evaluation, that approach and its shortcomings can be avoided. To perform

71

4. Definition

an iteration, we must execute some function repeatedly, starting with some initial input,
then in each subsequent iteration use the previous iteration’s output as the new input,
until a termination condition is satisfied, at which point the final output value is delivered
as a result. To achieve this, we need to be able to do four things:

• designate a node as an iteration node;

• specify the input over which it should iterate;

• specify a starting value to be applied to the iteration function’s input in the first
iteration;

• specify a termination condition (or, inversely, a continuation condition), to be applied
to the input before each iteration, to decide whether the iteration should terminate.
Once terminated, the node should provide the most recent result of the iteration
function as an output (or provide the starting value as an output if the iteration
terminates before the first iteration).

Here we will depict an iterating node diagrammatically by showing a ‘rotation’ symbol
() above the designated input, indicating that the node is an iteration function, that it
should iterate over this input, and that the input is no longer able to receive connections.
An iterating node can only iterate over one input.

When an input is designated as an iteration input, the node must generate inputs on which
it can receive a starting value and termination condition. They are given shorthand names
‘˜sv’ for the starting value and ‘˜tc’ for the termination condition, using a tilde as a prefix
(a character that will be forbidden in user-defined input names), to ensure uniqueness. Like
inherited inputs, they are depicted and referred to as ‘derived’ inputs. The starting value
mirrors the input parameters of the input being iterated over; the termination condition
input has predetermined input parameters of ‘0’ for the ‘dimensions’ parameter and the
item ‘nominatedInput’ for the ‘expected inputs’ parameter. If the node has other open
inputs (inputs that are not connected), it must partially evaluate and transmit them to
its downstream nodes, as it would normally.

An iterating node is depicted diagrammatically as shown in Figure 4.28. The input being
iterated over (‘input’ in this example) is shown with the ‘rotation’ symbol above it and the
two derived inputs (‘˜sv’ and ‘˜tc’) have been generated. Although the ‘expected inputs’
parameter is shown in this example, it is not always be shown in diagrams, since all ‘˜tc’
inputs have the same input parameters.

~sv ~tcinput

Figure 4.28. Depiction of dependent iteration. A node is depicted as having been set to iterate
over a particular input with a ‘rotation’ symbol placed over the input in question. The node will
then generate two derived inputs, for the starting value (‘˜sv’) and termination condition (‘˜tc’).
The termination condition has an expected input named ‘nominatedInput’.

72

4. Definition

A simple example of this functionality would be to use an iteration to count to ten. In the
example shown in Figure 4.29, the main function adds one to its input. It is set to iterate
over its input, is given the starting value ‘0’ and, as a termination condition, a function
which outputs true if its input is ‘10’.

~sv ~tcinput

Add 1

0

a

true if a=10

10

Figure 4.29. Using dependent iteration to count to ten. In this example, a node whose function
adds one is set to iterate over its input. Its starting value is ‘0’ and it is set to terminate when its
output reaches 10, at which point it outputs ‘10’.

This function starts with the number ‘0’. It tests this against the termination condition,
receives the output ‘false’, proceeds to the iteration function, which adds one, producing
the output ‘1’. It then applies this to the input of the termination condition again, which
outputs ‘false’, and the new number is applied again to the iteration function; and so on.
On the final iteration, the iteration function produces the output ‘10’. This is applied to
the input of the termination condition, which this time outputs ‘true’, telling the node to
terminate the iteration, at which point the node will output the most recent result of the
iteration function, which is ‘10’.

A common example of iteration would be to use a counter to perform an iteration a set
number of times. This is more similar to the way a normal ‘for’ loop works. An example
is shown in Figure 4.30.

In this example, the ‘Iteration’ node has one root input, named ‘dataAndCounter’, which
expects an object containing a ‘data’ property and a ‘counter’ property. Its functionality
uses this input to iterate the data, increment the counter, and output a combined object
containing the new values.

When we set its ‘dataAndCounter’ input to iterate, it generates the ‘˜sv’ and ‘˜tc’ inputs.
We connect the ‘˜sv’ input to a node that delivers starting values of both; and we connect
the ‘˜tc’ input to a node that outputs a partially evaluated function that returns ‘true’
when the counter reaches a chosen limit. Because the ‘Tc’ node has two inputs, we need
to explicitly nominate the ‘feedback’ input as the expected input for ‘˜tc’.

The output of the ‘Iteration’ node is a node that has three inputs: ‘startingData’, ‘start-
ingCounter’ (both inherited from the ‘Sv’ node) and ‘limit’ (inherited from the ‘Tc’ node).
We could use this output to perform the iteration with any starting data, starting counter
and limit we chose.

73

4. Definition

~sv
~tc

dataAndCounter

Use the input `dataAndCounter'
object to generate a new
'dataAndCounter' output object

{value:startingData,
 counter:startingCounter}

true if feedback[counter]=limit
feedback limit

Figure 4.30. A structure similar to a ‘for’ loop. This structure creates a node that has inputs for
the starting data, starting counter and the ‘limit’ (which determines the counter value at which
the loop should terminate).

As with the features introduced previously, the dependent iteration feature can be com-
bined with all others. This means that the node can be partially evaluated, any inputs
can have ‘expected inputs’, and the node can receive functions or dimensional data on any
of its inputs.

4.12. The Generalised Iteration Node

This section illustrates how a generalised iteration node can be built using the features
described in this chapter. The aim of a generalised iteration node is to create a node that
can be used for any iteration, with similarity to the iterative structures we could expect
most users to be familiar with.

4.12.1. Common Iterative Structures

The most common iterative structures in most programming languages are ‘for’ loops,
‘do/while’ loops and recursion. JavaScript, as an example of a C-family language, provides
all three. An example of a ‘for’ loop is shown in Snippet 4.1.

Snippet 4.1 for (let i = 0; i < 10; i++){
... // iteration statements

}

The ‘for’ loop in JavaScript contains four statements: the first three contained in paren-
theses, followed by the iteration statement, comprising a collection of statements enclosed
in curly braces. In parentheses, we have:

• the initialisation statement (‘let i = 0’ in our example). This is most often used to
define some form of counter;

74

4. Definition

• the continuation condition (‘i < 10’ in our example). This returns a value, coerced
to a Boolean which, if ‘truthy’, will allow the iteration to continue and if ‘falsy’ will
terminate the iteration;

• the step function (‘i++’ in our example). This is executed after the iteration state-
ment in each iteration, and is usually used to increment or ‘step’ a counter from one
iteration to the next.

The ‘for’ loop works by executing the initialisation statement, followed by the continua-
tion condition (exiting the loop if false), then the iteration statements and finally the step
function, repeating until the continuation condition returns false. JavaScript’s ‘do/while’
loops are similar to its ‘for’ loops, but without the initialisation and step function state-
ments. They come in two variations, giving the programmer the option to evaluate the
continuation condition either before the iteration statement (in a ‘while’ loop) or after
iteration statement (in a ‘do...while’ loop). Examples of both are shown in Snippet 4.2.

Snippet 4.2 // while loop
let testVal = 0;
while (testVal < 10){

... // iteration statements
}

// do ... while loop
let testVal = 0;
do {

... // iteration statements
} while (testVal < 10);

The ‘while’ and ‘do...while’ loops include only an iteration statement (in the curly braces
in these examples) and a continuation statement. The same functionality as the ‘for’
loop can be achieved by preceding the loops with an initialisation, and including the step
function within the loop. The ‘do...while’ loop allows the programmer to guarantee that
the iteration statement will run at least once, whereas the ‘while’ statement allows the
loop to be exited before the iteration statement is first run.

Recursion in JavaScript, and other programming languages, allows a function to call itself.
An example is shown in Snippet 4.3.

Snippet 4.3 // First define the recursive function
function recursiveFn (a){

// ... iteration statements

if (a === 0) return 0;
else return recursiveFn (a - 1) + 1;

}

// ... then call it.
let result = recursiveFn (10);

75

4. Definition

There are six important components of a recursive function.

• The iteration statements (‘// ... iteration statements’ in our example). These
are executed in every iteration.

• The termination (or, inversely, continuation) condition (‘if (a === 0)’ in
our example), which determines whether the recursion should continue.

• The base case statements (‘return 0;’ in our example), which are executed when
the recursion terminates.

• The continuation case statements (‘return recursiveFn(a - 1) + 1’ in our exam-
ple), which are the statements to be executed if the recursion does not terminate.
These will include the recursive function call (‘recursiveFn(a - 1)’ in our example).

• The step function (‘a - 1’ in our example). This determines the new value used
for the argument in the internal function call.

• The initial value to be provided as an argument to the recursive function (10,
in our example, which is provided within the initial function call: ‘let result =
recursiveFn(10)’).

Recursion is available in JavaScript (and many other languages) for convenience, but is
not a necessary programming construct: it is a form of loop, and is implemented by the
language using hidden loops. Since they are implemented with loops, it is always possible
to implement a recursive algorithm as a loop in a way that is at least as efficient as the
recursive version of it. Keller [1980] showed, specifically for dataflow, that it is possible to
use a variation of the partial evaluation concept (what he called the ‘Apply’ operator) to
eliminate recursion. Although this performs the recursion from a computability point of
view, it does not necessarily address the potential for parallelism.

Recursion, with its potential to enhance convenience and parallelism (and in particular
with respect to multiple recursion) will be reserved for further work. Instead, in this
section, we address how to achieve generalised loop-like iteration in dataflow.

4.12.2. Loop-Like Iteration

A generalised iteration node is created here in eight steps, described below.

4.12.2.1. Step 1 — An ‘ID’ Node

The starting point for a generalised iteration node is that we need an open input to which
a later user can connect the iteration function. We create this using an ‘ID’ node — a
node with just one input that provides its input unchanged as an output. An example is
shown in Figure 4.31, which has a single input named ‘iterationFunction’.

4.12.2.2. Step 2 — Setting Expected Inputs

We want this central ID node to expect to receive the iteration function on its input.
In each iteration, the iteration function should take the previous value as an input and

76

4. Definition

iterationFunction

ID

Figure 4.31. Step 1. The central node is an ‘ID’ node, meaning it returns its input unaltered.

output the new value. As described in Section 4.9, we achieve this by setting the ‘expected
inputs’ input parameter to expect an input, in this case named ‘prev’. As shown in Figure
4.32, when we set the input parameter, the node generates derived inputs corresponding
with the expected inputs, in this case generating one derived input named ‘prev’.

iterationFunction

ID
prev

Figure 4.32. Step 2. The ‘expected inputs’ parameter of the ‘iterationFunction’ input is set to
‘prev’. This tells the node it should expect to receive a function with one input. In response, it
generates a derived input of the same name.

4.12.2.3. Step 3 — Iterating Over the ‘prev’ Input

It is this new derived input, ‘prev’, which we want to iterate over. We can use the
‘dependent iteration’ functionality defined in Section 4.11.2 to achieve this (Figure 4.33).

iterationFunction

ID
prev

~sv
~tc

expected inputs:nominatedInput

Figure 4.33. Loop-like iteration, step 3. The node is set to iterate.
Step 3. The node is set to iterate over its input named ‘prev’, which prompts it to

generate derived inputs for the starting value (‘˜sv’) and termination condition (‘˜tc’) of
the iteration.

The ‘prev’ input is designated as an iteration input (depicted here with the ‘rotation’
symbol displayed above it). In response, the node generates derived inputs for the starting
value and termination condition, named ‘˜sv’ and ‘˜tc’. As described in Section 4.11.2,
the termination condition has the expected inputs parameter ‘nominatedInput’.

This is enough for a simple iteration. However, iterations more often use some form of
counter or supplementary data to compute new values or to decide when to terminate. To
make it as easy as possible for users, we want to make our generalised node more similar
to the ‘for’ loops described in Section 4.12.1.

4.12.2.4. Step 4 — Splitting and Recombining the Data

Since a node can iterate over only one input, we need a way for that input to convey not
only the previous value but also a counter. We do this by combining both into a single
item of data. To perform the calculations, we will then split this combined item of data
into its ‘value’ and ‘counter’ components, before recombining them again as an output,

77

4. Definition

ready to be fed back into the next iteration. This action to split and then recombine data
requires a graph of the form illustrated schematically in Figure 4.34.

Combined data, containing the

previous value and counter, is

used as an input

The input data is split to

obtain, separately, the

previous value...

... and the previous

counter

A new value is calculated

using the previous value

and counter

A new counter is

calculated using the

previous value and

counter

The new value and counter are

recombined to make the new

output

Figure 4.34. Generalised Iteration — The split-recombination form. The general form of an
iteration requires a combined data input containing the previous value and counter, which are then
split to obtain them separately so that they can be operated on separately, before recombining the
new value and counter into a combined object.

In order to build this structure, the splitting and combination actions require three com-
ponents:

• the ‘Combiner’ node — a node that takes a value and counter and combines them
into a single object;

• the ‘GetValue’ node — a node that takes a combined object and obtains the value;

• the ‘GetCounter’ node — a node that takes a combined object and obtains the
counter.

These three components are shown in Figure 4.35. In our version of the split-recombination
graph, we need the user to be able to provide, as well as the iteration function, the function
to calculate the new value and the function to calculate the new counter, using the previous
value and counter each time to calculate the next.

In Figure 4.36, we have a skeleton of the required graph superimposed on the split-
recombination form (shown by the grey dashed line), with the three components outside
that section of the graph. In this structure, we have the combined input at the top (la-
belled ‘comb’), a node to obtain the value (derived from the ‘GetValue’ node), a node to
obtain the counter (derived from the ‘GetCounter’ node), and the combiner at the bottom.

78

4. Definition

Combiner
value counter

{value,counter}

GetValue
combined

value

GetCounter
combined

counter

Figure 4.35. The generalised iteration requires three components: the ‘Combiner’ node, which
takes a value and counter and combines them into a single object; the ‘GetValue’ node, which
extracts a value from a combined object, and the ‘GetCounter’ node, which extracts the counter
from a combined object.

value
countervalueStep

value
countercounterStep

GetValue

GetCounter

Combiner value
counter

value

counter

comb

NextValue NextCounter

Figure 4.36. Step 4. Using the Split-Recombination form together with the three components, we
can set up the skeleton of our general iteration graph.

In the lower left side of the split-recombination graph, the ‘NextValue’ node has an open
input named ‘valueStep’ with the expected inputs ‘value’ and ‘counter’; and has generated
the two corresponding derived inputs accordingly. In the lower right side of the graph,
the ‘NextCounter’ node, similarly, has an open input labelled ‘counterStep’ with the same
expected inputs, ‘value’ and ‘counter’. These two inputs, ‘valueStep’ and ‘counterStep’,
will be inherited through the graph and enable us to define later how we want to calculate
the new value and counter from the previous value and counter.

79

4. Definition

4.12.2.5. Step 5 — Connecting the Split-Recombination Graph

When we connect the nodes together in this graph, as shown in Figure 4.37, the open inputs
are all inherited by their downstream nodes and therefore all appear in the final node. To
create a clearer output at the end, a final node has been added, labelled ‘IterationFn’,
which shows the inherited inputs.

value
countervalueStep

value
countercounterStep

GetValue

GetCounter

Combiner value
counter

value

counter

comb

NextValue NextCounter

valueStep

counterStep

valueStep

counterStep

comb
comb

comb comb

comb

combIterationFn

Figure 4.37. Step 5. The nodes are connected together. The open inputs cascade down the graph
and are inherited by the ‘IterationFn’ node at the end.

This final node is the one that can be connected to the input labelled ‘iterationFunction’ in
Step 3 (Figure 4.33). The node in Step 3 also has inputs for the starting value (‘˜sv’) and
termination condition (‘˜tc’). These require similar processes of splitting and combining
data.

4.12.2.6. Step 6 — Defining the Termination Function

The termination condition input shown in Step 3 (Figure 4.33) expects a function with
one input (called ‘nominatedInput’). We want a future user to be able to provide this
function and can set up a graph to make that easier. Like the value step and counter step
functions discussed in Step 4, we want the user to be able to provide a function that takes
the previous value and counter as inputs.

Shown in Figure 4.38, the core of this functionality is a node with an input labelled ‘ter-
minationFn’. This input has ‘value’ and ‘counter’ as expected inputs, which are therefore
generated as derived inputs. As in Step 4, the ‘GetCounter’ and ‘GetValue’ components
are used to separate values from initially combined data. The combined input, labelled
‘comb’, cascades through the graph and is inherited at the end. As before, a final node
is added for clarity, in this case labelled ‘TerminationFn’. This is the node that will be
connected to the termination condition input (labelled ‘˜tc’) in Step 3.

80

4. Definition

value
counterterminationFn

GetValue

GetCounter

comb

comb

comb

comb

terminationFn

comb
TerminationFn

Figure 4.38. Step 6. The termination function takes a similar but simpler form, splitting the
combined object into its components to make separate inputs to the termination function, which
will return ‘true’ to terminate or ‘false’ otherwise.

4.12.2.7. Step 7 — Defining the Starting Value

For the starting value, we want our future user to be able to define the starting value and
starting counter separately. We can do this by using our ‘Combiner’ component. This is
simple enough, except that its input names, ‘value’ and ‘counter’ are less expressive than
would be ideal. To make these input names more communicative, we can connect these
inputs to upstream nodes with differently named inputs, effectively renaming them.

This is shown in Figure 4.39, with the inputs renamed in this way to ‘startingValue’ and
‘startingCounter’. Once again, a final node is added, named ‘StartingValueFn’, so that we
can clearly see the end product with its set of inputs.

Combiner value
counter

value

counter

startingValue

startingCounterStartingValueFn

startingValue

startingCounter

startingValue startingCounter

Figure 4.39. Step 7. The starting value node is simple, but in this case two additional nodes have
been added which have the effect of changing the names of the inputs to make them more expressive:
‘value’ being renamed to ‘startingValue’ and ‘counter’ being renamed to ‘startingCounter’.

4.12.2.8. Step 8 — Connecting the Components

Finally, these three new components — ‘IterationFn’, ‘TerminationFn’ and ‘StartingVal-
ueFn’ — can be connected to the component shown in Step 3 to obtain our end result.

81

4. Definition

In Figure 4.40, these three nodes are connected to the central ID node. When using the
‘expected inputs’ functionality, we have to specify which input of the connected function
corresponds to which expected input. So, when the ‘IterationFn’ node is connected to the
‘iterationFunction’ input, we must use the connection parameter to specify that input of
the received function named ‘comb’ should be treated as the expected input ‘prev’. The
ID node then inherits the other two inputs of the connected function — ‘valueStep’ and
‘counterStep’ — both of which have expected inputs ‘value’ and ‘counter’ (recall Step 5,
Figure 4.37).

previterationFunction
ID

~sv

~tc

valueStep

counterStep

combIterationFn

valueStep
counterStep

terminationFn

comb

startingValue

startingCounterStartingValueFn

terminationFn

startingValue

startingCounter

startingValue

startingCounter

terminationFn

valueStep
counterStep

GeneralIterator

GetValue

startingValue

startingCounter

terminationFn

valueStep

counterStep

TerminationFn

expected inputs:value,counter

expected inputs:value,counter

expected inputs:value,counter

expected inputs:value,counter

expected inputs:value,counter

expected inputs:value,counter

Figure 4.40. Step 8. The components are combined to create the ‘GeneralIterator’ node as a result.

The termination function input, named ‘˜tc’, has an expected input (not shown) named
‘nominatedInput’, which is associated via the connection parameter to the input of the
connected function called ‘comb’. The ID node inherits the other incoming input, called
‘terminationFn’ which, like ‘valueStep’ and ‘counterStep’, has expected inputs named
‘value’ and ‘counter’ (recall Step 6, Figure 4.38).

Since the output of this node is the combined object (containing both the final value
and the final counter), we can use one of our components to extract just the value. The
‘GetValue’ component is used again here to extract just the value, and inherits all the
open inputs.

Finally, as in previous cases, a node is added to the end to give us a clearer view of the
end product, in this case named ‘GeneralIterator’. This is our end result: a node that

82

4. Definition

can be used to perform any iteration, with five inputs (‘startingValue’, ‘startingCounter’,
‘terminationFn’, ‘valueStep’ and ‘counterStep’), of which three have an expected input
setting. The result is shown in Figure 4.41.

startingValue

startingCounter

terminationFn

valueStep
counterStep

GeneralIterator

expected inputs:value,counter

Figure 4.41. The Generalised Iteration Node. The final node contains inputs for the starting value,
starting counter, termination function, value step and counter step. The last three have expected
inputs of ‘value’ and ‘counter’.

Having defined this general iterator once, if used in a unified global dataflow coordination
system, it could be reused in any other iteration with a single value and counter. Future
programmers could use this component rather than having to redefine it themselves.

Whereas this iteration iterates over two values — a ‘value’ and a counter — a similar
technique could be used to define a general iterator with three, four or any other number
of values, or to modify this iterator to create one capable of handling more components.
An even more generalised iterator could be conceived, capable of performing an iteration
with an arbitrary number of values. For example, we could imagine functionality in which
an input to the general iterator tells it how many values are involved in the iteration,
and the node would generate the required number of inputs (a starting value and step
function) for each. Thus, an iteration with two components (as in the example described
above) would generate four inputs in addition to the termination function.

To achieve this would require additional features. Section 7.2.1 (Manipulating Partially
Evaluated Functions and Graphs) describes a hypothesised feature that could contribute
to such functionality, though the extent to which it would be useful in this situation is
still open to debate. As the number of components increased, the generalised version of
the iteration would become increasingly cumbersome, making it arguably easier to create
one from scratch.

4.13. Function Isolation

The fact that nodes run functions received via their inputs exposes them to potential harm
from malicious upstream nodes. It could result in code that leaks data, or changes the
outcome of subsequent executions.

To prevent this, the system needs a way of isolating untrusted code. To some extent, it
is a matter of node autonomy for them to defend themselves and their execution engines
from potential harm, so it does not need to be dictated by the system. However, since it
is a universal problem, it is worth considering how this can be done, and establishing a
standardised approach.

83

4. Definition

There are several methods by which code can be isolated, with varying levels of resource
cost. The simplest method to implement, provided by some operating systems, is to run
code in a virtual machine. This requires creating a new virtual machine for each execution,
and destroying it when completed. It is an effective method, but carries a high resource
cost. Another method would be convey functions in the form of their abstract syntax tree,
to be compiled by the function using a compiler that only includes safe language features.
This would avoid the virtual machine overhead. A third possible approach would be to
make the code safe at the time it is created or edited, so that it can be run safely without
needing a virtual machine — doing the work at save-time rather than run-time.

The same code may be executed multiple times, at time-critical moments. This means a
virtual machine would incur its overhead repeatedly. However, we can expect code to be
created or edited only infrequently in comparison, and at non-time-critical moments; work
done instead at the time the code is saved would only incur its overhead infrequently. One
way to do incur the overhead at save-time rather than run-time would be to parse the
code at save-time using a language parser that only included the safe language features.
This is illustrated in Figure 4.42.

...

...

...

User provides instructions, as text.

Node parses text using a parser
that only includes safe language
features.

After partially evaluating, node
outputs an abstract syntax tree
representing the (safe) parsed
instructions.

For execution, this node compiles
the abstract syntax tree (which
defines a safe function) into code,
which can then be run in a non-
isolated environment.

Figure 4.42. Parsing code for non-isolated environments. Untrusted code could be parsed and
recompiled into a trusted version.

Code that has been made safe could then be run in a less isolated but more efficient
environment. The Google Caja product3 provides something like this functionality. This
approach depends to some extent on trusting inputs that arrive from other nodes, but
allows for the possibility of setting up networks of trusted host machines, through which
code safety could be certified.

For nodes that do not trust each other, the advantages are not lost. Where a node has
multiple inputs, they do not necessarily all arrive at once. If one input received a function,
the node could pre-emptively parse that function to make it safe, before receiving values
on its other inputs, enabling it to perform a fast execution when the last of its inputs
arrived.

3https://developers.google.com/caja/

84

https://developers.google.com/caja/

4. Definition

A similar approach provides us with a way to make nodes indifferent to the language used
by the user to enter instructions. A safe parser could be written to parse a language
in which untrusted parsers could be written, which would make the system extensible
to other as-yet unwritten languages — enabling arbitrary language parsers to be written
by anyone who wanted to write node functions in a language not previously available.
Combined with a central register of these third-party languages, it would mean a node
function could be written in any language for which a parser had been written, which
could in turn be executed by any node.

Such a system is would be built up in layers. In the bottom layer, we have the underlying
hardware, which has its own base language. Written in this base language is the safe
parser, which defines the language suitable for running untrusted code. This is the ‘parser
parser’; that is, a parser for parsing the untrusted code that defines a third party parser.

Using this parser parser, it is safe for an untrusted user to submit untrusted code that
defines a new language. The parser parser will parse the untrusted parser into a safe
version of it written in the base language. This safe version of the parser could then be
used to run the untrusted code submitted by untrusted users as node functions. The two
key steps: first defining, and then using, the new language are illustrated in Figure 4.43.

The 'Parser parser'

User-defined language parser 1. An untrusted user submits a language
parser defining a new language

2. The untrusted code is delivered
to the 'parser parser', which parses
it and outputs a safe version of it
encoded in the base language.

d in

Language Registry

function: ...

 ...

 ...

language: newLanguage

5. The node consults the central
registry to obtain the safe
parser for 'newLanguage', which
it can then use to parse the
function provided by the user to
transform it into abstract syntax
tree, and subsequently the
base language, enabling the
node to execute the function on
its underlying hardware.

4. The node function, written in
the new language, is provided
by the user, together with a
field identifying the language in
which it is written.

Figure 4.43. Defining a new language. A parser can be used to make code safe. A parser for
parsing a user-defined language parser would enable any user to define a language that other users
could use to write functions.

This infrastructure depends on there being a single universally understood language, ex-
ecutable by all hardware. As discussed in Section 4.1, this cannot be relied upon either.

Parallel language parsing infrastructure could be written for more than one type of hard-
ware. It could be that some functions require one of a list of types of hardware, and a node
receiving them would have to find suitable hardware on which to execute them. The loca-

85

4. Definition

tion of applicable hardware could, perhaps, be stored along with the language definition
in a central registry. Many of these implementation issues fall beyond the scope of this
work, but the aim of achieving this level of flexibility is desirable, and the infrastructure
needed to achieve it seems at least plausible.

4.14. Notifications and Time-Stamps

As discussed in Section 4.2 (Functional Purity), the system is envisaged as a live, dynamic
interactive system, in which nodes may at any time be updated, both during development
and operational use. While this deviates from the traditional model of dataflow, in which a
graph is seen as statically representing a single execution of a program, this model is chosen
for its utility and closer representation of real-world programming realities. However, the
propagation time between upstream and downstream nodes does have the undesirable
effect of introducing latency. This can lead to two types of error:

• out-of-date errors — where a node’s output value is out of date but was correct at
some previous point in time;

• incorrect-value errors — where inputs arrive out of order and as a result a node
generates an output value that does not correspond to any synchronous set of inputs
and was not correct at any point in time.

