
Durham E-Theses

Optimum Allocation of Inspection Stations in

Multistage Manufacturing Processes by Using Max-Min

Ant System

SHETWAN, ALI,GASSIM,M.

How to cite:

SHETWAN, ALI,GASSIM,M. (2013) Optimum Allocation of Inspection Stations in Multistage

Manufacturing Processes by Using Max-Min Ant System, Durham theses, Durham University. Available at
Durham E-Theses Online: http://etheses.dur.ac.uk/7730/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

http://www.dur.ac.uk
http://etheses.dur.ac.uk/7730/
 http://etheses.dur.ac.uk/7730/
htt://etheses.dur.ac.uk/policies/

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

2

http://etheses.dur.ac.uk

Optimum Allocation of Inspection Stations in

Multistage Manufacturing Processes by Using

Max-Min Ant System

Ali Gassim Mohamed Shetwan

A thesis submitted for the degree of

Doctor of Philosophy

School of Engineering and Computing Sciences

Durham University

UK

2013

ii

DEDICATION

To my parents and grandparents

iii

Optimum Allocation of Inspection Stations in Multistage

Manufacturing Processes by Using Max-Min Ant System

Ali Gassim Mohamed Shetwan

Submitted for the degree of Doctor of Philosophy

Abstract

In multistage manufacturing processes it is common to locate inspection stations after some or

all of the processing workstations. The purpose of the inspection is to reduce the total

manufacturing cost, resulted from unidentified defective items being processed unnecessarily

through subsequent manufacturing operations. This total cost is the sum of the costs of

production, inspection and failures (during production and after shipment). Introducing

inspection stations into a serial multistage manufacturing process, although constituting an

additional cost, is expected to be a profitable course of action. Specifically, at some positions

the associated inspection costs will be recovered from the benefits realised through the

detection of defective items, before wasting additional cost by continuing to process them.

In this research, a novel general cost modelling for allocating a limited number of inspection

stations in serial multistage manufacturing processes is formulated. In allocation of inspection

station (AOIS) problem, as the number of workstations increases, the number of inspection

station allocation possibilities increases exponentially. To identify the appropriate approach

for the AOIS problem, different optimisation methods are investigated. The MAX-MIN Ant

System (MMAS) algorithm is proposed as a novel approach to explore AOIS in serial

multistage manufacturing processes. MMAS is an ant colony optimisation algorithm that was

designed originally to begin an explorative search phase and, subsequently, to make a slow

transition to the intensive exploitation of the best solutions found during the search, by

allowing only one ant to update the pheromone trails. Two novel heuristics information for

iv

the MMAS algorithm are created. The heuristic information for the MMAS algorithm is

exploited as a novel means to guide ants to build reasonably good solutions from the very

beginning of the search. To improve the performance of the MMAS algorithm, six local

search methods which are well-known and suitable for the AOIS problem are used. Selecting

relevant parameter values for the MMAS algorithm can have a great impact on the

algorithm‟s performance. As a result, a method for tuning the most influential parameter

values for the MMAS algorithm is developed.

The contribution of this research is, for the first time, a methodology using MMAS to solve

the AOIS problem in serial multistage manufacturing processes has been developed. The

methodology takes into account the constraints on inspection resources, in terms of a limited

number of inspection stations. As a result, the total manufacturing cost of a product can be

reduced, while maintaining the quality of the product. Four numerical experiments are

conducted to assess the MMAS algorithm for the AOIS problem. The performance of the

MMAS algorithm is compared with a number of other methods this includes the complete

enumeration method (CEM), rule of thumb, a pure random search algorithm, particle swarm

optimisation, simulated annealing and genetic algorithm. The experimental results show that

the effectiveness of the MMAS algorithm lies in its considerably shorter execution time and

robustness. Further, in certain conditions results obtained by the MMAS algorithm are

identical to the CEM. In addition, the results show that applying local search to the MMAS

algorithm has significantly improved the performance of the algorithm. Also the results

demonstrate that it is essential to use heuristic information with the MMAS algorithm for the

AOIS problem, in order to obtain a high quality solution. It was found that the main

parameters of MMAS include the pheromone trail intensity (), heuristic information ()

and evaporation of pheromone () are less sensitive within the specified range as the number

of workstations is significantly increased.

v

Declaration

The work in this thesis is based on research carried out within the Manufacturing, Design and

Management Group, School of Engineering and Computing Sciences, Durham University,

United Kingdom. No part of this thesis has been submitted elsewhere for any other degree or

qualification and it all my own work unless referenced to the contrary in the text.

Copyright © 2013 by Ali Gassim Mohammed Shetwan.

“The copyright of this thesis rests with the author. No quotations from it should be published

without the author‟s prior written consent and information derived from it should be

acknowledged”.

vi

Acknowledgements

I wish to thank my previous thesis adviser Prof. Valentin Vitanov for his support and advice.

With great sadness that Prof. Vitanov has passed away May 2011. I will remember him as a

gentle, kind man.

I very warmly thank my thesis adviser Dr. Hui Long for her support and advice. Many thanks

to Dr. Peter Matthews for his support and advice who has been of invaluable help in writing

this thesis. This thesis would not exist without their help. Finally, thanks to my family for

their endless support.

vii

Contents

Abstract iii

Declaration v

Acknowledgements vi

1 Introduction 1

1.1 Background ... 2

1.2 Scope and objective of the research ... 4

1.3 Thesis structure .. 6

2 Literature Review 7

2.1 Modelling characteristics .. 7

 2.1.1 System configuration ... 8

 2.1.2 Constraints ... 8

 2.1.3 Inspection errors ... 8

 2.1.4 Internal and external failure cost .. 9

 2.1.5 Inspection cost .. 9

 2.1.6 Manufacturing cost ... 9

2.2 Exact methods .. 10

 2.2.1 Integer programming .. 10

2.2.2 Linear programming ..

...........programming……………………………………………

…

11

2.2.3 Non-linear programming .. 11

2.2.4 Branch and bound ... 16

2.2.5 Dynamic programming ... 18

2.3 Metaheuristic methods ... 22

 2.3.1 Simulated annealing ... 22

2.3.2 Tabu search .. 24

2.3.3 Genetic algorithm ... 25

2.4 Markov decision process .. 29

2.5 Simulation .. 30

2.6 Cost models for serial multistage manufacturing processes 32

2.7 Conclusion .. 39

viii

Contents

 3

3

 General Cost Model Formulation

 Cost Model Formulation

43

3.1 A serial multistage manufacturing process ... 44

3.2 Manufacturing system characteristics ... 45

 3.2.1 Non-conforming products ... 46

 3.2.2 Repair of defects ... 46

 3.2.3 Inspection type .. 46

 3.2.4 Inspection errors ... 47

 3.2.5 Inspection time ... 47

 3.2.6 Cost components .. 48

3.3 General cost model formulation ... 48

 3.3.1 Inspection stations ... 51

 3.3.2 Workflow analysis ... 52

 3.3.3 General cost model analysis ... 53

3.4 Relation between quality and cost .. 56

3.5 Computational time against number of workstations 58

3.6 Computational complexity ... 60

3.7 Conclusion .. 62

4 Optimisation Methods Characteristics and Selection 63

4.1 Combinatorial optimisation problem ... 63

4.2 Exact methods .. 64

4.3 Metaheuristic methods ... 64

4.3.1 Simulated annealing ... 65

4.3.2 Tabu search ... 66

4.3.3 Genetic algorithms .. 67

4.3.4 Evaluation strategy ... 69

4.3.5 Estimation of distribution of algorithms 70

4.3.6 Differential evaluation ... 71

4.3.7 Covariance matrix adaption evaluation strategy

.

71

4.3.8 Particle swarm optimisation .. 72

4.3.9 Ant colony optimisation .. 74

4.3.10 Conclusion …………………………………………………….. 75

ix

Contents

4.4 Classification of metaheuristics .. 76

4.5 Conclusion ... 82

5 Ant Colony Optimisation 84

 5.1 The biological inspirations .. 84

 5.2 Ant colony optimisation metaheuristic .. 87

 5.2.1 Problem representation ……………………………………….... 88

 5.2.2 The metaheuristic ……………………………………………..... 89

 5.3 Ant system ... 94

 5.3.1 Ant-Q …………………………………………………………... 96

 5.3.2 Ant colony system ……………………………………………... 99

 5.3.3 Rank- based ant system ……………………………………….... 100

 5.3.4 Max-min ant system …………………………………………..... 102

 5.4 Local search mechanisms ………………………………………………. 108

 5.5 Fitness landscape .. 111

 5.5.1

……

……

……

……

……

……

……

……

……

……

…...

A distance measure .. 114

 5.5.2 Fitness distance correlation ... 114

 5.6 Conclusion .. 120

6 Max-Min Ant System for Allocation of Inspection Stations Problem 121

6.1 Allocation of the inspection stations problem .. 121

6.2 Max-min ant system for the allocation of inspection stations problem ... 123

 6.2.1 Pheromone trail initialisation ... 123

 6.2.2 Heuristic information .. 124

 6.2.3 Construction of the solution .. 136

 6.2.4 Selection probability .. 137

 6.2.5 Pheromone updating rule ... 138

 6.2.6 Pheromone trail limits .. 139

 6.2.7 Termination condition .. 140

6.3 Improving constructed solutions through local search 140

6.4 Pseudo-code of max-min ant system .. 145

6.5 Conclusion .. 145

x

Contents

7 Case Studies Selection 147

 7.1 Characteristics of case studies ... 147

 7.2 Assumptions of the general cost model ... 148

 7.3 Cases not matching the general cost model .. 151

 7.4 Conclusion .. 154

8 Tuning MMAS Parameters 156

8.1 Experimental framework .. 156

8.2 Experimental design .. 158

8.3 Tuning MMAS parameters .. 160

 8.3.1 Summary of MMAS parameters .. 160

 8.3.2 MMAS parameters settings .. 163

8.4 Results .. 164

 8.4.1 Optimal parameters for MMAS .. 164

 8.4.2 Confidence intervals ... 171

 8.4.3 Variations in  and  ... 174

8.5 Tuning of GA parameters .. 176

 8.5.1 Summary of GA parameters ... 179

 8.5.2 GA parameters settings ... 180

 8.5.3 Results ... 180

8.6 Tuning of SA parameters .. 181

 8.6.1 Summary of SA parameters .. 181

 8.6.2 SA parameters settings ... 183

 8.6.3 Results .. 183

8.7 Tuning of PSO parameters ... 184

 8.7.1 Summary of PSO parameters.. 184

 8.7.2 PSO parameters settings ... 185

 8.7.3 Results .. 186

8.8 Conclusion ... 186

9 Behaviour of MMAS and Sensitivity Analysis 188

9.1 MMAS behaviour .. 188

xi

Contents

9.2 Sensitivity analysis .. 194

9.3 Importance of the heuristic information ……………………….... 197

9.4 Importance of local search ... 200

9.5 Stagnation measures ... 203

9.6 Global and iteration best versus mixed strategy 205

9.7 Comparison variants of MMAS .. 206

9.8 Conclusion .. 207

10 Experimental Results and Discussion 209

10.1 Experiment 1 209

 10.1.1 Complete enumeration method ... 211

 10.1.2 Rule of thumb ... 212

 10.1.3 Simulated annealing .. 213

 10.1.4 Genetic algorithm .. 215

 10.1.5 Particle swarm optimisation ... 216

 10.1.6 Max-min ant system ... 218

 10.1.7 A pure random search .. 220

 10.1.8 Comparing performance of the algorithms 221

 10.1.9 Solutions for experiment 1 ... 222

 10.1.10 Discussion .. 229

10.2 Experiment 2 .. 232

 10.2.1 Solutions for experiment 2 ... 236

 10.2.2 Trade-off between CEM and MMAS 241

10.3 Experiment 3 .. 243

 10.3.1 Solutions for experiment 3 ... 245

10.4 Experiment 4 .. 247

10.5 Rule of thumb-b ... 249

10.6 Discussion .. 253

11 Conclusions and Future Work 259

11.1

10.4

Experimental review ... 260

 11.1.1 Local search .. 261

 11.1.2 Heuristic information ... 262

 11.1.3 MMAS tuning parameters .. 263

xii

Contents

 11.1.4 MMAS behaviour .. 264

 11.1.5 Major results .. 267

11.2 Future work ... 269

11.3 Thesis contribution .. 270

 11.3.1 Cost model formulation ... 270

 11.3.2 Evaluating the MMAS algorithm on the AOIS problem 272

 11.3.3 Developing two heuristics information 272

 11.3.4 Developing a new rule of thumb ... 273

Appendices

A Descriptions the exact methods used in the literature review 275

B Description simulated annealing procedure 278

C Description genetic algorithm procedure 279

D Results for different parameter combinations for optimising GA 280

E Results for different parameter combinations for optimising SA 281

F Results for different parameter combinations for optimising PSO 282

G Description of the ROT-b 283

References 285

Publication 304

xiii

List of Figures

1.1 Inspection allocation problem in multistage manufacturing processes 3

1.2 Growth of AOIS problem search space 4

3.1 Cylinder head for engine block 44

3.2 Engine valves 44

3.3 A serial multistage manufacturing processes 50

3.4
Schematic showing the duration of computational time against the number of

workstations

59

5.1 Single bridge experiment 86

5.2 Double bridge experiment 87

5.3 Ants construct solutions by building a path from a source to a destination

node

 to a destination node (

88

5.4 Series-parallel system configuration 91

5.5 Illustration of a 2-opt neighbour in the TSP 111

5.6 Fitness distance scatter plots for 15 workstations for AOIS problem 117

6.1 Structure of a serial multistage production system 122

6.2 Inspiration of the heuristic information for AOIS problem 127

6.3 Flow of piston production (Kaya and Engin, 2007) 130

6.4 The choices that an ant at WS3 to locate the next inspection station 130

6.5 Importance of using score method 132

6.6 All possible moves from WS4 to locate inspection stations based on Pk 135

6.7 Graph representation for allocation of inspection stations problem 137

6.8 Two-point crossover 142

6.9 Interchange two inspection stations 142

6.10 Swap two neighbourhood inspection stations 142

6.11 Insert one inspection station through the inspection plan 143

6.12 Delete and add one inspection station 143

6.13 Insert two inspection stations through the inspection plan 143

8.1 Influence of parameters α, β and ρ on the performance of MMAS-10+ls for

AOIS problem

168

8.2 Influence of parameters α, β and ρ on the performance of MMAS+ls+ib for

AOIS problem

172

8.3 Analysis of MMAS10+ls algorithm 175

8.4 Analysis of MMAS+ls+ib algorithm 178

9.1 Comparing convergence of MMAS under parameter settings 01.0,1  189

9.2 Comparing convergence of MMAS under parameter settings 01.0,2 

189

xiv

List of Figures

9.3 Comparing convergence of MMAS under parameter settings 01.0,5  190

9.4 Comparing convergence of MMAS under parameter settings 02.0,1  190

9.5 Comparing convergence of MMAS under parameter settings 02.0,2  191

9.6 Comparing convergence of MMAS under parameter settings 02.0,5  191

9.7 Comparing convergence of MMAS under parameter settings 05.0,1  191

9.8 Comparing convergence of MMAS under parameter settings 05.0,2  192

9.9 Comparing convergence of MMAS under parameter settings 05.0,5  192

9.10 Evolution curves of MMAS for different values of parameter 

..

