6 research outputs found

    Designing EDAs by using the Elitist Convergent EDA Concept and the Boltzmann Distribution

    Get PDF
    ABSTRACT This paper presents a theoretical definition for designing EDAs called Elitist Convergent Estimation of Distribution Algorithm (ECEDA), and a practical implementation: the Boltzmann Univariate Marginal Distribution Algorithm (BUMDA). This proposal computes a Gaussian model which approximates a Boltzmann distribution via the minimization of the Kullback Leibler divergence. The resulting approach needs only one parameter: the population size. A set of problems is presented to show advantages and comparative performance of this approach with state of the art continuous EDAs

    Estimation of distribution algorithms in logistics : Analysis, design, and application

    Get PDF
    This thesis considers the analysis, design and application of Estimation of Distribution Algorithms (EDA) in Logistics. It approaches continouos nonlinear optimization problems (standard test problems and stochastic transportation problems) as well as location problems, strategic safety stock placement problems and lotsizing problems. The thesis adds to the existing literature by proposing theoretical advances for continuous EDAs and practical applications of discrete EDAs. Thus, it should be of interest for researchers from evolutionary computation, as well as practitioners that are in need of efficient algorithms for the above mentioned problems

    Optimum Allocation of Inspection Stations in Multistage Manufacturing Processes by Using Max-Min Ant System

    Get PDF
    In multistage manufacturing processes it is common to locate inspection stations after some or all of the processing workstations. The purpose of the inspection is to reduce the total manufacturing cost, resulted from unidentified defective items being processed unnecessarily through subsequent manufacturing operations. This total cost is the sum of the costs of production, inspection and failures (during production and after shipment). Introducing inspection stations into a serial multistage manufacturing process, although constituting an additional cost, is expected to be a profitable course of action. Specifically, at some positions the associated inspection costs will be recovered from the benefits realised through the detection of defective items, before wasting additional cost by continuing to process them. In this research, a novel general cost modelling for allocating a limited number of inspection stations in serial multistage manufacturing processes is formulated. In allocation of inspection station (AOIS) problem, as the number of workstations increases, the number of inspection station allocation possibilities increases exponentially. To identify the appropriate approach for the AOIS problem, different optimisation methods are investigated. The MAX-MIN Ant System (MMAS) algorithm is proposed as a novel approach to explore AOIS in serial multistage manufacturing processes. MMAS is an ant colony optimisation algorithm that was designed originally to begin an explorative search phase and, subsequently, to make a slow transition to the intensive exploitation of the best solutions found during the search, by allowing only one ant to update the pheromone trails. Two novel heuristics information for the MMAS algorithm are created. The heuristic information for the MMAS algorithm is exploited as a novel means to guide ants to build reasonably good solutions from the very beginning of the search. To improve the performance of the MMAS algorithm, six local search methods which are well-known and suitable for the AOIS problem are used. Selecting relevant parameter values for the MMAS algorithm can have a great impact on the algorithm’s performance. As a result, a method for tuning the most influential parameter values for the MMAS algorithm is developed. The contribution of this research is, for the first time, a methodology using MMAS to solve the AOIS problem in serial multistage manufacturing processes has been developed. The methodology takes into account the constraints on inspection resources, in terms of a limited number of inspection stations. As a result, the total manufacturing cost of a product can be reduced, while maintaining the quality of the product. Four numerical experiments are conducted to assess the MMAS algorithm for the AOIS problem. The performance of the MMAS algorithm is compared with a number of other methods this includes the complete enumeration method (CEM), rule of thumb, a pure random search algorithm, particle swarm optimisation, simulated annealing and genetic algorithm. The experimental results show that the effectiveness of the MMAS algorithm lies in its considerably shorter execution time and robustness. Further, in certain conditions results obtained by the MMAS algorithm are identical to the CEM. In addition, the results show that applying local search to the MMAS algorithm has significantly improved the performance of the algorithm. Also the results demonstrate that it is essential to use heuristic information with the MMAS algorithm for the AOIS problem, in order to obtain a high quality solution. It was found that the main parameters of MMAS include the pheromone trail intensity, heuristic information and evaporation of pheromone are less sensitive within the specified range as the number of workstations is significantly increased

    Evolutionary Algorithms in Engineering Design Optimization

    Get PDF
    Evolutionary algorithms (EAs) are population-based global optimizers, which, due to their characteristics, have allowed us to solve, in a straightforward way, many real world optimization problems in the last three decades, particularly in engineering fields. Their main advantages are the following: they do not require any requisite to the objective/fitness evaluation function (continuity, derivability, convexity, etc.); they are not limited by the appearance of discrete and/or mixed variables or by the requirement of uncertainty quantification in the search. Moreover, they can deal with more than one objective function simultaneously through the use of evolutionary multi-objective optimization algorithms. This set of advantages, and the continuously increased computing capability of modern computers, has enhanced their application in research and industry. From the application point of view, in this Special Issue, all engineering fields are welcomed, such as aerospace and aeronautical, biomedical, civil, chemical and materials science, electronic and telecommunications, energy and electrical, manufacturing, logistics and transportation, mechanical, naval architecture, reliability, robotics, structural, etc. Within the EA field, the integration of innovative and improvement aspects in the algorithms for solving real world engineering design problems, in the abovementioned application fields, are welcomed and encouraged, such as the following: parallel EAs, surrogate modelling, hybridization with other optimization techniques, multi-objective and many-objective optimization, etc
    corecore