Out-of-date errors occur between the moment an upstream node is updated and the mo-
ment a dependent downstream node’s output is updated accordingly. Because there is
always a propagation time, this type of error is a certainty: it will occur with every up-
date, and the best we can hope for is to mitigate it by minimising the amount of time for
which it occurs.

Incorrect-value errors happen when an output corresponds to a combination of inputs that
never occurred. Imagine we have the graph shown in Figure 4.44. In this graph, an update
from Node A will arrive at Node B via two routes — one long and one short.

In this situation, an update from Node ‘A’ could arrive at Node ‘B’ and, depending on
the relative speeds of transmission and computation, Node ‘B’ could update its value
and report its result before the new input value arrives via the longer route. Only two
values can be correct at Node ‘B’ — the one corresponding to the old value at Node
‘A’, or the one corresponding to the new value at Node ‘A’. If Node ‘B’ outputs a value
corresponding to the old value via its first input but the new value via its second input,
it is an incorrect-value error.

Both types of error can be mitigated if we introduce the concept of an ‘update notification’.
An update notification is a message sent by a node to its subscribers whose purpose is
to propagate the information that an update has taken place, even if the updated data
itself is not yet ready. In order to reconcile notifications with their corresponding data
updates, both must contain data to uniquely identify the originating update. This could
be done using the node of origin with a time-stamp, or a user interface identifier with a
time-stamp.

86

4. Definition

A

B

Figure 4.44. Update arriving via two routes. In this structure, when Node ‘A’ is updated, the
new data is likely to arrive at Node ‘B’ sooner via the short route than the long route. This could
cause Node ‘B’ to execute and compute a new output before the new value arrives via the longer
route. This would generate an incorrect-value error.

When a node is updated, or when it receives an update notification from an upstream node,
it will immediately (before starting to compute its output) send an update notification on
to its subscribers. In this way, the notification is able to propagate quickly through the
graph without being delayed by the computation. It does not speed up the delivery of
the corresponding data but does allow nodes to ‘know’ that new data is imminent and to
make decisions accordingly.

If a node receives a request for its output in the interval between receiving a notification
update and having new data available, it can choose to provide the previous (most recently
available) value, or wait and deliver the upcoming value when it is ready, depending on
the priorities of its clients or owners.

Incorrect-value errors can in some cases be eliminated. In the graph shown previously, in
Figure 4.44, it is likely (depending on the propagation times) that Node ‘B’ will receive
the notification update via the long route before it receives new data via the short route
and has time to compute a new output value. When it receives the notification via the
long route, it can immediately recognise that the second update notification originates
with the same update as the first, and can wait until both have arrived before computing
its new value. Only if there are more extreme differences in the lengths of routes is it
likely to experience an incorrect-value error, and even then for a shorter period of time
than it would without update notifications.

It is possible that a change to a node’s input may not change its output. This could
be a characteristic of that particular computation, or could be a result of using triggers
as described in Section 4.7. In either of these scenarios, to avoid downstream nodes
having to recompute their values unnecessarily, it is helpful to be able to cancel an update

87

4. Definition

notification. To account for this, we can introduce an update notification cancellation
message. If this message is received by a node then, if no other changes have taken place,
it can send the cancellation message on to its subscribers and revert to its cached output
value if it has one. This avoids having to recompute its value or resend previous data
updates to its subscribers.

4.15. Subscription Types

If updates occur with high frequency, it brings about the possibility that the interval
between updates could be shorter than the time taken to compute outputs. Propagation
times, particularly in networked environments introduce the additional complication that
updates could arrive out of order. These two issues present nodes with a choice about how
to serve their subscribers.

The first decision a node owner has to make is whether the node should produce an output
for every set of inputs, even if that means computing values for inputs already known to
be outdated. This would be needed if, for example, the feed of values were being used to
assemble a time series. If so, the node will need to request the same of its upstream nodes
and, if the interval between updates is shorter than the computation time, will have to
trigger multiple computations in parallel (which is possible with the separation between
nodes and their resources discussed in Section 4.4).

If historical output values are not needed, the second decision the owner has to make is
whether the node should be allowed to output values that are known to be out-of-date. If
not, the node can abort a computation if a new notification is received while it is under
way, and ignore data it receives that it knows to be outdated. This will produce more
up-to-date outputs but has the danger that, in a high frequency environment (in which the
interval between updates is less than the computation time), computations might never
finish without being superseded and aborted.

Between these two extremes of computing every update and computing only those believed
to be current, the decision is more complex. The node can make choices about whether
to propagate outdated notifications if they arrive out of order; whether to commence
computations on outdated data if superseding notifications have already been received
or computations started; whether to abort computations if superseding notifications are
received or computations started while they are under way; or even whether to ignore
newer data updates that arrives while a computation is under way. These decisions can be
decided by node owners or agreed through contracts — in this case, types of subscriptions
— between nodes and their internal or external clients. Nodes are, however, dependent on
their upstream nodes for their ability to deliver their service. Each node would, therefore,
need to request at least as high a level of service of its upstream nodes as it delivers to
its clients, causing high service level requests, like subscriptions themselves, to escalate up
the graph.

A variation of the problem is if updates occur with a higher frequency than is needed by a
downstream node. The most extreme version of this problem is if the data is a continuous

88

4. Definition

series. In this case, it may be necessary to throttle the updates using a subscription
that contains a specific frequency or a maximum frequency with which updates should be
delivered.

4.16. Synchronisation

Distributability is a key component of the system. With nodes hosted on different ma-
chines, their clocks will not be perfectly synchronised. If update notifications include the
identity of the machine on which the update originated, we can reliably compare time-
stamps that originate in the same place. For those that originate in different places, the
problem remains.

This problem was discussed briefly by Bainomugisha et al. [2013], who suggested two
solutions. Their first suggestion was to use a centralised clock, which provides a consistent
time-stamp but, they pointed out, creates a single point of failure, a bottleneck and a
communication overhead. Their second suggestion was to treat events that occur within
a certain time interval of each other as having occurred simultaneously, pointing out that
it might only be feasible for programs with relatively infrequency changes.

Because simultaneity is transitive property but temporal proximity is not, if the number
of updates is high it could result in a chain of updates, all treated as having occurred at
the same time, which actually stretches the ‘effectively-simultaneous’ interval far beyond
what was intended. In the graph shown in Figure 4.45, we have three nodes, ‘A’, ‘B’, and
‘C’, all connected to a single downstream node, ‘D’.

A B C

D

Figure 4.45. Multiple connections with high frequency updates. In this scenario, Node ‘D’ has
three upstream nodes, all delivering high frequency updates.

As illustrated in Figure 4.46, if several inputs all update with high frequencies, where
the interval between them is within the ‘effectively simultaneous’ interval, it sets up a
situation in which successive updates end up having to be treated as if they occurred
simultaneously, and setting up a chain of ‘simultaneous’ events that might never end.

Node autonomy can help. The importance of sequencing varies greatly between applica-
tions, as do the frequencies of updates, the latencies in communication between machines
and the accuracies of computer clocks. In most situations, where the frequencies of updates
are low compared with transmission times and differences between clock times, and there
are low consequences of presenting an incorrect sequence or an output that is temporarily
in error, the problem can be ignored and time-stamps taken at face value.

In the small number of situations in which consequences and update frequencies are high,
models can be structured and node behaviour configured accordingly. In these situations,

89

4. Definition

A B CTime

'Effectively
Simultaneous'
interval

X

X

X

X

X

X

effectively
simultaneous

effectively
simultaneous

effectively
simultaneous

effectively
simultaneous

effectively
simultaneous

Figure 4.46. High frequency updates time chart. In a scenario with multiple high-frequency
updates to a node, if we were to consider updates within a certain interval to have been effectively
simultaneous, it could create an endless chain of ‘simultaneous’ events stretching far beyond the
intended interval.

it may be that nodes have to be hosted together on the same machine, or in the same
location, and more effort put into obtaining and coordinating accurate time-stamps on
those machines; and in some cases, the communication overhead involved in using a central
time server for a set of nodes may be worth the gain.

In some situations it may be an adequate solution to regard updates that take place
within a certain interval as having occurred simultaneously. There is no need to constraint
nodes to set solutions. In a distributed environment, the time reported by an update
notification tells another node something about when it happened but does not provide
exact information or clearly-defined time-box. Perhaps one way to view it is to think of a
time-stamp as indicating a probability distribution of time over which an update can be
suspected of having taken place. This could, perhaps, be supplemented with information
gleaned elsewhere about particular machines in order to assemble a most-likely sequence
of updates. Although the existence of standard solutions may ultimately be helpful, the
question can largely be left to node autonomy and remain open to future extension and
modification.

4.17. Testing and Development

Testability is one of the architectural principles listed in Section 3.4.1. Interactivity of the
graph provides the quickest and simplest form of support for this, meaning mistakes are
revealed as they happen and the developer can always see the results. Partial evaluation,
expected inputs and independent iteration can be used to improve the testing functionality.
These are discussed in the sections below.

90

4. Definition

4.17.1. Testing with Partial Evaluation

Partial evaluation can be used to integrate testing into the development process without
additional infrastructure. To see how this can be done remember that, with partial eval-
uation, the output of any particular node will be a function of all the open inputs in its
upstream graph. A developer can set up tests on any node, which can be checked and
verified without affecting the rest of the graph. This is illustrated in Figure 4.47.

1

Test output value

Test value inputArbitrary Functionality

Used in graph as required

Figure 4.47. Verifying a node’s functionality. Without interrupting the flow of the graph, a node
can be tested to verify it generates the expected outputs.

This can be extended to obtain a verification that the result is as expected by producing
an output value of ‘true’ or ‘false’ (two ways of doing this are shown in Figure 4.48).

1

true
Test is extended so that it

provides an output of 'true'

or 'false'

1

true

A true/false test is integrated

into a single node

Arbitrary Functionality

Used in graph as required

Figure 4.48. Obtaining a true/false test result. The test can be extended with another node to
generate an output of ‘true’ or ‘false’, depending on whether the test generates the correct result.
This can be done by adding an additional node, or the test can be integrated into a single node.

91

4. Definition

It can be extended further to obtain a summary of multiple tests, or global results of all
tests, telling the developer whether all tests in a graph have passed, and if not then which
ones have failed. This is illustrated in Figure 4.49, in which partially-displayed nodes on
the left are part of the main node graph. We can construct any number of individual
tests, and summaries of them as required. The ‘Test Summary’ node in this example can
be used to provide a summary of the results and list any tests that have failed across the
whole graph.

true

true

true

1

5

22

Outputs a report stating

whether all tests passed

and listing any that failed

Used in graph as required

Test Summary

Figure 4.49. Summary test results. A summary node can be created to aggregate the results of all
test nodes, outputting a report stating which of the tests have failed, and providing the programmer
with single point of reference to determine whether the program is performing correctly.

4.17.2. Testing with Expected Inputs

The ‘expected inputs’ feature, described in Section 4.9, improves the ability to build tests
by making it possible to build a test in the absence of the function being tested, and to
reuse the test on multiple different functions to compare results. Imagine we want a node
whose job is to double a number. Without yet having the node we want to test, we are
going to write a test for it. Using the ‘expected inputs’ feature, we can set up the test as
shown in Figure 4.50.

input

If testValue = expectedValue then pass;
otherwise, fail.

testValue
expectedValue

Figure 4.50. Tests using the ‘expected inputs’ feature. With expected inputs, a generic test can
be created in the absence of the node being tested.

This node includes two root inputs, called ‘testValue’ and ‘expectedValue’, and a function
which simply outputs ‘pass’ if they are the same or ‘fail’ if they are different. We set
‘testValue’ to have an expected input named ‘input’; in response, the node generates ‘input’

92

4. Definition

as a derived input. We can now use ‘input’ and ‘expectedValue’ to try corresponding inputs
and outputs. If we were to add values to the ‘input’ and ‘expectedValue’ inputs, the node
would partially evaluate and we would get, as an output, a function which has one input
(‘testValue’), which in turn provides a ‘pass’ or ‘fail’ output when that function is provided
(Figure 4.51).

input

If testValue = expectedValue then pass;
otherwise, fail.

testValue
expectedValue

testValue

3
6

number

Double

pass

Generic Test

Specific Test

Figure 4.51. Using a generic test node. The ‘testValue’, ‘input’ and ‘expectedValue’ inputs can
be provided in any order. In this example, the ‘input’ and ‘expectedValue’ inputs are provided
directly, but the ‘testValue’ is left open and inherited downstream by the ‘Specific Test’ node, and
when connected to the ‘Double’ node, it provides ‘pass’ as an output.

In this example, the ‘Generic Test’ node has been provided with test input and output
values of ‘3’ and ‘6’. It outputs a partially evaluated function, which is connected to the
‘Specific Test’ node. The ‘Specific Test’ node has the node being tested (the ‘Double’ node)
connected to it with the appropriate input nominated, and it outputs ‘pass’ as result.

An alternative configuration would allow us to reuse the generic test to verify more than
one combination of input and output values. In Figure 4.52, the node to be tested could
be connected to the ‘Generic Test’ node when ready, and the results for both sets of test
values would be calculated; or they could be connected to the two downstream nodes
separately.

In Figure 4.53, expected values are applied instead to the ‘Test’ node, and its output is used
to verify that two separate nodes with the same functionality, ‘Double1’ and ‘Double2’,
produce the correct result. In this example, both are shown to pass the test.

4.17.3. Testing with Independent Iteration

Tables, combined with the ‘dimensional overloading’ feature used for independent iteration
(described in Section 4.11.1) can improve the process further. With dimensional overload-
ing, rather than using a separate node to test each pair of input and output values, we
can use a table to test every set together.

In Figure 4.54 we have an alternative node graph, this time designed to accept pairs of
inputs and expected results on the same input. In this graph, the ‘Comparison’ node has
only two root inputs: ‘testFn’ and ‘expected’. It compares the two values and provides the
output value ‘true’ if they are the same, or ‘false’ otherwise.

93

4. Definition

input

If testValue = expectedValue then pass;
otherwise, fail.

testValue
expectedValue

expectedValueinput

3 6

-1 -2

expectedValue
input

testValue

Generic Test

testValue

Figure 4.52. Testing multiple values. In another extension of the generic test, in this example all
inputs are left open, so that different combinations of input and output values can be tested.

input

If testValue = expectedValue then pass;
otherwise, fail.

testValue
expectedValue

testValue

testValue

Test

number

Double1

number

Double2

3
6

pass

pass

Figure 4.53. Testing multiple nodes. In this example, the same combination of input and expected
output values is used to test two different nodes, ‘Double1’ and ‘Double2’.

To make it into a test, the ‘testFn’ input has its ‘expected inputs’ parameter set to ex-
pect one input, named ‘input’. At the top of the graph, we have the InputResult node,
whose purpose is only to accept an input and corresponding expected result, in the form
{input,result}, and output it unchanged. From its output, separate nodes have the job of
extracting the ‘input’ and ‘output’ parts of this combined object. These are then applied

94

4. Definition

inputResultInputResult

ir
output the 'input'

ir
output the 'result'

testFn
input expected

Is 'testFn' equal to 'expected'?

testFnTestNode

For pairs of inputs and expected

results, in the form {input,result}

The input/result pairs are

split into separate nodes

This node runs the function

received on its 'testFn' input

using the value from 'input',

and compares it with the

value from 'expected'.

Comparison

inputResult inputResult

inputResult

inputResult

Figure 4.54. A test for use with dimensions. The resulting ‘TestNode’ node allows the user to
apply a list of input/result pairs, together with a function to be tested, and will generate a list of
results as an output, corresponding to the list of input/result pairs.

to the ‘input’ and ‘expected’ inputs of the ‘Comparison’ node, which then inherits the
‘inputResult’ input.

The final output of the graph is a node named ‘TestNode’, with just two inputs: ‘testFn’
and ‘inputResult’. This is a generic node for testing pairs of inputs and outputs for any
other node. Figure 4.55 shows how it can be used.

In this graph, a node whose purpose is to double a number is being tested. It is called
‘DoubleANumber’. The TestNode’s ‘testFn’ input is connected to it. The ‘testFn’ input
has an ‘expected input’. Because the ‘DoubleANumber’ node only has one input, its input
is nominated implicitly and there is no need to explicitly associate it with the expected
input.

This leaves the ‘inputResult’ input. This is where dimensions come into play. Because the
number of dimensions is not specified for the ‘inputResult’ input, it takes the default value
of ‘0’. The data provided to it is a list (one-dimensional) of input/result pairs, meaning the
input is ‘overloaded’ by one dimension and the node therefore generates a one-dimensional
output (another list).

Setting this up need not always be so complicated. The ‘TestNode’ node is generic enough
that it can be reused to test any node that has just one input. Whereas this example
shows a test involving just three input/result pairs, it scales up or down with very little

95

4. Definition

testFnTestNode inputResult

DoubleANumber
number

{1,2}

{2,4}

{3,6}

true

true

true

Figure 4.55. Testing with dimensions. In this example, a node whose purpose is to double a
number is tested on a list of three pairs of inputs and results. It outputs a list telling us that the
test has been successful in all three cases.

extra work, and could equally be used to test any number of pairs, simply by adding or
removing items from the list.

4.18. Example Application

To see how a system with some of the features described in this chapter might work, we
will use the example of a node whose purpose is to buy or sell a stock based on three
pieces of information: whether or not it currently owns the stock, the current estimated
value of the stock and the current price of the stock. If it owns the stock and the price is
higher than the value, the node will sell it; if it does not own the stock and the price is
lower than the value, the node will buy it. Otherwise it does nothing.

Manifested in this example we see three important concepts: state (knowing whether or
not the node currently owns the stock), external action (the ability to buy or sell it) and
external inputs (the current stock market price of the stock). We could depict this node
graph very simply, as shown in Figure 4.56.

In this example, the value is set to a fixed amount, 100 (currencies and other units are
excluded). The ‘Price’ node could work in a number of ways: it could periodically query
the stock exchange to fetch the current price and convey that; or it could in some way
subscribe to a data feed from the stock exchange and update its value as new prices arrive.
While we are building this node graph, the user interface might want to be able to see,
interactively, the changes to values taking place within the nodes. In order to achieve
that, the user interface must subscribe to the nodes. For as long as the user interface is
subscribed to the nodes in this way, the buying and selling action will take place. However,

96

4. Definition

if(!getState() & value>price){

 buy();

}

else {

 if(getState() & price>value) {

 sell();

 }

}

return getState();

BuyOrSell value price

Price

100

true / false

Figure 4.56. Example application. A node to buy or sell a stock based on its valuation, its current
price and whether or not we already own it. This example requires us to be able to set or retrieve
state for the node. In this case, the state is true if it currently owns the stock or false otherwise.

in order for the action to continue when no longer being viewed by the user interface, we
can set the ‘BuyOrSell’ node to ‘on’ (as described in Section 5.1.7 — Subscriptions). It
will then continue buying and selling the stock indefinitely. If we set the ‘BuyOrSell’ node
to ‘off’ and the user interface stops viewing the node then, when the next data update
notification arrives from the ‘Price’ node, the ‘BuyOrSell’ will unsubscribe from it and
could potentially be saved on disk until it is next queried for a value.

If, on the other hand, we wish to pause this node to prevent it from acting even while
performing its computations and displaying outputs, we could add another input, based
on which it will perform its actions or not. We could call this new input ‘active’ (distinct
from the ‘on’ setting, which determines whether the node computes at all and remains
subscribed to its inputs). This new version is shown in Figure 4.57.

BuyOrSell value price

Price

100

active

true

Figure 4.57. Example application — with an input to make it active or inactive. The node will
continue to compute its output, but the ‘active’ flag is used to determine whether the node will
actually perform its external actions.

We are now going to add a distributed component to the graph. Imagine that instead
of using a fixed valuation for the stock we are going to engage an external provider to
provide us with a current value. The external provider maintains their own estimate of
the current value of the stock based on three inputs: the current central bank interest
rate, which is updated monthly; a currency exchange rate, which (like the stock price) is
managed by the node — queried periodically or by subscribing to receive a data feed as

97

4. Definition

prices are updated; and the price of some other commodity — say, oil. We are going to
assume that the oil price is used to calculate a cap on the valuation of our stock. Say,
for example, it is decided that our stock is never worth more than the price of a barrel of
Brent Crude. This means that a third input, the price of Brent Crude, is needed, but does
not always affect the price. The graph and function for this node might look something
like that shown in Figure 4.58.

Value interestRate
exchangeRate

brentCrude

InterestRate

ExchangeRate

BrentCrude

return minimumOf(

 f(interestRate, exchangeRate),

 brentCrude)

);

Figure 4.58. Example application — stock valuation. The valuation, provided by a separate
supplier, is a function of two inputs: the interest rate and a currency exchange rate; and is capped
by the the price of a commodity, in this case a barrel of Brent Crude.

This node, owned by a separate organisation, could be hosted in an entirely different
location. Nevertheless, our ‘BuyOrSell’ node needs to connect and subscribe to it, and
on doing so will start to receive data update notifications and subsequently new data
whenever new inputs to the valuation node are received. Since the ‘brentCrude’ input is
used to cap the price it only causes a change to the overall valuation if it drops below
the value otherwise calculated which, most of the time, might not happen. Whenever the
Brent Crude price is updated, an update notification would first be sent through the graph.
Subsequently, the ‘Value’ node would recalculate its value and find that its output was
unchanged. Rather than proceeding to send this identical value and allowing downstream
nodes to recalculate their values, it could instead send a cancellation notification, notifying
downstream nodes that the previously notified update had been withdrawn and allowing
them to mark their previous values as being current again. This would enable both the
‘Value’ node and the ‘BuyOrSell’ node to avoid new computations, and would avoid having
to send the same data again over the network. The overall graph would be of the form
shown in Figure 4.59.

Although this provides an accurate depiction of the whole graph, this is not what any one
user of the system would see. The owner of the ‘Value’ node would have no need to see
the workings or inputs of the ‘BuyOrSell’ node, and the owner of the ‘BuyOrSell’ node
would have no need to see the inner workings or connected inputs of the ‘Value’ node,
other than to be aware of its remaining inputs after being partially evaluated. As a result,
these two users would have different restricted views of the same graph, with only the
directly-connected nodes being visible to the other user. The sub-graphs visible to the
two users are shown in Figure 4.60.

98

4. Definition

Value interestRate
exchangeRate

brentCrude

InterestRate

ExchangeRate

BrentCrude

BuyOrSell value price

Price

active

true

Figure 4.59. Example application — the complete graph for buying and selling a stock based on a
valuation provided by a separate provider.

Value

BuyOrSell value price

Price

active

true

Value interestRate
exchangeRate

brentCrude

InterestRate

ExchangeRate

BrentCrude

NodeID-xx

The owner of the 'Value' node

may only see the node ID of its

downstream service user.

The owner of the 'BuyOrSell' node

will see the 'Value' node (which must

have been advertised in order to use it)

but may not see anything else about its

inputs or upstream nodes.

Figure 4.60. Example application — two restricted views of the same graph. While the owner
of the ‘BuyOrSell’ node can see the advertised name and description of the node it is connecting
to, the owner of the ‘Value’ node may see nothing more than the node ID and address of the
downstream node connecting to it.

Having a distributed system, we can now see instances of the issues of synchronisation
and node preferences discussed in Sections 4.14 (Notifications and Time-Stamps) and 4.16
(Synchronisation). If new data arrived from one input, while other new data was working
its way through the node graph, we would probably not want the node to execute a
trade based on out-of-date information. The notification system reduces the chance of
this happening by ensuring that the decision-making node is notified of the updated data
promptly. The principle of node autonomy could be used to ensure the computations (and
therefore trades) are aborted when update notifications arrive rather than proceeding with
a trading decision that could be out of date.

This graph also demonstrates the issue of imperfectly synchronised clocks over a dis-

99

4. Definition

tributed system. Imagine we want to record a time-series of valuations, prices and stock
trading decisions. This would require a new node, dependent on the ‘Value’ node, the
‘Price’ node and the ‘BuyOrSell’ node. It would need a type of subscription in which
every new value was delivered, regardless of whether it had been superseded. The node
would tell us how effectively the ‘BuyOrSell’ node was reacting to those changes (and
whether latency was causing it to miss potential trading decisions). The time-stamps
would be needed to order data updates, which may not arrive in strict chronological or-
der. However, with time-stamps being generated on different (imperfectly synchronised)
machines, an approach would be needed to decide how to order those updates sufficiently
close to each other to fall within the clock synchronisation uncertainties. Some approaches,
discussed in Section 4.16, have been proposed by others, but the wider synchronisation
issue is left for further work.

4.19. Further Work

Because the system is designed as a coordination system, indifferent to the implementation
of the nodes within it, it means any computational capability can be integrated within
a node. However, there are improvements to be gained by moving functionality from
node-level to graph-level and providing a graph-level interface for building it. Much of
the work of improving the system, now and in the future, has and will revolve around
selecting features to be integrated at graph-level. Further work is needed in a few areas
in particular, including:

• data structures — the ability to create, process and manipulate object oriented-like
data, relational database-like data and graph data;

• tables — a more fully developed handling of multi-dimensional tables (‘hyperrect-
angles’);

• grouping — developing the possible uses for groupings of nodes, including to define
a ‘collection’ (an unordered list), to visually collapse a part of the graph, to define
compound objects, as groupings to define distinct ‘models’ or access rights, and to
define graph segments to be used as units of data;

• optimisation — efficiency has long been a problem, particularly with iterations and
data structures, and will require ongoing work to resolve.

The possible future directions of future work are discussed more fully in Chapter 7.

4.20. Summary

This chapter describes the possible structure and design of a unified global dataflow co-
ordination system. Applying the principles of software engineering (discussed in Section
3.4), it assembles the best of the ideas proposed in the literature (discussed in Chapter 2)
and extends them, in particular using partial evaluation (Section 4.8) and dimensionality
(Section 4.10) to represent dependent and independent iteration (Section 4.11). Section

100

4. Definition

4.12 shows how, together with a new feature referred to as ‘expected inputs’ (Section 4.9),
a generalised iteration node can be created providing functionality similar to a ‘for’ loop.

The next chapter describes how these concepts have been implemented as far as needed
to be able to construct three test algorithms: calculating a factorial, generating terms of
the Fibonacci sequence and performing a merge-sort.

101

Chapter 5

Implementation

Selected functionality described in the previous chapter has been implemented in order to
demonstrate that it can work. It has been used to build, in dataflow, three test algorithms:
calculating a factorial, generating terms of the Fibonacci sequence and performing a merge-
sort. The features demonstrated include partial evaluation, as described in Section 4.8,
independent iteration as described in Section 4.11.1 and dependent iteration as described
in Section 4.11.2. These have been used not only to demonstrate that the algorithms
produce accurate results, but also that the system can parallelise the computation by
making use of all available processors.