193

9.11 Sensitivity analysis of parameter for different AOIS problems 195

9.12 Sensitivity analysis of parameter for AOIS problems 196

9.13 Sensitivity analysis of parameter for AOIS problems 197

9.14 Comparing convergence of MMAS with and without using heuristic 199

9.15 Box-plot showing the performance of MMAS with and without local search

for 12 workstations

202

9.16 Box-plot showing the performance of MMAS with and without local search

for 15 workstations

203

9.17 The plot of average branching factor for the AOIS problem 204

9.18 Performance of MMAS for different strategies for updating pheromone trails 206

10.1 General cost model methodology experiment 210

10.2 Histogram for the optimal cost from CEM 211

10.3 Total cost histogram for the ROT-a method 213

10.4 Percentage of DFOS histogram for the ROT-a method 213

10.5 Histogram of the total cost from the SA method 214

10.6 Percentage of DFOS histogram for the SA method 215

10.7 Histogram for the total cost from GA 216

10.8 Percentage of DFOS histogram for GA 217

10.9 Histogram for the total cost from PSO 217

10.10 Percentage of DFOS histogram for PSO 218

10.11 Histogram for the total cost from MMAS 219

10.12 Percentage of DFOS histogram for MMAS 219

10.13 Total cost histogram for the PRS algorithm 220

10.14 Percentage of DFOS histogram for the PRS algorithm 221

10.15 Performance of the algorithms against CEM for AOIS problem 222

10.16 Operations of engine valve (Engin et al., 2008) 233

11.1 Contribution of the GCM in serial multistage manufacturing processes 272

xv

List of Tables

2.1 Classification the main characteristics for the studied model used IP method 10

2.2 Classification the main characteristics for the studied model used LP method 11

2.3 Classification the main characteristics for the studied models used NLP

method

16

2.4 Classification the main characteristics for the studied models used B&B

method

17

2.5 Classification the main characteristics for the studied models used DP

method

21

2.6 Classification the main characteristics for the studied models used SA

method

23

2.7 Classification the main characteristics for the studied model used TS method

25

2.8 Classification the main characteristics for the studied models used GA

method

28

2.9 Classification the main characteristics for the studied models used MDP

method

30

2.10 Classification the main characteristics for the studied models used simulation

method

32

2.11 Cost model characteristics for serial multistage manufacturing processes 34

3.1 Defective rates for Trent 700 turbine blade (Ridley, 2008)

45

4.1 Characteristics of meatheuristic methods 80

5.1 Results of the FDC analysis for 15 workstations of AOIS problem 118

5.2 Results of the FDC analysis for different AOIS problem 119

6.1 Unit operation cost, unit inspection cost and defective rate for piston

production

130

6.2 Example of determining scores for the heuristic information 134

7.1 Characteristics of case studies relatively match with GCM 150

7.2 Characteristics of case studies not match with the GCM 152

8.1 Experimental parameters for the general cost model case study 157

8.2 Average DFOS for the MMAS10+ls algorithm 165

8.3 Best combination of parameters for MMAS10+ls algorithm 166

8.4 Average DFOS for the MMASg+ls-ib algorithm 170

8.5 Best combination of parameters for MMASg+ls-ib algorithm 171

8.6 95% DFOS confidence intervals for MMAS10+ls 173

8.7 95% DFOS confidence intervals for MMAS+ls+ib

177

8.8 Optimal GA parameters 181

8.9 Optimal SA parameters 183

8.10 Optimal GA parameters 186

xvi

List of Tables

9.1 Comparison of MMAS with and without heuristic information 198

9.2 Comparison of the local search effectiveness for the AOIS problem 201

9.3 Comparison between different strategies for updating pheromone trails 206

9.4 Comparison between different variants of the MMAS algorithm 207

10.1 Inspection plans for case study 1.1

223

10.2 Inspection plans for case study 1.2

224

10.3 Experimental parameters for case study 1.1 225

10.4 Experimental parameters for case study 1.2 225

10.5 Performance of developed methods for Experiment 1 230

10.6 Time performance of Experiment 1 methods compared to CEM 231

10.7 Performance parameters for Experiment 2 234

10.8 Performance of the studied methods for Experiment 2 235

10.9 Inspection plans for case study 2.1 237

10.10 Experimental parameters for case study 2.1 237

10.11 Inspection plans for case study 2.2 238

10.12 Experimental parameters for case study 2.2 238

10.13 Experimental parameters for Experiment 3 244

10.14 Performance of the methods in Experiment 3 245

10.15 Inspection plans for case study 3.1 246

10.16 Experimental parameters for case study 3.1 246

10.17 Experimental parameters for Experiment 4

248

10.18 Performance of the methods in Experiment 4

248

10.19 Comparing performance of ROT-a and ROT-b

251

10.20 Inspection plans obtained by rule of thumb-a, b

252

10.21 Unit operation cost and defective rates for the case study 252

10.22 Performance of MMAS for Experiments1and 2 254

10.23 Performance of MMAS for Experiments 3 and 4 255

xvii

List of Abbreviations

ACO Ant colony optimisation

ACS Ant colony system

AOIS Allocation of inspection station

AS Ant system

B&B Branch and bound

CEM Complete enumeration method

CMA-ES Covariance matrix adaptation evolution strategy

DE Differential evaluation

DFOS Deviation from optimal solution

DP Dynamic programming

EDAs Estimation of distribution algorithms

ES Evolution strategy

FDC Fitness distance correlation

FMS Flexible manufacturing system

GA Genetic algorithm

GCM General cost model

GRASP Greedy randomized adaptive search procedure

ILP Integer linear programming

IP Integer programming

LP Linear programming

MDP Markov decision process

MMAS Max-min ant system

MSPS Multistage production system

NLP Non-linear programming

PAF Prevention-appraisal-failure

PRS Pure random search

PSO Particle swarm optimisation

QAP Quadratic assignment problem

RAP Redundancy allocation problem

ROT Rule of thumb

SA Simulated annealing

TS Tabu search

TSP Travelling salesman problem

WIP Work in-progress

WS Workstation

xviii

Notation for the general cost model

k Workstation k in the manufacturing system (k=1, 2,…., n).

M Feasible inspection stations allocation.

m Inspection station assigned in the manufacturing system.

n Number of processing workstations in the system.

B Number of parts entering the system.

sk Sample size for workstation k.

ak Acceptance number for workstation k.

bk Number of bad items in sample of workstation k.

αm Probability that inspection station m incorrectly classifies CU as NCU.

βm Probability that inspection station m incorrectly classifies a NCU as a CU.

k Probability of repairing a defective unit at the workstation k.

P Final sale price of each unit.

Zk Probability of a non-conforming of part processing at the workstation k.

Y Direct cost of material to repair a defect at the customer‟s end.

gk Unit reworking cost at the workstation k.

uk Unit scraping cost at the workstation k.

W Percentage of parts replaced at the customer‟s end, W (0, 1].

ICm Unit inspection cost at inspection station m.

FCm Fixed inspection cost at inspection station m.

Uk Unit manufacturing cost at the workstation k.

NGk Number of conforming parts leaving the workstation k.

NDk Number of defective parts leaving the workstation k.

Rk Number of parts for reworking at workstation k.

CPk Number of conformed parts.

NCPk Number of non-conformed parts.

TICm Total inspection cost at inspection station m.

SCk Scrapping cost at the workstation k.

RCk Rework cost at the workstation k.

TMCk Total manufacturing cost for parts at the workstation k.

IFCk Internal failure cost at workstations k.

EFCk External failure cost at workstation k.

NG
n
 Number of conforming parts leaving the workstation n.

SU,k Score number given for the unit manufacturing cost at workstation k.

SZ,k Score number given for the unit defective rate at workstation k.

Sa,k

Total score number given at workstation k.

xix

Notation for the ACO and PSO

ijP Transition probability of combination.

 Relative importance of the pheromone trail intensity.

 Relative importance of the problem-specific heuristic information.

 Controls the evaporation of pheromone in the environment 10  .

q Random number uniformly generated]1,0[q .

0q A parameter which determines the relative importance of exploitation versus

exploration.

ij Pheromone trail intensity of combination (i, j).

ij Heuristic information of combination (i, j).

Q The total amount of pheromone released on all paths by the ants in one cycle.

pbest Probability that an ant will construct the best solution.

avg Average number of different choices available to an ant at each step while

constructing a solution

)(optsf Optimal solution value for the problem.

0 Specifies the initial pheromone level on all edges.

min Represents the lower limit for the pheromone trail strength.

max Represents the upper limit for the pheromone trail strength.

gb
ij Global best ant is allowed to add pheromone after each iteration.

λ Sensitivity of the λ -branching factor.

J Random variable that selects a good node from neighbourhood i.

ib
ij Local best ant is allowed to add pheromone after each iteration.

w Number of elitist ants.

k
iv Velocity of particle i at iteration k.

1k
iv

Velocity of particle i at iteration k + 1.

 Inertia weight.

jc Acceleration coefficients; j = 1, 2.

randi Random number distributed uniformly between 0 and 1; i = 1, 2.

k
ix Current position of particle i at iteration k.

lbesti Best position of particle i.

gbest Position of best particle in a population.

1k
ix

Position of the particle i at iteration k + 1.

PS Number of particles.

D Distances to the optimal solution, D= {d1, d2,..., dn}.

F Individual fitnesses, F= {f1, f2,..., fn}.

F Standard deviation of F.

D Standard deviation of D.

f Means of F.

d Means of D.

1

Chapter 1

Introduction

The manufacturing cost of a product is one of the major factors under consideration for

manufacturing companies. Increasing product cost leads to negative effect on the overall

competitiveness for these companies. The usual requirement is that products are

manufactured to an acceptable quality level and at minimum cost. The total cost of a product

is the sum of the costs of production, inspection, internal failures and external failures. In

multistage manufacturing processes, inspection stations should then be located after some or

all of the processing workstations, to guarantee that a specific quality level is being

maintained. The purpose of the inspection stations is to screen out the defective items before

adding extra costs by continuing to process them. Consequently, the total cost of the product

can then be minimised.

This research focused specifically on avoidable costs resulting from unidentified defective

items being processed unnecessarily during manufacturing operations. Also, studying the

strategies employed to allocate limited inspection stations into manufacturing processes to

reduce the total manufacturing cost. These strategies usually propose numerical algorithms

for the allocation of an economically appropriate number of inspection stations. This can be

done by finding a balance among different cost components, related to inspection, scrap,

repair and replacement as a result of quality failure, and/or the warranty penalty in the case

where a non-conforming product has been shipped to customers.

The objective of this research is to propose a methodology, using MAX-MIN Ant System

(MMAS) algorithm to allocate number of inspection stations in a serial multistage

manufacturing process. As a result, the total manufacturing cost of a product can be reduced

2

without affecting the quality of the product. It should be noted that the methodology may not

be used as a monitoring tool to detect changes in production performance.

1.1 Background

The procedure of making decisions about whether or not to inspect a final or semi-finished

product at every processing workstation in a serial multistage manufacturing process,

consisting of n processing workstations is shown schematically in Figure 1.1. The product

may transfer to the next stage or to the final consumer if there is no need to perform

inspection, otherwise a product will be inspected, and the inspected products may conform or

not to the predefined quality requirement. In the case of conforming items, they will be sent

to the next stage. There are several possibilities in the case of non-conforming items: (i) they

may be reworked and sent to the next stage; (ii) they may become a downgraded product; or

(iii) they may be scrapped.

Placing inspection points in a multistage manufacturing process, although constituting an

additional cost, at some level of inspection points is expected to be a profitable course of

action. The associated costs will be recovered from the benefits realised through the detection

of defective items. In other words, it is assumed that if inspection is performed after every

processing workstation, then the scrap, replacement, downgrading, and reworking costs

(internal failure costs) will be minimised, as defective items will be identified before adding

extra costs to already defective material. At the same time, non-conforming items can be

screened out before reaching the customer, which may result in additional costs (external

failure costs). On the other hand, these savings have to be considered against the inspection

costs, which include equipment, staff, time, shop floor space and create new queues in the

system that might add extra work in-progress (WIP) and flow. As a result, if these in-process

inspections are performed unnecessarily or too often greater costs will incur.

3

In a serial multistage manufacturing process, as the problem size increases, so the number of

inspection stations allocation possibilities increases exponentially in search space size. For

example, in a serial multistage manufacturing processes consisting of n=24 processing

workstations, there are 2
24

= 16,777,216 possible combinations for allocating inspection

points, and the complete enumeration method becomes impractical. This rapid growth in

problem search space size is illustrated in Figure 1.2. It is possible that not all locations of

inspection stations are economically equivalent; more likely, given differentials in cost

structures and process characteristics, some combinations of inspection places may prove to

be economically preferable to others.

Figure 1.1: Inspection allocation problem in multistage manufacturing processes

Output
IS i+1

WS n

WS 1 IS 1 IS i

WS i+1

Input
WS i

Nonconforming

product

 Lost

production

cost

Inspection

station

Possible inspection station WS Workstation

Input

Workstation

(i+1)

Workstation

station (i)

Conforming

product?

Downgrade

Scrap

Re-inspection

if necessary

Is there

inspection
station?

No

Yes

Yes

Yes

No

 Output

IS

Rework

4

Figure 1.2: Growth of allocation of inspection stations problem search space. The

horizontal axis is the number of workstations in an allocation problem. The vertical axis

is the number of feasible solutions that have to be considered. The figure shows an

exponential growth in search space size against problem size.

The problem therefore is where to locate limited number of inspection stations throughout the

process to strike a balance between minimising the total cost, by capturing defective items

and maintaining the required quality of the product.

1.2 Scope and objective of the research

The overall objective of this research is to develop a methodology for the allocation of

inspection stations (AOIS) problem in serial multistage manufacturing processes. The

methodology takes into account the constraints on inspection resources, in terms of a limited

number of inspection stations. As a result the total manufacturing cost of a product can be

reduced while maintaining the quality of the product. Given the scope of the research, the

main areas of work completed are:

0

250

500

750

1000

1250

1500

1750

6 8 10 12 14 16 18 20 22 24

N
u

m
b

er
 o

f
fe

as
ib

le
 s

o
lu

ti
o

n
s

x
 1

0
0

0
0

Number of workstations

5

 To develop general cost models for the AOIS problem in serial multistage manufacturing

processes. The developed models will be studied with the assumption of a limited budget,

and that allocating limited inspection stations reduces the total manufacturing cost.

 To characterise the features of the AOIS problem. To identify the best possible approach

method, different optimisation methods were investigated in chapter 4, leading to the ant

colony optimisation technique. In chapter 5, different ant colony versions were studied,

leading to the MMAS algorithm being proposed to tackle the AOIS problem.

 To develop a MMAS algorithm to solve the AOIS problem. Heuristic information for the

MMAS is created. To improve the performance of the MMAS algorithm, local search

methods for the MMAS algorithm are developed. Also, the most influential parameter

values for the MMAS algorithm for the AOIS problem are well tuned.

