71,726 research outputs found

    Planning and Design Soa Architecture Blueprint

    Full text link
    Service Oriented Architecture (SOA) is a framework for integrating business processes and supporting IT infrastructure as secure, standardized components-services-that can be reused and combined to address changing business priorities. Services are the building blocks of SOA and new applications can be constructed through consuming these services and orchestrating services within a business process. In SOA, services map to the business functions that are identified during business process analysis. Upon a successful implementation of SOA, the enterprise gain benefit by reducing development time, utilizing flexible and responsive application structure, and following dynamic connectivity of application logics between business partners. This paper presents SOA reference architecture blueprint as the building blocks of SOA which is services, service components and flows that together support enterprise business processes and the business goals

    Service architecture design for E-Businesses: A pattern-based approach

    Get PDF
    E-business involves the implementation of business processes over the Web. At a technical level, this imposes an application integration problem. In a wider sense, the integration of software and business levels across organisations becomes a significant challenge. Service architectures are an increasingly adopted architectural approach for solving Enterprise Applications Integration (EAI). The adoption of this new architectural paradigm requires adaptation or creation of novel methodologies and techniques to solve the integration problem. In this paper we present the pattern-based techniques supporting a methodological framework to design service architectures for EAI. The techniques are used for services identification, for transformation from business models to service architectures and for architecture modifications

    Resource Oriented Modelling: Describing Restful Web Services Using Collaboration Diagrams

    No full text
    The popularity of Resource Oriented and RESTful Web Services is increasing rapidly. In these, resources are key actors in the interfaces, in contrast to other approaches where services, messages or objects are. This distinctive feature necessitates a new approach for modelling RESTful interfaces providing a more intuitive mapping from model to implementation than could be achieved with non-resource methods. With this objective we propose an approach to describe Resource Oriented and RESTful Web Services based on UML collaboration diagrams. Then use it to model scenarios from several problem domains, arguing that Resource Oriented and RESTful Web Services can be used in systems which go beyond ad-hoc integration. Using the scenarios we demonstrate how the approach is useful for: eliciting domain ontologies; identifying recurring patterns; and capturing static and dynamic aspects of the interface

    ASPECTS REGARDING THE INTEGRATION OF THE MODERN INFORMATION SYSTEMS

    Get PDF
    Developing an information system integration strategy, at enterprise level is one of the most difficult issues that the information systems managers must solve, within the present conditions. When settling the integration strategy, two aspects must mainly be taken into account: assuring a complete integration solution of the information systems and building an integration infrastructure of the applications. The present paper aims at presenting few aspects regarding the integration of the information systems at organizational level and describing a specifically developed IBM architecture.information systems integration, software modelling, Model Driven Architecture (MDA), Model Driven Development (MDD)

    Towards Run-Time Verification of Compositions in the Web of Things using Complex Event Processing

    Get PDF
    Following the vision of the Internet of Things, physical world entities are integrated into virtual world things. Things are expected to become active participants in business and social processes. Then, the Internet of Things could benefit from the Web Service architecture like today’s Web does, so Future ser-vice-oriented Internet things will offer their functionality via service-enabled in-terfaces. In previous work, we demonstrated the need of considering the behav-iour of things to develop applications in a more rigorous way, and we proposed a lightweight model for representing such behaviour. Our methodology relies on the service-oriented paradigm and extends the DPWS profile to specify the order with which things can receive messages. We also proposed a static verifi-cation technique to check whether a mashup of things respects the behaviour, specified at design-time, of the composed things. However, a change in the be-haviour of a thing may cause that some compositions do not fulfill its behaviour anymore. Moreover, given that a thing can receive requests from instances of different mashups at run-time, these requests could violate the behaviour of that thing, even though each mashup fulfills such behaviour, due to the change of state of the thing. To address these issues, we present a proposal based on me-diation techniques and complex event processing to detect and inhibit invalid invocations, so things only receive requests compatible with their behaviour.Work partially supported by projects TIN2008-05932, TIN2012-35669, CSD2007-0004 funded by Spanish Ministry MINECO and FEDER; P11-TIC-7659 funded by Andalusian Government; and Universidad de Málaga, Campus de Excelencia Internacional Andalucía Tec

    Ontology-based patterns for the integration of business processes and enterprise application architectures

    Get PDF
    Increasingly, enterprises are using Service-Oriented Architecture (SOA) as an approach to Enterprise Application Integration (EAI). SOA has the potential to bridge the gap between business and technology and to improve the reuse of existing applications and the interoperability with new ones. In addition to service architecture descriptions, architecture abstractions like patterns and styles capture design knowledge and allow the reuse of successfully applied designs, thus improving the quality of software. Knowledge gained from integration projects can be captured to build a repository of semantically enriched, experience-based solutions. Business patterns identify the interaction and structure between users, business processes, and data. Specific integration and composition patterns at a more technical level address enterprise application integration and capture reliable architecture solutions. We use an ontology-based approach to capture architecture and process patterns. Ontology techniques for pattern definition, extension and composition are developed and their applicability in business process-driven application integration is demonstrated
    • 

    corecore