5.1. Feature Implementation

As described in the previous chapter, the definition comprises intrinsic features, which
must be consistent across all nodes (such as the protocol by which nodes communicate with
each other and the set of required node behaviours), and interchangeable components (such
as the internal node implementation), any of which could be substituted and alternatives
used concurrently within the same system. The implementations of both are intended to
be demonstrative rather than, at this stage, a definite proposal.

Some features that were unnecessary for the purpose of testing were omitted. These include
the user interface and a full implementation of the ‘expected inputs’ feature described in
Section 4.9. The user interface is an interchangeable component that would certainly
improve usability but does not contribute to the core capability of the system. A partial
implementation of the ‘expected inputs’ feature was included, but was not fully integrated
with the iteration functionality. These, along with a range of other suggested features, are
deferred for further work and described more in Chapter 7.

5.1.1. Technology Choices

The technology choices for the implementation are driven by a number of key considera-
tions.

• Platform Flexibility — full platform independence is not necessarily needed at

102

5. Implementation

this stage, but an ability to run on multiple platforms is beneficial.

• Parallelisability — since this is a key benefit of the system, an ability to parallelise
code is important.

• Ability to parse and recompile functions — functions need to be parsed into
abstract syntax tree form, passed around, then recompiled and executed.

• Ability to run code in a web browser — since it is envisaged that a user would
interact with the system via a web browser, it is important that it should be possible
to construct a dataflow graph and run functions in the browser as well as on a server.

This last constraint, needing the ability to run code in a web browser, is the most re-
strictive, since browsers only speak JavaScript1. It is not an absolute constraint, since
it would be possible to write a separate implementation for the browser, but this creates
extra work that can be avoided.

For this reason, JavaScript has been chosen as the language in which the system as a whole
is written. It is written using the server-side JavaScript platform NodeJS, which can be
run in Windows, Mac or Linux, providing a degree of platform flexibility. NodeJS provides
the ability to find out how many cores are available and to create separate processes that
execute in parallel, providing in addition a level of isolation between processes.

JavaScript has two additional advantages. The first is that functions are a first order
data type and can therefore be treated in the same way as any other data type: they
can be used as variables, passed into functions as arguments and used as function return
values. The second advantage of JavaScript is its use of prototypal inheritance. Prototypal
inheritance allows node object properties to be attached to a single prototype rather than
to each instance of it, enabling object instances to have a very low memory footprint.
In a system that may require many thousands of nodes, this efficient handling of object
instances is a significant advantage.

This implementation was tested on Windows 7. In NodeJS, the programmer is to a large
extent insulated from the differences between operating systems, and the same code could
be run on any other operating system on which NodeJS could be installed with only very
few changes. NodeJS uses more recent versions of JavaScript than can be relied upon in
the browser, and the code utilises convenient features that are relatively new in JavaScript
but would be unavailable in most browsers. However, with the help of web development
tools such as Browserify2 and Modernizr3, the code could be adapted to run in any modern
browser. The system is controlled through an interactive text-based API (as yet, there is
no graphical user interface for it).

1The section of the W3C HTML5 specification on scripting (Section 4.11 - https://www.w3.org/TR/
2014/REC-html5-20141028/scripting-1.html) specifies Javascript as the default scripting language,
and the only one whose ‘type’ attribute browsers are required to recognise.

2http://browserify.org/
3https://modernizr.com/

103

https://www.w3.org/TR/2014/REC-html5-20141028/scripting-1.html
https://www.w3.org/TR/2014/REC-html5-20141028/scripting-1.html
http://browserify.org/
https://modernizr.com/

5. Implementation

5.1.2. Function Execution

The underlying language has capabilities that we would not want untrusted user-contributed
code to have. Section 4.13 describes how untrusted code could be made safe to run and,
using a similar technique, how it could be made possible for untrusted users to contribute
whole new languages to the system. This uses a structure in which a language parser,
defining a new (safe) language, parses function code into the form of an abstract syntax
tree for storage and transmission and a compiler compiles it from that into the underlying
language for execution.

The implementation demonstrates this technique, using the open source parser Esprima4

to convert node functions written in JavaScript to an abstract syntax tree form (in the
‘ESTree Spec’ format5), and using the open source compiler Escodegen6 to compile code
into the system language (JavaScript) from its abstract syntax tree form. Although the
parser leaves the unsafe as well as the safe features of JavaScript intact, it does demonstrate
the technique and leaves open the future possibility to edit it or write an alternative to add
safety. It is convenient for testing that the function language is the same as the system
language, but there is no other reason why the two should be the same.

5.1.3. Partial Evaluation

In its simplest implementation, partial evaluation (or something that looks like it) could
be achieved by wrapping one function in another. Say we have the function, ‘f’, shown in
Snippet 5.1, and want to partially evaluate it with the value a = 1.

Snippet 5.1 function f(a,b,c){
...

}

The simplest way to do this would be to wrap the function ‘f’ in another function, ‘g’,
as shown in Snippet 5.2. The problem with this approach is that the partially evaluated
function ‘g’ is ‘bigger’ (and requires more work to evaluate) than the original function ‘f’.

Snippet 5.2 function g(b,c){
function f(1,b,c);

}

Since partial evaluation reduces the scope of the function’s possible inputs and outputs,
it has the potential, in the right implementation, to reduce the amount of computation
needed to obtain the result. The example in Snippet 5.2 has the opposite effect. In order
to achieve the appropriate reduction in work, we need to be able to manipulate function
‘f’. For this purpose, it is useful that the function is parsed and converted into abstract
syntax tree form, as described in Section 5.1.2. In its abstract syntax tree form, it is
possible to edit the function directly.

4Created by Ariya Hidayat and available online at http://esprima.org/
5Described at https://github.com/estree/estree
6Created by Yusuke Suzuki and other contributors, and available online at https://github.com/

estools/escodegen

104

http://esprima.org/
https://github.com/estree/estree
https://github.com/estools/escodegen
https://github.com/estools/escodegen

5. Implementation

In a simple version of this approach, a partially evaluated version of a function can be cre-
ated by inserting a variable declaration for the provided value at the start of the function,
as shown in Snippet 5.3. This leaves open the possibility of more elaborate manipula-
tions and optimisations of the function including, for example, executing branches of the
abstract syntax tree for which all variables are available, trimming branches that are no
longer applicable, and the application of existing graph reduction techniques taken from
Functional Programming, where relevant.

Snippet 5.3 function f(b,c){
var a=1;
...

}

5.1.4. Data Transmission

Although the implementation runs on one machine, it is designed to test functionality that
could be distributed over multiple machines. Two techniques are used in the sending of
data to better simulate the behaviour of a distributed system.

The first is to make communication between nodes asynchronous, meaning a message
can be sent to another node without having to wait for that message to be received
before continuing. The second is to convert data to a format that can be transmitted
over a network — in this implementation, the JSON7 format is used. This incurs a
computational overhead but has the advantage that, being a text-based format, it is
immutable and therefore safe from being treated, inadvertently, as shared state between
nodes. JSON does not allow for every type of data that might be needed in dataflow,
making it necessary to encode and specify types within the string. Examples of two such
JSON strings are shown in Snippet 5.4.

Snippet 5.4 '{" type ":" string "," data ":" Test String "}'
'{" type ":" date "," data ":"1977 -08 -15 T02 :16:00.000 Z"}'

Partially evaluated functions require a more complex format. The first step is to convert
the abstract syntax tree (AST) form into JSON. Partially evaluated functions then re-
quire additional data, including input parameters, input values, iteration parameters and
connection parameters, all of which must be conveyed together with the abstract syntax
tree when a partially evaluated function is transmitted from one node to another.

In addition, when a partially evaluated function is received by a node which is in turn
partially evaluated, the partially evaluated function object conveyed through the graph as a
result must encapsulate both the root function and the received function. To accommodate
this, a partially evaluated function is encoded as an object which, at its top level, contains
a pair of recursive objects — one containing the input values and one containing the
function statements (the AST). The partially evaluated function (‘NodeFunction’) object
has, at the top level, the shape shown in Snippet 5.5

7JavaScript Object Notation, defined at https://www.ecma-international.org/publications/files/
ECMA-ST/ECMA-404.pdf

105

https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf

5. Implementation

Snippet 5.5 NodeFunction {
args , // Object of the type `Args '
fns // Object of the type `Fns '

}

The ‘Args’ object has the shape shown in Snippet 5.6, with the ‘subs’ property containing
an additional ‘Args’ object for each applicable top level argument.

Snippet 5.6 Args {
origin , // A string specifying the node at which

this function was first defined .
arr , // An ordered list of strings specifying

the arguments of the underlying function .
dimensionsObj , // For each argument for which a `

dimensions ' number is set , this provides the number .
expectedInputs , // For each argument for which `

expectedInputs ' are set , this provides an array of
strings , which convey the inputs that any function
received will be expected to have.

nominatedInputs , // For each input which expects
inputs and that has received a value , this describes
which of the received inputs corresponds to each of
the expected inputs .

iterationParameters , // If this function is set to
iterate , this contains the iteration parameters .

subs // An object containing an Args object for
each applicable member of `arr '.

}

The ‘Fns’ object, shown in Snippet 5.7, has the same basic form, containing top level data
and a ‘subs’ property, which contains another ‘Fns’ object for each applicable top level
argument.

Snippet 5.7 Fns {
main , // The AST for this node 's function .
val , // In some cases , where function has already been

evaluated , this stores the resulting value.
subs // This stores a `Fns ' object for each input of the

function for which a function has been received .
}

For transmission, the whole ‘NodeFunction’ object is converted to text, and all data within
it converted into data objects of the shape described in Snippet 5.4. When received by a
node, the whole ‘NodeFunction’ object is reassembled from JSON format and interrogated
to obtain a list of its inputs.

5.1.5. Input Unification

As described in Section 4.8, where the same input is received via multiple routes, or is
contained more than once in the same partially evaluated function, the multiple instances

106

5. Implementation

of it are ‘unified’; meaning that the node treats them as one. When the node is queried
for a list of its inputs, it will only list each input once; and when a value is received for an
input, it is applied to all instances of that input. Figure 5.1 illustrates this process.

a

a a

a

Input 'a' is inherited by both
intermediate nodes...

... so is received via both inputs to
this node, at which they are unified'
and inherited only once.

Top

Bottom

Figure 5.1. Unification of inputs. An input that is inherited at a downstream node via more than
one route is inherited only once.

In this example, the node labelled ‘Top’ has one input, which is inherited by two separate
nodes, whose outputs are then connected to separate inputs of the same downstream node
(labelled ‘Bottom’). Despite input ‘a’ having arrived via two routes, it is inherited only
once.

5.1.6. Parallelisation

NodeJS reports the number of processors available, so it is possible to adapt the number
of processes used to the number of processors available. The main process is used for
user interaction, node-to-node communication, and all node operations except function
execution, leaving the remaining processors available solely for function execution.

Allocation of processes to processors is handled automatically in NodeJS, so although
processes cannot be assigned to a particular processor explicitly, the automatic handling
is effective enough that they are usually assigned appropriately. In NodeJS, additional
processes are referred to as ‘child processes’. Communication between the main process
and child processes takes place through ‘messages’. The main process can send a message
to any child process; child processes can only send messages to the main process. In
all processes, a function is assigned to a listener, which is triggered when a message is
received.

Each child process waits, idle, until a message arrives. A message, when it arrives, contains
a function, which is then executed and a message sent back to the main process containing
the result or an error report.

The main process maintains a queue of functions to be executed. As soon as it receives a
result from a child process, it sends that process the next function in the queue. The main
process also schedules a time-out for each function, terminating the child process if that
time-out is reached without receiving a response. For testing purposes, a time-out period
of two seconds was used, but this is a matter for node autonomy and could be varied to
suit the circumstances.

107

5. Implementation

Because the child processes can communicate only through explicit messages, the main
process is not vulnerable to malicious activity by node functions. However, child func-
tions are vulnerable to their own code being modified by malicious node functions. This
vulnerability would have to be resolved before being exposed to untrusted users.

As discussed in Section 5.1.4, node functions can contain other node functions, meaning
that any particular node function may be parallelisable, and multiple child processes can
be used in execution of a single node. The structure of a graph provides some level of par-
allelisability; in testing it is easy to build graphs that allow parallelisation of the order of
around ten. Dimensional overloading, however, provides a higher degree of parallelisation.
Each dimension by which a node’s inputs are overloaded allows that node to parallelise
its computation by an additional factor equal to the length of that dimension. For exam-
ple, if an input is dimensionally overloaded by three dimensions, each of length 10, the
parallelisability of the computation is multiplied by a factor of 103.

In tests using dimensionality, it is easy to overload a node by an order of ten or more
dimensions. If each of ten overloading dimensions had a length of 10, this would multiply
parallelisability by a factor of 1010. This would be multiplied again by the degree of
parallelisability inherent in the graph. We quickly find ourselves able to build graphs that
allow parallelisation by more than the number of processors likely to be available.

This means that in many cases the availability of processors, rather than the parallelis-
ability of the program, will be the limiting factor. This could lead to long queues of
functions waiting for execution, with an associated memory overhead. It seems likely that
for a production dataflow system to be viable, it would need to optimise for these limits
dynamically. It is easy to envisage solutions, but for the purpose of testing this problem
is left unresolved. This enormous potential parallelisability does, however, illustrate how
powerful this approach to parallelisation can be, and the possible benefits to be gained in
moving to machines that have a larger number of smaller processors, rather than a smaller
number of larger ones.

5.1.7. Subscriptions

Nodes have the ability to subscribe to other nodes, as described in Section 4.6. The
intention is that such functionality should also enable external entities or components to
subscribe to nodes. A user interface could be one such component, which would subscribe
to the list of nodes it is viewing at any point in time.

When a node receives a subscription, it registers the subscribing node in an internal list
of its subscribers. Whenever the node receives an update notification or its content is
updated, it will immediately notify its subscribers, and later deliver its updated value
when it becomes available.

When a node accepts a subscription it agrees, in effect, a contract to remain up-to-date
and to provide update notifications and data updates to the subscriber. In order to be able
to fulfil this agreement, it needs to know that its own upstream nodes are up-to-date, so
must immediately subscribe to them. In this way, subscriptions escalate from the original

108

5. Implementation

subscribing node to all nodes in its upstream graph.

When a node is subscribed to its upstream nodes it means that, subject to latency, it
can be sure that its value has not been superseded. This remains the case until the next
update notification arrives, at which point the node marks itself as out-of-date and awaits
new data before it can be marked as up-to-date again.

In order to make best use of knowledge about their current state, nodes take a lazy
approach to unsubscribing. When the last subscriber to a node unsubscribes, if the node
is up-to-date at that moment, it remains subscribed to its upstream nodes. This allows it
to maintain knowledge about whether its value is current until another update notification
arrives. If it unsubscribed at this point, it would no longer receive notification updates,
and would have no way to know whether it was up-to-date. Remaining subscribed during
this time means that, if requested, it can provide a value without having to perform a
calculation or request new data from upstream nodes.

As soon as an update notification arrives, however, knowing there are no subscribers,
there is little point in computing a new value, or in fetching the new value from the
upstream node. Instead, it can record that it is out-of-date and immediately unsubscribe
from its upstream nodes. Those nodes, in turn, if they have no other subscribers, will
remain subscribed to their upstream nodes until they next receive a notification, at which
point they too will unsubscribe. In this way, whereas subscriptions escalate immediately
up the graph, unsubscriptions move only one step for every update notification that takes
place. In a globally distributed node graph, the system could accumulate a large number of
infrequently used nodes. As described in Section 4.6, this feature enables unused segments
of the graph to ‘switch off’.

Subscriptions, like many aspects of the system, can also be a matter for node autonomy.
If a node owner considers it important that a node should provide rapid responses, and
is prepared to pay the resource overhead in keeping it subscribed, a node can be marked
as ‘on’. In this case, it will remain subscribed to its upstream graph regardless of whether
it has any subscribers. In graphs created for testing, the ‘on’ setting was applied to the
nodes at the bottom of every graph, causing the graph to remain active during testing.

5.1.8. Iteration and Dimensionality

Iteration of both types — independent and dependent — was implemented as described
in Section 4.11. Tables and dimensionality (described in Section 4.10) were used for inde-
pendent iteration; and a subset of the expected inputs feature (Section 4.9) used to define
the termination condition in dependent iteration (Section 4.11.2). A full implementation
of the ‘expected inputs’ feature is reserved for further work (See Section 7.3.3).

5.1.9. Notifications and Time-Stamps

Notifications and time-stamps are described in Section 4.14. An object containing an
identifier and a time-stamp is used to identify each action through the API. This object
is transmitted with every update notification, data update and function execution that

109

5. Implementation

takes place. The API is a useful source for the identifier because it runs on a single
processor, in series, meaning that each action can be uniquely identified by its identifier
and time-stamp.

5.1.10. Subscription Types and Synchronisation

Section 4.15 discusses potential responses to high frequency updates. The implementation
includes just one type of subscription which uses an assumed set of priorities. Nodes only
produce outputs that are not known to be out-of-date: a computation that is under-way
when a superseding update notification arrives is cancelled, and if notifications or data
arrive that are known to be out-of-date they are ignored. Since the implementation runs on
a single machine, all time-stamps use the same clock and the problems of synchronisation
described in Section 4.16 do not occur.

5.2. Code Structure

The implementation has six key components:

• The node definition;

• The node registry;

• The communication manager;

• The computation manager;

• The execution processes;

• The API.

NodeJS has a main process, and can create additional ‘child processes’ on demand. All
components run in the main process with the exception of the execution processes, which
run in child processes created by the computation manager. The computation manager
queries the operating system to find out how many processors are available and, after
allowing one processor for the main process, creates a child process for each additional
processor (with a minimum of one). The six components are discussed in more detail
below.

5.2.1. The Node Definition

The behaviour of a node is determined by an object definition, instantiated once for each
node in the system. As discussed in Section 5.1.1, one of the advantages of JavaScript is
its efficient prototypal inheritance model, which allows node behaviour to be stored in the
prototype of an object, rather than in its instances. The reduces the memory footprint of
a node and means that only the information that varies from one node to another — its
content, inputs, connections and meta-data — need to be stored in each instance.

Although NodeJS does not directly report the memory footprint of an object, tests ob-
serving the overall memory footprint showed that this technique can use a fraction of

110

5. Implementation

the memory of the object-oriented model and enables correspondingly more nodes to be
created. Nodes in the test system use approximately 6KB each, enabling around 167,000
nodes per Gigabyte of available memory, depending also on the data load of each node.
The node definition includes the functionality required to:

• accept requests from and report results to the API;

• store content and meta-data;

• parse functions to establish the inputs;

• send data to and receive data from other nodes;

• partially evaluate functions;

• handle iterations;

• handle subscriptions.

5.2.2. The Node Registry

The node registry maintains a list of the nodes currently in existence. Each node has a
unique identifier, used by the API to uniquely identify it.

5.2.3. The Communication Manager

The communication manager mediates communication between nodes, ensuring that it
happens asynchronously. This helps to simulate the characteristics of a distributed sys-
tem, and ensures the correct ordering of events in the graph. The communication manager
abstracts away details of communication between nodes, enabling substitution with dis-
tributed communication when needed.

5.2.4. The Computation Manager

The computation manager runs on the main process. When a node needs a function to
be executed, it sends the function to the computation manager as a computation request.
The computation manager maintains a pool of child processes (the ‘execution processes’)
for executing functions. Each computation request is converted into a ‘task’ and added
to a task queue. Items in the queue are then assigned to child processes in request order.
When a child process completes a task, it reports the result (or reason for failure) to the
computation manager and is added back to the pool of available processes ready for its
next task. The computation manager, in turn, reports the result to the requesting node.

Each task has a designated time-out period; with a default of two seconds that can be
overridden or disabled by the requesting node. If a task is sent to a child process and the
time-out period elapses before it returns a result, the computation manager aborts the
task by terminating the child process on which it is running. After terminating a child
process, the computation manager immediately starts a new one to maintain the same
number in the pool.

111

5. Implementation

A node can also request that a computation be cancelled. This may happen if, for ex-
ample, the node receives a new update notification that makes the previously requested
computation obsolete. The computation is then removed from the task queue or, if already
under way, the child process on which it is running is terminated.

5.2.5. The Execution Processes

The execution is designed to be as lightweight as possible in both its size and its use of
resources, keeping resources free for the computations themselves. The execution process
receives a function from the computation manager, compiles and runs it, and sends a
message back reporting the result.

5.2.6. The API

The API (‘Application Programming Interface’) exists to make the programmer’s task
easier, presenting a simpler interface, abstracting away some of the underlying detail. It
creates and destroys nodes and simplifies references to them.

Most commands to the node graph are asynchronous. Using asynchronous commands
normally requires additional work of the programmer to ensure that each command com-
pletes before the next one commences. The API relieves the programmer of this burden
by automating it, storing all commands in a queue and executing each task only when the
previous task has been completed.

The API also provides a shortcut in connecting nodes. Consider the unconnected graph
shown at the top of Figure 5.2 (labelled as its ‘Initial state’). We have three nodes, ‘A’,
‘B’ and ‘C’. If we want to end up in the final state shown at the bottom of the same figure
(labelled as ‘Step 2’), this requires two steps: the first is to connect input ‘a’ to node ‘B’
and wait for Node ‘A’ to inherit input ‘b’; the second is to connect the inherited input
‘b’ to Node ‘C’. The API automates this, allowing inherited inputs to be connected in the
same step as the root input from which they are inherited.

The API generates update identifiers, as described in Sections 4.14 and 5.1.9, which are
included with every request to an underlying node, and consequently with every update
notification and data update exchanged between nodes, allowing events arriving at nodes
to be correctly ordered. In total the API has 26 functions, listed below, which are described
in more detail in Appendix C.

api Returns a placeholder for referring to and performing actions on a node.

createNode Creates a new node with specified content and parameters.

deleteNodes Deletes the specified nodes.

graphStatus Reports a list of nodes in the graph and the number of tasks in the queue.

listNodes Returns a list of the nodes in the graph.

112

5. Implementation

a

B b

ep 1 - Connect input 'a' to node 'B'

A

C

Step 2 - After waiting for Node 'A'

to inherit Input 'b', connect Input

'b' to Node 'C'

aA

B C

Initial state - unconnected nodes 'A',

'B' and 'C'

b

b

Figure 5.2. Connecting a root and inherited input simultaneously. This would normally require
two steps: first connecting the root input, then waiting for it to inherit the derived input before
connecting that. The API provides the functionality to do this in one step.

ready Returns a JavaScript ‘Promise’ (a JavaScript device for handling asynchronous
functions), which resolves when the task list has been completed.

instance Creates a new ‘ID’ node, connected to the specified node. This function is used
when a node’s partially evaluated output needs to be used more than once in the
graph, and is particularly useful for testing.

node Returns a placeholder for the node being acted on.

nominateInput Used to nominate an input for use with the Expected Inputs feature.

nominateInputs Used to nominated more than one input for use with the Expected Inputs
feature.

calculateTop A shorthand for calculateWith which uses a simpler syntax but can only be
used to provide values for root inputs.

calculateWith Calculates the output of a node using specified values for its open inputs,
but without affecting the node or connecting its open inputs.

113

5. Implementation

deleteNode Deletes the specified node.

getConnections Returns a list of inputs and their connections.

getContent Returns the current content of the specified node.

getCurrentInputs Returns the current inputs to a node.

getInputs Updates and returns the list of inputs, including all inherited inputs.

getOpenInputs Returns a list of the inputs that are currently unconnected.

getRootInputs Returns a list of just the root inputs.

getStatus Returns the current status of a node, including its id, name, content, inputs,
current value, its ‘on’ flag (see Section 5.1.7) and whether its output is up-to-date.

getTitle Returns the current name of the specified node.

getValue Calculates the value of the specified node, fetching values of connected nodes in
order to do so if necessary.

setConnections Sets connections on a specified node.

setContent Sets the content of the specified node.

setTitle Sets the name of the specified node.

top A shorthand with a simpler syntax for setting only the root connections of a node.

5.3. Test Algorithms

To demonstrate that the implementation can perform computations and, in particular, it-
erations, it has been used to build three test algorithms: calculating a factorial, generating
terms of the Fibonacci sequence and performing a merge-sort.

The factorial graph is similar to the generalised iteration graph described in Section 4.12,
using the split-recombination form to update a counter and the calculated value in each
iteration. The graph to generate terms of the Fibonacci sequence is simpler overall but
has been chosen to demonstrate that we can make use of more than one previous value
to calculate each new value. The merge-sort algorithm is the most complex; as with the
factorial algorithm, it uses the split-recombination form, but adds the further complexity
of needing sub-iterations within its main outer iteration. The three test algorithms are
described below. The code for all three is included in Appendix D and can be found online
in the code repository supporting this thesis8.

8The repository can be found at: https://bitbucket.org/danieljmaxwell/
developments-in-dataflow-programming and the test file that runs the code is at the relative
path: test/mocha/bin/examples.js

114

https://bitbucket.org/danieljmaxwell/developments-in-dataflow-programming
https://bitbucket.org/danieljmaxwell/developments-in-dataflow-programming

5. Implementation

5.3.1. The Factorial Algorithm

The purpose of the factorial algorithm is to provide the factorial of its input as an output.
In sequential code, an algorithm to find the factorial of a number might look something
like that shown in Snippet 5.8 (written in JavaScript). This function produces the correct
value for factorials of non-negative integers up to the limit of integer representation in
JavaScript9.

Snippet 5.8 function factorial (input){
var output = 1;
for(let i = 1; i <= input; i++){

output *= i;
}
return output ;

}

In dataflow, the graph takes a similar form to that used for the generalised iteration
discussed in Section 4.12. We start with the central ID node on which the iteration will
take place, as shown in Figure 5.3.

iterationFunction

ID

Figure 5.3. The central ID node. We start with a central ID node (one which provides its sole
input, unaltered, as an output) with an input named ‘iterationFunction’.

We need to connect its input, named ‘iterationFunction’, to a function defining how each
iteration’s value will be calculated from the last, so our next step is to define that function.
The calculation of the next value from the previous one requires two components: a counter
and a previous value (equivalent to variables ‘i’ and ‘output’ in Snippet 5.8). Nodes can
only iterate over one input, so we need to combine both components into a single data
object. In common with the generalised iteration graph described in Section 4.12, we
can achieve this using a combined object together with a graph in the split-recombination
form to split the combined input, calculate the new value and counter, and then recombine
them.

To recall, the split-recombination form is as shown in Figure 5.4. It takes a combined data
object containing the previous value and counter as an input, which is then split into its
components so that the new value and counter can be computed, before being recombined
back into a combined object.