 In order to evaluate the developed MMAS algorithm a genetic algorithm, simulated

annealing method, particle swarm method, a pure random search algorithm and rules of

thumb, are developed. A complete enumeration method has been carefully designed and

used as benchmark to evaluate the developed algorithms.

 To develop a case study of serial multistage manufacturing processes to apply the MMAS

algorithm. Experiments conducted to examine the results obtained from the MMAS

algorithm. The results obtained will be discussed and analysed.

 To select two case studies for serial multistage manufacturing processes from the literature

review, and apply the MMAS algorithm to these selected case studies. Experiments

conducted to test the results obtained from the MMAS algorithm in comparison with the

results of the selected case studies. The results obtained will be discussed and analysed.

 To select a real world case study for serial multistage manufacturing processes to apply

the MMAS algorithm. Experiments conducted to examine the results obtained from the

MMAS algorithm. The results obtained will be discussed and analysed.

6

1.3 Thesis structure

The thesis is organised as follows: Chapter 2 presents a literature survey and classifies the

features of the surveyed models in terms of techniques applied, constraints used, type of

multistage manufacturing system and type of costs considered by these models. In Chapter 3,

a serial multistage manufacturing process is formulated. The model is developed under

assumption that there are limited inspection stations available. The relation between quality

and cost is described as well in this Chapter. Comparing computational time against number

of workstations when using CEM is discussed. Computational complexity of combinatorial

optimisation problems is presented. Chapter 4 describes and investigates different

optimisation methods to identify the appropriate approach method for the AOIS problem.

Chapter 5 presents ant colony optimisation in order to provide the necessary background on

how ant colony optimisation algorithms are put together. The background of the field of ant

algorithms has been described. Fitness landscape for AOIS problem is discussed. The fitness

distance correlation indicates that the max-min ant system algorithm is well suited to the

AOIS problem. In Chapter 6, a new approach of max-min ant system is developed to solve

the AOIS problem. The max-min ant system algorithm will be used in combination with local

search. Chapter 7 describes different case studies from the literature review. The appropriate

case studies will be selected to test the proposed max-min ant system algorithm. Chapter 8

will introduce tuning the most influential parameters that one has to specify to instantiate the

MMAS algorithm and the other relevant algorithms. In Chapter 9, behaviour of MMAS

algorithm and sensitivity of control parameters for the AOIS problem are studied. In Chapter

10, experimental results and discussions are presented. In Chapter 11, the conclusions are

drawn and possible directions to extend the research are discussed.

7

Chapter 2

Literature review

__

The AOIS in multistage manufacturing systems has received considerable attention from

various researchers over the past decades. In this chapter, a relevant literature review in the

area of AOIS in multistage manufacturing processes is conducted and analysed. This review

covers the existing approaches and provides a classification of the models proposed in terms

of system configuration, constraints, inspection errors, internal and external failure costs,

inspection costs, manufacturing costs and the solution techniques applied. These

characteristics will be described and summarised in tables in the same sequence as they

appear here. The aim is to identify promising directions of research and to bridge a gap in the

literature review.

2.1 Modelling characteristics

This literature review studies and investigates the different models proposed and solution

techniques applied to solve the AOIS problem. This survey covered 51 published papers in

the area of AOIS problems. A summary of each paper is represented by the first author‟s

name, followed by a two-digit publication year. The order of articles is organised in

chronological order by the year the paper was published. The summary has been produced

which includes the main characteristics considered and solution techniques used in the

current research publications. The solution methods are divided into exact and metaheuristic

methods. In the following subsections, the main characteristics will be described first,

followed by a short description for solution techniques which were used in the literature

review.

8

2.1.1 System configuration

There are three types of production configuration, such as: (i) serial systems; (ii) assembly

systems; and (iii) non-serial systems. In a serial production system, the raw materials pass

through a sequence of processing workstations to produce the final product. Each stage of the

manufacturing process receives a batch or flow of similar processing items as input, which

may contain some mix of conforming and non-conforming units. While in an assembly

system, at a certain stage, the product may be assembled with products from other processing

lines. A system that is neither serial nor assembly falls into the category of a non-serial

system (Mandroli et al., 2006).

2.1.2 Constraints

Constraints in the AOIS problem are related mostly to the characteristics of the

manufacturing system, such as the structure of the system, the type of defect, and the type of

inspection. However, additional constraints may be also imposed when solving the AOIS

problem. These constraints may include a limited number of inspection stations, average

outgoing quality limit (AOQL) and the rate of inspection (Raz, 1986).

2.1.3 Inspection errors

Two types of error may be generated by the inspection procedure: type-I error and type-II

error. A type-I error refers to rejection of good items, and is also known as „producer risk‟.

A type-II error refers to the acceptance of non-conformance item and forwards it for further

processing, and is also known as „consumer risk‟. A type-II error is usually has great impact

on the manufacturing process than type-I (Montgomery, 1997). This is because when non-

conforming items reach to the customer unnecessarily greater costs will incur.

9

2.1.4 Internal and external failure cost

Internal failure costs incur inside the company, such as the cost of reworking, scrapping and

downgrading. External failure costs incur after the products are shipped to customers for

example, repairing, quality loss and replacement. Usually external failure cost items are

represented as aggregated (penalty cost), and is usually associated with the final production

of undetected non-conforming items that reach the customer (Montgomery, 1997).

2.1.5 Inspection cost

The inspection cost is a sum of the fixed cost and the variable cost. The fixed cost is a sum of

the costs connected with test-equipment, installation and set-up. The variable cost is the total

number of conforming parts and the number of defective parts produced at an inspection

station, multiplied by the unit inspection cost (Mandroli et al., 2006).

2.1.6 Manufacturing cost

The manufacturing cost is the sum of the costs of all resources consumed in the process of

making a product. The manufacturing cost is classified into three categories: direct material

cost; direct labour cost; and overhead cost. Direct material cost results from adding a value to

raw materials by applying a chain of operations to a product. Direct labour cost is the cost of

workers that can be easily identified with the unit of production. Overhead cost includes all

charges that provide support to manufacturing (Ostwald and McLaren, 2004).

In summary, the main characteristics of the AOIS problem were described. These

characteristics were used by the developed models in the relevant literature. As will be shown

in next subsections not all the surveyed papers were addressing all these characteristics. This

is to allow a tractable formulation model and solution.

10

2.2 Exact methods

The concept of exact algorithms is based simply on enumerating the full solution space.

Exact methods are guaranteed to find an optimal solution for discrete problems in bounded

time such as is the case for many combinatorial problems (Ridge, 2007). However, in the

worst case, as the problem becomes more complex, the time needed to solve it may grow

exponentially. The following subsections describe exact methods which were used by the

literature review, followed by a summary of each paper.

2.2.1 Integer programming (IP)

An integer program is a linear program in which all variables must be integers. The aim of

integer programming is to find optimal decisions for problems where the decisions may only

take a certain number of finite values (Hillier and Lieberman, 2010).

Park et al. (1988) used an integer programming technique to determine the location of

inspection points in a flexible manufacturing cell. The objective was to minimise the

expected total manufacturing costs. A numerical example was solved using the integer

programming technique, which showed that inspection points depend on the reliability of the

processing machine and the processing time of the following machine. Table 2.1 presents a

summary of the classifications and characteristics of the studied model using IP method for

the previously surveyed paper. It should be noted that (Yes) means that the characteristic is

considered by the paper and (-) means that this characteristic is not considered.

Table 2.1: Classification the main characteristics for the studied model used IP method

Article

Characteristics

System

configu-

reation

Constraints

Number

of WS
IE

Cost components
Solution

technique IFC EFC IC MC

Park (88) Serial Limited

inspection

stations

4 Free of

error

Yes – Yes Yes IP

WS: workstation, IE: inspection error, IFC: internal failure cost, EFC: external failure cost, IC: inspection cost

and MC: manufacturing cost.

11

Summary

For a real manufacturing system, the computations required by IP will rise significantly as the

number of workstations increases, and its capability in terms of solving complex problems is

limited (Liang and Smith, 2004).

2.2.2 Linear programming (LP)

Linear programming is a technique for the optimisation models in which the objective and

constraints functions are strictly linear (Hamdy, 2003). Yum and McDowell (1987)

developed a model using LP for solving inspection allocation problems for serial systems.

They noted that none of the previous models in their literature review included a combination

of reworking, replacement, repair and scrapping. They developed a model able to include any

of these combinations. The objective of their work was to minimise the expected total cost. It

was found that the optimal inspection policy is dependent on whether a production or a

material requirement is used. Table 2.2 presents a summary of the classifications and

characteristics of the model using LP for the previously surveyed paper.

Table 2.2: Classification the main characteristics for the studied model used LP method

Article

Characteristics

System

configu-

reation

Constraints

Number

of WS
IE

Cost components
Solution

technique IFC EFC IC MC

Yum (87) Serial – 10 I and II Yes – Yes Yes LP

I and II: false rejection of good units and false acceptance of defectives, respectively.

Summary

Mandroli et al. (2006) introduced a survey on the AOIS problem, and pointed out that the

processing time required by LP will rise significantly as the number of workstations

increases.

2.2.3 Non-linear programming (NLP)

Non-linear programming is the process of solving a system of equalities and inequalities,

collectively termed „constraints‟, over a set of unknown real variables. The objective function

12

is maximised or minimised, where some of the constraints or the objective function are non-

linear (Hillier and Lieberman, 2010).

Numerous models in the existing literature review have been formulated the inspection

allocation problem using the NLP technique. Ballou and Pazer (1982) developed a computer

program to perform a „what-if‟ simulation analysis of the serial systems with inspection

errors. In a series of experiments, the authors found that inspection error rates have a major

impact on cost. Type I errors (rejection of conforming units) were found to have a greater

impact than type II errors (acceptance of non-conforming units). This contradicts the

description in section 2.1.3. They interpreted that many real world systems continue to put

pressure on the inspector to avoid type II errors which may be detected further down the line

while failing to properly audit type I errors which may exist among the items discarded at the

inspection station.

The original model of Ballou and Pazer (1982) was extended by the same authors in (1985),

to analyse the relative merits of enhanced inspection and process improvement. The

framework for their work assumes a multistage serial production system, with the possibility

of end point and intermediate inspection. The inspection configuration chosen is one which

minimises cost per good unit delivered to the customer and, accordingly, incorporates various

cost trade-offs.

Tayi and Ballou (1988) noted that the traditional inspection procedures which incur costs are

only used to identify and remove defective units. They proposed a model that considered both

inspection and reprocessing activities. However, they assumed that the inspection

configuration is given and fixed, and obtained a simple formula for determining the optimal

initial lot size and the reprocessing batch size, which minimised the total system costs.

13

Barad (1990) described a break-even approach for performing inspection in a multistage

production process. This paper was assumed that when inspection does take place, 100% of

the processed product at that stage is inspected. One of the variables used to decide whether

to inspect is the quality level at some points in the manufacturing process. Barad suggested

allocating most of the inspecting resources to stages with a relatively high proportion of non-

conforming product.

Jewkes (1995) noted that previous models of optimal inspection allocation in their review did

not consider the case when a repair was carried out on-line. This paper was modelled

inspection policies for a single stage manufacturing system as queues with two phases of

service (processing and inspection), in which items can be inspected or repaired as necessary.

Several examples were given to illustrate the process of finding the optimal effort.

Narahari and Khan (1996) proposed an approximate analytical technique based on mean

value analysis for a non-serial manufacturing system. The aim was to predict the mean cycle

time and throughput rate of such models under different inspection strategies. The proposed

method has been validated using a simulation technique.

Lee and Unnikrishnan (1998) combined the inspection allocation problem with multiple

inspection stations, in a scenario controlled by the inspection time constraint. Owing to the

complexity of the problem, they developed three heuristic methods. The optimal solution was

determined by the inspection plan that minimises the total cost per conforming item which

exits the system. They found that the results of the heuristic methods were close to the

optimised solution.

Shiau (2002) noted that the inspection error still needs to be considered for solving the

allocation problem in a multistage manufacturing system. This paper has introduced an

inspection error model and as a result of the complexity of the problem, two heuristic

14

methods were developed. The results show that solutions obtained by the heuristic methods

were close to the optimal solution.

Kogan and Raz (2002) applied optimal control theory to determine the best AOIS in a serial

system, to minimise the sum of the inspection cost. They assumed that the defect detection

rate and the cost are linearly proportional with inspection. They obtained the optimal

sequencing of inspection activities at a point in time, as well as optimal timing of switching

between inspection points.

Emmons and Rabinowitz (2002) dealt with an inspection system for detecting malfunctioning

operations in a multistage production system. The authors proposed a heuristic procedure for

inspection assignment and scheduling that enables the prediction of the system performance

under any inspection capacity. The main contribution of their paper was a theoretical

foundation for the further development of models and solution procedures for more realistic

problems. They demonstrated that the solutions obtained by the heuristic method are close to

the optimal solution.

Shiau (2003a) noted that the inspection error needs to be considered even when applying the

same inspection station to monitor various workstations that have different manufacturing

capabilities. Based on the limited inspection resource constraint, Shiau developed a unit cost

model and introduced two heuristic solution methods. It was found that the heuristic methods

produce solutions near to the optimal solution, with less processing time comparing with

CEM. Shiau (2003b) extended his previous model to include external costs, and proposed a

heuristic method to solve the allocation problem. The results obtained were very similar to

the original work.

Hadjinicola and Soteriou (2003) developed a mathematical model for a multistage production

system. The authors noted that previous literature did not adequately examine the impact of

15

changes in the yield of each production stage on the total cost, from defects observed at each

production stage. They developed a generalised model concerned with allocating a limited

inspection budget to the different production stages. The aim was to improve the yield of the

production stages and to minimise the cost. They concluded that the optimal budget

allocation, leading to reduce in the annual expected cost, resulted from defects observed at all

production stages.

Work on allocating inspection stations has been done by Rau and Chu (2005), which

considered non-serial production systems. Owing to their complexity, a heuristic solution

method was developed and proved to have much less calculation time, even when the number

of workstations increases. The results of work Rau and Chu (2005) were used by Rau et al.

(2005) to develop a mathematical model to find an optimal solution for allocating inspection

stations in non-serial production systems. They used similar assumptions and considerations

for the treatment of detected non-conforming items, as in the original model. To approach the

complexity of the problem, a heuristic method was developed and the results obtained were

very similar to the previous work.

Summary

The non-linear programming technique is the most popular method in the literature review,

and was used by 15 papers, or 29% of the total. This is because of the nature of the inspection

allocation problem in which some of the decision variables can only have integer values; for

example, whether or not to inspect at the workstation. Moeini and Afshar (2009) explained

that, for an actual manufacturing system, the computations required by NLP will escalate

considerably as the number of workstations increases. However, its capability is limited in

terms of solving a large-scale problem. In addition, they described that, within the past

decade, many researchers have shifted their focus on optimisation problems from traditional

optimisation techniques, based on linear and non-linear programming, to the implementation

16

of metaheuristic methods. Table 2.3 presents a summary of the classifications and

characteristics of the studied models using NLP for the previously surveyed papers.

Table 2.3: Classification the main characteristics for the studied models used NLP method

Article

Characteristics

System

configu-

reation

Constraints

Number

of WS
IE

Cost components
Solution

technique IFC EFC IC MC

Ballou (82) Serial – 3 I and II Yes Yes Yes – NLP

Ballou (85) Serial _ 3 I and II – Yes Yes Yes NLP

Tayi (88) Serial – 5 Free of

error

– Yes Yes Yes NLP

Barad (90) Serial – 8 Free of

error

Yes – Yes Yes NLP

Jewkes (95) Serial – _ Free of

error

Yes Yes Yes – NLP

Narahari (96) Non-

serial

– 4 Free of

error

Yes – _ – NLP

Lee (98) Serial Inspection

time

_ I and II Yes _ Yes Yes NLP

Shiau (02) Serial Limited

inspection

stations

7 I and II Yes Yes Yes Yes NLP

Kogan (02) Serial – 6 Free of

error

Yes Yes Yes – NLP

Emmons(02) Non-

serial

– 9 Free of

error

– – Yes Yes NLP

Shiau (03a) Serial Limited

inspection

stations

7 I and II Yes _ Yes Yes NLP

Shiau (03b) Serial Limited

inspection

stations

5 I and II Yes Yes Yes Yes NLP

Hadjinicola

(03)

Assembly – 3 Free of

error

Yes – Yes Yes NLP

Rau (05) Serial – 16 I and II Yes Yes Yes – NLP

Rau et al.(05) Non-

serial

Limited

inspection

stations

16 I and II Yes Yes Yes – NLP

2.2.4 Branch and Bound (B&B)

The first Branch & Bound algorithm was developed in 1960 by A. Land and G. Doig for

a general mixed and pure integer linear programming (ILP) problem (Hamdy, 2003). B&B is

a general algorithm for finding optimal solutions to various optimisation problems, especially

in discrete and combinatorial optimisation. Dorigo and Stutzle (2004) defined combinatorial

optimisation problems as: involve finding values for discrete variables such that the optimal

17

solution with respect to a given objective function is found. The basic concept underlying the

B&B technique is to divide and conquer. Since the original problem is too difficult to be

solved directly, it is divided into smaller and smaller sub-problems until these sub-problems

can be conquered. The division (branching) is done by partitioning the entire set of feasible

solutions into smaller and smaller subsets. The conquering is done partially by bounding how

good the best solution in the subset can be, and then discarding the subset if its bound

indicates that it cannot possibly contain an optimal solution for the original problem (Hillier

and Lieberman, 2010).

A few researchers used the B&B technique to solve the AOIS problem. Raz and Bricker

(1987) used the branch and bound approach to tackle the problem of sequencing imperfect

inspection operations. The aim was to find the variable inspection policy that minimises the

total inspection cost. The developed model was subject to constraints type I and type II

inspection errors. The authors found that the solution obtained by the proposed method was

very close to the optimal solution.

Raz and Kaspi (1991) examined the sequencing and location issues for multiple inspection

operations in serial production workstations. A single product type flowing in a fixed linear

sequence was considered. The objective was to minimise the total expected manufacturing

cost. They found that the solution obtained by the proposed method was close to the optimal

solution. Table 2.4 shows an abstract of the classifications and characteristics of the models

using B&B for the previously surveyed papers.

Table 2.4: Classification the main characteristics for the studied models used B&B method

Article

Characteristics

System

configu-

reation

Constraints

Number

of WS
IE

Cost components
Solution

technique IFC EFC IC MC

Raz (87) Assembly I and II 5 I and II Yes – Yes – B&B

Raz (91) Serial – 10 I and II Yes Yes Yes – B&B

18

Summary

One of the drawbacks of the branch and bound method is that it requires a good initial upper

bound, and an efficient way to calculate lower bounds for the various partitions (Raz, 1986).

In addition, it is not always easy to find effective lower bounds (McCallum, 2005).

2.2.5 Dynamic programming (DP)

Dynamic programming was formalised in the early 1950s by mathematician Richard

Bellman. DP is a recursive method that determines the optimum solution to an n-variable

problem by decomposing it into n stages, with each stage constituting a single variable sub-

problem. The computational advantages are that DP optimises single variable sub-problems

(Hamdy, 2003).

A number of mathematical models have been developed to determine the optimal location of

inspection stations in multistage production systems, using the dynamic programming

technique. Lindsay and Bishop (1964) were the first to develop a model for determining an

optimal inspection policy with the lowest total cost for serial production. The inspection is

assumed to be perfect (no inspection error) and the inspection at one stage is independent of

the next. It was found that DP allows the determination of a minimum cost under the added

assumptions of maintaining a specified quality level, or when the cost associated with

outgoing defective material is linear.

White (1965) also researched this area and showed that, with replacement of defectives, the

optimal plan would be characterised by 0 or 100% inspection, and could be solved by a

dynamic program. The results of the work of Lindsay and Bishop (1964) are used by Pruzan

and Jackson (1967) to develop an adaptive model in which the optimal inspection policy at a

location depended on the previous inspection history.

19

White (1969) presented two shortest route models for determining where to allocate

inspection points on a serial production line. In this paper, both repairable and non-repairable

defectives are considered. Hurst (1973) was the first to propose a model that considered two

types of inspection errors: acceptance of non-conforming units (type I); and rejection of

conforming units (type II). The production system was assumed to be serial with only one

inspection operation possible after each processing stage, and units perceived to be non-

conforming removed from the production flow.

In addition, Enrick (1975) and Hsu (1984) have applied dynamic programming to find the

optimal location of inspection stations in serial systems. They concluded that dynamic

programming was an effective technique for determining the inspection policies sequencing

for a limited number of production stages.

Peters and Williams (1984) investigated the performance of five heuristics rules of thumb in a

serial production system. The results indicated that a variety of economic and operating

factors influenced the applicability of each of the five inspection location heuristics

examined.

An inspection planning model was developed by Gunter (1985), for an assembly process free

of error. The results shown that if defective items are removed from the line, then the

production volume in the model will shrink as a result of inspection, in order to meet the

demand the inspections decisions should be considered the production rates.

Raghavachari and Tayi (1991) developed a model as a shortest path algorithm in serial

production systems to minimise the total cost. In their model, the determination of optimal

initial lot size, inspection configuration and reprocessing decisions are considered

simultaneously. They concluded that the developed model is flexible and versatile enough to

be applied to the manufacturing environment with different characteristics.

20

Chengalur et al. (1992) extended the model of Ballou and Pazer (1985) by using a dynamic

model with uncertainty in the quality of incoming raw material. They assumed 100%

screening if inspection was performed at any stage. Also any defective item delivered to the

customer was assigned as penalty cost. Their conclusion was that using a dynamic procedure

led to cost-saving, even when unsure about the quality of the raw materials.

Bai and Yun (1996) investigated the problem in which a product consists of many identical

components. In their model, only a limited number of (automatic) inspection machines are

available, and the rate of production was constrained by the rate of inspection. The inspection

level was defined as the percentage of components to be inspected. An inspection cost model

was developed to obtain the best location for inspection points and the optimal inspection

level. They found that the proposed heuristic algorithm combined with DP provides the

optimal solution when the problem is small. However, as the problem increases, the heuristic

algorithm provides a solution close to the optimal solution in less time comparing to the

CEM.

An unreliable serial production system with known failure probabilities at each workstation

was studied by Penn and Raviv (2007). The dynamic programming technique and a branch

and bound method were used, to solve the problem of determining optimal quality control

station configuration within the assembly line. The contribution of the model was

incorporation of holding costs. Optimal quality control stations were found to reduce the load

on the bottleneck stations, as well as the work in-process on the stations that followed them.

Table 2.5 presents a summary of the classifications and characteristics of the models using

DP for the previously surveyed papers.

Summary

Dynamic programming technique is used in 13 papers, accounting for 25% of the papers

surveyed. It is the second most common technique used, mostly used in the period from 1964

21

to 1985. In fact, the use of recursion in the DP algorithm has both advantages and

disadvantages: the main advantage is usually simplicity; the major disadvantage is the rapid

rise in computational requirements, as the number of decision variables to be optimised is

increased. This has led to various algorithms being developed that limit the number of stages,

states and decision variables combinations to be evaluated. In addition, Shiau (2002, 2007),

Lee and Unnikrishnan (1998) and Rau and Chu (2005) have pointed out that the DP approach

becomes impractical as the set of possible combinations grows exponentially. That is why

many kinds of metaheuristic methods, such as simulated annealing, Tabu search and genetic

algorithm are often used to reach a satisfactory solution, even though it may not be the

optimal one.

Table 2.5: Classification the main characteristics for the studied models used DP method

Article

Characteristics

System

configu-

reation

Constraints

Number

of WS
IE

Cost components
Solution

technique IFC EFC IC MC

Lindsay (64) Serial AOQL 9 Free of

error

Yes – Yes – DP

White (65) Serial – 6 Free of

error

Yes – Yes – DP

Pruzan (67) Serial – 5 Free of

error

Yes Yes Yes Yes DP

White (69) Serial _ 5 Free of

error

Yes Yes Yes Yes DP

Hurst(73) Serial _ 9 I and II Yes _ Yes _ DP

Enrick (75) Serial – _ I and II Yes – Yes Yes DP

Hsu (84) Serial – 4 Free of

error

Yes – Yes Yes DP

Peters (84) Serial – 13 Free of

error

Yes Yes Yes Yes DP

Gunter (85) Assembly _ 9 Free of

error

Yes – Yes – DP

Raghavach-

ari (91)

Serial – 5 Free of

error

Yes Yes Yes Yes DP

Chengalur

(92)

Serial

Limited

inspection

stations

3 I and II Yes Yes Yes Yes DP

Bai (96) Serial Limited

inspection

stations&

rate of

inspection

10 I and II Yes Yes Yes _ DP

Penn (07) Assembly _ 8 Free of

error

– Yes Yes Yes DP

AOQL: average of outgoing quality level.

22

In summary, many models in the area of the AOIS problem have been reviewed. These

models used traditional techniques to tackle the AOIS problem. However, the capability of

these techniques, in terms of computational time required to obtain good solutions increases

as the number of workstations increased significantly (Van Volsem and Neirynck, 2009).

2.3 Metaheuristic methods

A metaheuristic is defined to be a general heuristic method which is used to guide an

underlying local search algorithm toward promising regions of the search space containing

high quality solutions (Osman and Laporte, 1996). The following subsections describe

metaheuristic methods, which were employed in the literature review, followed by a

summary of each paper.

2.3.1 Simulated annealing (SA)

Simulated annealing simulates the thermodynamic behaviour of atoms suspended in a hot

metallic liquid which is being cooled down over a period of time. This process is known as

„annealing‟. SA is an intelligent approach designed to tackle complex problems within a

reasonable computation time. The idea in SA, similar to iterative improvement, is to create

some random perturbation, such as moving a molecule to a new location, and then the

resulting change in energy, E is evaluated. If the energy is decreased, E<0, the new

configuration has less energy and is accepted as the initial point for the next move. However,

if the energy is increased, E >0, the new, higher energy configuration is possibly acceptable

with some probability (Eglese, 1990). A more detailed description of the mathematical model

will follow in section 4.2.1.

A few models in the existing literature review were developed using SA, to determine the

optimal location of inspection stations in multistage production systems. Chen and Thornton

(1999) described how to allocate inspection location quantitatively, in a complex assembly

23

system, by using a combination of modelling, simulation and simulated annealing. The aim

was to remove the greatest variation of a product at the lowest cost. They demonstrated that

an optimal inspection plan can be selected quantitatively using their model.

Kakade et al. (2004) extended the model of Bai and Yun (1996) to account for the different

quality characteristics after each processing station and the different inspection times required

to inspect each component at each stage, along a serial multistage manufacturing system.

They assumed that the rate of production was constrained by the rate of inspection. It was

found that for small problems SA generates solution close to optimal solutions.

Table 2.6 presents a summary of the classifications and characteristics of the models using

SA method for the previously surveyed papers.

Table 2.6: Classification the main characteristics for the studied models used SA method

Article

Characteristics

System

configu-

reation

Constraints

Number

of WS
IE

Cost components
Solution

technique IFC EFC IC MC

Chen (99) Assembly – _ Free of

error

Yes – Yes Yes SA

Kakade (04) Serial Rate of

inspection

2 Free of

error

Yes Yes Yes – SA

Summary

The simulated annealing method has been highly successful in many applications and a

number of variant algorithms. However, a major disadvantage of the technique is determining

the „cooling schedule‟. For example, deciding what is a sufficient amount of iterations at each

temperature is difficult. In addition, determining the initial temperature is also difficult.

Starting too high will waste computation time; starting too low will decrease the probability

of finding a good quality solution given a hard enough optimisation problem (Ram et al.,

1996).

24

2.3.2 Tabu search (TS)

Tabu search was proposed originally by Glover (1986) and has been subject to extensive

studies, as well as applied to several optimisation problems with great success. Tabu search is

equipped with a special mechanism to avoid being trapped in local optima. It uses a short-

term memory to escape from local minima. TS typically uses a local search that, in each step,

tries to make the best possible move from current solution s, to a neighbouring solution

s , even if that move worsens the objective function value. In TS, to prevent the local search

returning immediately to a previously visited solution and to avoid cycling, moves to recently

visited solutions are forbidden (Glover, 1986). It uses a mechanism to forbid a return to a

recently visited solution called „Tabu list‟ (tl). TS uses some stopping criterion, such as a

fixed number of iterations, a fixed amount of CPU time, or a fixed number of consecutive

iterations without an improvement in the best objective function value. TS will be described

in more detail in chapter 4.

Valenzuela et al. (2004) formulated an optimisation model for the allocation of paste-printing

inspection efforts in Surface Mount Technology in a serial line. The aim was to maximise the

expected total gain. To reduce the complexity, only one stage in the solder-paste printing

process was considered. Their contribution was based on providing an optimisation model

that considered explicitly the economic trade-off between product yield and inspection

accuracy. They concluded that the heuristic approach provides a solution that can reduce the

total expected cost by 15% when it is started from a random solution. Table 2.7 presents

summary of the classifications and characteristics of the studied model using TS for the

previously surveyed paper.

Summary

One of the drawbacks of using Tabu search is that it brings with it a number of parameters

and design decisions, most of which are not simple to set, such as neighbourhood size and

25

Tabu list size (tl). This, therefore, extends the amount of experimentation required to optimise

the hybrid algorithm. For example if tl is chosen too small, cycling may occur; if it is too

large, the search path is too restricted, and high quality solutions may be missed. A good

parameter setting for tl can only be found empirically and requires considerable fine tuning

(Stützle, 1998b).

Table 2.7: Classification the main characteristics for the studied model used TS method

Article

Characteristics

System

configu-

reation

Constraints

Number

of WS
IE

Cost components
Solution

technique IFC EFC IC MC

Valenzuela

(04)
Assembly – 2

Free of

error
Yes Yes Yes Yes Tabu search

2.3.3 Genetic algorithm (GA)

Genetic algorithm is inspired by the observation of natural processes in the real world. John

Holland invented the first genetic algorithm in the 1960s. He mimicked the insight he got by

studying Darwin's theory of evolution, which can be summarised as:

 The traits found in the parents are passed on to their offspring during reproduction.