Also in common with the generalised iteration graph in Section 4.12, we need three com-
ponents: the ‘Combiner’ node to assemble a value and counter into a combined object,
the ‘GetValue’ node to obtain the value from the combined object and the ‘GetCounter’
node to obtain the counter from the combined object. These three components are shown
in Figure 5.5.

9JavaScript guarantees that integers will be represented correctly for positive integers up to 253 − 1.
This allows for factorials of integers up to 18. When representing higher integers (up to 1.79E + 308),
JavaScript rounds as determined by the IEEE-754 double-precision floating point specification.

115

5. Implementation

Combined data, containing the

previous value and counter, is

used as an input

The input data is split to

obtain, separately, the

previous value...

... and the previous

counter

A new value is calculated

using the previous value

and counter

A new counter is

calculated using the

previous value and

counter

The new value and counter are

recombined to make the new

output

Figure 5.4. The Split-Recombination Form. Dependent iteration can only iterate over a single
input, whereas the computation requires two inputs — a previous value and a previous counter.
This is achieved by using a combined object that contains both as an input to the iteration
function. It is then split into its two components so that they can be operated on separately,
before recombining them back into a combined object.

Combiner
value counter

{value,counter}

GetValue
combined

value

GetCounter
combined

counter

Figure 5.5. The iteration requires three components: the ‘Combiner’ node, which takes a value
and counter and combines them into a single object; the ‘GetValue’ node, which extracts a value
from a combined object, and the ‘GetCounter’ node, which extracts the counter from a combined
object.

116

5. Implementation

value
counter

counter

GetValue

GetCounter

Combiner
value

counter

value

counter

comb

NewFactorial NewCounter

Figure 5.6. Components are assembled into the split-recombination form but not yet connected.
The ‘GetValue’ and ‘GetCounter’ components are used to split the combined input (‘comb’) to
obtain the value and counter separately. These will be used by ‘NewFactorial’ to calculate the new
factorial. The ‘NewCounter’ node depends only on the previous counter, so has only one input.
The ‘Combiner’ component will then be used to combine the new value and counter into a single
object.

The components are assembled into the split-recombination form as shown in Figure 5.6.
An ID node at the top has just one input, ‘comb’, at which we want it to receive a com-
bined object containing the previous value and counter. The ‘GetValue’ and ‘GetCounter’
components are used to obtain the value and counter, respectively, from the combined
object. The ‘NewFactorial’ node takes both the previous value and previous counter as
inputs, multiplies them together and outputs their product. The ‘NewCounter’ node takes
only the previous counter as an input, and increments it by one. Finally, the ‘Combiner’
component is used to assemble the new value and new counter into a combined object,
which it provides as its output.

In Figure 5.7 the graph has been connected, the ‘comb’ input is inherited by its down-
stream nodes and, to show the remaining open inputs more clearly, a final node, named
‘IterationFn’, has been added to the end.

We then connect the ‘IterationFn’ node to the central ID node introduced in Figure 5.3.
As shown in Figure 5.8, the ID node inherits the ‘comb’ input. We now set the ID node
to iterate over this inherited input, and it will generate the two derived inputs ‘˜sv’ and
‘˜tc’ as a result.

We can now set about defining starting value and termination condition nodes. For the
Factorial function, the starting value is always the same — a combined object with the
value and counter both initially set to ‘1’. The termination condition is similar to the
generalised iteration node described in Section 4.12, although in this case depends on the

117

5. Implementation

value
counter

counter

GetValue

GetCounter

Combiner value

counter

value

counter

comb

NewFactorial NewCounter

comb comb

comb comb

comb

comb
IterationFn

Figure 5.7. Split-Recombination form with the nodes connected. The final node takes a single
input, ‘comb’, a combined object containing both the previous value and the previous counter. It
will use them to calculate the new value and counter and provide a new combined object as an
output.

combiterationFunction

ID

~sv
~tc

comb
IterationFn

Figure 5.8. Connecting the iteration function. The ‘IterationFn’ node is connected to the ‘itera-
tionFunction’ input of the central node, which inherits the ‘comb’ input. The central node is then
set to iterate over the ‘comb’ input, and the starting value (‘˜sv’) and termination condition (‘˜tc’)
inputs are generated.

118

5. Implementation

counter

GetCounter

comb

comb

comb

combTerminationFn

HasCounterReachedFactOf
factOf

factOf

Figure 5.9. The termination condition for the factorial algorithm depends only on the counter,
not the value. The ‘HasCounterReachedFactOf’ node tests whether the counter (provided by the
‘counter’ input) has reached the value we want to find the factorial of (provided via the ‘factOf’
input).

previous counter but not the previous value. The function should terminate when the
counter reaches the value we want to find the factorial of.

The graph depicting the termination condition function is shown in Figure 5.9. It is based
on a node (named ‘HasCounterReachedFactOf’) which compares its ‘counter’ input with
its ‘factOf’ input and outputs ‘true’ if they are equal. The counter is obtained from the
combined object (the input named ‘comb’) using the ‘GetCounter’ component. An addi-
tional node, named ‘TerminationFn’, is added to the end for clarity. The ‘TerminationFn’
node takes two inputs: ‘comb’, the combined value that will be the output of the iteration;
and ‘factOf’, the number we want to find the factorial of, which will be tested against the
counter each time it runs.

Finally, the components are connected together. In Figure 5.10, the ‘StartingVal’ node
provides the combined object containing the initial value and counter, the ‘IterationFn’
node provides the iteration itself, the ‘TerminationFn’ node tests whether the counter has
reached the required value; and we then use the output of the ‘GetValue’ node to obtain
the resulting value from the combined output.

The ‘Factorial’ node is the end result. It has one input, named ‘factOf’, at which we can
provide the number we want to find the factorial of, and it will output the result. In tests,
the graph described did indeed correctly calculate factorials for non-negative integers up
to the limit of integer representation in JavaScript10.

10See footnote 9 (page 115).

119

5. Implementation

combiterationFunction
ID

~sv ~tc

combIterationFn comb
TerminationFn

factOf

factOfFactorial

GetValue

factOf

{val:1,num:1}StartingVal

factOf

Figure 5.10. The components of the factorial algorithm are now connected together, resulting in
the ‘Factorial’ node at the end, which takes ‘factOf’ — the number we want to find the factorial
of — as an input.

5.3.2. The Fibonacci Sequence

The Fibonacci Sequence, the sequence of numbers starting with (0, 1), in which each
subsequent value is the sum of the preceding two, differs from the Factorial algorithm in
needing reference to more than one previous value in order to calculate the next. In other
ways it is simpler: no counter is needed, meaning we do not need the split-recombination
form that was used to calculate the factorial.

As shown in Figure 5.11, the algorithm is based on the ‘AppendItem’ node, which has
one root input, named ‘arr’. On this input, we want it to receive an array containing the
sequence generated up to that point and to append the next value. We want it to append
the value ‘0’ to the end of the array if the array is empty, the value ‘1’ to the end of the
array if it has only one member, and in every other case append the sum of the last two
values to the end of the array.

We now set this node to iterate over its ‘arr’ input, at which point it will generate the
two derived inputs, ‘˜sv’ and ‘˜tc’. The starting value, ‘˜sv’ is given an empty array (‘[]’);
and the termination condition is connected to the node ‘TerminateAtN’, which returns
‘true’ when the length of the array received on its input ‘arr’ is equal to or greater than
the value of its input ‘n’. When the ‘˜tc’ input of the ‘AppendItem’ node is connected to
the ‘TerminateAtN’ node, we must specify ‘arr’ as the input we want to associate with
the expected input named ‘nominatedInput’. The other input, ‘n’, is inherited by the
‘AppendItem’ node.

120

5. Implementation

AppendItem arr ~sv
~tc

[]

TerminateAtN arr n

nominatedInput:arr

n

Fibonacci n

Figure 5.11. The Fibonacci sequence algorithm is based on the ‘AppendItem’ node, which takes an
array of values as an input and provides a copy of it as an output, with the next value appended to
the end. We set it to iterate over its ‘arr’ input, causing it to generate the starting value (‘˜sv’) and
termination condition (‘˜tc’) inputs. The starting value is an empty array; and the termination
condition is a function which returns true when its input reaches the length given by its input ‘n’.
The end result of the graph is the ‘Fibonacci’ node, which takes ‘n’ — the length of the sequence
we want to generate — as an input.

As with previous examples, a final node is added for clarity; in this case named the
‘Fibonacci’ node, which has one input, ‘n’. When provided with a value for ‘n’ it will
generate an array containing the first n terms of the Fibonacci sequence. This was tested
successfully with values of ‘n’ from 0 to 79. For values greater than this, the final item in
the list exceeds the highest integer that can be exactly represented in JavaScript11.

5.3.3. The Merge-Sort Algorithm

The merge-sort algorithm is more often used as a demonstration of a recursive function.
However, since recursion can be implemented using iteration (Keller [1980]), the merge-
sort algorithm can be too. The purpose of the merge-sort algorithm is to take an unsorted
list as an input and produce a sorted copy of it as an output. The usual (recursive)
mechanism for this is to split the list in half, for the function to then call itself on each
half and merge the two returned (sorted) half-lists to make a full sorted list. It might look
something like the abbreviated algorithm shown in Snippet 5.9.

Snippet 5.9 function mergeSort (unsortedArr){

// First test for the base case:
if(unsortedArr . length === 1) {

// If the base case applies , return the argument
unchanged .

return unsortedArr ;
} else {

// Otherwise :

// First split the array into two halves
var firstHalf = getFirstHalf (unsortedArr);
var secondHalf = getSecondHalf (unsortedArr);

11As for the Factorial algorithm (see footnote 9, page 115), the range of values for which the Fibonacci
sequence algorithm generates correct values is limited by the underlying programming language.

121

5. Implementation

// Use mergeSort to sort each half
var sortedFirstHalf = mergeSort (firstHalf);
var sortedSecondHalf = mergeSort (secondHalf);

// Now merge them together

// This is done by comparing the first items of
sortedFirstHalf and sortedSecondHalf and ,
whichever is lower , removing it and adding it to
the output array. This procedure is repeated
until the sortedFirstHalf and sortedSecondHalf
arrays are both empty.

var outputArr = makeMergedArray (sortedFirstHalf ,
sortedSecondHalf);

}
return outputArr ;

}
}

Every time this function calls itself, it must wait for the function call to finish and return
control before continuing. This means that the first instance of it to actually complete
is the base case. Whereas in reading order the recursive version of this function appears
to start with the whole unsorted array before progressively splitting and sorting smaller
instances of it, the sequence of events during execution is to merge pairs of single item
arrays, then two item arrays, then four, and so on, until the whole list is sorted.

The iterative version of the algorithm uses the same execution order, starting with single-
item arrays, merging them, and doubling their length each time until the whole list is
sorted. Unlike the recursive version it reads in the same order that it executes. The
iterative version might take something like the form shown in Snippet 5.10 (written in
sentences, for simplicity).

Snippet 5.10 function mergeSort (unsortedArr){
// Merge the first with the second item , then third

with fourth , etc

// Merge the first 2 items with the second 2, then
third 2 with fourth 2, etc

// Merge the first 4 items with the second 4, then
third 4 with fourth 4, etc

// Repeat , doubling the number of items merged each
time , until it is greater than or equal to the
length of the list.

// Return the resulting list.
}

As with the factorial algorithm the dataflow graph to perform this iteration takes a similar
form to the generalised iteration node described in Section 4.12. Once again, we start with

122

5. Implementation

the central ID node on which the iteration is going to take place, shown in Figure 5.12.

iterationFunction

ID

Figure 5.12. The central ID node. The merge-sort algorithm starts with a central ID node (one
which returns its sole input unchanged).

We now need to define the iteration function for this node. In common with the facto-
rial and generalised iteration algorithms, successive values need to be calculated using a
counter as well as the previous value, so we must use the split-recombination form.

A skeleton of the iteration function is shown in Figure 5.13. Like the factorial and gen-
eralised iteration algorithms, it uses three components: the ‘Combiner’, ‘GetValue’ and
‘GetCounter’ nodes. In addition, it uses two others: the ‘Double’ node, whose function-
ality is to double its ‘counter’ input; and the ‘SplitMerge’ node, whose functionality is to
receive an array on its ‘value’ input, split it into pairs of arrays of a length determined
by its ‘counter’ input, merge each pair of arrays into a single sorted array, then append
the resulting sorted arrays together into one single array of numbers. This functionality
involves its own iterations, which can be built in a similar way.

value
counter counter

GetValue

GetCounter

Combiner value
counter

value
counter

comb

SplitMerge Double

Figure 5.13. Iteration function skeleton. The iteration takes the split-recombination form, in which
a combined input containing a value and counter is split into its components so that the new value
and new counter can be calculated, before recombining back into a single object.

The ‘Double’ node depends only on the previous counter, not the previous value, so has
just one input rather than two. When the nodes are connected, as shown in Figure 5.14,
the ‘comb’ input is inherited by its downstream nodes. To clearly show the remaining
open inputs a final node, named ‘IterationFn’, is added at the end.

We need this iteration function to be executed first with a counter value of 1, then doubling

123

5. Implementation

value
counter counter

GetValue

GetCounter

Combiner value
counter

value
counter

comb

SplitMerge Double

comb
comb

comb comb

comb

comb
IterationFn

Figure 5.14. Iteration function with connections. Once connected, the open inputs cascade through
the graph and are inherited by downstream nodes. The end result is the ‘IterationFn’ node, which
has one input, named ‘comb’, at which we expect it to receive a combined object containing an
array and a counter.

the counter each time until the counter value equals or exceeds the length of the array.
After each iteration, its output will be an array in which each set of members of length
(2 × counter) will be sorted. We now connect this resulting ‘IterationFn’ node to the
original central ID node, which inherits the ‘comb’ input, as shown in Figure 5.15. We set
the central ID node to iterate over the inherited ‘comb’ input, and it generates the two
derived inputs, ‘˜sv’ and ‘˜tc’.

comb
iterationFunction

ID

~sv ~tc

combIterationFn

Figure 5.15. Connecting the ‘IterationFn’ node. We connect the ‘IterationFn’ node to the central
ID node, which inherits the ‘comb’ input. When we set the central ID node to iterate over the
‘comb’ input, it will generate the derived inputs for the starting value (‘˜sv’) and termination
condition (‘˜tc’).

The starting value and termination condition now need to be defined. The starting value
must be a combined object containing the initial array and initial counter. The initial
counter is always 1 and the initial (unsorted) array is provided by the user. As shown in
Figure 5.16, we use the ‘Combiner’ component to combine the two parts. The value ‘1’ is
provided for the initial counter, and an ID node with the input ‘unsortedArr’ is connected
to its ‘value’ input, to provide a more meaningful name when inherited later.

124

5. Implementation

Combiner value
counter

value

counter

unsortedArrStartingValueFn

unsortedArr

unsortedArr

1

Figure 5.16. Defining the starting value. The counter is provided with the value ‘1’ and the ‘value’
input is connected to an upstream ID node to provide the more meaningful name ‘unsortedArr’.

For the termination condition, we want the iteration to terminate when the counter is
equal to or greater than the length of the array. To define the termination condition in
dataflow, we need to use the split-recombination form again. As shown in Figure 5.17, we
split the combined object to obtain the array and the counter separately. The comparison
is carried out by the node named ‘DoesCounterExceedValueLength’, which compares the
length of the incoming array (which arrives on the ‘value’ input) to the value of its ‘counter’
input, and outputs a Boolean value; true if the counter is equal to or greater than the
length of the array, or false otherwise.

value
counter

GetValue

GetCounter

comb

comb

comb

comb

combTerminationFn

DoesCounterExceedValueLength

Figure 5.17. Defining the termination function. The termination function takes a similar shape to
the split-recombination form used previously. The combined input is split into a value (an array)
and a counter, which are compared, outputting ‘true’ if the counter is equal to or greater than the
length of the array, or false otherwise.

Finally, the components are connected together, as shown in Figure 5.18. In this graph, the
‘comb’ input of the ‘TerminationFn’ node is the nominated input for the ‘˜tc’ input to the
central node, so is not inherited. The ‘unsortedArr’ input of the ‘StartingValueFn’ node
is inherited all the way through the graph. The end result is a node named ‘MergeSort’,
which has just one input, named ‘unsortedArray’. This final node takes an unsorted array
as its input and provides a sorted copy of it as an output.

The algorithm was tested with 100 arrays of 10,000 randomly generated numbers, positive

125

5. Implementation

combiterationFunction

ID

~sv ~tc

combIterationFn combTerminationFn

unsortedArrStartingValueFn

unsortedArr

unsortedArr
MergeSort

GetValue

unsortedArr

Figure 5.18. Connecting the components together. The components are connected to create a final
‘MergeSort’ node which has one input, named ‘unsortedArr’.

and negative, some using integers and some using floating point numbers. In every case,
the algorithm delivered a correctly ordered array as an output.

The embedding of an independent iteration inside a dependent one has the effect of syn-
chronising successive dependent iterations. We could depict the execution order as a tree,
as shown in Figure 5.19, in which a parent node can only execute when its child nodes have
completed. In our implementation, the levels are synchronised, meaning that each level
is able to commence only when all nodes in the level beneath it have completed. A more
efficient implementation would enable each node to commence when its own child-nodes
had completed, without waiting for other nodes at the same level.

Level 1

Level 2

Level 3

Level 4

A

B C

D E

F

Figure 5.19. An Execution Tree. Each node can only begin executed when its child nodes have
been completed. The node labels are used in Figures 5.20 and 5.21.

Whether this makes a difference to overall execution time depends on where the slowest
nodes lie. In Figure 5.20, the slowest nodes at each level, depicted as white, lie on the
same path. In this case the two approaches would have the same overall execution time.

126

5. Implementation

However, in Figure 5.21, the slowest nodes lie on different paths. In this case, an opti-
mal approach, Node D would be able to start execution as soon as its child nodes had
completed. In the implementation used, it would have to wait for Node F to complete
before it could commence. Likewise, Node B would, in an optimal implementation, be
able to begin execution without waiting for Node D to complete. Although both exploit
the same degree of parallelism, the synchronisation of levels used here introduces delays
whose magnitude would depend on the computation in question.

Level 1

Level 2

Level 3

Level 4

A

B C

D E

F

Figure 5.20. In this execution tree, the slowest node at each level is unshaded. The total execution
time, in this example, would be the same for either execution approach, with Node A having to
wait for Node C, which has to wait for Node E, which has to wait for Node F.

Level 1

Level 2

Level 3

Level 4

A

B C

D E

F

Figure 5.21. In this example, the slowest node at each level (the unshaded nodes) lies on a
different path (with the exception of Node A, which is on every path). For this example, a more
efficient execution strategy would enable Node D to begin execution when its own child nodes had
completed, without waiting for Node F to finish. Likewise, in an optimal implementation, Node
B would be able to begin when its child nodes had completed without waiting for Node D. This
would lead to a faster total execution time for an optimal approach than when levels of the tree
are synchronised.

5.4. Summary

The implementation, which is publicly available12, successfully demonstrates that the three
test algorithms can be built and deliver the correct results, using partial evaluation, di-
mensionality and dependent iteration. As pointed out in Section 4.8, partial evaluation
makes algorithms reusable. Once one user has built and shared a generalised iteration
node, such as that described in Section 4.12, any other user will be able to connect to
it and reuse it, rather than having to build each iteration from scratch. As more nodes
are built and shared, and the pool of available nodes grows, the value of the system will
12The implementation can be found in a Mercurial repository at the following address: https://

bitbucket.org/danieljmaxwell/developments-in-dataflow-programming

127

https://bitbucket.org/danieljmaxwell/developments-in-dataflow-programming
https://bitbucket.org/danieljmaxwell/developments-in-dataflow-programming

5. Implementation

increase and more elaborate functionality will become easier to achieve. The next chapter
provides a broader evaluation of the system and its implementation, and a description of
the experience of using it.

128

Chapter 6

Evaluation and Results

Chapter 4 (Definition) described how a distributed dataflow coordination system might
work and proposed a method of representing dependent iteration that is consistent with
the principle of acyclicity. Chapter 5 (Implementation) described an implementation of
such a system and its use in building a set of three test algorithms — calculating a
factorial, generating terms of the Fibonacci sequence and performing a merge-sort. This
chapter describes the experience of using the implementation, and highlights some of the
improvements that could be made and principles applied in onward development.

6.1. Programmability

As described in Chapter 2 (The History of Dataflow), much of the work on dataflow
programming (and the flow-chart concept it is based on) has been motivated by pro-
grammability. The experience of using the implementation highlighted the need for three
characteristics of the system in order to fully exploit that potential improvement: visual-
isability, interactivity and availability.

6.1.1. Visualisability

After working with both diagrammatic and text-based representations of dataflow graphs,
it became clear that dataflow is easier to use visually than in text. In most cases, it was
found that the easiest way to create a dataflow graph in a text-based interface was to draw
the graph on paper first, and then use the diagram to write the text. Correspondingly,
it was found that the easiest way to make sense of a text-based graph definition was to
use the textual program to draw a diagram in order to visualise the flow of data and the
sequence of events.

The visualisation is a necessary component, not an optional extra. That is not to say,
however, that the visualisation needs to be rigidly defined. As described in Chapter 4, the
visualisation is an interchangeable component: any number of visualisations could exist
concurrently within the same system. They could look similar to the diagrams in this
document, or could look completely different; they could be in two dimensions, or three;

129

6. Evaluation and Results

and could use shapes, interactions and types of hardware as yet un-dreamt of.

6.1.2. Interactivity

Interactivity is the ability of the programming interface to respond immediately to changes
and display the changes to resulting values in the graph in as close to real-time as can
be achieved. It enables extremely rapid feedback on the functionality and output of the
program and provides the programmer with constant verification of the functionality they
are creating. Chapter 3 (Software Engineering) discussed the importance of uncovering
changes early for the sake of project efficiency. The principle applies as much to the
discovery of programming errors on a second-by-second basis as it does to the discovery
of specification errors and changes in the project environment. It is easier to identify the
source of a bug if it is discovered immediately after the action that caused it and is a reason
why testability, listed as one of the architectural principles in Section 3.4.1 (Uncovering
Knowledge), is so important.

As described in Section 4.17 (Testing and Development), the ‘partial evaluation’, ‘ex-
pected inputs’ and ‘independent iteration’ features all improve testability. The use of
multiple processors described in Section 5.2 (Code Structure) means that calculations can
be completed on separate processors without obstructing the user interface or program-
ming activity. The use of subscription types, as described in Section 4.15 (Subscription
Types), means that new computations can be triggered even if likely to be quickly super-
seded and cancelled, making it relatively low-cost to trigger an update immediately after
every change, even when those changes are happening in quick succession. The fact that
a change to the graph results in only limited recalculation further adds to these gains,
producing fast results when changes are made.

Although these features contribute to the ability to achieve interactivity, interactivity still
needs to be an explicit (though to some extent flexible) decision in the design of the system.
The text-based implementation’s interactive programming interface added considerably to
the ease of programming. Interactivity in a visual interface would make it easier still.

6.1.3. Availability

Availability is one of the desirable characteristics listed in Section 3.4.4 (Desirable Char-
acteristics). The system of subscriptions described in Section 4.6 (The Service-Provider
Model) enables availability to be achieved without unnecessary resource use — sections of
a graph can be switched off if not being used.

In a distributed system, where components of a single program may be hosted on different
machines and controlled by different people, it is important that components of the pro-
gram should be available when needed, even if temporarily ‘switched off’. In a networked
environment with distributed ownership, this can never been guaranteed, but the system
of partial evaluation and the caching of node inputs within each node adds robustness (at
some resource cost) and improves availability across the system as a whole.

130

6. Evaluation and Results

6.2. Speed

Speed has not been, at this stage, an objective of the design. However, it is an important
consideration of any computer system. While dataflow has the advantage of being paral-
lelisable, it also brings with it a resource overhead. The granularity of the computations
in nodes affects the impact of this overhead. A finely granular system has greater oppor-
tunity for parallelisability but a greater overhead, and a coarsely granular system has a
lower overhead but sacrifices some of its parallelisability. The dataflow system described
in this document allows a programmer to write any amount of code within a node, leaving
the level of granularity to the programmer and their balance of priorities.

The implementation has not been subjected to any form of optimisation. It is a dataflow
system implemented in a sequential language (JavaScript), on a platform (NodeJS) which
parses it into another sequential language (C) in order to be run on hardware that is
designed for sequential execution. When communicating between nodes, a partially eval-
uated function is encoded as an object (in its Abstract Syntax Tree form), which is then
converted into text, transmitted to the next node before being parsed and converted back
into its Abstract Syntax Tree form. On execution, this process is repeated in order to send
the function to the execution process. On arrival at the execution process, it is compiled
back into a JavaScript function and executed, at which point NodeJS will parse it again
to transform it back into Abstract Syntax Tree form in the back end of the language
interpreter, before being executed. An iteration will repeat this process once for every
iteration. The whole procedure is extremely inefficient and the test algorithms described
in Chapter 5 can be executed substantially faster when written in sequential code directly
in the underlying language.

Some of this inefficiency is in the implementation, some is a result of being a layer on an
underlying sequential system, and some is intrinsic to dataflow. While much of the perfor-
mance overhead can be optimised, in particular by avoiding unnecessary copying of data,
some inefficiencies will certainly remain. It seems likely that a coarse granularity would be
needed to make dataflow workable until some of the most glaring inefficiencies have been
addressed. Furthermore, since it is in dependent iteration that dataflow has the biggest
handicap, a cautious approach to using dependent iteration in performance-sensitive ap-
plications would be well-advised, until the performance can be better-optimised.

Peyton Jones [1987], in his book on implementation of functional languages, expressed the
view that lazy evaluation was a “critically important feature for functional programming”,
but also pointed out that it came at the expense of execution speed. The implementation
described in Chapter 5 uses eager evaluation, completing each execution as soon as the
data is available to do so. Given the trade-off between processor time and execution speed
this involves, it makes sense for the decision between eager and lazy evaluation to be left to
node autonomy (and ultimately based on the priorities of the programmer or user). The
capability to choose lazy evaluation does not yet exist in the implementation, so would
need to be included.

The purpose of this project is not to create a fast or optimal implementation of dataflow,

131

6. Evaluation and Results

but rather to demonstrate that the test algorithms can be achieved at all, in a way that is
consistent with the dataflow paradigm. The task of optimisation remains one for further
work.

6.3. Distributability

The implementation was built with future distributability in mind. The main way this
has been done is by converting messages between nodes into a format that could be trans-
mitted over a network. Nodes also take a defensive approach to other nodes, copying both
outgoing and incoming data to protect against mutable data being changed by untrusted
code within other nodes. Although this helps verify that the system can work in a dis-
tributed environment, it also introduces unnecessary work when nodes are running trusted
code on the same machine. There are numerous possible approaches to such problems,
and in a real distributed environment, much of this overhead would be unnecessary and
could be reduced or eliminated entirely.

6.4. Summary

The use of partial evaluation, data dimensionality and the ‘expected inputs’ feature were
successful in providing the basis for a representation of both dependent and independent
iteration in dataflow, and the implementation showed that they could be used to define the
test algorithms and generate correct results (within the constraints of the programming
language used). Use of the implementation revealed the importance of three characteristics
to the usability of the system: visualisability, interactivity and, in a distributed system,
availability.

As has been widely discussed in the field of dataflow, performance remains an issue; one
which previously proposed solutions could be expected to mitigate, both through use
of coarse-gained dataflow programs and through compilation. This second of these has
been successful at mitigating the dataflow overhead in previous implementations, such as
DFScala (Goodman et al. [2013]).

The internal node implementation, the method of computing functions, and the provision
of computing resources, although included in the implementation, are interchangeable
components rather than being intrinsic to the system described. Any alternative internal
node implementation or hardware could equally well be used concurrently with any other,
within the same dataflow coordination system, providing they complied with a consistent
communication protocol and set of minimal behaviours required by the system.

The next chapter lists some of the problems that remain to be solved and features that
remain to be built, and makes suggestions of new features that could usefully be added in
future.

132

Chapter 7

Further Work

This chapter describes three areas of further work. The first, discussed in Section 7.1,
is a full specification of the system. This includes protocols determining the required
behaviour of system components and the interfaces through which the components will
communicate with each other and the outside world. The second, discussed in Section
7.2, is to investigate additional features to enhance or extend the functionality described
in Chapter 4 (Definition). The final area of further work, discussed in Section 7.3, is the
further development and testing of the implementation.

7.1. Full Specification

To bring the vision of a unified global dataflow coordination system to fruition would
require the behaviour discussed in Chapter 4 (Definition) to be resolved into a full specifi-
cation of the protocols and interfaces through which nodes and system components would
interact. This would define the minimal behaviour requirements of system components,
but leave sufficient flexibility for node autonomy, differing user priorities, the full diversity
of current and future hardware and the wide range of applications to which the system
may be applied.

The interfaces should include external interfaces through which nodes could be queried
or controlled and internal interfaces through which interchangeable components could be
attached. Chapter 5 (Implementation) describes example implementations of some of
the interchangeable components, but the specification should allow for multiple imple-
mentations of the same components to exist concurrently on the same system, and no
implementation should restrict users in their choice of components.

Examples of components that should be interchangeable include the choice of cloud sup-
plier to store node data; separately, a cloud supplier to perform computations; and the
choice of user interface through which to interact with the graph. The choice could be
based on speed, proximity, price, reliability, security, legal framework, or any other combi-
nation of concerns that a user considers to be important. Similarly, programmers could be
offered a choice of programming language, which could be broadly similar to the language

133

7. Further Work

described here, or could be completely different if required. The purpose would be to
make the system as flexible and extensible as possible, minimising any constraints on its
use and future potential.

A full specification would require fuller development of some of the ideas discussed in
Chapter 4, including:

• side effects and internal state (Section 4.3);

• subscription types, scheduling and throttling (Section 4.15); and

• synchronisation (Section 4.16).

It would also require a handful of practical problems to be solved, including:

• prevention of cyclical graphs;

• privacy, security and access rights; and

• cost accounting.

These subjects are discussed in more detail below.

7.1.1. Side-Effects and Internal State

Section 4.3 discusses the subject of side-effects. The first step in enabling side-effects
would be to allow nodes to store data internally. An additional step that would allow
richer functionality would be to allow side-effects outside the system.

This would require some form of protection against the possibility of malicious code in a
partially evaluated function leaking data without the knowledge of the user. Requiring the
explicit permission of a user to perform external actions might provide some protection
against this possibility. A set of predetermined actions provided by the function language
would be the safest way to deliver this functionality, and would provide safety in a way
that is consistent with the security measures applied to the function language as a whole.

7.1.2. Subscription Types, Scheduling and Throttling

Section 4.15 (Subscription Types) describes a set of choices determining the behaviour
of nodes when update notifications and data updates arrive either out of order or with
high frequency (with new data arriving before the previous data has been processed). The
decision of how to deal with such a situation is largely a matter of user preference, but a
node does require sufficient information from its upstream graph, through its subscriptions,
to support the decisions made. To enable this, the system needs a wider variety of types
of subscription to communicate those preferences between nodes.

Alternative solutions to the problems resulting from high frequency updates could include
throttling and scheduling. With throttling, a maximum frequency could be set, so that
some updates would be ignored if the frequency exceeded a set level. With scheduling, a
node could be set to provide an update on a regular schedule, or at predetermined times.

134

7. Further Work

As well as providing a solution to high frequency updates, scheduling could also be used to
sample continuously changing external data or, where an external action is needed at a set
time, allowing a one-off or periodic future execution. In the example of Bob’s pie-making
node, discussed in Section 4.3, this could be used to request the required pies at a set
time.

7.1.3. Synchronisation

The issue of synchronisation, discussed in Section 4.16, relates to the problem of clocks
not being synchronised between distributed nodes. The exact choice of solution should be
left to node autonomy, for users to decide based on priorities. However, subscriptions and
the meta-data contained in update notifications and data updates must contain sufficient
information to communicate those choices and the resulting uncertainties, to support the
full range of possible choices. Furthermore, node interfaces may also need to provide
additional clock and latency data in some cases, depending on the choices made.

7.1.4. Preventing Cyclical Graphs

It is part of our definition of dataflow (Chapter 4) that the graph should be acyclic. The
complexity of determining whether any particular graph is acyclic scales linearly with the
number of connections in the graph (Jungnickel [2008] provides a proof of this1). However,
this does not completely solve the problem. In a globally connected dataflow graph with
many distinct users, we could expect a large number of edges with new ones being added
at a high rate, each requiring protection against circularity. Even though the check is only
linear with respect to the number of edges, checking every change for circularity across
the whole graph could prove prohibitively expensive.

A number of alternative approaches are possible, with varying levels of speed, reliability
and resource cost. One approach could be to interrogate the upstream graph of every
new connection that is created. This would enable the node or user interface to verify
that the particular change in question did not introduce any new circularity. A lighter-
touch approach could be to introduce a new message type which would be sent by a
node to its upstream nodes in the event of a new connection being made. These ‘new-
connection’ messages, containing the origin and update ID of the change in question, would
be passed on by each node to its upstream nodes until reaching the top of the graph. If
a node received a new-connection message that had originated at itself, it would signify
that a circularity had been created and it could cancel the change in question. In a test
implementation it is possible to solve the problem using a resource-intensive solution, such
as checking the whole graph when a connection is made. In a production system, a more
efficient mechanism will be needed.

A more difficult type of loop to eliminate is where an external action by a node leads
indirectly to one of its upstream nodes being changed. Some protection against this could
be achieved by setting a limit to the frequency of updates that might be expected and

1Theorem 2.6.6, on page 48 of Jungnickel’s book, is that the topological sorting algorithm he provides
can be used to determine whether a given graph is acyclic and that the complexity of doing so is
proportional to the number of connections (referred to by him as ‘edges’) in the graph.

135

7. Further Work

notifying the node’s owner if that frequency is exceeded, although this would only mitigate
rather than completely eliminate the problem.

The choice of a suitable combination of strategies will be a balance between the magni-
tude of the problem and the cost of finding and eliminating it within the applicable time
scales. As with many other priority choices within the system, it may be best to allow
flexibility through the core functionality and leave it to node owners to choose priorities.
Cost accounting (discussed below in Section 7.1.6) could help to ensure that users are
incentivised appropriately to avoid creating their own cyclical structures.

7.1.5. Privacy, Security and Access Rights

The specification needs a mechanism by which access rights to nodes can be controlled.
The options should include keeping them private or public, sharing with specific people or
groups, or enabling collaborative editing with specified individuals or groups, along with
a mechanism for transferring ownership of a node.

Additionally, there may be a need, in some cases, for a level of privacy that would prohibit
a node from being transmitted to prevent its content from being read. In such cases, it
may be necessary to keep the partially evaluated function on trusted hardware, where it
would be executed on behalf of its service users when needed.

7.1.6. Service Agreements and Cost Accounting

Section 4.6 (The Service-Provider Model) discusses the need for contracts between the
owners of nodes to support the service-provider model of interaction. Associated with this
is the likely need for one node owner to be able to charge another for providing services to
their nodes. Furthermore, the interchangeable components of the system include comput-
ing resources, such as processors and memory, which are likely to be charged based on the
level of use. A range of pricing options might be needed, including per-usage charges; and
the interfaces between nodes and system components would need a system of contracts
and accounting to support the corresponding agreements between their owners. The easier
and more automated such a system can be, the more smoothly it will run.

The platform used in the implementation, NodeJS, makes it possible to measure the
processing time and memory used by its child processes, and can therefore measure the
resources used in each execution of a node. Many other platforms and languages allow
similar functionality. This information could be used to measure and therefore charge for
the resources used by nodes. An additional benefit of detailed resource-use data is that it
could also be used to assess and optimise the efficiency of nodes or models.

7.2. Additional Features

This section discusses additional features to enhance or extend the functionality described
in Chapter 4 (Definition).

136

7. Further Work

7.2.1. Manipulating Partially Evaluated Functions and Graphs

In the same way that some languages, including JavaScript, treat functions as a first order
data type, allowing one function to accept another as an argument value, it would be
useful for a node to be able to accept a partially evaluated function as an input. This
partially evaluated function could then be passed to the node’s internal function to be
analysed or manipulated. This would require an input parameter specifying that the node
should pass the partially evaluated function to its internal function; and the node language
would need to be given the ability to read, manipulate, re-generate and return a partially
evaluated function as an output.

Another even more useful step would be the ability to pass a segment of a graph to a node’s
input. This would require a way to encapsulate a section of a graph so that it could be
passed as a unit of data via a connection and, as with partially evaluated functions, would
require an input parameter and suitable functionality to be given to the function language.
This would allow for a graph to be able to add, edit, remove or reposition nodes, to set
their parameters, or execute the graph, and return a new or edited graph as an output.

This ability to operate on a graph might also contribute to the functionality described in
Section 4.12 (The Generalised Iteration Node) of generating nodes for which the number
of inputs the parameters of those inputs could be configurable based on one or more of its
other inputs.

7.2.2. Grouping

There are a handful of problems to which grouping is a potential solution, although it may
not necessarily offer solutions to all concurrently. These are discussed below.

7.2.2.1. Collapsing a Graph Segment

The first possible use for groupings is providing the ability to visually collapse a graph.
One of the problems with a dataflow graph is that when the whole graph is viewed it
can take on the appearance of an untidy spider’s web of connections. When writing code
in text, the programmer can organise code by grouping it into functions or modules,
making it possible to view both the high level dependencies between modules and also to
focus attention on a small subset of the program where needed. Dataflow needs a similar
mechanism to allow programmers to choose a level of detail or overview at which to view
the graph.

One of the benefits of dataflow is its ability to summarise the product of a whole section
of graph in a single node. An additional ability to collapse and expand sections of the
graph would provide the potential to see either an overview or detailed view within the
same style of interface. The exact mechanisms need to be thought through. Examples of
questions that need to be answered are:

• Should the programmer be able to select any combination of nodes and collapse
them, or should there be some constraints?

137

7. Further Work

• Once collapsed, should the connections between one collapsed group and another
reflect all of the connections between the nodes within those groups?

• How should the system handle the appearance of a cyclical graph between collapsed
groups? If groupings were unrestricted and connections appeared between groups,
it would be possible to have a set of groups with cyclical connections, even where
their underlying nodes were not cyclical.

7.2.2.2. Unordered Collections

A second possible use for groupings of nodes would be to define an unordered collection
of nodes. Imagine we want to find the sum of an initially unknown number of nodes. An
elegant way of achieving this would be if a group could be defined in the user interface,
whose output was an aggregation of the outputs of the nodes within it, which could be
connected to the input of a node whose job it was to find the sum. An example is shown
in Figure 7.1.

Sum

Group

A node could be moved

in or out of the group to

include or exclude it

from the sum.

Figure 7.1. Using a group to define a collection. This allows a group to be used as a collective
input to a node, so that nodes can be added to or removed from the input, and the number of
nodes contained does not need to be known in advance.

In this example, the group is shown in grey, containing six nodes. If we assume that a
group can have an output, we can now connect this output to the input of the ‘Sum’
node. By using groups in this way, it becomes easy to set up an aggregation, and easy
to change its contents by dragging a node into or out of the group. In effect, this forms
connections between nodes, but using groups to simplify the user interface for setting up
such connections.

7.2.2.3. Batch Operations

The next possible use of a group is for the purpose of batch operations in the user interface.
Like unordered collections, this is a user interface device rather than necessarily having

138

7. Further Work

any underlying meaning. It would be similar to the method of selecting files to perform
batch operations on them (such as moving or copying) in file management systems. The
use of a group for achieving this could provide a selection that persists between sessions.
Labels (discussed in Section 7.2.4) could provide a similar mechanism.

7.2.2.4. Defining Models

A related use of groups is to provide functionality analogous to opening and closing files.
If a collection of nodes were enclosed within a group, the group could be collapsed to
appear in the graph as a single node, and expanded again to view the nodes within it
when needed. A collection of nodes enclosed by a group in this way could be referred to as
a ‘model’. Groups could themselves be collected within other groups to create a system of
filing similar to the folders or directories used in most operating systems. Access settings
for a group could be used by its owner to allow other users to view or edit the nodes within
it, potentially enabling collaborative real-time editing. This use of groups also provides
a possible visual mechanism for defining a segment of a graph to be consumed by other
nodes (as described in Section 7.2.1), although that conflicts with the use of groups for
defining unordered collections described in Section 7.2.2.2.

7.2.2.5. Defining Data Structures

A final, possibly more complex, use for groups is in defining data structures. This is
discussed in more detail in Section 7.2.3.

7.2.3. Representation of Data Structures

Whereas a unit of data, described in Section 4.10 (Dimensions), can hold any type of
data it is nevertheless sometimes beneficial to be able to represent data types at graph
level as well as within data units. This can be useful in providing a way to operate on
and manipulate those data structures at graph level, and can sometimes enable additional
functionality. An example is where tables represented at graph level are used to provide
independent iteration (described in Section 4.11.1 — Independent Iteration). The work
remains to decide how object-oriented-like data, relational database-like data and graph
data might be represented at graph level.

One possible method for enabling object-oriented-like representation in a dataflow graph
might be to use groups to define ‘objects’, which could then be reused elsewhere in the
graph. As an example, imagine we want to define a new data type specifying the behaviour
of complex numbers. We could start by creating a group containing two nodes, named
‘R’ and ‘I’, representing the real and imaginary parts of a complex number. As shown in
Figure 7.2, a group is used to define this object. From it, two instances are created.

We can imagine the creation of functions designed to operate on instances of this type;
they could, for example, perform arithmetic operations on complex numbers by extracting,
separately, the real and imaginary parts of an instance, performing the required real
number arithmetic on the components, and using the results to build a new complex
number instance as an output.

139

7. Further Work

R

I

r i

r i

1 2

3 -1

Object Definition

Instances

r

i

Figure 7.2. Using a group to define an object. In this example, the group is used to define the form
of a complex number. It contains two components, ‘R’ and ‘I’, representing the real and imaginary
parts of the number. The group is used to create two instances, which inherit the inputs of the
node’s components, whose values can then be set.

There are also likely to be benefits in representing relational and graph data at graph
level. For relational data, one avenue of further work could be to establish whether multi-
dimensional tables could play a part in representing normalised relational data at graph
level.

7.2.4. Labelling

One of the possible applications of grouping is to define unordered collections, as described
in Section 7.2.2.2. Labels could be used in the same way, with the benefit that, whereas
groups are mutually exclusive, labels are not. Each node could have more than one label,
allowing labels to define overlapping collections of nodes. As with groups, the unordered
collections defined this way could be used to aggregate nodes to be applied to an input.
Users could also label nodes as a way of categorising them, to make it easier to search for
and find suitable nodes when needed. How this might work, and whether it turns out to
be useful or efficient, remains to be seen.

7.2.5. Visualisations and Interactive Components

It would be useful for a node to be able to contain a generalised visualisation, to which data
generated in the graph could be connected. Since the user interface is assumed to be web-
based, the code defining a visualisation would have to run in a browser. This introduces
slightly different practical privacy and security issues than would apply to other node
functions, but that problem seems unlikely to be insurmountable. Functionality would
have to be provided to enable creation of a visualisation while constraining its dimensions
to the box representing the node in question and preventing it from accessing information
about the rest of the graph.

An example might be if a node were created that took a table of data as an input and
presented it as a graph. Figure 7.3 illustrates how such a visualisation might look. The

140

7. Further Work

visualisation appears within a node, to which three data inputs have been connected, one
providing the data and, in this case, two providing other parameters of the graph. When-
ever new data arrived from any of the inputs, the graph would update correspondingly.

Data

data

colours axes

Figure 7.3. A visualisation node. In this example, the visualisation is a graph. It takes data as an
input, but also allows its user to control the appearance of the graph by providing ‘colours’ and
‘axes’ as additional inputs.

It is possible that a graph containing many visualisations would quickly become cluttered.
To avoid this problem, nodes could be made resizeable or collapsible, showing only a
thumbnail representation of the visualisation when in collapsed form, but a full-screen
view when needed. The precise form of interaction could be left to the designers of a user
interface to decide.

An expansion of this concept would be the idea of adding interactive components. It
is common for web-based graphs to alter the visualisation in response to a mouse being
hovered or the graph touched or clicked. Interactive components could also have an output,
so they could be made to output an edited version of their inputs, depending on the user’s
interactions.

To take this idea further, could an interactive component be used to override the native
method of editing a node input? An interactive component for editing a number would
have to use the existing value of the node as its starting value, but on editing would need
to update the node with a new value. An interactive component of this kind occurs both
before and after the underlying node in the node graph — taking the node’s value as an
input but also providing it with an output.

One way of representing this might be to think of interactive components as overlaying
the underlying node. In Figure 7.4, we have an input node containing a percentage, set to
the number ‘50’. We want a different interaction for it, so create an interactive component
and overlay the existing node with the component. Once in the correct position overlaying
the underlying node, the interactive component reads from the underlying node when
first loaded and writes to it whenever a user interacts with the component, allowing the

141

7. Further Work

resulting value to cascade through the rest of the graph as it does so.

Percentage 50

An interactive component

is moved over an underlying

node containing input data...

and provides an alternative

teraction, reading the underlying

lue when it loads and writing

e underlying value when the

er interacts with it

Figure 7.4. Use of interactive components to replace the interaction for an underlying node. The
interactive component is moved over the underlying node, thereby replacing the native interaction
for controlling its content with a new one.

7.2.6. Recursion

Although recursion is a form of iteration and can be represented in iterative form (Keller
[1980]), it is an open question whether explicit recursion would be considered beneficial
by users. If so, work would be needed to choose a manner of interaction that is easy to
use and best complies with the principles of dataflow and software architecture.

The representation of recursion as iteration may also limit its potential parallelism. As
discussed in Section 5.3.3 (The Merge-Sort Algorithm), the embedding of an independent
iteration inside a dependent iteration has the effect of synchronising the execution such
that each depth-level of an execution tree must be completed in full before execution of
the next level can begin. In some cases this will not affect the total execution time, but in
many cases it will slow it down. Whether it affects the total execution time, and by how
much, depends on the functions in question. Investigation of recursion should therefore
encompass investigation of the extent of this handicap and whether it can be eliminated
by using a different approach or by implementing explicit recursion functionality.

7.2.7. Multi-Directionality

Multi-directionality was listed as an open problem in reactive programming (for which
dataflow is a common programming paradigm) by Bainomugisha et al. [2013]. They pro-
vided examples of applications needing multi-directionality that included a unit conversion

142

7. Further Work

(in which a change to either unit would trigger a change to the other) and pairs of user
interface components required to maintain a fixed distance apart (in which one being
dragged by the user would require the other to be moved correspondingly).

Another example would be where, in a user interface, a user is offered two different com-
ponents to control the same underlying value. Figure 7.5 shows an example of such an
interface in which a number, representing a percentage, can be edited using a slider or a
text box.

Percentage

80 %

Figure 7.5. A component with two interactions controlling the same underlying value. When the
user interacts with one, the other should also reflect the change.

Only two of the fifteen languages surveyed by Bainomugisha et al. had any form of multi-
directional capability. Those that did achieved it by modelling the change as emanating
from an event source. From the event, an action could be triggered (a change to the
underlying number or a calculation of the unit conversion) which would in turn be reflected
by the user interface components. The use of event sources side-steps the issue by using
a uni-directional flow from an invisible component (the event source) to deliver behaviour
that at first glance appears to be multi-directional. A similar approach could be used to
achieve the appearance of multi-directionality in a dataflow system, perhaps connecting a
node’s input to an invisible event listener.

Another solution mentioned by Bainomugisha et al. was the approach of using switching
constructs, which would enable the program to respond to an event by switching the di-
rection of flow appropriately, so that information could flow from the object at which the
event originated to the other components. This could be achieved using the manipulation
of partially evaluated functions and graphs discussed in Section 7.2.1 (Manipulating Par-
tially Evaluated Functions and Graphs). Neither approach has been directly addressed or
tested as part of this work, so would require further investigation to fully resolve.

7.2.8. Optimisation

As pointed out in Chapter 6 (Evaluation and Results), the system currently suffers from a
significant performance handicap when the test algorithms are compared with equivalent
sequential implementations. This is unsurprising: the implementation was not designed to
be optimal. There is significant potential for optimising the system, in both its software
and hardware. In particular, there is potential to reduce the number of times functions
are parsed and recompiled and data copied during iteration.

Dependent iteration is the source of much of the performance handicap suffered by dataflow;
in particular the lack of destructive updating (as described by Vegdahl [1984]). In a se-
quential (control-flow) language, ‘for’ loops sit within a context, which contains a set of
variables that can be modified by the iteration statement. The objective of the loop is to
leave that context in the desired final state.

143

7. Further Work

In dataflow, no such context exists; instead, the purpose of the loop is to produce an
output value. This difference makes the outcome of an iteration clearer in dataflow than
in control-flow, but also requires data to be copied in each iteration, making each iteration
much less efficient than in control-flow loops. This is one of the reasons why iteration in
dataflow has often been listed as an open problem (for example, by Johnston et al. [2004]).

Various approaches to solving this problem have been proposed, including by Nikhil et al.
[1989], who devised a mechanism for this purpose named ‘I-Structures’, Giorgi et al. [2014],
who used the concept of ‘Transactional Memory’ (originally devised by Herlihy and Moss
[1993]) to ensure the integrity of data when using in-place updates and Harris et al. [2005],
whose ‘Composable Memory Transactions’ involved explicitly distinguishing ‘memory op-
erations’ (which could be safely re-executed if needed), from ‘input/output operations’
(which could not). An approach termed ‘Compilation’, combined with other techniques,
also appears to have been successful at addressing this problem for The TERAFLUX
project, with its DFScala language being amongst the first to have claimed objectively
good performance rather than simply speed-up with increasing parallelisation (Giorgi et al.
[2014]; Goodman et al. [2013]).

This document does not address efficiency. However, the ability of nodes to maintain state
(described in Section 4.3 — What Are Nodes And Connections?), combined with the fact
that dependent iterations take place sequentially in a predicable order, allow the possibility
of making in-place data updates to a node’s own state in each iteration rather than copying
the data output each time. This would significantly reduce the computational overhead
involved. It is also possible that the termination condition and iteration functions, which
are the same in every iteration, could be allowed to persist between executions, avoiding
having to reassemble them from their abstract syntax tree forms for each iteration.

A range of optimisations could also be applied to internal node functions during partial
evaluation, using code analyses similar to those carried out by typical software development
tools, code optimisers and compilers. For example, unnecessary computation could be
avoided by trimming branches that no longer affect the output. Consider the function
shown in Snippet 7.1: it uses a computationally expensive branch (‘let c = expensive(a)’)
to set the variable ‘c’, which is used only if the condition ‘a > 1’ is met. Imagine that,
during partial evaluation, we provide the argument ‘a’ with the value ‘0’. If the function
‘expensive(a)’ does not cause external effects or modify the node’s internal state, and if
the variable ‘c’ is not subsequently used, then the expensive branch is redundant and
can be removed without affecting the function’s output. Alternatively, if, during partial
evaluation, we provide the argument ‘a’ with the value ‘2’, the expensive branch can be
computed in advance and replaced with its resulting value, reducing the amount that
remains to be computed during the final (full) evaluation of the node.

144

7. Further Work

Snippet 7.1 function (a,b){
let c = expensive (a); // A computationally expensive

function of `a'
if a > 1 {

return b + c;
}
else {

return b + 1;
}

}

Optimisations of this type, while potentially powerful, would have to account for the use
of deliberately obsolete inputs as triggers (as described in Section 4.7 — Triggering Exe-
cution) and the resource priorities of node owners (including, potentially, a choice between
eager and lazy evaluation, as discussed in Section 6.2 — Speed). The task of optimisa-
tion involves both the specification and the implementation of the system. Whereas the
system can accommodate different implementations of its components, it is less flexible
with regards to the specification, making it more important to consider the role of the
specification in the optimisation of the system at an early stage.

7.3. Further Work on the Implementation

This section discusses the work that would be needed to build and test a more complete
implementation of the features described in Chapter 4 (Definition), adding to the features
that were implemented for testing and described in Chapter 5 (Implementation).

7.3.1. Distributability

The system was implemented with distributability in mind, but as yet runs on just one
machine. The option to make it distributable was kept open through use of a separate
component for node-to-node communications (described in Section 5.2 — Code Structure),
and conversion of data and partially evaluated functions into a format, for transmission,
that can be easily transmitted over a network.

In order for the system to be fully distributed, the main additional component needed is
an addressing and identification system. In the current implementation, nodes are given
an identifier that is unique with respect to the machine in question, but could clash with
identifiers on other machines. A simple approach, sufficient for the purpose of testing,
would be to identify nodes using an address for the host machine combined with that
node identifier. Another approach, possibly suited to a production system, might involve
allocating identifiers centrally and keeping a lookup table matching unique node identifiers
to locations.

7.3.2. Component Interchangeability

Interchangeability is an architectural principle included in Section 3.4.2 (Increasing Flex-
ibility), helping to deliver the principles of flexibility and incrementality (Section 3.4.1
— Uncovering Knowledge); and it is an attribute of the system discussed in Chapter 4

145

7. Further Work

(Definition). Interchangeability would require a full definition of the interfaces between
the system components to enable components to be switched for alternatives.