 New traits are produced by variations or mutations that are naturally present in all

species.

 A process termed „natural selection‟ chooses those individuals that are best adapted to

the environment.

 Variations can accumulate and produce new species over long periods of time.

According to Darwin, natural selection can be reproduced as survival of the fittest. The

characteristics of the fittest individuals, encoded in their genes, are passed on to their

offspring and keep propagating into new generations (Gaertner, 2004). GA will be described

in more detail in chapter 4.

26

A number of mathematical models have been developed to determine the optimal location of

inspection stations in serial production systems using the Genetic Algorithm technique.

Taneja and Viswanadham (1994) designed a genetic algorithm to determine the location of

inspection stations for serial and non-serial multistage manufacturing systems. The aim was

to minimise the expected total cost per unit produced. In their model, two constraints were

considered: an accepted outgoing quality level; and limited number of inspection places. It

was found that the GA algorithm reaches good solution as the number of workstation

increases with a reasonable computational time.

Viswanadham et al. (1996) formulated inspection allocation models for a serial and a special

non-serial multistage manufacturing system, with the aim of determining the number and

location of inspection stations. As a result, the expected total cost per unit produced is

minimised. The problem was approached using GA and SA. The conclusion using these

techniques reduced computation time dramatically, compared to the exhaustive search, and

yielded a good approximation to the optimal solution.

Langner et al. (2002) developed a genetic algorithm subject to inspection errors, for solving

the multistage inspection problem under the assumption that all stages must receive partial

rectifying inspection. They noted that previous models assumed that some manufacturing

stages received full inspection, and the rest none. The objective of their work was to

minimise the total cost. Examples of the optimisation of a multistage inspection problem

were solved, and they concluded that the solution technique could handle multiple objectives

and quality constraints effectively and linear and non-linear constraints trivially.

Shiau et al. (2007) developed a cost model to solve the manufacturing resource allocation

problem by performing process planning and inspection planning concurrently, in a serial

system. They concluded that GA saved time when compared with a complete enumeration

method.

27

Van Volsem et al. (2007) suggested a fusion between an evolutionary algorithm (Genetic)

and discrete event simulation, to optimise the inspection strategies for a multistage

production system (MSPS). Their contribution was based on jointly optimising the number

and location of inspection stations and inspection limits (specification interval). Their model

was developed under the added assumptions that a limited number of inspection machines

were available, and the rate of production was constrained by the rate of inspection. The

objective of the work was to reduce the process variance of the final product at minimum

cost. Their results confirmed the potential of the hybrid method for optimising quality

inspection.

The work introduced by Galante and Passannanti (2007) focused on a job-shop system,

equipped with inspection stations, in order to optimise both inspection allocation and

operation scheduling. The authors noted that the interaction between the two problems has

not been treated in a job-shop environment. They concluded that interactions between

inspection point location and operation scheduling, led to solutions with considerably lower

cost.

Sadegheih (2007) researched the area of the AOIS problem by developing two artificial

intelligence techniques: genetic algorithm and simulated annealing. The aim was to find the

optimal location of inspection stations to reduce the total cost in serial manufacturing

systems. Sadegheih found that the performance of the GA is much better than the simulated

annealing in terms of solution quality. Table 2.8 presents a summary of the classifications

and characteristics of the studied models using GA for the previously surveyed papers.

Summary

A genetic algorithm is an established field and a great deal of work has been done in trying to

apply it to a range of applications. The performance of the GAs depends on the rates of the

parameters, such as the population size, crossover rate and mutation rate. Determining the

28

size of the population is a crucial factor. Choosing a population size that is too small

increases the risk of converging prematurely to local minima, since the population does not

have enough genetic material to cover the problem space sufficiently. On the other hand, a

larger population has a greater chance of finding the global optimum at the expense of more

CPU time.

Table 2.8: Classification the main characteristics for the studied models used GA

Article

Characteristics

System

configu-

reation

Constraints

Number

of WS
IE

Cost components
Solution

technique IFC EFC IC MC

Taneja (94)

Non-

serial

AOQL and

Limited

inspection

stations

5 I and II Yes Yes Yes Yes GA

Viswanadh-

am et al. (96)

Non-

serial
_

5-25
I and II Yes Yes Yes _ GA

Langner (02) Serial AOQL 6 I and II Yes – Yes Yes GA

Shiau (07) Serial Limited

inspection

stations

5 I and II Yes Yes Yes Yes GA

Van Volsem

(07)

Serial – 6 Free of

error

Yes Yes Yes – GA

Galante (07) Serial – 10 I and II Yes Yes Yes Yes GA

Sadegheih

(07)

Serial – 10 Free of

error

Yes – Yes – GA

In summary, different techniques based on metaheuristics in the area of the AOIS problem

have been reviewed. These techniques are capable of finding, good and sometimes optimal,

solutions to large size problems, in a generally shorter computation time. However, the main

drawback of these techniques is that they bring with a number of parameters, most of which

are not simple to set. Abramson and Abela (1992) explained that another drawback of genetic

algorithms require large number of response (fitness) function evaluations depending on the

number of individuals and the number of generations. Therefore, genetic algorithms may take

long time to evaluate the individuals. This agrees with what found in the studies introduced

by Espinoza et al., (2005) and Kim (2010).

29

2.4 Markov decision process (MDP)

A Markov decision process is a controlled stochastic process that: (i) assumes that every

process state depends only on the previous process state and not on the history of previous

states (Markov assumption); and (ii) assigns costs (or rewards) to state transitions (Di Caro,

2004). In general, an MDP is a restricted state with a state-transition feedback function

described by (X, U, T, J) where:

X: is a finite set of problem states, representing the environment;

U: is a finite set of actions;

T: defines the transition probability distribution P (xi|xj, uk) that describes the effect of actions

on the world state; and

J: defines a cost model that describes costs associated with a state transition under some

action.

In the existing literature review, a few models used the MDP technique to solve the allocation

problem. Deliman and Feldman (1996) extended the model of Ballou and Pazer (1985) in

order to consider modelling rework directly, as reprocessing activities in serial manufacturing

systems. The objective was to determine the positions of inspection stations so that the

expected per unit total cost of production was minimised. Their results showed that an

optimal combination of inspection and process improvement can be identified and saves cost.

Jang and Shanthikumar (2002) presented stochastic models, by using the Markov decision

process to solve the inspection allocation problem under the stationary allocation assumption.

Optimal allocation and limited inspection capacity for multiple production processes were

considered. The main purpose was to minimise the expected total discounted cost over a

finite time prospect. They concluded that the model could be used as a simple tool to evaluate

the relative importance of individual processes. Table 2.9 gives a summary of the

30

classifications and characteristics of the studied models using a MDP for the previously

surveyed papers.

Table 2.9: Classification the main characteristics for the studied models used MDP method

Article

Characteristics

System

configu-

reation

Constraints

Number

of WS
IE

Cost components
Solution

technique IFC EFC IC MC

Deliman (96) Serial – 5 II Yes Yes Yes Yes MDP

Jang (02) Serial

Limited

inspection

stations

6
Free of

error
Yes – Yes Yes MDP

Summary

The Markov decision process can be very effective in practice, but when the state set is too

large, or the states are not accessible, they are virtually ruled out (Di Caro, 2004). Hauskrecht

(2000) pointed out that a significant drawback of the MDP is that it is only applicable for

solving relatively simple problems.

2.5 Simulation

A simulation of a system is the operation of a model of the system (Maria, 1997). A

simulation model is used to observe a real system with cases; usually, this is impossible, too

expensive or impractical to do in the system it represents (Carson and Maria, 1997). The aim

of simulation is to collect pertinent information about the behaviour of the system with the

passage of time. Simulation is not an optimisation technique, and is used to estimate the

measures of performance of a modelled system. It is a statistical experiment, and hence its

output must be interpreted by appropriate statistical tests. Two broad categories of

simulations are discrete-event and continuous simulations (Hillier and Lieberman, 2010). A

discrete-event simulation is one where changes in the state of the system occur

instantaneously, at random points in time, as a result of the occurrence of discrete events. A

continuous simulation is one where changes in the state of the system occur continuously

31

over time. Most applications of simulation in practice are discrete-event simulation (Hillier

and Lieberman, 2010).

There are many studies in the literature review that solved AOIS problems by using the

simulation technique. Saxena et al. (1990) evaluated four inspection heuristics on the basis of

job completion under different operating conditions in serial production systems. The four

heuristics considered were: (i) locate one inspection station before the station with the longest

processing time and locate another at the end of the total process; (ii) locate one inspection

station after the operation which is likely to generate a high proportion of defective items and

locate another at the end of the whole process; (iii) locate one inspection station after each

machine; and (iv) locate one inspection station at the end of the whole process. They found

that inspection time was the most influential factor for the selection of a particular heuristic.

Gardner et al. (1995) demonstrated the impact of defective rates, inspection and defective

removal strategies on the profitability of a manufacturing system in an assembly line. A

number of specific manufacturing situations have been simulated, to study particular aspects

of performance or costs. They confirmed that the maximum profit at a zero defect rate

occurred when inspection and defective removal were minimised.

Shin et al. (1995) investigated strategic AOIS for a flow assembly line. The problem was

formulated as a constrained bottleneck, shortest path model. They investigated the variations

of four parameters (defect ratio, inspection time, repair time, and inspection error) on the

strategic allocation. Their contribution introduced a hybrid method by combining constrained

bottleneck shortest path algorithm and discrete-event simulation. The results show that the

strategic allocation yielded the maximum throughput, by balancing the segment time at each

workstation.

Lee and Chen (1996) also researched this area by investigating five heuristics rules to study

the effects of inspection sequencing rules and part scheduling policies, in a flexible

32

manufacturing system (FMS). The conclusion was the selection of inspection plans that were

found to have a significant impact on the FMS performance.

Siemiatkowski and Przybylski (2006) also investigated the inspection heuristics of process

flow planning within a machining cell, with a coordinate measuring machine. They used

similar assumptions and considerations of the previous model presented by Lee and Chen

(1996). The results show that job-sequencing strategies relied heavily on the inspection plan

introduced in the cell. Table 2.10 presents outline of the classifications and characteristics of

the studied models using a simulation method for the previously surveyed papers.

Table 2.10: Classification the main characteristics for the studied models used simulation

Article

Characteristics

System

configu-

reation

Constraints
Number

of WS
IE

Cost components
Solution

technique IFC EFC IC MC

Saxena (90) Serial – 5 Free of

error

Yes – Yes Yes Simulation

Gardner (95) Assembly – 7 I and II Yes – Yes Yes Simulation

Shin (95) Serial Throughput 7 II Yes – Yes – Simulation

Lee (96) Serial – 9 Free of

error

– – Yes Yes Simulation

Siemiatkow-

ski (06)

Serial

– 2 Free of

error

Yes – Yes Yes Simulation

Summary

Simulation usually only provides statistical estimates rather than exact results, and often

compares different solutions rather than creating an optimal one. However, creating optimal

solutions using simulation needs a special software package (Hillier and Lieberman, 2010).

2.6 Cost models for serial multistage manufacturing processes

This research (AOIS problem) focuses on serial multistage manufacturing processes. The

main characteristics included in each cost model reviewed are broken down in more detail as

follows: constraints, number of workstations, inspection errors (type I and type II), internal

failure cost (rework and scrap), external failure cost (repair and replacement), inspection cost

(fixed and variable), manufacturing cost and objective function. It should be noted that these

33

characteristics are presented in more details than in the previous tables. The main

characteristics of each cost model are summarised in Table 2.11 in the sequence in which

they are published.

It can be seen from Table 2.11 that the models developed by Lindsay and Bishop (1964) and

White (1965) only included scrap and inspection costs. However, Lindsay and Bishop (1964)

added the assumption of AOQL in their developed cost model. The model developed by

Pruzan and Jackson (1967) included scrap, inspection (fixed and variable) and manufacturing

costs. The same cost components were considered in the model developed by White (1969),

with the addition of a repair cost.

Hurst (1973) developed a cost model which only included the scrap cost and the variable

inspection cost. The main contribution of the paper was the incorporation of inspection

errors. Enrick (1975) introduced a cost model to consider the rework, manufacturing and

variable inspection costs under the added assumption of inspection errors. However, Enrick

did not test the developed cost model.

Ballou and Pazer (1982) limited their cost model to include inspection errors, and scrap,

penalty and variable inspection costs. The contribution was based on analysing the impact of

inspection errors on the inspection policy. Hsu (1984) presented a cost model to consider

scrap, variable inspection and manufacturing cost components. The main contribution of the

work was the introduction of a hybrid inspection system.

Peters and Williams (1984) developed a cost model to include all characteristics except

inspection errors. The model was developed without any constraints. The main contribution

was the identification of the relations between various costs and/or process characteristics,

and a designated „operative condition‟ that motivated the apparent rationale of five of these

rules-of-thumb.

34

 Table 2.11: Cost model characteristics for serial multistage manufacturing processes

Article

Characteristics

Constraints Number

of WS

IE Cost components Objective

function
IFC

EFC

IC MC

Rework

Scrap Repair

Repl. Fixed Variable

Lindsay and Bishop (1964) AOQL 9 – _ Yes _ _ _ Yes – Cost/input unit

White (1965) – 6 – _ Yes _ _ _ Yes – Cost/input unit

Pruzan and Jackson (1967) – 5 – _ Yes _ _ Yes Yes Yes Cost/input unit

White (1969) _ 5 – _ Yes Yes _ Yes Yes Yes Cost/input unit

Eppen and Hurst (1974) – 9 I and II _ Yes _ _ _ Yes – Cost/input unit

Enrick (1975) – _ I and II Yes _ _ _ _ Yes Yes Cost/input unit

Ballou and Pazer (1982) – 3 I and II _ Yes Penalty

_ Yes _ Cost/input unit

Hsu (1984) – 4 – _ Yes _ _ _ Yes Yes Cost/input unit

Peters and Williams (1984) – 13 – Yes Yes Penalty Yes Yes Yes Cost/input unit

Ballou and Pazer (1985) _ 3 I and II _ _ Penalty _ Yes Yes Cost/input unit

Yum and McDowell (1987) Limited

inspection

stations

10 I and II Yes Yes _ _ – Yes Yes Cost/input unit

Tayi and Ballou (1988) _ 5 – Yes Yes Penalty – Yes Yes Cost/input unit

Park et al. (1988) – 4 – Yes Yes _ _ Yes _ Yes Cost/input unit

Barad (1990) – 8 – Yes _ _ _ _ Yes Yes Cost/input unit

Raghavachari and Tayi (1991) – 5 – Yes _ Penalty Yes Yes Yes Cost/input unit

Raz and Kaspi (1991) _ 10 I and II Yes _ Penalty _ Yes _ Cost/output unit

 Repl.: replacement

35

 Table 2.11: Cost model characteristics for serial multistage manufacturing processes (continued)

Article

Characteristics

Constraints Number

of WS

IE Cost components Objective

function
IFC

EFC

IC MC

Rework

Scrap Repair

Repl. Fixed Variable

Chengalur et al. (1992) Limited

inspection

stations

3 I and II _ Yes Penalty Yes _ _ Cost/input unit

Jewkes (1995) – _ – Yes _ _ _ _ Yes _ Cost/input unit

Bai and Yun (1996)

Limited

inspection

stations

inspection

10 I and II Yes _ Penalty _ Yes Yes Cost/input unit

Deliman and Feldman(1996) – 5 II Yes Yes Penalty – Yes Yes Cost/input unit

Lee and Unnikrishnan (1998) Inspection

time

_ I and II Yes Yes Yes _ Yes _ _ Cost/input unit

Jang and Shanthikumar (2002) Limited

inspection

stations

6 – Yes _ _ _ Yes _ _ Cost/input unit

Langner et al. (2002) AOQL 6 I and II Yes _ _ _ _ Yes _ Cost/input unit

Shiau (2003a) Limited

inspection

stations

7 I and II Yes Yes _ _ _ Yes Yes Cost/input unit

Shiau (2003b) Limited

inspection

stations

5 I and II Yes Yes _ Yes _ Yes _ Cost/input unit

Rau and Chu (2005) – 16 I and II Yes Yes Penalty _ Yes Yes Throughput

Shiau (2007) Limited

inspection

stations

10 I and II Yes Yes _ Yes _ Yes _ Cost/input unit

Sadegheih (2007) _ 10 _ _ Yes _ _ _ Yes _ Cost/input unit

36

Ballou and Pazer (1985) extended their original model (Ballou and Pazer, 1982) in order to

analyse the cost quality implication of process improvement against inspection enhancement.

The model was developed to include only inspection errors, and penalty, variable inspection

and manufacturing costs. However, the cost model did not include any items of internal

failure cost.

Yum and McDowell (1987) developed a cost model that was constrained by adding

assumptions for a limited number of inspection stations. The developed model did not include

external failure costs (repair and replacement) or fixed inspection costs. The main

contribution of the work was the introduction of a model that could include any combination

of internal failure costs. Tayi and Ballou (1988) presented a model that produced several

potential features of production systems: production processes, quality control procedures, in-

process inventory and reprocessing. The model was developed to include all cost

components, except fixed inspection costs, under the added assumption of perfect inspection

(no inspection errors).

Park et al. (1988) developed a cost model to consider internal failure, fixed inspection and

manufacturing costs. The main contribution was the incorporation of machine operation

reliability. Barad (1990) introduced a concept of a break-even quality level for a multistage

production process, in which screening was only allocated within some stages, depending on

the economic criteria. When screening did take place, 100% of the product processed in that

stage was inspected. One of the variables used to decide whether or not to inspect was the

quality level at some point in the manufacturing process. The developed model was limited to

only including rework, variable inspection and manufacturing costs.

Raghavachari and Tayi (1991) extended the cost model of Tayi and Ballou (1988) to provide

an integrated framework for simultaneously considering manufacturing, inspection and

reprocessing activities. The model excluded inspection errors and scrap costs. Raz and Kaspi

37

(1991) examined the sequencing and location of inspection stations in serial production

workstations. Their main contribution was in performing multiple inspection operations after

each production stage. The model was developed to include rework, penalty, and variable

inspection costs, with the added assumption of inspection errors. However, scrap, fixed

inspection and manufacturing costs were excluded in the cost model developed.

Chengalur et al. (1992) extended the cost model of Ballou and Pazer (1985) to consider the

quality of the incoming raw material, and consequently the optimal inspection strategy. The

developed model was constrained by a limited number of inspection stations. The developed

cost did not include rework, variable inspection or manufacturing costs. Jewkes (1995)

examined a system with a stationary probability of producing defective items and focused on

an optimal fraction of items to be inspected. The developed model was limited to only

include rework and variable inspection costs.

Bai and Yun (1996) investigated the AOIS problem in which a product consists of many

identical components. In their model, only a limited number of inspection machines were

available, and the rate of production was constrained by the rate of inspection. The cost

model was developed to include all cost components, except for scrap and variable inspection

costs. Deliman and Feldman (1996) expanded the model of Ballou and Pazer (1985) to

consider internal failure costs (rework and scrap) in serial manufacturing systems. However,

the developed model did not include a fixed inspection cost or type I inspection error.

Lee and Unnikrishnan (1998) developed a cost model with multiple inspection stations, in a

scenario controlled by the inspection time constraint. The time constraint was used to

simplify the problem and to speed up the process of finding a good solution. However, the

model excluded the variable inspection cost. Jang and Shanthikumar (2002) presented

stochastic models to solve the inspection allocation problem. The main contributions of the

paper were the characterisation of a threshold type optimal inspection control policy for a

38

constrained single process problem and the introduction of a dynamic disaggregate approach

that efficiently solves a multiple process problem. The cost models were developed to only

include rework, fixed inspection and manufacturing costs. The cost developed models were

constrained by the limited number of inspection stations.

Langner et al. (2002) developed a cost model to find the number of defective items in each

manufacturing stage as a result of this the total cost can be reduced. The cost model was

developed to only include inspection errors, and rework, variable inspection and

manufacturing costs. The cost model did not consider scrap cost and external failure cost.

Shiau (2003a) developed a unit cost model based on a limited inspection resource constraint.

The unit cost model did not consider external failure or fixed inspection costs. Shiau (2003b)

extended his previous model to include external costs. However, the cost model did not

consider manufacturing or fixed inspection costs.

Rau and Chu (2005) developed a cost model for optimally allocating inspection stations in

serial production systems. The main contribution was the incorporation of two types of

workstation: a workstation of attribute data and a workstation of variable data, in serial

production systems. The cost model was developed to consider all cost components, except

for the fixed inspection cost and inspection errors which were excluded.

Shiau (2007) developed a unit cost model to solve the allocation problem in an advanced

manufacturing system (AMS). The main contribution was in finding solutions by

concurrently performing process planning and inspection planning. Except for fixed

inspection and manufacturing costs, all other cost components were included in the

developed cost model.

Sadegheih (2007) researched the area of the AOIS problem by developing a cost model. The

developed cost model was limited to only include scrap and variable inspection costs. The

39

contribution of the paper was in the presentation of an optimal design for a manufacturing

system inspection station using genetic algorithms and simulated annealing techniques.

Furthermore, a novel general effect of the mutation rate on the minimised objective value was

presented.

2.7 Conclusion

This literature review surveyed research in the area of AOIS in multistage manufacturing

processes. A number of techniques have been presented in the literature for the AOIS

problem. The aim of almost all the reviewed inspection models was to determine whether

inspection operations should be performed at some or in all processing workstations to

minimise the total cost. In some cases, there were many possible locations for inspection

activity; while in other situations it was concluded that an effective inspection should

performed after certain workstation processes had been completed. It was found that most of

the surveyed papers used a complete enumeration method (CEM) to measure the performance

of the models developed. The advantage of the CEM is that it checks all possible

combinations of inspection stations in the search space. As a result the optimal solution can

then be identified. The most common approaches used by researchers were the NLP and DP

techniques. However, the computation time required by these traditional techniques to obtain

good solutions increases when the number of workstations significantly increases. Of all the

metaheuristic methods used in the literature review, none of them used local search to

improve the performance of their models. For example Shiau (2007), Galante (2007) and

Kakade (2004) all used approximation methods, but did not use a local search method to

improve the performance of their optimisation methods. In addition, it has been proven that in

another area (not an AOIS problem) hybrid metaheuristics perform better than metaheuristics

without local search (Duda, 2006). It was found that a vast majority of the papers surveyed do

not consider sensitivity analysis, which only appeared in some papers, for example the

40

models developed by Yum and McDowell (1987) and Parak et al. (1988).This is probably

because their models were developed using Integer Linear Programming, and hence it is

easily included. The complexity of cost models and the fact that no two such cost models are

alike, led researchers to the use simulation techniques when examining such systems.

Despite the product and the process in multistage manufacturing processes being discrete as

in Petri nets, none of the surveyed models mentioned about this similarity. Petri nets are

based on analyses of system behaviour. These analyses will lead to important insights into the

behaviour of the modelled system. For complex Petri net models, discrete-event simulation is

used to check the system properties. Petri nets are particularly useful for modelling systems

with concurrent and asynchronous processing (Wang, 2007).

Any realistic model of the impact of inspection on a multistage manufacturing system should

include the possibility of inspection errors. Other papers pointed out that as the production

processes at each stage are generally stochastic in nature, deviations from product

specifications occur, which, without intervention, will accumulate during the course of the

production process. Only performing an inspection at the last stage would therefore result in a

large number of faulty products and high rework and scrap costs. Regarding the rules of

thumb which were used by some papers, it was concluded that its effective application

depends on the consideration of a variety of cost and/or process factors unique to each

heuristic. Therefore, the specific results obtained are dependent on the unique set of

experimental conditions.

Regarding assembly and non-serial models, undetected defects are more difficult to

determine in these systems than in serial lines. The difficulty arises due to assembly stages in

which multiple serial lines join to form a single serial line. At such assembly stages, the

number of detected defective output flow items of the assembly stage entering the assembly

line stage depends on the proportion of defective items leaving all series lines to that

41

assembly stage. Optimal solutions to the problems can be found when the full enumeration of

the search space is generated in reasonable time. The specific optimal solutions obtained are

dependent on the unique set of experimental conditions for each problem. The vast majority

of case studies in the literature review presented the best solutions determined by the methods

developed in terms of average deviation from the optimal solution.

It is evident from the preceding review, particularly in section 2.6, that none of the cost

models reviewed address all the characteristics of the general inspection allocation problem.

Simplified assumptions were introduced at several points in those studies, in order to allow a

tractable formulation model and solution. This is also because many studies were interested

in developing new heuristic methods to approach the complexity of the AOIS problem (e.g.

Barad, 1990, Lee and Unnikrishnan, 1998, Peters and Williams, 1984, Rau and Chu, 2005,

Shiau, 2003a, b).The categories of linear and nonlinear variable inspection costs are largely

exclusive. As a result they are the categories of the objective functions and the optimisation

methods. The linear and nonlinear variable inspection costs cover all papers studied, with the

four exceptions of Park et al. (1988), Chengalur et al. (1992), Lee and Unnikrishnan (1998)

and Jang and Shanthikumar (2002) who only considered a fixed inspection cost and no

variable inspection cost. All the cost models surveyed assumed that when an inspection is

performed after the processing workstation, 100% inspection occurs. This assumption

increases the cost of inspection and inspection time. Also, all the cost models surveyed used

the total cost per input unit and the total cost per output unit as the objective functions. The

difference between them is that in the first case the objective function is computed as the total

cost divided by the number of input units, whereas in the second case the objective function

is determined as the total cost divided by the number of output units. However, the customer

is often determines the quality of an item with 100% accuracy. This review has demonstrated

42

the need to develop a general cost model that can handle the increased complexity of the

problem.

In this thesis, the AOIS problem is expanded to include all the characteristics described in

section 2.6. The cost model is developed under assumptions of inspection errors and the

limited availability of inspection stations. In addition, the developed cost model determines

the locations of inspection stations using sampling inspection strategy. Furthermore, the

optimality is defined in terms of minimising costs per conforming output unit accepted by the

customer. To do so, the general cost model is developed such that the number of conforming

parts can be computed at each processing workstation. Introducing all these issues into the

developed cost model significantly increases the level of complexity and gives an advantage

to be very different from those in previous literature. The novel general cost model for the

AOIS problem will be developed in the next chapter.

43

Chapter 3

General cost model formulation

It is evident that from the previous review that the various cost models did not address all the

complexities possible characteristics of the general inspection allocation problem. Also, all

the studied cost models in the previous literature were used full inspection plan if an

inspection station is located after a workstation. In addition, all the surveyed cost models used

the total cost per input unit and the total cost per output unit as the objective function.

Furthermore, all previous cost models were represented external failure cost items as

aggregate or only include one of them. In this chapter, a novel general cost model (GCM) in

serial multistage manufacturing processes to include all the characteristics of the AOIS

problem is developed. The GCM is also contributes to knowledge by determining the

locations of inspection stations using sampling inspection strategy. Furthermore, the external

failure costs are represented to be more complex to include all of its items (repair and

replacement costs). Also, the optimality is defined in terms of minimising cost per

conforming output unit accepted by the customer. This can be done by developing the general

cost model such that the number of conforming parts can be computed at each processing

workstation. Introducing all these issues into the GCM significantly increases the level of

complexity and gives an advantage to the general cost model to be very different from those

in previous literature. This general cost model provides management with information on the

optimal number and placement of inspection stations for specific planned or existing serial

manufacturing systems. It can also be used by management to explore various policy options,

such as the cost implications of increasing the quality vs. the quantity of inspection stations.

44

The relation between quality and cost, computational complexity and computational time

against number of workstations will also be described in this chapter.

3.1 A serial multistage manufacturing process

In a serial production system, the raw materials pass through a sequence of processing

workstations to the final product. Each stage of the manufacturing process receives a batch or

flow of similar processed items as input, which may contain a mix of conforming and non-

conforming units. As an example of a serial multistage manufacturing process, consider the

manufacturing of cylinder heads for engine blocks. The cylinder head sits above the cylinder

block, as shown in Figure 3.1, and consists of a platform containing part of the combustion

chamber that locates the valves and spark plugs. In this serial line process, the work-piece

moves from one machine to another, to enable various operations to be performed on the part.

The system consists of 15 processing workstations in a serial line for producing cylinder

heads for engine blocks. This system is capable of producing 100 cylinder heads per hour.

The various operations performed by the machines are: milling, drilling, reaming, boring,

tapping, honing, washing, and gauging (Kalpakjian and Schmid, 2006). Another example of a

serial multistage manufacturing process, which is considered to be a large-scale problem, is

manufacturing engine valves, as shown in Figure 3.2. The engine valves are processed in 36

different processing operations on different machines, such as cutting, turning, press,

Figure 3.1: Cylinder head for engine block Figure 3.2: Engine valves

45

welding, grinding, heat treatment and plating. These different machines are equipped with

computer numerical controls (Engin, 2008). In addition, in real world problems there are

more complex manufacturing processes such as manufacturing Trent 700 turbine blade

(Ridley, 2008). This process is highly complex and can be broken down into 88 workstations,

with each operation having around 12 steps. Due to the complexity of the process, Ridley

(2008) summarised these operations into 12 discrete steps as follows: (1) diffusion bonding,

(2) water jet cut profile and C scan, (3) hot process (twist), (4) hot process (creep forming),

(5) hot process (super-plastic forming), (6) X-Ray, (7) Ghyll brow operations (chemical and

out gassing), (8) CNC machining, (9) polishing, (10) coordinate measuring machine

inspection, (11) finish processing (shot peening and super polishing) and (12) frequency and

moment weight. Despite the processes using high precision machines, these operations still

generate defective items, as shown in Table 3.1.