7.3.3. Expected Inputs

The ‘Expected Inputs’ functionality, described in Section 4.9 (Expected Inputs), provides
the ability for a programmer to designate a particular input as expecting to receive a
partially evaluated function, and to name the inputs it expects that incoming function to
have. This provides flexibility by making it possible to choose the point in the graph at
which to connect that expected function. This functionality is required, in particular, for
the generalised iteration node described in Section 4.12 (The Generalised Iteration Node).

It could also be used to make a small change to the merge-sort algorithm described in
Section 5.3.3 (The Merge-Sort Algorithm) to enable it to accept a sorting function as an
input — which would be used to determine how the list should be sorted. The sorting
function would compare two items and determine which should appear first in the list;
any transitive relation could be used for this purpose.

The expected inputs functionality was partially implemented, but not fully integrated with
the dependent iteration functionality (described in Section 4.11.2 — Dependent Iteration).
Integrating the expected inputs feature fully with the rest of the system would also enable
the generalised iteration node described in Section 4.12 (The Generalised Iteration Node)
to be built.

7.3.4. Function Isolation

It is important when running untrusted code that the system and other nodes are pro-
tected from malicious or accidentally harmful behaviour. Section 4.13 (Function Isolation)
describes a method of isolating untrusted code which also enables untrusted third-party
languages to be added, using a parser within a parser. For the purpose of testing, all code
is trusted, and this functionality has not been needed.

The implementation included a skeleton of the required functionality, in which functions
written in JavaScript are parsed, converted into their Abstract Syntax Tree (AST) form,
and compiled back into a function for execution. However, the parser used defines a version
of JavaScript which does not curtail any of JavaScript’s unsafe capabilities. Although it
does demonstrate the use of the mechanism of defining a language and parsing code, it
does not make untrusted code safe to run. The next step would be to create a parser that
defines a safe language. It could be a version of JavaScript, as was used, or a version of
any other language. Since JavaScript is widely used and relatively easy to learn, it makes
a good candidate.

7.3.5. Tables

Tables were implemented as far as necessary for the purpose of building the test algorithms,
using implicit creation of dimensional data. A fuller implementation would provide an
explicit mechanism for creating dimensional data. This would require a ‘list’ data-type

146

7. Further Work

for use inside functions, together with supporting functionality for list manipulation. The
function language would also benefit from the addition of other, richer, table-manipulation
functionality.

7.3.6. Visualisability, Interactivity, Availability

As described in Section 6.1 (Programmability), experimentation revealed that the system
needs visualisability, interactivity and availability in order to maximise its programma-
bility. Delivering these requires a user interface connected to an always-on back end.
Subscriptions, described in Section 5.1.7, are a useful component in this, providing the
ability for the user interface itself to subscribe to the nodes it is displaying at any point
in time, receive data updates as they happen, and thereby providing the necessary inter-
activity. It would enable a user to make a change to one node and see the effect cascade
through the graph as updated outputs became available.

7.3.7. A Directory of Components

In a globally distributed dataflow coordination system, there are huge benefits to be had
from the use of nodes created by others, but it needs a way for programmers to find them.
A directory and search system would be needed to help programmers find relevant nodes.
As with the world wide web, for which search engines are useful but not integral to the
system, there is no reason why a directory should necessarily be integral to the system.
Although it would be beneficial for any particular user interface to be integrated with
a directory through which useful nodes could be found when needed, the directory and
search mechanism could be provided independently.

7.3.8. Further Testing

Additional tests are needed to assess aspects of the system beyond those covered by the
test algorithms described in Chapter 5 (Implementation). To assess programmability we
might be interested, for example, in how long it takes a user to create a selection of test
algorithms, and their reported experience of doing so. We might also be interested in the
balance of priorities between programmability and speed for various applications. That
information would make it possible to prioritise optimisation efforts to achieve those gains
that would most enhance the usefulness of the system.

While it is important that design decisions should be driven by the principles of Software
Engineering and Architecture described in Chapter 3 (Software Engineering), the princi-
ples themselves are not beyond question. They provide a shortcut to avoid unnecessarily
granular testing of every decision, but they may be subject to refinement over time. The
resulting system should still be subjected to a degree of testing against those overall aims
of improving programmability, optimising the experience of using the system and enabling
appropriate prioritisation of resources.

147

7. Further Work

7.4. Summary

This chapter divides the further work into three areas, categorised as defining the full
specification of the system, describing additional features that would add functionality,
and refining, completing or improving the existing implementation.

Part of the purpose of this document is to argue for the creation of a unified global dataflow
coordination system. In such a system, the principles of node autonomy and interchange-
ability mean the requirements imposed by the specification should be minimal, relating
mostly to the communication between nodes and interactions between components of the
system. Whereas the specification must be well thought through, the interchangeable
components, such as the user interface and internal node implementation need only min-
imal implementations in order to provide the basic functionality; the rest can be left to
the preferences and values of those who might wish to add their own improvements later.

The next chapter concludes by summarising the work that has been done, expressing
again the vision of a unified global dataflow coordination system, and making an appeal
to those involved to cooperate to create a single open non-profit dataflow system run for
the benefit of its users, enabling the widest possible applicability such that, ideally, any
computational component in the world can become a part.

148

Chapter 8

Conclusion

The goals of this work are:

• to argue for a unified global dataflow coordination system;

• to establish a link between the design of that system and the principles of software
engineering and architecture;

• to design a dataflow system, drawing on previous ideas and adding new proposals
where required (most notably using partial evaluation and data dimensionality to
represent iteration in an acyclic graph);

• to implement and test components of the proposed system, using it to build a set of
sample algorithms.

While the use of dataflow for coordinating components has been discussed before, the
notion of creating a unified global dataflow coordination system is a novel contribution.
Likewise, the notion of linking the design of such a system to the principles of software
engineering (so that they become easy or unthinking for programmers to apply) is new; as
is the use of partial evaluation and data dimensionality to represent iteration in an acyclic
graph.

The vision of a unified global dataflow coordination system is first introduced in Chapter
1, and the rest of the document is based on this founding principle. The importance of
design decisions being based on principles of software engineering is, similarly, introduced
at the beginning and used throughout.

The principles of software engineering and architecture, described in Chapter 3, are inher-
ently empirical and to some extent subjective, so are certainly open to question, and the
consensus may change over time. However, the value of such principles being embedded
in the system, so that their implementation becomes easy or automatic and unthinking,
should be clear. As programming becomes easier and increasingly accessible to people
with less formal training, the importance of embedding such principles can only increase.

There are two classes of component in the system: intrinsic features — those dictated

149

8. Conclusion

by the system such as the manner of interaction between nodes and the interfaces be-
tween system components; and interchangeable components, such as the user interface,
the hardware and the internal node implementations, for which alternative components
or implementations could be used in parallel within the same system. Additionally, deci-
sions on prioritisation of costs and resources can in many cases be left to node autonomy
(Section 4.3 — What Are Nodes And Connections?) and ultimately end users to decide:
not all applications or users share the same priorities and the system must accommodate
their choices.

The design of a dataflow system described in Chapter 4 (Definition) features, in partic-
ular, the novel use of partial evaluation and dimensional data to represent iteration in
acyclic dataflow. Partial evaluation, sometimes by different names, has been mentioned
occasionally in the literature (see Section 2.2 — Partial Evaluation). This document uses
partial evaluation to make nodes more reusable, and to simplify the process of program-
ming iteration in dataflow, both dependent (where an iteration depends on the results of
the previous iterations) and independent (where all iterations in a loop can be executed
simultaneously). It is suggested that this representation is simpler and more flexible than
those that have been proposed previously.

The functionality was implemented and tested (described in Chapter 5 — Implementation)
by using it to construct three test algorithms: calculating a factorial, generating terms
of the Fibonacci sequence and performing a merge-sort. The test algorithms produced
correct results for values within the limitations of the underlying programming language
used.

The proposed further work, described in Chapter 7, is divided into three categories. The
first is to write a full specification defining the protocols that determine the required
behaviour of system components, and the interfaces through which the components will
interact with each other and the outside world. The main obstacles are providing a mech-
anism for controlling side effects and node state, resolving the full range of subscription
types needed and solving the problems of synchronisation caused by divergent clocks in a
distributed system.

The second category of further work is to investigate additional features that would add
functionality to the system. Areas for investigation include how to convey a graph as
data, how grouping could be used to collapse segments of a graph, how to represent data
structures, enabling visualisations within nodes and how performance could be optimised,
particularly through the design of the specification.

The third category of further work is to implement the remaining features described in
Chapter 4 (Definition) and conduct further tests of the resulting system. This includes
looking for ways to test its programmability, usability and applicability to the widest
possible range of applications. The experience of using the (text-based) implementation
(described in Chapter 6 — Evaluation and Results) highlighted a number of characteristics
that will be important to any later, fuller implementation of the system. These include,
in particular, that the system should be visual, interactive and always-available; visual

150

8. Conclusion

because graphs are easy to understand visually, interactive because it makes it immediately
clear when and where mistakes are made, and available to enable interconnectivity between
distributed nodes.

Reiterating one of the goals of the project, the hope is that this work helps to advocate the
creation of a unified global dataflow coordination system that could make programming in
general easier, more widely available and more accessible to all. A crucial step in the reali-
sation of such a system is the full specification of the protocol by which nodes will interact
and their interfaces for connection to interchangeable components such as user interfaces
and computing resources. With a minimal specification of node behaviour, components
can be built and a system can start to be assembled that is flexible, distributable, extensi-
ble to current and future computing technology, indifferent to hardware architectures and
able to accommodate the full range of user priorities. With an appropriate protocol and
interface, any computing or storage resources could be plugged into it, any user interface
attached, and new languages and types of hardware could be added as required.

Many attempts have been made in the past to build dataflow systems that are designed to
run locally, integrating the computational as well as coordination components. However,
what is needed in order to bring about a truly heterogeneous system is an open protocol,
available to all, defined and managed not by a commercial organisation, but by a non-
profit body run in the interests of its users, perhaps on something like the model of the
World Wide Web Consortium1. To that end, I urge people working on dataflow in future
not to add to the diversity of incompatible systems that already exist, but instead to work
together on building and designing the parts of a system that can work as one, to make
the vision of a unified global dataflow coordination system come true.

1https://www.w3.org/

151

https://www.w3.org/

Appendices

152

Appendix A

Nomenclature

The terms and abbreviations used in this document are given below in alphabetical order,
together with their meanings.

API Application Programming Interface. The set of functions through which a program-
mer can interact with a system.

AST Abstract Syntax Tree. A function encoded as an object.

Autonomy See Node Autonomy

Cascade When information propagates down the graph from top to bottom, it is described
as ‘cascading’ down the graph. This applies to data updates (Section 4.6), update
notifications (Section 4.16) and inherited inputs (Section 4.8).

Computation Manager A node can request of the computation manager that a function
should be executed. A node can make multiple simultaneous requests. Section 5.2.4.

Connection A conceptual link between the input or content of one node and the output
of another. Section 4.3.

Content A node has content, which can be a function or other value. Section 4.3.

Derived Inputs Node inputs that are generated either by being inherited via a connec-
tion to an upstream node or by having been implied through iteration or input
parameters. Sections 4.8 and 4.11.2.

Dimensions (of data) Data comes in units (zero-dimensional), lists (one-dimensional)
and tables (zero or more-dimensional). In the case of tables, the table’s shape is
defined by a number of lists; each list contributes one dimension. Section 4.10.

Downstream Used to refer to any part of a graph that is in the chain of connections below
(emanating from the output of) the node in question.

Escalate When information propagates up the graph from bottom to top, it is described
as ‘escalating’ up the graph. This applies to subscriptions (Section 5.1.7).

153

A. Nomenclature

Expected Dimensions An input parameter (named ‘dimensions’) that determines the
maximum number of dimensions that the node’s function is capable of processing.
It may be an integer (0 or greater) or unlimited. Section 4.11.1.

Expected Inputs An input parameter used to specify that the programmer expects the
value received at a particular input to be a function. It is a list of input names of
the function that the programmer expects this input to receive. Section 4.9.

Function A set of instructions which takes one or more inputs, and may be written in any
programming language that can be understood by some hardware.

Graph Or node-graph. A network of connected nodes.

Inherited Input When a node receives a partially evaluated function through one of its
inputs, it inherits the inputs of the function it receives. Section 4.8.

ID Node A node with one input that provides its input, unchanged, as an output.

Input If a node’s content is a function, the node has an input corresponding to each
argument of that function. In addition, the node may generate additional (derived)
inputs, depending on its input parameters and the values received from its upstream
nodes. Section 4.3.

List A list is an ordered array of units of data. Section 4.10.

Name A node can have a name, which is purely to assist the programmer and has no
other meaning. It does not need one, and names need not be unique.

Node An autonomous unit of functionality, which contains a function or data, and may
also be a custodian of related data. It must obey set rules of behaviour and in-
teraction with other nodes, but also has significant scope for autonomy. Section
4.3.

Node Autonomy This refers to the freedom of nodes to choose their behaviour and re-
source prioritisation based on the preferences of their owners or users. Section 4.3.

Nominated Input A connection parameter used to associate an expected input to one of
the inputs of an incoming partially evaluated function. Section 4.9.

Notification (Update Notification) An update notification is a message sent by a node
to its subscribers as soon as it becomes aware that its output value is out of date.
Section 4.16.

Originating Node The node of origin for an input is the node at which that input is first
defined, before being later inherited by its downstream nodes. Section 4.16.

Output Each node has an output value. If the node’s content is a function, its output
value will be the partially evaluated function or the computed result of executing
that function. If its content is data, the output is that data. Section 4.3.

154

A. Nomenclature

Parameters Inputs and connections have parameters, which determine how the node be-
haves. Sections 4.9 and 4.11.1.

Partial Evaluation If a node’s content is a function and values are not provided for all of
the inputs of that node, the node will partially evaluate the function, resulting in
a new function which has one input for each input whose value was not provided.
Section 4.8.

Root Inputs The set of a node’s inputs corresponding to its function’s arguments. Section
4.3.

Subscription Each node maintains a list of subscribers, and notifies those subscribers as
soon as it becomes aware that its output is no longer up-to-date. A node may
subscribe to any of its directly connected upstream nodes. Section 5.1.7.

Table A zero or more-dimensional grid of data. The shape of a table is defined by a list
of lists. The number of lists determines the number of dimensions of the table. The
items of each list form the column headings of the table. Section 4.10.

Unit (of data) Any item of data. Lists and tables are units of data containing units of
data. Section 4.10.

Upstream Any part of the graph in the chain of connections above (arriving at an input
of) the node in question.

155

Appendix B

Visual Notation

This appendix provides a quick reference for the visual notation used to depict node
graphs. The features involved are described more fully in Chapter 4 (Definition). Most
visual features are optional. Only those relevant to the discussion at hand are included in
diagrams; obvious or irrelevant details are usually left out.

Nodes
Nodes are depicted as a lens-shape (Figure B.1), in which inputs are received at the top of
the shape and outputs delivered at the bottom. The node’s name, if applicable, is shown
as a label to the left of the node. A convention is used in this document that node names
start with an upper case letter. See Section 4.3.

A

Top of node, where 0 or

more inputs are received

Bottom of node, which has

one output that can be

connected to 0 or more

downstream nodes.

Node name

Figure B.1. Lens-shaped depiction of a node. The node’s name, if applicable, appears in a label to
the left. Input connections are depicted arriving in the top half of the node and output connections
leave from the bottom.

Node Content
Nodes have ‘content’ and an output value, either or both of which may be shown within
the node. Where both are included, the content is shown at the top and output at the
bottom, separated by a dashed line. In order to ensure sufficient space, nodes can be
depicted in either shallow or deep form, depending on the space needed (Figure B.2). A
node may be elongated as far as necessary to contain its content and output. See Section
4.3.

Node Inputs
Inputs are depicted as a ‘V’ shape overlaid in the top part of the node, and labelled with
a name if necessary (Figure B.3). A convention is used in this document that input names
start with a lower case letter. See Section 4.3.

156

B. Visual Notation

Node Content

Node Output

Node Content

Node Output

ADeep form

Shallow form A

Figure B.2. Shallow and deep node notation. The node’s height is elongated as far as necessary
to accommodate the required content, input labels and output values.

input1
input2

Figure B.3. Node inputs. Inputs are depicted as a ‘V’ shape in the top part of the node, with an
adjacent input name if applicable.

Node Values and Connections
Inputs are provided with a value directly, or can be connected to another node’s output.
(Figure B.4). Connections between nodes are shown as lines connecting the output (the
bottom part) of one node to an input of another. Flow in the graph is always from top to
bottom. See Section 4.3.

input1
input2

Upstream node (details not relevant, so only partially shown)

1

An input can be provided

with a value directly

Connections are depicted as a line between the

output of one node and the input of another.

Figure B.4. Providing inputs with values. An input can be provided with a value by being
connected to an upstream node, depicted as a line connecting the output of another node to the
input; or an input can be provided with a value directly, depicted by writing the value above the
input.

Root and Derived Inputs
Derived inputs (described in Sections 4.8 and 4.11.2) are shown as smaller than root inputs,
and shaded, as shown in Figure B.5. See Sections 4.8, 4.9 and 4.11.2.

Input Parameters
Two different parameters can be set for an input, named ‘expected dimensions’ and ‘ex-
pected inputs’. They are shown in a box connected to the corner of the input in question
(Figure B.6). Where the ‘expected inputs’ list has been set, a derived input will appear
for each expected input. See Sections 4.8, 4.9 and 4.10.

157

B. Visual Notation

rootInput

Root Input

derivedInput

A derived input is shaded and

is smaller than a root input

Figure B.5. Derived inputs. A derived input appears when a partially evaluated function arrives
via a connection, when an input has expected inputs, or when a node is set to iterate over an
input.

p a b

Input parameters

One derived input for each 'expected' input

Figure B.6. Input parameters are shown in a label attached to the input they relate to. There are
two possible types of input parameter: ‘expected dimensions’ and ‘expected inputs’.

Connection Parameters
Connection parameters are shown in a box connected to the connection line. Each param-
eter is a ‘nominated input’, associating an expected input with an input of the incoming
partially evaluated function. If the input of the incoming partially evaluated function can
be uniquely identified by its input name alone, only its input name is used. Otherwise,
its originating node and input name are both used, in curly brackets. Both formats are
shown in Figure B.7. See Section 4.9.

p a b

a: {A, p}

b: q

A p q

Nominated inputs. For each expected input, an

input of the incoming function must be

nominated. An input is uniquely identified by

its originating node and input name, as {Node

name, input name}. If the input name is

sufficient to uniquely identify it, in appears

simply as input name.

Figure B.7. Nominated inputs. When an input whose ‘expected inputs’ parameter has been set
is connected to an upstream node, an input of the incoming partially evaluated function must be
nominated to correspond to each expected input.

Inherited Content
A node may ‘inherit’ content by connecting it directly to an upstream node (that is, not
via an input), making it, in effect, an instance of the upstream node. The inputs of the
upstream node are inherited and are depicted in the inheriting node as root inputs. A

158

B. Visual Notation

direct connection is depicted as a connection directly to the downstream node, as shown
in Figure B.7. A node can only have one incoming connection of this type. See Section
4.8.

a

a

Upstream node, which outputs a function with input 'a'

Node's content

is connected to

the output of the

upstream node

Downstream node

'inherits' the inputs of

the incoming function

Figure B.8. Inherited content. Instead of setting a node’s content, it can be set to inherit its
content directly from another node. This is depicted by connecting an upstream node to some
area on the top half of a node. The node will then inherit the inputs of the upstream node, all of
which will be shown as root inputs, regardless of their status on the upstream node.

Tables
Tables are depicted as a grid, with the column headings shown with a grey background and
the table data with a white background (Figure B.9). Tables of more than two dimensions
are not depicted visually in this document. See Section 4.10.

A B

X

Y

Z

1 2

3 4

5 6

Column headings

for dimension 1

Column headings

for dimension 2

Data

Figure B.9. Tables (of two dimensions) are depicted with column headings to the left and top,
shaded grey, and the table data unshaded. Tables of three or more dimensions are not depicted
visually in this document.

Dependent Iteration
Iteration is depicted in the graph with a ‘rotation’ symbol () appearing above an input,
as shown in Figure B.10. A node can only iterate over one input. When an input has been
designated as an iteration input, it can no longer receive a value and therefore cannot be
connected to an upstream node. It will generate two additional (derived) inputs: ‘˜sv’
(the ‘starting value’) and ‘˜tc’ (the ‘termination condition’). See Section 4.11.2.

159

B. Visual Notation

~sv ~tc

starting value

input for iteration

termination condition

input for iteration

Output of iteration

Symbol () indicates that the node

should iterate over this input by feeding

its output back into this input

repeatedly, until the termination

condition ('~tc') is satisfied

Figure B.10. Node iteration. A ‘rotation’ symbol appearing over an input denotes that a node will
iterate over that input. When a node is iterating, two additional (‘derived’) inputs are generated
in order to receive the starting value (‘˜sv’) and termination condition (‘˜tc’).

160

Appendix C

API Documentation

This appendix reproduces the README file included as part of the Mercurial Repository
linked to this thesis1.

Developments in Dataflow Programming — Test
Implementation

Built by Daniel Maxwell, 2018.

Description

This repository contains an implementation of the dataflow system described in the PhD
Thesis submitted by Daniel Maxwell to the University of Exeter in April 2018.

It contains the code defining nodes and the interactions between them, tests, and a set of
three example algorithms, contained in the file test/mocha/bin/examples.js.

All implementation code is contained in the ‘bin’ directory and all test code is contained
in the ‘test’ directory.

Requirements

• The implementation is written in and therefore requires the installation of NodeJS2

(version 6.4.0 or later). It has been tested on Windows 7 and Linux. It should work
(but cannot be guaranteed to) on other platforms.

• The code is stored in a Mercurial repository (https://bitbucket.org/danieljmaxwell/

developments-in-dataflow-programming), so requires Mercurial3 to create a clone

1The repository can be found at: https://bitbucket.org/danieljmaxwell/
developments-in-dataflow-programming and the README file itself is at the top level, with
the name README.md. It uses the Markdown format (described at https://confluence.
atlassian.com/bitbucketserver/markdown-syntax-guide-776639995.html) and is displayed fully
formatted on the repository’s home page. This version relates to changeset ‘17d556be60d9’.

2https://nodejs.org/
3https://www.mercurial-scm.org/

161

https://bitbucket.org/danieljmaxwell/developments-in-dataflow-programming
https://bitbucket.org/danieljmaxwell/developments-in-dataflow-programming
https://bitbucket.org/danieljmaxwell/developments-in-dataflow-programming
https://bitbucket.org/danieljmaxwell/developments-in-dataflow-programming
https://confluence.atlassian.com/bitbucketserver/markdown-syntax-guide-776639995.html
https://confluence.atlassian.com/bitbucketserver/markdown-syntax-guide-776639995.html
https://nodejs.org/
https://www.mercurial-scm.org/

C. API Documentation

of the project folder.

How to Install

• Install NodeJS4 if you don’t already have it.

• Install Mercurial5 if you don’t already have it.

• Clone the project folder from the repository:

• Open a command prompt in the location where you want the project folder to be
installed and type:

hg clone https:// bitbucket .org/ danieljmaxwell / developments -in -
dataflow - programming

• Open a command prompt in the project folder and install the required modules by
typing:

npm install

How to Run the Tests

The tests, written in the Mocha6 framework, are in the ‘../test/mocha/ ’ directory. The
structure of this directory reflects the structure of the top level project directory. The
most important test files are ‘./test/mocha/bin/api.js’, ‘./test/mocha/bin/nodeDef.js’ and
‘./test/mocha/bin/examples.js’. Run them all by opening a command prompt in the top
level of the project folder and typing:

cmd
npm test

The examples alone can be run using the command:

cmd
npm run - script examples

Any test can be run individually with the commands:

In windows:

cmd
node_modules \. bin\mocha ./ file_path / test_file_name .js

In Unix-family systems:

cmd
node_modules /. bin/mocha ./ file_path / test_file_name .js

4https://nodejs.org/
5https://www.mercurial-scm.org/
6https://mochajs.org/

162

https://nodejs.org/
https://www.mercurial-scm.org/
https://mochajs.org/

C. API Documentation

How to use the API

You can use the API in interactive mode by starting NodeJS at the top level of the project
directory with the command:

cmd
node

... and attaching the api object to a variable by typing:

const api= require ('./ bin/api ');

This assigns an object containing the api functions to the ‘api’ constant. The ‘api’ object
provides graph functions (relating to the graph as a whole) and allows you to create nodes.
When creating a node, it will return a placeholder object which has a set of functions for
operating on that node.

Synchronous Graph Functions

Synchronous graph functions are executed as soon as you call them and return their result.

api(findNode[,nominatedInputs]);
Returns a placeholder object, which provides a reference to a node that can be used to
perform other functions on it.

Arguments

• findNode — a number or string containing the identifier or name of the node you
want a reference to. It first tries to find a with an identifier matching the ‘findNode’
argument. If not found, it searches for a node with a name matching the ‘findNode’
argument.

• nominatedInputs — The inputs to be nominated if the node is connected to an
input with expected inputs. It has the shape: ‘expectedInput:incomingInput[,...]’.
The ‘incomingInput’ can be a string specifying the name of the input on the incoming
function to be nominated; if there is more than one input with the same name, it can
use the fully qualified name as an array of the shape: ‘[originatingNode,inputName]’.
The originating node is the node at which the the input ‘inputName’ is first defined.
The nominated input parameter does not affect the underlying node, it only attaches
to the placeholder object and is used only when using the placeholder object to
connect an input to the node it refers to.

Example

api (0,{ expectedInputName :'anInputOfNodeZero '});

or:

163

C. API Documentation

api (0,{ expectedInputName1 :'anInputOfNodeZero ',expectedInputName2 :'
anotherInputOfNodeZero '});

or:

api (0,{ expectedInputName :['originatingNode ','anInputOfNodeZero ']});

api.createNode([content[,options]]);
Creates a new node and returns a placeholder object, providing a reference to the newly
created node.

Arguments

• content — The content of the node (optional). It can be a function, number, string,
array or object.

• options — An object containing the options for the node (optional). Containing:

• name — a string defining the name of the node (optional).

• dimensions — an array of integers indicating, where content is a function, how many
dimensions to expect for each argument of the function (optional). The default for
any argument whose dimension is not specified is zero.

• expectedInputs — an array of arrays of strings indicating, where content is a func-
tion, for each argument, that a function is expected on that argument and listing the
arguments that that function is expected to have (optional). eg. [[′a′,′ b′], [′c′]] would
indicate that we should expect a function on the first argument, with arguments
named ‘a’ and ‘b’, and a function on the second argument with an argument named
‘c’.

None of the node parameters have to be defined at the time of creation: the content and
all options can be changed later if needed.

Example

api. createNode (1);

or:

api. createNode (
(a,b)=>a[0] + b,{

name:'myNode ',
dimensions :[1 ,0] ,
expectedInputs :[undefined ,['c']]

}
);

164

C. API Documentation

api.deleteNodes([node[,node...]]);
Deletes the listed nodes and returns a list of those that did not exist. Include each node
to be deleted as a separate argument.

Arguments

• node — A placeholder object or a string or number containing the ID of the node
to be deleted.

Example

api. deleteNodes (0 ,1);

or:

let nodeZero =api (0);
api. deleteNodes (nodeZero);

api.graphStatus();
Returns an object containing a list of the nodes in the tasks and the number of tasks
outstanding.

Example

api. graphStatus ();

Asynchronous Graph Functions

Asynchronous functions are queued and executed in the order in which you call them. They
return a JavaScript Promise, can be used to trigger an action or obtain a result when an
asynchronous task has finished. To do this, follow the function with ‘.then(functionToBeTriggered)’.

Example

anAsyncFunction ().then(result =>{ console .log(result);});

See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises

for more about how to use promises.

api.listNodes();
Returns a promise which resolves to an array of the (string) identifiers of the nodes that
exist.

Example

api. listNodes ()
.then(result =>{ console .log(result);});

165

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises

C. API Documentation

api.ready();
Returns a promise which resolves to ‘undefined’ when the tasks already in the queue have
been completed.

Example

api.ready ()
.then (() =>{ console .log('ready ');});

Node Functions

Node functions are attached to the placeholder object:

let placeholder = api. createNode (0);
placeholder . setContent (1);

Those that perform actions return a Promise that has all other node functions attached
to it, so that they can be chained. For example:

placeholder . setTitle ('newNode '). setContent (1);

Synchronous Node Functions

placeholder.instance();
Simulates the creation of an instance of the node by creating an ID node with the input
‘input’, and connecting it to the node on which this function is called, and returns a
reference to the new ‘instance’.

Example

let myNode = api. createNode ();
let myInstance = myNode . instance ();

placeholder.node();
Returns a reference to the node on which this function is called. This is useful to add
to the end of an asynchronous function if you want to obtain a reference to the node to
assign to a variable.

Example

let nodeA = api. createNode (a=>2*a). setConnections ([nodeX]).node ();

placeholder.nominateInput(input);
When using a placeholder to connect an input with just one ‘expected input’ to a node
(for example, the ‘ tc’ input in an iterative node), this specifies the name of the nominated
input of the node being connected. It can use the just name or can identify the input in
question by using its node of origin and name. If just the name is used and the node has
more than one input with that name, it will use the first input it finds with that name.

166

C. API Documentation

Arguments

• input — the name (string) of the input being nominated or an array containing, in
order, the originating node and name of the input being nominated.

Example

let myPlaceholder = api (0). nominateInput ('anInputOfNodeZero ');

or:

let myPlaceholder = api (0). nominateInput (['originatingNode ','
anInputOfNodeZero ']);

placeholder.nominateInputs(inputs);
When using a placeholder to connect an input with one or more ‘expected inputs’, this
can be used to nominate the input to be used for each. It can use just the name of each
or can identify each input by using its node of origin and name. If just the name is used
and the node has more than one input with that name, it will use the first input it finds
with that name.

Arguments

• inputs — an object containing, for each expected input, the name of the input being
nominated or an array containing, in order, the originating node and name of the
input being nominated.

Example

let myPlaceholder = api (0). nominateInputs ({
expectedInputName1 :'anInputOfNodeZero ',
expectedInputName2 :'anotherInputOfNodeZero '

});

or:

let myPlaceholder = api (0). nominateInputs ({
expectedInputName :['originatingNode ','anInputOfNodeZero ']

});

Asynchronous Node Functions

Asynchronous functions are queued and executed in the order in which you call them. They
return a JavaScript Promise, can be used to trigger an action or obtain a result when an
asynchronous task has finished. To do this, follow the function with ‘.then(functionToBeTriggered)’.

167

C. API Documentation

Example

anAsyncFunction ().then(result =>{ console .log(result);});

See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises

for more about how to use promises.

The Promises returned by node functions have the other node function attached to them,
allowing them to be ‘chained’. They are executed in the order in which they appear in the
chain.

Example

let myNode = api. createNode ();
let nodeValuePromise = myNode . setTitle ('a'). setContent (1). getValue ();
nodeValuePromise .then(result =>{ console .log(result)});

placeholder.calculateTop([value1[,value2,...]]);
Obtain the output of the given node by executing it with the given root input values.
Returns a promise which resolves to the output of the node.

Arguments

• value1, value2, ... — The values to set the corresponding root inputs to, or nodes
to connect them to, in order.

Example

let myNode = api. createNode (input=>input +1);
myNode . calculateTop (1); // Returns a promise which resolves to the

value 2.

placeholder.calculateWith([value1[,value2,...]]);
Obtain the output of the given node by executing it with the given input values. Returns
a promise which resolves to the output of the node.

Arguments

• value1,value2,... — The values to set the inputs to or nodes to connect them to.
Each value is an array of the form ‘[inputName,value]’ or ‘[origin,inputName,value]’,
where ‘origin’ is a placeholder object or string indicating the reference of the node at
which that input originates (only needed if the input cannot be uniquely identified
from the input name), ‘inputName’ is a string containing the input being set, and
‘value’ is the value it should be set to. All inputs must be set in order for the node
to fully evaluate. Otherwise, it will output a partially evaluated function.

168

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises

C. API Documentation

Example

let myNode = api. createNode ((a,b)=>a+b);
myNode . calculateWith (['a' ,1],[myNode ,'b' ,2]); // Returns a promise

which resolves to the value 3.

placeholder.deleteNode();
Deletes the node referred to by the placeholder.

Example

let myNode = api. createNode ();
myNode . deleteNode ();

placeholder.getConnections();
Returns a list inputs whose values have been set, together with the values or connections
that they have been set to.

Example

let myNode = api. createNode ((a,b)=>a+b);
myNode .top (1);
myNode . getConnections (); // Returns a list containing input 'b' but not

input 'a '.

placeholder.getContent();
Returns a promise that resolves to the content of the node.

Example

let myNode = api. createNode (1);
myNode . getContent (); // Returns a promise that resolves to the value 1.

placeholder.getCurrentInputs();
Returns a promise that resolves to a list of the node’s inputs, together with the ‘origin’,
‘consumables’, ‘dimensions’ and ‘expectedInputs’ values for each. It will not fetch up-to-
date values from connected nodes, and will return only its current knowledge about its
inherited inputs.

Example

let myNode = api. createNode ((a,b)=>a+b);
myNode . getCurrentInputs (); // Returns a promise that resolves to a list

showing its current knowledge of its root and inherited inputs .

placeholder.getInputs();
Returns a promise that resolves to a list of the node’s inputs, together with the ‘origin’,
‘consumables’, ‘dimensions’ and ‘expectedInputs’ values for each. If some inputs are con-
nected to upstream nodes, it will fetch up-to-date values for them in order to ensure it
correctly lists all inherited inputs.

169

C. API Documentation

Example

let myNode = api. createNode ((a,b)=>a+b);
myNode .top (1);
myNode . getInputs (); // Returns promise that resolves to a list

containing all inputs , including up -to -date inherited inputs .

placeholder.getOpenInputs();
Returns a promise that resolves to a list of the node’s open (unconnected) inputs, together
with the ‘origin’, ‘consumables’, ‘dimensions’ and ‘expectedInputs’ values for each.

Example

let myNode = api. createNode ((a,b)=>a+b);
myNode .top (1);
myNode . getOpenInputs (); // Returns a promise that resolves to a list

containing input 'b' but not input 'a '.

placeholder.getRootInputs();
Returns a promise that resolves toa list of the node’s root inputs, together with their
‘origin’, ‘consumables’, ‘dimensions’ and ‘expectedInputs’ settings.

Example

let myNode = api. createNode ((a,b)=>a+b);
myNode . getRootInputs (); // Returns a promise that resolves to a list

containing both inputs but would not display inherited inputs .

placeholder.getStatus();
Returns a promise that resolves to the current status of the node. The status includes
its name, content, list of arguments, current value and ‘isOn’ value (indicating whether it
remains active regardless of whether it has subscribers).

Example

let myNode = api. createNode ();
myNode . getStatus ();

placeholder.getTitle();
Returns a promise that resolves to the current name/title of the node.

Example

let myNode = api. createNode (1,{ 'name ':'node1 '});
myNode . getTitle (); // Returns a promise that resolves to 'node1 '.

placeholder.getValue();
Calculates the value of the node and returns a promise that resolves to the resulting value.

170

C. API Documentation

Example

let myNode = api. createNode (1);
myNode . getValue (); // Returns a promise that resolves to the value 1.

placeholder.setConnections([value1[,value2,...]]);
Sets the inputs of the given node to values or connects them to other nodes. Returns a
promise that resolves to a list of the rejected connections when done. Connections are
rejected if the input in question does not exist.

Arguments

• value1,value2,... — The values to set the inputs to or nodes to connect them to.
Each value is an array of the form ‘[inputName,value]’ or ‘[origin,inputName,value]’,
where ‘origin’ is a placeholder object or string indicating the reference of the node at
which that input originates (only needed if the input cannot be uniquely identified
from the input name), ‘inputName’ is a string containing the input being set, and
‘value’ is the value it should be set to. All inputs must be set in order for the node
to fully evaluate. Otherwise, it will output a partially evaluated function.

Example

let myNode = api. createNode ((a,b)=>a+b);
myNode . setConnections (['a' ,1],['b' ,2]);

placeholder.setContent(content);
Sets the content of the node. Returns a promise that resolves to ‘undefined’ when done.

Arguments

• content — a function or other value to set the content to.

Example

let myNode = api. createNode ();
myNode . setContent (1);

placeholder.setTitle(name);
Sets the name/title of the node. Returns an promise that resolves to ‘undefined’ when
done.

Arguments

• name — a string containing the new name of the node.

Example

let myNode = api. createNode ();
myNode . setTitle ('newName ');

171

C. API Documentation

placeholder.top([value1[,value2,...]]);
Sets the root inputs of the given node with the given values. Returns a promise that
resolves to ‘undefined’ when done.

Arguments

• value1,value2,... — The values to be set or nodes (placeholder objects) to connect
the inputs to.

Example

let myNode = api. createNode ((a,b)=>a+b);
myNode .top (1 ,2); // Returns a promise that resolves to the value 3.

172

Appendix D

Examples

This appendix provides the code used to implement the three examples described in Chap-
ter 5. The full implementation can be found in a Mercurial repository1. The tests use the
mocha test framework combined with the assertion testing module provided by NodeJS2.
The Mocha framework wraps its tests in two outer functions — the first one called ‘de-
scribe’, and within that one called ‘it’, as shown in Snippet D.1.

describe ('Description of item being tested ',function (){
it('Description of the test ',function (){

const a = 1;
assert . strictEqual (a,1,'string to be displayed if test fails '

);
});

});

In these tests, the ‘describe’ function contains the three specific algorithm tests as shown
in Snippet D.2.

describe ('Algorithm tests ', function (){
it('merge -sort ', function () {...}) ;

it('factorial ', function () {...}) ;

it('fibonacci sequence ', function () {...}) ;
});

Mocha handles asynchronism by allowing the test either to call a function (‘done()’) or to
return a JavaScript Promise. In the examples shown below, the ‘Promise’ method is used,
in most cases using the ‘Promise.all()’ function to return a single promise that completes
when all promises created within the test have also completed.

1The repository can be found at: https://bitbucket.org/danieljmaxwell/
developments-in-dataflow-programming and the test file that runs the code shown in this ap-
pendix is at the relative path: test/mocha/bin/examples.js. The version of the code printed here
relates to changeset ‘17d556be60d9’.

2Mocha is available at: https://mochajs.org/ and details of the assertion testing module in NodeJS can
be found at: https://nodejs.org/api/assert.html

173

https://bitbucket.org/danieljmaxwell/developments-in-dataflow-programming
https://bitbucket.org/danieljmaxwell/developments-in-dataflow-programming
https://mochajs.org/
https://nodejs.org/api/assert.html

D. Examples

The code stored in the repository defines an API, which the tests below use to build
graphs. The API is defined in the file bin/api.js, and its usage is described in the file
README.md (which is also included with this document in Appendix C).

The three tests are shown separately below, in Snippet D.3 (Merge-Sort, starting imme-
diately below), Snippet D.4 (Factorial, starting on page 180) and Snippet D.5 (Fibonacci
Sequence, starting on page 181). To verify the functionality is as expected and to enable
debugging, tests for individual nodes are also included within the code.

Merge-Sort Test
1 it("merge -sort",function (){
2 // This test should not finish until all promises have been completed .

Here we create an array to contain the list of promises .
3 const promises = [];
4

5 // ----------------- Creating the graph --------------------//
6

7 // The graph uses objects of the form {pairs , remainder }
8 // First we need components to manipulate these objects .
9

10 // A component to get the list of pairs from an object
11 const getPairs = api. createNode (obj => { return obj.pairs });
12

13 // Test the getPairs node works
14 promises .push(
15 getPairs . calculateWith (["obj" ,{pairs :[[1 ,2] ,[3 ,4]] , remainder

:[5 ,6 ,7]}]).then ((result)=>{
16 assert . strictEqual (JSON. stringify (result),"[[1 ,2] ,[3 ,4]]");
17 })
18);
19

20 // Create a node to get the remainder from the object
21 const getRemainder = api. createNode (obj => obj. remainder);
22

23 // Test the getRemainder node works
24 promises .push(
25 getRemainder . calculateWith (["obj" ,{pairs :[[1 ,2] ,[3 ,4]] , remainder

:[5 ,6 ,7]}]).then ((result)=>{
26 assert . strictEqual (JSON. stringify (result),"[5 ,6 ,7]");
27 }));
28

29 // In order to unify these two different inputs called 'obj ', we
connect both to a single ID node with the same input.

30

31 // First create an id node
32 const inputObj = api. createNode (obj => obj);
33

34 // Then connect both previous nodes to it.
35 getPairs .top(inputObj);
36 getRemainder .top(inputObj);
37

38 // We need to create a new pair from an array , using the array and
desired size of each member of the pair

39 const makeAPair = api. createNode ((arr , size) => {

174

D. Examples

40 // If a function expects to receive one - dimensional data , it could
either be an array or come in the form of a table.

41 // This function checks which it is and returns the data as a simple
array.

42 function getArrData (tableOrArr){
43 if ("data" in tableOrArr) {
44 // In this case tableOrArr is a table , and we return the array

data from within it;
45 return tableOrArr .data [0];
46 } else {
47 // In this case tableOrArr was an array to begin with , so we can

simply return it.
48 return tableOrArr ;
49 }
50 }
51 arr = getArrData (arr);
52 return [arr.slice (0, size),arr.slice(size , size * 2)]
53 }, { dimensions : [1]});
54

55 // Test the makeAPair node
56 promises .push(makeAPair . calculateTop ([1 ,2 ,3 ,4 ,5] ,2).then ((result)=>{
57 assert . strictEqual (JSON. stringify (result),"[[1 ,2] ,[3 ,4]]");
58 }));
59

60 // We also need to be able to work out the new remainder after taking a
new pair away from it.

61 const newRemainder = api. createNode ((arr , size) => {
62 // If a function expects to receive one - dimensional data , it could

either be an array or come in the form of a table.
63 // This function checks which it is and returns the data as a simple

array.
64 function getArrData (tableOrArr){
65 if ("data" in tableOrArr) {
66 // In this case tableOrArr is a table , and we return the array

data from within it;
67 return tableOrArr .data [0];
68 } else {
69 // In this case tableOrArr was an array to begin with , so we can

simply return it.
70 return tableOrArr ;
71 }
72 }
73 arr = getArrData (arr);
74 return arr.slice(size * 2)
75 }, { dimensions : [1]});
76

77 // Test the newRemainder node
78 promises .push(newRemainder . calculateTop ([1 ,2 ,3 ,4 ,5 ,6] ,2).then ((result)

=>{
79 assert . strictEqual (JSON. stringify (result),"[5 ,6]");
80 }));
81

82

83 // We now need to connect the makeAPair node and the newRemainder node
to the rest of the graph.

175

D. Examples

84 // But they both have a 'size ' input that we need to be unified . So we
now create a new node for that and connect them all up.

85

86 // First we create the new ID node with a 'size ' input.
87 const inputSize = api. createNode (size => size);
88

89 makeAPair .top(getRemainder , inputSize);
90 newRemainder .top(getRemainder , inputSize);
91

92 // Test the makeAPair and newRemainder nodes again , this time with an
object input.

93 promises .push(makeAPair . calculateWith (["obj" ,{ remainder :[1 ,2 ,3 ,4 ,5]}] ,[
"size" ,2]).then ((result)=>{

94 assert . strictEqual (JSON. stringify (result),"[[1 ,2] ,[3 ,4]]");
95 }));
96 promises .push(newRemainder . calculateWith (["obj" ,{ remainder

:[1 ,2 ,3 ,4 ,5]}] ,["size" ,2]).then ((result)=>{
97 assert . strictEqual (JSON. stringify (result),"[5]");
98 }));
99

100

101 // We need a node to append a new pair to the existing pairs list
102 const newPairsList = api. createNode ((existingPairs , newPair) => {
103

104 // If a function expects to receive one - dimensional data , it could
either be an array or come in the form of a table.

105 // This function checks which it is and returns the data as a simple
array.

106 function getArrData (tableOrArr){
107 if ("data" in tableOrArr) {
108 // In this case tableOrArr is a table , and we return the array

data from within it;
109 return tableOrArr .data [0];
110 } else {
111 // In this case tableOrArr was an array to begin with , so we can

simply return it.
112 return tableOrArr ;
113 }
114 }
115 existingPairs = getArrData (existingPairs);
116 newPair = getArrData (newPair);
117

118 existingPairs .push(newPair);
119 return existingPairs ;
120 }, { dimensions : [1, 1]});
121

122

123 // Test the newPairsList node
124 promises .push(newPairsList . calculateTop ([[[1 ,2] ,[3 ,4]]] ,[[5 ,6] ,[7 ,8]]).

then ((result)=>{
125 assert . strictEqual (JSON. stringify (result),"

[[[1 ,2] ,[3 ,4]] ,[[5 ,6] ,[7 ,8]]]");
126 }));
127

128 // Connect the newPairsList node into the graph

176

D. Examples

129 newPairsList .top(getPairs , makeAPair);
130

131 // Test the newPairsList node with its connections to the rest of the
graph

132 promises .push(newPairsList . calculateWith (
133 ["obj" ,{pairs :[[[1 ,2] ,[3 ,4]]] , remainder :[5 ,6 ,7]}] ,
134 ["size" ,2]
135).then ((result)=>{
136 assert . strictEqual (JSON. stringify (result),"

[[[1 ,2] ,[3 ,4]] ,[[5 ,6] ,[7]]]");
137 }));
138

139 // takes the new list of pairs and the remainder and combines back into
an object of shape {pairs , remainder }

140 // Once connected , this takes an object of shape {pairs , remainder },
then makes a new object in which one extra pair is moved to pairs
from remainder .

141 const combineIntoObj = api. createNode ((pairs , remainder) => {
142 // If a function expects to receive one - dimensional data , it could

either be an array or come in the form of a table.
143 // This function checks which it is and returns the data as a simple

array.
144 function getArrData (tableOrArr){
145 if ("data" in tableOrArr) {
146 // In this case tableOrArr is a table , and we return the array

data from within it;
147 return tableOrArr .data [0];
148 } else {
149 // In this case tableOrArr was an array to begin with , so we can

simply return it.
150 return tableOrArr ;
151 }
152 }
153 pairs = getArrData (pairs);
154 remainder = getArrData (remainder);
155 return {pairs , remainder }
156 }, { dimensions : [1, 1]});
157

158 combineIntoObj .top(newPairsList , newRemainder);
159

160 // Test the connected combineIntoObj node
161 promises .push(combineIntoObj . calculateWith (
162 ["obj" ,{pairs :[[[10 ,11] ,[12 ,13]] ,[[14 ,15] ,[16 ,17]]] , remainder

:[18 ,19 ,20 ,21 ,22 ,23 ,24 ,25]}] ,
163 ["size" ,2]
164).then ((result)=>{
165 assert . strictEqual (JSON. stringify (result),"{\" pairs

\":[[[10 ,11] ,[12 ,13]] ,[[14 ,15] ,[16 ,17]] ,[[18 ,19] ,[20 ,21]]] ,\"
remainder \":[22 ,23 ,24 ,25]}");

166 }));
167

168 // Here we set this object to iterate by connecting the 'obj ' input to
itself .

169 combineIntoObj . setConnections (["obj",combineIntoObj]);
170

177

D. Examples

171 // Test the combineIntoObj node by checking the number of inputs .
172 promises .push(combineIntoObj . getOpenInputs ().then ((result)=>{
173 assert . strictEqual (result .length ,3,"this object should have three

inputs ");
174 }));
175 promises .push(combineIntoObj . instance (). getOpenInputs ().then ((result)

=>{
176 assert . strictEqual (result .length ,3,"this object should have three

inputs ");
177 }));
178

179

180 // With the iteration , and the tc and sv set , it should move all of the
remainders into pairs

181 combineIntoObj . setConnections (
182 ["˜sv" ,{pairs :[], remainder :[1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9]}] ,
183 ["size" ,2],
184 ["˜tc",api. createNode ((obj)=>{
185 return !obj. remainder . length
186 })]
187);
188

189 // proving that it does ...
190 promises .push(combineIntoObj . getValue ().then ((result)=>{
191 assert . strictEqual (result .pairs.length ,3,"There should be three '

pairs ' in the result ");
192 assert (result . remainder . length ===0 ,"There should be nothing in the

remainders ");
193 }));
194

195 // takes an obj of shape {pairs , remainder } and a size and returns an
object in which ALL the remainder items have been moved to pairs of
the given size

196 const objIntoPairs = combineIntoObj . setConnections (
197 ["˜sv",api. createNode (obj=>obj)],
198 ["size",undefined]
199). instance ();
200

201 // Takes an obj of shape {pairs , remainder } and a size outputs an array
of arrays where each sub -array is now in order.

202 // Intended to take a table (dim 1) of such objects and then return a
table (dim 1) of merged pairs

203 const mergePair = api. createNode ((pairs)=>{
204 const result = [];
205 if (! Array. isArray (pairs)) {pairs = pairs.data [0]};
206

207 pairs. forEach ((pair)=>{
208 while (pair [0]. length || pair [1]. length) {
209 let takeLeft ;
210 if(pair [1][0]=== undefined) { takeLeft =true };
211 else if(pair [0][0]=== undefined) { takeLeft = false };
212 else { takeLeft = (pair [0][0] < pair [1][0]) };
213 result .push(takeLeft ?pair [0]. shift ():pair [1]. shift ());
214 }
215 });

178

D. Examples

216 return result ;
217 }). setConnections (["pairs",getPairs],["obj",objIntoPairs]).node ();
218

219 const doubleSize = api. createNode (size=>size *2).top(inputSize).node ();
220

221 // Takes an obj of shape {pairs , remainder } and a size , and outputs an
obj of shape {arr ,size}, where size is doubled and arr is the
remainders , having been split and recombined

222 const recombined = api. createNode ((arr ,size)=>{
223 return {arr ,size };
224 }).top(mergePair , doubleSize);
225

226 const arrSize = api. createNode (obj=>obj);
227 const getRemainderObj = api. createNode (obj =>{
228 return {pairs :[], remainder :obj.arr };
229 }).top(arrSize).node ();
230 const getSize = api. createNode (obj=>obj.size).top(arrSize).node ();
231

232 // Now it takes an object of shape {arr ,size} and returns one of the
same shape after being processed

233 recombined . setConnections (["obj",getRemainderObj],[inputSize ,"size",
getSize]);

234

235 const iterationNode = recombined . instance ();
236

237 const startingValue = api. createNode (arr =>{
238 return {arr:arr.data [0], size :1};
239 },{ dimensions :[1]}) ;
240 const terminationCondition = api. createNode (obj =>{
241 if (! obj.arr) { return true };
242 else { return obj.size >= obj.arr. length })};
243 iterationNode . setConnections (
244 ["obj",iterationNode],
245 ["˜sv",startingValue],
246 ["˜tc",terminationCondition]
247);
248

249 // We now , finally , create the desired merge -sort node
250 const mergeSortNode = api. createNode (obj=>obj.arr).top(iterationNode);
251

252 // We have two alternative tests to demonstrate it works - a long test
and a short test.

253 // The long test uses a set of 100 randomly generate arrays , which are
loaded from file.

254 // The short test uses just arrays of just 12 members . A switch
variable , longTest , is used to decide which to run.

255

256 let unsortedArr = [];
257 let sortedArr = [];
258 if(longTest) {
259 this. timeout (0);
260 unsortedArr = require (path.join(process .cwd (),'test ','mocha ','bin ','

Unsorted .json '));
261 sortedArr = require (path.join(process .cwd (),'test ','mocha ','bin ','

Sorted .json '));

179

D. Examples

262 } else {
263 unsortedArr = [[0 ,5 ,39 ,0 ,3 ,5 ,6 ,4 ,4 ,23 ,2 ,8]];
264 sortedArr = ["[0 ,0 ,2 ,3 ,4 ,4 ,5 ,5 ,6 ,8 ,23 ,39]"];
265 }
266

267 let testCounter =0;
268 // Now define a function to test every array in turn
269 function nextTestValues (){
270 if(testCounter < unsortedArr . length){
271 mergeSortNode . setConnections (["arr",unsortedArr [testCounter]]);
272

273 return mergeSortNode . getValue ().then ((result)=>{
274 assert . strictEqual (JSON. stringify (result),sortedArr [testCounter],

"merge -sort test array " + (testCounter +1));
275 testCounter ++;
276 return nextTestValues ();
277 });
278 }
279 }
280

281 // Run the test and store the result in the promises array.
282 promises .push(nextTestValues ());
283

284 return Promise .all(promises);
285 });

Factorial Test
1 it(" factorial " ,()=>{
2

3 // We start with a node containing a variable that combines both the
value (val) and the counter (num).

4 const combinedInput = api. createNode (combObj => combObj);
5

6 // We then create two nodes to separate out the components . getVal gets
the value from the combined object ...

7 const getVal = api. createNode (combObj => combObj .val).top(combinedInput).
node ();

8

9 // and getNum gets the counter ('num ') from the combined object .
10 const getNum = api. createNode (combObj => combObj .num).top(combinedInput).

node ();
11

12 // The computation of the next value is found by multiplying the
previous value by the new counter . In this line , we create the node ,

set its connections and then return the newly created node to be
stored in the variable 'newVal '.