 Table 3.1: Defective rates for Trent 700 turbine blade (Ridley, 2008)

Workstations Number of defective items

1 70
2 0
3 2

4 1

5 293
6 0

7 4
8 24

9 49
10 0

11 8

12 0

3.2 Manufacturing system characteristics

The most common way used by Shiau (2003a, b), Mandroli et al. (2006) and Shiau (2007) to

characterise a serial multistage manufacturing process are: (i) non-conforming products; (ii)

repair of defects (iii) inspection type; (iv) inspection errors; (v) inspection time; and (vi) cost

components.

46

3.2.1 Non-conforming products

Products may not conform because of the improper performance of a processing operation.

The chance that a unit will become non-conforming at a given stage is referred to as the non-

conforming processing rate for the stage, which may be constant or variable, and may

alternate between an acceptable level and an out-of-control level (Raz, 1986). A given

processing stage may cause a single type of non-conformity or multiple types. For an

allocation problem, it may be assumed that each workstation has a specific probability of

producing defective parts. Products considered to not conform are, subsequently, removed

from the production flow and they may have some or no salvage value at all (Kakade, 2004

and Galante and Passannati, 2007). The salvage value represents the revenue generated by

selling the rejected items as scrap or lower grade products.

3.2.2 Repair of defects

During the inspection, once an item does not conform to the specifications certain actions

will be taken to repair, or simply scrap it. However, defective products, when allowed to pass

through the production line, become costly to repair at a later stage of operation. The repair

occurs only when the non-conformance of a product is greater than the specification limit,

which is determined by a predefined quality requirement. In the absence of repair, the

production volume in the production line will shrink as a result of inspection (Gunter, 1985).

In real life, without repair larger lot sizes have to be introduced, in order to meet production

plans and to avoid delivery delays.

3.2.3 Inspection type

If an inspection is performed after a particular workstation, it may belong to one of four

categories: (i) a simple inspection by inspecting one single item once; (ii) a batch inspection;

(iii) a repeated inspection by inspecting the same batch or a unit more than once; and (iv) a

dynamic inspection to inspect units in a batch sequentially, and a decision of whether to reject

47

or accept the batch is made dynamically instead of at a fixed fraction (Mandroli et al., 2006).

Repeated inspection is similar to dynamic inspection because they both inspect another

inspection before reaching a decision. The difference between them is that the repeated

inspection examines the same item or the same batch of units, whereas the dynamic

inspection inspects a different item. It is also worth noting that this study on inspection

strategies does not differentiate between inspections conducted by automated devices, human

inspectors, or a mix of both (e.g., human inspection followed by an automatic inspection).

This is because the actual inspection actions are usually modelled using a set of parameters

that are independent of the actual inspection methods (such as type-I and type-II errors

defined in section 3.2.4 and the number of repetitions). In reality, inspection may be

performed due to legislation and regulations. This is a typical issue in industry what causes a

lot of costs that could be reduced by optimising inspection stations through the processing

workstations.

3.2.4 Inspection errors

During the inspection operation two types of error may be generated by the inspection

procedure: type-I error and type-II error (Montgomery, 1997). Type-I and type-II errors can

be summarised in following confusion matrix (Visa et al., 2011, Gluga et al., 2011).

Item

Decision based on inspection

Accept Reject

Conforming Correct decision Wrong decision

Type-I error

Non-conforming Wrong decision

Type-II error

Correct decision

3.2.5 Inspection time

In manufacturing processes the inspection time plays a major role in the total manufacturing

costs. Longer inspection times constrain the inspection capacity, which may cause increased

inspection errors and create new queues in the system that might increase work in-progress

48

(WIP) and flow. The inspection time for each inspection station can be represented by the

inspection cost (Shiau, 2002, Shiau et al., 2007).

3.2.6 Cost components

Producing high-quality products at low cost is always one concern for a multistage

manufacturing system. If products are manufactured to an acceptable quality level, then all

manufacturing costs will be recovered and the manufacturer will be rewarded with a net

profit. For that reason, most of the studies chose to focus on specific cost components related

to quality failures (both internal and external failures) and inspection (Raz, 1986 and

Mandroli et al., 2006). Internal failure costs are associated with failures and defects of

processes, equipment, products, and product materials that fail to meet quality standards or

requirements. External failure costs are generated by defective products, and processes during

customer use. They include warranties, complaints, replacements or recalls, repairs, poor

packaging, handling, and customer returns. Other costs included are inspection cost and

manufacturing cost. Inspection cost only occurs when an inspection station is located after the

workstation; otherwise the manufacturing cost will take place. The inspection cost is a sum of

the fixed cost and the variable cost, and was described in chapter 2.

In summary, characteristics of the AOIS problem were described. All of these characteristics

will be considered in the developed GCM, such as costs of inspection, manufacturing,

internal and external failure. Also, the GCM takes into account the constraints in terms of

limited inspection stations.

3.3 General cost model formulation

The multistage manufacturing process to be considered is such that a product is produced

through the processing workstations, and manufactured by specialised production operations

to create the final product. The processing workstations are considered to be specialised

operations or points and, thus, each processing workstation performs a unique function. The

49

first processing workstation receives the raw materials and the last involves shipment of the

final product. Inspection is possible at all points. The purpose of any inspection is to screen

out defective items from non-defective ones, in order to avoid processing items if they are

already defective. The aim is to locate inspection stations in such a way that the total cost of a

product can be reduced. The total cost is defined as the sum of the costs of production,

inspection and failures (during production and after shipment). Since each processing

workstation is unique, the quality characteristics of that processing workstation will be

unique, and therefore the inspection at that stage will be different from that at another stage.

At each inspection point, it is possible to perform either no inspection or multiple inspections

of each item or batch of input. Once an item is identified by an inspection station as being

defective, it is assigned to a repair facility on the same processing workstation. The item is

either inspected again to determine that it is not defective or it is repaired in the event that is

defective. In either case it is assumed that this repair facility is perfect.

After the repair, the quantity classified as non-defective from the inspection join the repaired

items from the repair facility and this total, which is the same as the input entering the

inspection point, is input into the next processing workstation stage. This is done in order to

avoid any delivery delay, and to ensure that production can meet the required demand. The

cycle of production, inspection and repair, for items classified as defective, then repeats itself

through all of the processing workstation stages. At the end of the manufacturing system, the

external failure cost representing repair and replacement is incurred for each non-conforming

unit that exits the system. It is assumed that the developed model works at quasi static

equilibrium situations that in reality may last for a business relevant period in time.

Therefore, the developed model uses static variables for calculating the costs. Figure 3.3

illustrates the characteristics of the type of multistage system under consideration consisting

of n processing workstations as follows:

50

1. The system is considered to be made up of workstations arranged serially, and parts enter

the system in batches.

2. Each processing workstation has a specific probability of producing defective parts.

3. Sampling inspection is performed if an inspection station is located after a workstation in

the sequence.

4. Only one final product is considered in the system.

5. The product and the process are discrete.

 6. The system has a limited number of inspection stations. Each inspection station can be

assigned to perform an inspection operation for one or more workstations.

7. Non-conforming items can either be scrapped or repaired on the same processing

workstation. At each inspection station there is a specific probability of selecting non-

conforming items for rework.

 8. Inspection time for each inspection station can be represented by the inspected cost.

9. Two types of inspection errors are considered in the system: probability that the k-th

inspection operation classifies a conforming unit (CU) erroneously as a non-conforming

unit (NCU) (m); and probability that the k-th inspection station classifies an NCU as a

CU erroneously (m).

Figure 3.3: A serial multistage manufacturing processes

WS IS Workstation Possible inspection station

Stage i+1 Stage 1

Conformed

Input

Rework

Scrap

 Non-conformed

IS1 WS 1 WSi+1 IS i+1

Stage i

WS i IS i

Scrap

Rework

 Non-conformed

Rework

 Non-conformed

Scrap

Stage n

Output

WS n IS n

Rework

 Non-conformed

 Scrap

51

The significance of the contribution in this chapter is that the general cost model is developed

to be very different from those in the literature review. The main differences are:

1. Previous cost models were used full inspection if an inspection station is located after a

workstation. The GCM uses sampling inspection plan to perform inspection. This leads to

the development of total inspection cost and number of parts for reworking models which

are very different from those in the previous literature.

2. Previous cost models were represented external failure cost items as aggregate or only

include one of them. The GCM considers all items of external failure cost. This leads to

the development of external failure cost model which is very different from those in the

previous literature.

3. Previous cost models used the total cost per input unit and the total cost per output unit as

the objective function. The GCM is developed such that the number of conforming parts

can be computed at each processing workstation and the optimality is defined in terms of

minimising cost per item accepted by the customer. This optimality is very different from

those cost models in the previous literature.

4. Simplified assumptions which were introduced in those cost models in the literature review

have led to the lack of generality. However, the GCM is developed to include all

characteristics of the AOIS problem which is very different from those in the previous

literature and to maintain the generality.

3.3.1 Inspection stations

For the multistage manufacturing system being considered, the model is developed based on

assumption that there is a limited number of inspection stations available (e.g. limited budget)

and an inspection policy at each workstation can be described as given by equation (3.1).

52










otherwise0

nworkstatioleavingpartsinspectto

assiginedisstationinspectionanif1

k

m

Vkm (3.1)

3.3.2 Workflow analysis

Consider the number of conforming parts departure a workstation or inspection location, and

the number of defective parts entering the following processing workstation or inspection

station. These flow constraints can be classified into three classes: good parts; defective parts;

and reworked parts. The number of good parts produced at processing workstation k, is equal

to the number of parts flowing out of the immediately preceding inspection station, or,

processing workstation (k-1). Equation (3.2) represents the first workstation.

)1(11 ZBNG  (3.2)

For all other stations the equation is defined recursively by equation (3.3).

   
m m

kkmkkkkkkkmk NGVZRNDNGVNG 111111)1()1]()1([(3.3)

The number of defective parts produced at first workstation is given by equation (3.4).

11 ZBND  (3.4)

For all other stations, is given recursively by equation (3.5).

111111)1(])1([   k
m

kmkkkkkk
m

kmk NDVZRNDNGVND (3.5)

The number of reworking parts is computed as follows: (i) if Vkm=1 and the number of bad

items (bk) in the sample at workstation k is greater than the acceptance number (ak) (in this

case, the sample size is rejected and a full inspection of the rejected batch is performed

consecutively in the same workstation); (ii) if Vkm=0 or number of bad items in the sample

(bk) is less than or equal ak, in this case the number of reworking parts is zero. The number of

parts as non-conforming but repairable is given by equation (3.6).

53

















kkkm

kkkmkmkmk
m

km

k

abV

abVNDNGV

R

or 0if0

and1if)]1([

(3.6)

It should be noted that the abbreviations used in the developed cost model (e.g. m , m) are

commonly used by many studies in the literature review (Lee and Unnikrishnan, 1998, Rau

and Chu, 2005, Shiau, 2007).

3.3.3 General cost model analysis

Manufacturing cost: the manufacturing cost of the part in workstation k is a product of the

manufacturing cost per part (Uk) at workstation k multiplied by the number of parts processed

at a particular workstation. This cost is assumed to be a sum of the material cost, overhead

cost, and setup cost. The number of parts processed at workstation k is the sum of the number

of parts correctly classified as conformed parts following into process workstation k from the

previous process workstation and the number of non-conformed parts incorrectly classified as

conformed parts following into workstation k from the previous process workstation. The

number of conformed parts (CPk) is given by equation (3.7).

)()1()]1([1111    kk
m

kmkk
m

kmk NDNGVNGVCP (3.7)

The number of non-conformed units erroneously considered as conformed units following

into workstation k from the previous workstation is NDk-1 multiplied by the probability that

the inspection station after workstation k -1 incorrectly classifies a non-conforming unit as a

conforming unit. Hence, the number of non-conformed parts (NCPk) is given by equation

(3.8).

][11    kk
m

kmk NDVNCP (3.8)

Hence, the total manufacturing cost (TMCk) is defined by equation (3.9).

 kkkk UNCPCPTMC ][

(3.9)

54

In the case where no inspection station is allocated 0kmV , then the total manufacturing cost

is computed by equation (3.10).

 kkkk UNDNGTMC  ][11
(3.10)

Inspection cost: inspection cost is a sum of the fixed cost and the variable cost. The fixed

cost (FCm) is a sum of the costs connected with test-equipment installation and setup. The

variable cost is computed as follows: (i) if Vkm=1 and the number of bad items (bk) in the

sample at workstation k is greater than the acceptance number (ak) (in this case, a full

inspection of the rejected batch is performed consecutively in the same stage), the variable

cost is the total number of conforming parts and the number of defective parts produced at

inspection station multiplied by the unit inspection cost. (ii) In case of Vkm=1 and number of

bad items (bk) in the sample at workstation k is less than or equal ak, then the variable cost is

computed as the number of items in the sample size multiplied by the unit inspection cost. In

case of Vkm=0, no inspection is performed, the inspection cost is zero. The total inspection

cost (TICm) is given by equation (3.11).





















 



0if0

 and1if)()]([

and1if))](([

km

m
kkkmkmmkm

kkkmm
m

kmkkm

m

V

abVVICsFC

abVICVNDNGFC

TIC (3.11)

Internal failure cost: the internal failure cost is the sum of reworking cost and scrap cost. At

each inspection station the non-conforming parts can be scrapped, repaired or incorrectly

classified as conformed parts. The number of parts as non-conforming but repairable was

given by equation (3.6).

The rework cost is given by equation (3.12).

kkk gRRC  (3.12)

55

In the model under consideration the allocation of an inspection station means an inspection

screen with all the parts being subjected to inspection. Absence of an inspection station is

indicated by setting 0kmV .This expression represents the number of non-repairable items

produced at workstation k on detection subsequent m inspection station multiplied by the unit

scraping cost at workstation k, in case of an inspection station is assigned 1kmV , otherwise

SCk =0. The scrap cost is given by is given by equation (3.13).

 kmkmk
m

kmk uNDNGVSC )]1([(3.13)

and the internal failure cost is given by equation (3.14).

 kkk RCSCIFC  (3.14)

External failure cost: this is the cost incurred after the products have been sold to customers.

Examples include the cost of replacement and repair. External failure cost (EFC), is the sum

of the product of the number of defective parts replaced at the customer‟s end (W× NDk), the

sale price (P) of the part and the sum of the product of the number of defective parts repaired

at the customer‟s end (1- W) and the direct cost of materials to repair a defective unit (Y).

Therefore, external failure cost is given by equation (3.15).

)1(])1([
m

kmkkk VYNDWPNDWEFC (3.15)

Total cost: The total cost (TC) of processing and inspection of B parts in an n-stage

manufacturing system is given by equation (3.16).