13 const newVal = api. createNode ((oldVal , oldNum)=>{ return oldVal * oldNum
}).top(getVal , getNum).node ();

14

15 // The new counter is the previous counter incremented by one.
16 const newNum = api. createNode (oldNum => oldNum +1).top(getNum).node ();
17

18 // The value and counter are then recombined into a single object .
Again , we create the node , set its connections in the same line , and

this time return an instance of it to the variable .

180

D. Examples

19 const recombinedInput = api. createNode ((val ,num)=>{
20 return {val ,num };
21 }).top(newVal , newNum). instance ();
22

23 // The iteration terminates when the counter ('num ') reaches the number
we want the factorial of.

24 const tc = api. createNode ((factOf , output)=>{
25 return output .num > factOf
26 }). nominateInput (" output ");
27

28 // We set the recombinedInput node to iterate , and at the same time set
its starting value and termination condition inputs .

29 recombinedInput . setConnections ([combinedInput ," combObj ",recombinedInput
],["˜sv" ,{val :1, num :1}] ,["˜tc",tc]);

30

31 // Finally , we create the factorial node , which takes one input , '
factOf '.

32 const factorial = api. createNode (obj=>obj.val).top(recombinedInput);
33

34 // Here we test it with the highest number for which the result is a
number that can be represented exactly by JavaScript .

35 return factorial . calculateWith ([" factOf " ,21]).then ((result)=>{
36 assert . strictEqual (result ,51090942171709440000 , "The factorial should

be returned correctly ");
37 });
38 });

Fibonacci Sequence Test
1 it(" fibonacci sequence " ,()=>{
2

3 // An array to hold the promises for testing
4 const promises = [];
5

6

7 // This node appends the next value to the end.
8 const iterate = api. createNode (arr =>{
9 if("data" in arr) {arr = arr.data [0]};

10 if (! Array. isArray (arr)) {
11 arr = []
12 } else {
13 arr.push ((arr.length <2)? arr. length : (arr[arr.length -1] + arr[arr.

length -2]));
14 }
15 return arr;
16 },{ dimensions :[1]}) ;
17

18 // Test the iterate node - this verifies that it appends the correct
value to the end of the example array

19 promises .push(iterate . calculateTop ([1 ,1 ,2 ,3]).then ((result)=>{
20 assert . strictEqual (JSON. stringify (result),"[1 ,1 ,2 ,3 ,5]");
21 }));
22

23 // Connect the 'iterate ' node 's input to itself , to make it iterate .
24 iterate .top(iterate);
25

181

D. Examples

26 // Define a node to act as the termination condition . This returns true
when the length of the array equals n.

27 const tc = api. createNode ((arr ,n)=>arr.length >=n). nominateInput ("arr");
28

29 // Set the starting value to be an empty array and the termination
condition to be the node we have just defined .

30 iterate . setConnections (["˜sv" ,[]],["˜tc",tc]);
31

32 // Calculate it with n (the desired length of the array) set to 10.
33 promises .push(iterate . calculateWith (["n" ,10]).then ((result)=>{
34 assert . strictEqual (JSON. stringify (result),"[0 ,1 ,1 ,2 ,3 ,5 ,8 ,13 ,21 ,34]",

" Should correctly generate the first ten terms of the Fibonacci
sequence ");

35 }));
36

37 return Promise .all(promises);
38 });

182

Bibliography

Ackerman, W. B. and Dennis, J. B. (1979). VAL–A Value-Oriented Algorithmic Lan-
guage (Preliminary Reference Manual). Technical report, Massachusetts Inst Of Tech
Cambridge Lab For Computer Science.

Aczél, J. J. and Daróczy, Z. (1975). On measures of information and their characteriza-
tions. Technical report, New York: Academic Press.

Adams, D. A. (1969). A computation model with data flow sequencing. Doctoral Disser-
tation, Stanford University.

Agerwala, T. and Arvind, N. I. (1982). Data flow systems. Computer, 15(2):10–14.

Aitken, A. and Ilango, V. (2013). A Comparative Analysis of Traditional Software Engi-
neering and Agile Software Development. 2013 46th Hawaii International Conference
on System Sciences, pages 4751–4760.

Arvind, A., Gostelow, K., and Plouffe, W. (1977). Indeterminacy, monitors, and dataflow.
ACM SIGOPS Operating Systems Review, 11(5):159–169.

Arvind, A. and Gostelow, K. P. (1982). The U-interpreter. Computer, 15(2):42–49.

Asanovic, K., Wawrzynek, J., Wessel, D., Yelick, K., Bodik, R., Demmel, J., Keaveny, T.,
Keutzer, K., Kubiatowicz, J., Morgan, N., Patterson, D., and Sen, K. (2009). A view of
the parallel computing landscape. Technical Report 10, Technical Report UCB/EECS-
2006-183, EECS Department, University of California, Berkeley.

Auguston, M. and Delgado, A. (1997). Iterative constructs in the visual data flow language.
In Proceedings. 1997 IEEE Symposium on Visual Languages (Cat. No.97TB100180),
pages 152–159. IEEE.

Bainomugisha, E., Carreton, A. L., Van Cutsem, T., Mostinckx, S., and De Meuter, W.
(2013). A survey on reactive programming. In ACM Computing Surveys (CSUR),
volume 45, page 52. Citeseer.

Baroth, E. and Hartsough, C. (1995). Visual programming in the real world. In Visual
Object-Oriented Programming, pages 21–42. Manning Publications Co.

Barth, P. S., Nikhil, R. S., and Others (1991). M-structures: extending a parallel, non-

183

Bibliography

strict, functional language with state. In Conference on Functional Programming Lan-
guages and Computer Architecture, pages 538–568. Springer.

Basili, V. R. and Rombach, H. D. (1988). The TAME project: Towards improvement-
oriented software environments. IEEE Transactions on software engineering, 14(6):758–
773.

Basili, V. R. and Turner, A. J. (1975). Iterative enhancement: A practical technique for
software development. IEEE Transactions on Software Engineering, 1.

Beck, K. (1999a). Embracing Change with Extreme Programming. IEEE Computer,
32(10):70–77.

Beck, K. (1999b). Extreme Programming Explained: Embrace Change. Pearson Education.

Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,
Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., and Others (2001). Manifesto for
Agile Software Development. http://agilemanifesto.org/.

Benington, H. D. (1956). Production of Large Computer Systems. Symposium on Advanced
Programming Methods for Digital Computers, 5(4):299–310.

Bernini, M. and Mosconi, M. (1994). VIPERS: a data flow visual programming envi-
ronment based on the Tcl language. Proceedings of the workshop on Advanced Visual
Interfaces, pages 243–245.

Boehm, B. (1976). Software Engineering. IEEE Transactions on Computers, C-
25(12):1226–1241.

Boehm, B. (2006). A View of 20th and 21st Century Software Engineering. Proceedings of
the 28th International Conference on Software Engineering SE - ICSE ’06, Shanghai,
China, pages 12–29.

Boehm, B. W. (1986). A Spiral Model of Software Development and Enhancement. ACM
SIGSOFT Software Engineering Notes, 11(4):22–42.

Bravo, M., Li, Z., Van Roy, P., and Meiklejohn, C. (2014). Derflow: distributed de-
terministic dataflow programming for Erlang. In Proceedings of the Thirteenth ACM
SIGPLAN workshop on Erlang, pages 51–60. ACM.

Burnett, M., Atwood, J., Djang, R. W., Gottfried, H., Reichwein, J., and Yang, S. (2001).
Forms/3: A First-Order Visual Language to Explore the Boundaries of the Spreadsheet
Paradigm. Functional Programming, 11(2):155–206.

Caporuscio, M., Funaro, M., and Ghezzi, C. (2012). PaCE: a data-flow coordination
language for asynchronous network-based applications. In International Conference on
Software Composition, pages 51–67. Springer.

Carriero, N. and Gelernter, D. (1989). Linda in context. Communications of the ACM,
32(4):444–458.

184

Bibliography

Cave, W. C. and Salisbury, A. B. (1978). Controlling the Software Life Cycle – The Project
Management Task. IEEE Transactions on Software Engineering, SE-4(4):326–334.

Chapman, B., Haines, M., Mehrotra, P., Zima, H., and Van Rosendale, J. (1997). Opus:
A coordination language for multidisciplinary applications. Scientific Programming,
6(4):345–362.

Chlipala, A. (2015). Ur/Web: A Simple Model for Programming the Web. In POPL
’15 The 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 153–165, Mumbai, India. Association for Computing Machinery
(ACM).

Cooper, J. (1981). MIL-STD 1679 , Weapon System Software Development. The Journal
of Systems and Software, 2:319–327.

Cox, P. T., Giles, F. R., and Pietrzykowski, T. (1989). Prograph: a step towards liberating
programming from textual conditioning. In Visual Languages, 1989., IEEE Workshop
on, pages 150–156. IEEE.

Curry, H. B., Feys, R., Craig, W., Hindley, J. R., and Seldin, J. P. (1972). Combinatory
logic, volume 2. North-Holland Amsterdam.

Darlington, J. and Reeve, M. (1981). ALICE a multi-processor reduction machine for the
parallel evaluation of applicative languages. In Proceedings of the 1981 conference on
Functional programming languages and computer architecture, pages 65–76. ACM.

Davis, A. L. (1978). The architecture and system method of DDM1: A recursively struc-
tured data driven machine. In Proceedings of the 5th annual symposium on Computer
architecture, pages 210–215. ACM.

Davis, A. L. and Keller, R. M. (1982). Data flow program graphs. IEEE Computer,
15(2):26–41.

Davis, A. L. and Lowder, S. A. (1981). A sample management application program in
a graphical data driven programming language. Digest of Papers Compcon Spring,
81:162–167.

Dennis, J. (1974). First version of a data flow procedure language. In Robinet B. (eds)
Programming Symposium. Lecture Notes in Computer Science, vol 19., pages 362–376.
Springer, Berlin, Heidelberg.

Dennis, J. (1980). Data Flow Supercomputers. Computer, 11:48–56.

Dennis, J. B. and Misunas, D. P. (1975). A Preliminary Architecture for a Basic Data-Flow
Processor. ACM SIGARCH Computer Architecture News, 3(4):126–132.

Evans, E. (2004). Domain-driven design: tackling complexity in the heart of software.
Addison-Wesley Professional.

Forrester, J. W. (1961). Industrial Dynamics. Cambridge: MIT Press.

185

Bibliography

Gajinov, V., Stipić, S., Erić, I., Unsal, O. S., Ayguadé, E., and Cristal, A. (2014). DaSH:
a benchmark suite for hybrid dataflow and shared memory programming models. In
Proceedings of the 11th ACM Conference on Computing Frontiers - CF ’14, pages 1–11.
ACM.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design patterns: elements
of reusable object-oriented software. Pearson Education India.

Garlan, D., Allen, R., and Ockerbloom, J. (1995). Architectural Mismatch: Why Reuse
Is So Hard. IEEE Software, 12(6):17–26.

Garlan, D. and Shaw, M. (1993). An Introduction to Software Architecture. Advances in
Software Engineering and Knowledge Engineering, 1(January):1–39.

Gelernter, D. and Carriero, N. (1992). Coordination languages and their significance.
Communications of the ACM, 35(2):96.

Ghittori, E., Mosconi, M., and Porta, M. (1998). Designing new programming constructs
in a data flow VL. In Proceedings of VL, page 78, Nova Scotia, Canada. IEEE.

Gibbs, W. W. (1994). Software’s Chronic Crisis. Scientific American, 271(3):86–95.

Giddings, R. V. (1984). Accommodating Uncertainty in Software Design. Communications
of the ACM, 27(5):428–434.

Gilb, T. (1981). Evolutionary Development. ACM SIGSOFT Software Engineering Notes,
6(2):17.

Gilbreth, F. B. and Gilbreth, L. M. (1921). Process charts-first steps in finding the one
best way. American Society of Mechanical Engineers (ASME), New York, NY.

Giorgi, R., Badia, R. M., Bodin, F., Cohen, A., Evripidou, P., Faraboschi, P., Fechner,
B., Gao, G. R., Garbade, A., Gayatri, R., Girbal, S., Goodman, D., Khan, B., Koliäı,
S., Landwehr, J., Lê, N. M., Li, F., Lujàn, M., Mendelson, A., Morin, L., Navarro, N.,
Patejko, T., Pop, A., Trancoso, P., Ungerer, T., Watson, I., Weis, S., Zuckerman, S., and
Valero, M. (2014). TERAFLUX: Harnessing dataflow in next generation teradevices.
Microprocessors and Microsystems, 38(8):976–990.

Goodman, D., Khan, S., Seaton, C., Guskov, Y., Khan, B., Luján, M., and Watson,
I. (2013). DFScala: High level dataflow support for scala. Proceedings - 2012 2nd
Workshop on Data-Flow Execution Models for Extreme Scale Computing, DFM 2012,
1(249013):18–26.

Gurd, J. R., Kirkham, C. C., and Watson, I. (1985). The Manchester prototype dataflow
computer. Communications of the ACM, 28(1):34–52.

Harris, T., Marlow, S., Peyton-Jones, S., and Herlihy, M. (2005). Composable memory
transactions. In Proceedings of the tenth ACM SIGPLAN symposium on Principles and
practice of parallel programming, pages 48–60. ACM.

186

Bibliography

Herlihy, M. and Moss, J. E. B. (1993). Transactional memory: Architectural support for
lock-free data structures, volume 21. ACM.

Hils, D. D. (1992). Visual languages and computing survey: Data flow visual programming
languages. Journal of Visual Languages & Computing, 3(1):69–101.

Holthouse, M. A. and Greenberg, S. G. (1978). Software Technology for Scientific and
Engineering Applications. In Computer Software and Applications Conference.

Hudak, P. (1989). Conception, evolution, and application of functional programming
languages. ACM Computing Surveys, 21(3):359–411.

Hughes, R. J. M. (1982). Super-combinators a new implementation method for applica-
tive languages. In Proceedings of the 1982 ACM symposium on LISP and functional
programming, pages 1–10. ACM.

International Organization for Standardization (ISO) (1985). ISO 5807: 1985 Information
Processing-Documentation Symbols and Conventions for Data, Program and System
Flowcharts, Program Network Charts and System Resources Charts. Geneva: ISO.

Johnson, D. M. (1996). The systems engineer and the software crisis. ACM SIGSOFT
Software Engineering Notes, 21(2):64–73.

Johnston, W. M., Hanna, J. R. P., and Millar, R. J. (2004). Advances in dataflow pro-
gramming languages. ACM Computing Surveys (CSUR), 36(1):1–34.

Jungnickel, D. (2008). Graphs, Networks and Algorithms. Springer, 3rd edition.

Kahn, K. M. and Miller, M. S. (1988). Language design and open systems. The Ecology
of Computation. Elsevier Science Publishers BV (North-Holland).

Karp, R. M. and Miller, R. E. (1966). Properties of a model for parallel computations: De-
terminacy, termination, queueing. SIAM Journal on Applied Mathematics, 14(6):1390–
1411.

Keller, R. M. (1980). Semantics and applications of function graphs. Book published by
University of Utah, Department of Computer Science.

Keller, R. M. and Yen, W.-C. J. (1981). A graphical approach to software development
using function graphs. In IEEE COMPCON, volume 81, pages 23–26.

Kruchten, P. (1995). The 4+ 1 view model of architecture. Software, IEEE, 12(6):9.

Kruchten, P. (1996). A Rational Development Process. Crosstalk, 9(7):11–16.

Kruchten, P., Obbink, H., and Stafford, J. (2006). The Past, Present, and Future for
Software Architecture. IEEE Software, 23(2):22–30.

Kyriacou, C., Evripidou, P., and Trancoso, P. (2006). Data-driven multithreading using
conventional microprocessors. IEEE Transactions on Parallel and Distributed Systems,
17(10):1176–1188.

187

Bibliography

Larman, C. and Basili, V. R. (2003). Iterative and incremental development (IID). IEEE
Computer, pages 47–56.

Lee, B. and Hurson, A. R. (1993). Issues in Dataflow Computing. Advances in Computers,
37(C):285–333.

Lee, B. and Hurson, A. R. (1994). Dataflow Architectures and Multithreading. Computer,
27(8):27–39.

Lindholm, T., Yellin, F., Bracha, G., and Buckley, A. (2014). The Java Virtual Machine
Specification — Java SE8 Edition. Addison-Wesley Professional.

Lord, R., Millar, J., and Kahane, R. (1977). A Procedure for the Estimation of Software
Development Costs. Annual Review in Automatic Programming, 8:211–227.

Madden, W. A. and Rone, K. Y. (1984). Design , Development , Integration : Space
Shuttle Primary Flight Software System. Communications of the ACM, 27(914-925).

McGraw, J., Skedzielewski, S., Allan, S., Grit, D., Oldehoeft, R., Glauert, J., Dobes, I., and
Hohensee, P. (1983). SISAL: Streams and Iteration in a Single-Assignment Language.
Language reference manual, Version 1.1. Technical report, Lawrence Livermore National
Lab., CA (USA).

McGraw, J. R. (1982). The VAL language: Description and analysis. ACM Transactions
on Programming Languages and Systems (TOPLAS), 4(1):44–82.

McLain, P. and Kimura, T. D. (1986). Show and Tell User’s Manual Report Number:
WUCS-86-04. All Computer Science and Engineering Research.

McPhillips, T., Bowers, S., Zinn, D., and Ludäscher, B. (2009). Scientific workflow design
for mere mortals. Future Generation Computer Systems, 25(5):541–551.

Meier, J., Hill, D., Homer, A., Jason, T., Bansode, P., Wall, L., Boucher Jr, R., and
Bogawat, A. (2009). Microsoft Application Architecture Guide. Microsoft Corporation.

Meyer, B. (1988). Object-Oriented Software Construction. Prentice-Hall International.

Meyer, M. (2014). Continuous Integration and its Tools. IEEE Software, 31(3):14–16.

Morris, J. H., Schmidt, E., and Wadler, P. (1980). Experience with an applicative string
processing language. 7th Principles of programming languages ({POPL}), pages 32–46.

Morrison, J. P. (2010). Flow-Based Programming, 2nd Edition: A New Approach to
Application Development. CreateSpace, 2nd edition.

Mosconi, M. and Porta, M. (2000). Iteration constructs in data-flow visual programming
languages. Computer Languages, 26(2000):67–104.

National Instruments Corporation (1998). Labview User Manual.

188

Bibliography

Naur, P. and Randell, B. (1969). Software Engineering: Report of a Conference Sponsored
by the NATO Science Committee. In NATO Software Engineering Conference, page 231.

Nelson, E. (1967). Management Handbook for the Estimation of Computer Programming
Costs.

Newman, P. (1997). PRINCE2. In IEE Half-Day Colloquium on Professionalism in Project
Management (Digest No: 1997/373), pages 2–3, London.

Nikhil, R. S., Pingali, K., and Arvind, K. P. (1986). Id Nouveau. Massachusetts Institute
of Technology, Laboratory for Computer Science.

Nikhil, R. S., Pingali, K. K., and Others (1989). I-structures: Data structures for parallel
computing. ACM Transactions on Programming Languages and Systems (TOPLAS),
11(4):598–632.

Penczek, F., Herhut, S., Grelck, C., Scholz, S.-B., Shafarenko, A., Barrère, R., and Lenor-
mand, E. (2010). Parallel signal processing with S-Net. Procedia Computer Science,
1(1):2085–2094.

Perry, D. E. and Wolf, A. L. (1992). Foundations for the Study of Software Architecture.
ACM SIGSOFT Software Engineering Notes, 17(4):40–52.

Peyton Jones, S. L. (1987). The Implementation of Functional Programming Languages
(Prentice-Hall International Series in Computer Science). Prentice-Hall, Inc.

Randell, B. (1996). The 1968 / 69 NATO Software Engineering Reports. In Dagstul
Seminar 9635 on History of Software Engineering, pages 1–7.

Rasure, J. R. and Williams, C. S. (1991). An integrated data flow visual language and soft-
ware development environment. Journal of Visual Languages & Computing, 2(3):217–
246.

Reynolds, J. C. (1972). Definitional interpreters for higher-order programming languages.
In Proceedings of the ACM annual conference-Volume 2, pages 717–740. ACM.

Rodriquez, J. E. (1969). A Graph Model For Parallel Computations. Technical report,
Massachusetts Inst Of Tech Cambridge Electronic Systems Lab.

Royce, D. W. W. (1970). Managing the Development of large Software Systems. In IEEE
Wescon, pages 1–9.

Rumbaugh, J. (1977). A data flow multiprocessor. IEEE Transactions on Computers,
100(2):138–146.

Sabry, A. (1998). What is a purely functional language? Journal of Functional Program-
ming, 8(1):1–22.

Schwaber, K. (1995). SCRUM Development Process. In OOPSLA Workshop on Business
Object Design and Implementation, pages 117–134.

189

Bibliography

Schwanke, R. W., Altucher, R. Z., and Platoff, M. A. (1989). Discovering, visualizing, and
controlling software structure. ACM SIGSOFT Software Engineering Notes, 14(3):147–
154.

Shaw, M. (1989). Larger scale systems require higher-level abstractions. ACM SIGSOFT
Software Engineering Notes, 14(3):143–146.

Shaw, M. (1995). Comparing Architectural Design Styles. IEEE Software, 12(6):27–41.

Shaw, M. and Clements, P. (2006). The Golden Age of Software Architecture. IEEE
Software, 23(2):31–39.

Shaw, M. and Garlan, D. (1996). Software Architecture: Perspectives on an Emerging
Discipline, volume 1. Prentice Hall, Inc.

Solinas, M., Badia, R. M., Bodin, F., Cohen, A., Evripidou, P., Faraboschi, P., Fechner,
B., Gao, G. R., Garbade, A., Girbal, S., and Others (2013). The TERAFLUX project:
Exploiting the dataflow paradigm in next generation teradevices. In Digital System
Design (DSD), 2013 Euromicro Conference on, pages 272–279. IEEE.

Søndergaard, H. and Sestoft, P. (1990). Referential transparency, definiteness and unfold-
ability. Acta Informatica, 27(6):505–517.

Sousa, T. B. (2012). Dataflow Programming Concept, Languages and Applications. In
Doctoral Symposium in Informatics Engineering, University of Porto.

Suárez, A. F. (2013). Domain Specific Languages for High Performance Computing: A
Framework for Heterogeneous Architectures. PhD thesis, Universitat Politècnica de
Catalunya (UPC) - BarcelonaTech.

Sutherland, W. R. (1966). The on-line graphical specification of computer procedures. PhD
thesis, Massachusetts Institute of Technology.

Tolksdorf, R. (1998). Laura—A service-based coordination language. Science of Computer
Programming, 31(2-3):359–381.

Treleaven, P. C., Brownbridge, D. R., and Hopkins, R. P. (1982). Data-driven and demand-
driven computer architecture. ACM Computing Surveys (CSUR), 14(1):93–143.

US Department of Defense (1972). Military Standard MIL-STD-1512.

US Department of Defense (1983). Military Standard DOD-STD-1679A.

US Department of Defense (1985a). Military Standard DOD-STD-2167.

US Department of Defense (1985b). Military Standard MIL-STD-483A.

US Department of Defense (1994). Military Standard MIL-STD-498.

Van Der Linden, F. J. and Müller, J. K. (1994). Creating Architectures with Building
Blocks. IEEE Software, 12(6):51–60.

190

Bibliography

Vegdahl, S. R. (1984). A Survey of Proposed Architectures for the Execution of Functional
Languages. IEEE Transactions on Computers, C-33(12):1050–1071.

Vogel, O., Arnold, I., Chughtai, A., and Kehrer, T. (2011). Software Architecture: A
Comprehensive Framework and Guide for Practitioners. Springer Science & Business
Media.

Weaver, P. (2007). The Origins of Modern Project Management. In Fourth Annual PMI
College of Scheduling Conference.

Whiting, P. G. and Pascoe, R. (1994). A history of data-flow languages. Annals of the
History of Computing, IEEE, 16(4):38–59.

Whitley, K. N. (1997). Visual programming languages and the empirical evidence for and
against. Journal of Visual Languages & Computing, 8(1):109–142.

Wirth, N. (1971). Program Development by Stepwise Refinement and Related Topics.
Communications of the ACM, 14(4):221–227.

Wolverton, R. W. (1974). The Cost of Developing Large-Scale Software. IEEE Transac-
tions on Computers, C-23(6):615–636.

Wozniak, J. M., Armstrong, T. G., Wilde, M., Katz, D. S., Lusk, E., and Foster, I. T.
(2013). Swift/T: Scalable data flow programming for many-task applications. In ACM
SIGPLAN Notices, volume 48, pages 309–310. ACM.

Yazdanpanah, F., Alvarez-Martinez, C., Jimenez-Gonzalez, D., and Etsion, Y. (2014).
Hybrid Dataflow / von-Neumann Architectures. IEEE Transactions on Parallel and
Distributed Systems, 25(6):1489 – 1509.

Young Jr, J. W. and Kent, H. K. (1958). An abstract formulation of data processing prob-
lems. In Preprints of papers presented at the 13th national meeting of the Association
for Computing Machinery, pages 1–4. ACM.

Zachman, J. A. (1987). A Framework for Information Systems Architecture. IBM Systmes
Journal, 26(3):454–470.

Zuckerman, S., Suetterlein, J., Knauerhase, R., and Gao, G. R. (2011). Using a codelet
program execution model for exascale machines: position paper. In Proceedings of the
1st International Workshop on Adaptive Self-Tuning Computing Systems for the Exaflop
Era, pages 64–69. ACM.

191

	List of figures
	Introduction
	Purpose
	What Is Dataflow?
	What Is A Coordination System
	Document Structure

	The History of Dataflow
	Origin and Motivation
	Partial Evaluation
	Side-Effects
	Data-Driven vs. Demand-Driven Execution
	Iteration
	Pessimism ... and the Recovery
	Coordination Languages
	Dataflow Classification
	Implementations
	Open Problems
	Summary

	Software Engineering
	Origins
	Development Methodologies
	Software Architecture
	Architectural Principles
	Architectural Styles
	Summary

	Definition
	A Coordination System
	Functional Purity
	What Are Nodes And Connections?
	Separation Between Nodes And Resources
	Visual Representation
	The Service-Provider Model
	Triggering Execution
	Partial Evaluation
	Expected Inputs
	Dimensions
	Iteration
	The Generalised Iteration Node
	Function Isolation
	Notifications and Time-Stamps
	Subscription Types
	Synchronisation
	Testing and Development
	Example Application
	Further Work
	Summary

	Implementation
	Feature Implementation
	Code Structure
	Test Algorithms
	Summary

	Evaluation and Results
	Programmability
	Speed
	Distributability
	Summary

	Further Work
	Full Specification
	Additional Features
	Further Work on the Implementation
	Summary

	Conclusion
	Nomenclature
	Visual Notation
	API Documentation
	Examples
	Bibliography