 Minimise
Mm

 


n

k
kmkk EFCTICMCIFCTC

1

)((3.16)

A customer totally sophisticated in quality determination is hypothesised, that is, one who

can determine the quality of an item with 100% accuracy. Consequently, in this research, the

optimality is defined in terms of minimising cost per item accepted by the customer. The

general cost model is developed such that the number of conforming parts can be computed

56

at each processing workstation. Therefore, the cost for each conforming unit produced is

given by equation (3.17):

Cost per conforming unit= FNGTC / (3.17)

where:

)1(n
nF NGNG 

3.4 Relation between quality and cost

Companies can lose money because they fail to take opportunities to reduce their quality

costs. Understanding and improving quality is a key factor in business success, growth, and

an enhanced competitive position. Quality costing provides the financial information

required, to understand the cost effectiveness of different inspection locations. Rodchua

(2006) explains that quality costs have been studied by a number of organisations and it was

found that quality commonly costs between 5% and 25% of total sales turnover. The cost of

quality adds a significant proportion to the total cost of a part although they add little intrinsic

value. Optimisation of the inspection process aims to reduce any unnecessary and avoidable

costs, such as the cost of additional manufacturing operations on a defective part. It can also

identify quirks and anomalies in cost allocation.

The most generally accepted typology breaks down quality costs into prevention, appraisal,

internal failure, and external failure costs. This typology is often referred to as the PAF

(prevention, appraisal, and failure). Campanella (1990) defines these costs as follows:

 Prevention costs are „the costs of all activities specifically designed to prevent poor

quality in products and services‟.

 Appraisal costs are „the costs associated with measuring, evaluating, or auditing products

or services to assure conformance to quality standards and performance requirements‟.

57

 Internal failure costs are „the costs resulting from products or services not conforming to

requirements or customer/user needs (which) occur prior to delivery or shipment to the

customer‟.

 External failure costs are „the costs resulting from products or services not conforming to

requirements or customer/user needs (which) occur after delivery or shipment of the

product, and during or after furnishing of a service to the customer‟.

In real life, almost all manufacturing processing workstations in multistage manufacturing

systems are unable to deliver products with perfect quality. Hence, introducing quality

assurance by planning and managing resources, devoted to the inspection and the testing of

the critical quality of product features, is a very important issue. Human inspectors,

automated inspection, or a combination of both are often used for quality-assurance purposes.

These inspection operations may be designed to detect non-conforming items, introduced

only at the immediately preceding processing workstation. Otherwise, these inspection

stations may be involved in more diagnosis that traces an underlying anomaly that has existed

at some previous point, or at all of the preceding processing workstations. The purpose of the

inspection is to reduce the total manufacturing cost, resulting from the identification of

defective items processed unnecessarily during manufacturing operations. Wild (1989)

explains that it would be simply be too expensive to formally inspect items after every

process.

Therefore, where to locate inspection stations throughout the process is an important and

challenging decision in quality control; that is, striking a balance between minimising the

total cost by capturing defective items at the earliest point, and maintaining the required

quality of the product.

58

3.5 Computational time against number of workstations

In AOIS problems, it is clear that a process comprising n serial stages offers
n2 possible

inspection combinations. In serial multistage manufacturing processes, as the size of the

problem grows, so the number of inspection station allocation possibilities increases

exponentially. As a result, complete enumeration (CEM) of all combinations becomes

prohibitive. Rau et al. (2005) explained that complete enumeration suffers because of the

long computation time, especially as the number of workstations increases. Azadeh et al

(2012) arrived at the same result that complete enumeration of all combinations becomes

prohibitive as the number of stages increases. The CEM approach is based on the premise

that all the possible solution combinations are enumerated in the search space, and each one

is evaluated individually. The solution combination which has the best objective function

value is selected as the solution for implementation. Usually, the complete enumeration

method is used as a benchmark for evaluating other optimisation methods. This can only be

done when the full enumeration of the search space can be generated in a reasonable time. As

shown in Figure 3.4 that the processing time for solving the AOIS problem grows with an

increasing number of workstations. The experimental data was approximated using an

exponential regression model, and we showed a correlation r = 0.723 and coefficient of

determination r
2 =

 0.967; see equation (3.18):

)571.0(003.0Time WSe  (3.18)

where WS: workstation

This exponential regression equation is the model of the growth of computation time per

workstation. The exponential function is used to model the relationship between the number

of workstations and the computational time, where a constant change in the independent

variable (number of workstations) gives the same proportional change in the dependent

59

variable (time). Consider a serial multistage manufacturing process producing engine valves.

The engine valves are processed in 36 processing workstations using different machines to

carry out processes such as cutting, turning, pressing, welding, grinding, heat treatment and

plating (Engin, 2008). The firm produces valves that vary in price between $1 and $5,

depending on the type of engine.

Figure 3.4: Schematic showing the duration of computational time against

the number of workstations.

Using equation (3.18), the computation time for the engine valve process consisting of 36

workstations is expected to be 42,299 hours (59 months) on 2.2 GHz CPU and 4GB RAM.

With the 88 workstations for the turbine blades described in section 3.1, the time is increased

significantly to 3.322×10
17

hours (4.6139×10
14

months, about 10
13

 years). This is to be

compared to the heuristic algorithm which typically requires an average time about 2 minutes

to find a near to optimal solution for the engine valves problem and about 12 minutes for the

turbine blade problem on a comparable machine.

Therefore, from an economic aspect it is impractical that the engine valve or turbine blade

firms could wait for so long to allocate inspection places by using the CEM. This

impracticality of the CEM has led to the use of the heuristic algorithm that sacrifices the

0

100

200

300

400

500

600

700

800

900

0 5 10 15 20

P
ro

ce
ss

in
g
 t

im
e

(m
in

u
te

s)

Number of workstations

60

guarantee of finding an optimal solution in order to find a satisfactory solution in a

reasonable time. Clearly, the CEM can only be used in problems where the full enumeration

of the search space can be generated in a reasonable time. In an industry environment, waste

of time means waste of money. In financial terms, using a heuristic algorithm leads to saving

money by minimising the total cost of the product, so keeps the company in a good

competitive position.

3.6 Computational complexity

Many problems such as the AOIS are combinatorial optimisation problems. Combinatorial

optimisation problems involve finding values for discrete variables such that the optimal

solution with respect to a given objective function is found. A combinatorial optimisation

problem is either a maximisation or a minimisation problem which has associated with it a set

of problem instances. The term problem refers to the general question to be answered, which

usually has several parameters or variables with unspecified values. The term instance refers

to a problem with specified values for all the parameters (Ridge, 2007).

More formally, an instance of a combinatorial optimisation problem  is a triple (,, fS),

where S is the set of candidate solutions, f is the objective function which assigns an objective

function value f (s) to each candidate solution Ss , and  is a set of constraints (Dorigo and

Stützle, 2004). The solutions belonging to the set SS 
~

of candidate solutions that satisfy the

constraints  are called feasible solutions. The goal is to find a globally optimal feasible

solution *s . For minimisation problems this consists in finding a solution Ss
~

* with

minimum cost, that is, a solution such that)(*)(sfsf  for all Ss
~

 .

A simple approach to the solution of a combinatorial optimisation problem would be an

exhaustive search, that is, the enumeration of all possible solutions and the choice of the best

one. However, as described above, in most cases this approach rapidly becomes infeasible

61

because the number of possible solutions grows exponentially with the instance size n

(n=number of workstations). For some combinatorial optimisation problems, understanding

the problem structure, and the exploitation of problem-specific characteristics, allows the

definition of algorithms that find an optimal solution much more quickly than an exhaustive

search does.

When attacking a combinatorial optimisation problem it is useful to know how difficult it is

to find an optimal solution. A method of measuring this difficulty is given by the notion of

worst-case complexity. Worst-case complexity O (g (n)) can be explained as follows: a

combinatorial optimisation problem  is said to have worst-case complexity if the best

algorithm known for solving  finds an optimal solution to any instance of  having size n

in a computation time bounded from above by const g (n) (Dorigo and Stützle, 2004). In

particular,  is solvable in polynomial time if the maximum amount of computing time

necessary to solve any instance of size n of  is bounded from above by a polynomial in n.

If k is the largest exponent of such a polynomial, then the combinatorial optimisation problem

is said to be solvable in)(knO time.

An important theory that characterises the difficulty of combinatorial problems is that of NP-

completeness. This theory classifies combinatorial problems into two main classes: those that

are known to be solvable in polynomial time, and those that are not. Problems in the first

class are said to be tractable and problems in the latter intractable. The theory of NP-

completeness distinguishes between two classes of problems of particular interest: the class P

for which an algorithm exists that outputs in polynomial time the correct answer („„yes‟‟ or

„„no‟‟), and the class NP for which an algorithm exists that verifies for every instance,

independently of the way it was generated, in polynomial time whether the answer „„yes‟‟ is

correct (Dorigo and Stützle, 2004). Clearly, P is a subclass of NP. A problem is said to be

NP-hard if every other problem in NP can be transformed to it by a polynomial time

62

reduction. Intuitively, a polynomial time reduction is a procedure that transforms a problem

into another one by a polynomial time algorithm. Therefore, an NP-hard problem is at least as

hard as any of the other problems in NP. However, NP-hard problems do not necessarily

belong to NP. An NP-hard problem that is in NP is said to be NP-complete. Therefore, the

NP-complete problems are the hardest problems in NP: if a polynomial time algorithm can be

found for an NP-complete problem, then all problems in the NP-complete class can be solved

in polynomial time (Congram, 2000).

3.7 Conclusion

A novel general cost model for solving allocation of inspection stations in serial multistage

manufacturing processes was developed. The cost of AOIS problem involves many

characteristics, including inspection errors (type I and type II), internal failure cost (rework

and scrap), external failure cost (repair and replacement), inspection cost (fixed and variable)

and manufacturing cost. The developed general cost model considers all these characteristics

together. CEM is guaranteed to find the optimal solution, and prove its optimality for every

instance of a combinatorial optimisation problem. In AOIS problem as the size of the

problem grows, the number of inspection station allocation possibilities increases

exponentially. As a result, CEM of all combinations becomes impractical. This impracticality

of CEM has led to the use heuristic algorithm that sacrifices the guarantee of finding optimal

solutions for the sake of obtaining good solutions in polynomial-time. In terms of economic

aspect, using such heuristic algorithm leads to save money by minimising the computation

time. To solve AOIS problem, various metaheuristic methods will be studied and

investigated, to select the appropriate method for tackling the AOIS problem. This will be

described in the next chapter.

63

Chapter 4

Optimisation methods

characteristics and selection

__

It is well known that in serial multistage manufacturing processes, as the size of the problem

grows, so the number of inspection station allocation possibilities increases exponentially

(Valenzuela et al., 2004, Rau and Chu, 2005, Mandroli et al., 2006, Shiau, 2007). To identify

the appropriate approach to the AOIS problem, different optimisation methods were

investigated and studied. These optimisation methods can be classified as either exact or

metaheuristic methods. The optimisation methods will be studied in terms of their

characteristics. The aim is to select the appropriate method for tackling the AOIS problem.

The following sections give a description of combinatorial optimisation problems and the

optimisation methods followed by discussions of their characteristics.

4.1 Combinatorial optimisation problems

Combinatorial optimisation problems involve finding values for discrete variables such that

the optimal solution with respect to a given objective function is found. Many optimisation

problems of practical and theoretical importance are of combinatorial nature. Combinatorial

optimisation problem is either a maximisation problem or a minimisation problem with an

associated set of instances. Examples are Travelling Salesperson Problem (TSP), the

Quadratic Assignment Problem (QAP) and the Job Shop Scheduling Problem (JSP) (Ridge,

2007). Combinatorial optimisation problems are very hard to solve, which means that very

often these problems are classified in the Non-Deterministic Polynomial (NP) class. NP

problems are those problems that can only be verified but not be solved in deterministic

polynomial time (McCallum, 2005). Within this set there are two related sets, NP-Complete

64

and NP-Hard. NP-Hard problems are those problems for which all decision problems in NP

can be reduced to by a polynomial reduction (McCallum, 2005). If a problem is in the class

NP and is NP-Hard then it is called NP Complete.

4.2 Exact methods

The concept of exact methods is based simply on enumerating the full solution space. Some

of the most popular exact methods are the Complete Enumeration Method (CEM), Integer

Programming (IP), Linear Programming (LP), Non-linear Programming (NLP), Branch and

Bound (B&B) and Dynamic Programming (DP). Exact algorithms are guaranteed to find the

optimal solution, and prove its optimality for every instance of a combinatorial optimisation

problem. However, owing to the inherent complexity of combinatorial optimisation

problems, many of them are NP-hard, exact methods that need an exponential run-time in the

worst case.

As described in the literature review that complex problems such as the AOIS problem may

require exponential time in the worst case. Liang and Smith (2004), Ridge (2007), Volsem

and Neirynck (2009) and Azadeh et al (2012) described that using exact methods is infeasible

as a result of the exponential size of the solution space with increasing problem complexity.

Therefore, one has to resort to using different algorithms and, typically, to sacrifice the

guarantee of finding optimal solutions for the sake of obtaining good solutions in polynomial-

time. The exact methods are excluded in this chapter and described in Appendix A.

4.3 Metaheuristic methods

A metaheuristic is formally defined as: „an iterative generation process, which guides a

subordinate heuristic by combining intelligently different concepts for exploring and

exploiting the search space, learning strategies are used to structure information in order to

find efficiently near-optimal solutions‟ (Osman and Laporte, 1996).

65

Meatheuristics are a more recent attempt to combine basic heuristics into a flexible higher-

level framework, in order to better solve complex problems (Ridge, 2007). Some of the most

popular metaheuristics for combinatorial optimisation are Simulated Annealing (SA), Tabu

Search (TS), Genetic Algorithm (GA), Particle Swarm Optimisation (PSO), Evolution

Strategy (ES), Estimation of Distribution Algorithms (EDAs), Differential Evaluation (DE),

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) and Ant Colony Optimisation

(ACO). Many of these metaheuristics have achieved notable successes in solving difficult

problems.

4.3.1 Simulated annealing

Simulated annealing is a stochastic search method, emulative of the physical annealing

process, where an alloy is cooled gradually so that a minimal energy state is achieved.

Kirkpatrick et al. (1983) were the first to propose and demonstrate the application of

simulated annealing techniques for combinatorial optimisation problems. SA attempts to

solve combinatorial optimisation problems by a process analogous to physical annealing. The

analogy associates the set of solutions to the problem with the states of the physical system;

the objective function corresponds to the physical energy of the solid, and the ground state

corresponds to a globally optimal solution.

While applying SA, a tentative solution s is generated in each step, which is accepted if the

objective function is improved. If the tentative solution s is worse than the current solution,

then it is accepted based on probability, which depends on the objective function difference

of the current solution s , new solution s and parameter T, called temperature (Stützle,

1998b). This parameter T is lowered (as is also done in the physical annealing process) during

the run of the algorithm, reducing the probability of accepting worsening moves. The

probability paccept to accept worse solutions is often defined according to the Metropolis

distribution, as shown in equation (4.1).

66







 


 otherwise/))()((

)()(if1

),,(
Tsfsf

accept

e

sfsf

ssTp (4.1)

One of the key properties of the algorithm is that, the method sometimes accepts worse

solutions than its current best. This gives it a greater probability of getting itself out of local

optima (McCallum, 2005). The probability of such a move gradually decreases during the

search, until a point is reached whereby only moves that result in high quality solutions are

accepted. Because of this, the SA technique has been widely applied for a variety of complex

problems. However, El Gamal et al. (1987) and Ram et al. (1996) pointed out that a major

disadvantage of the technique, is the need for a great deal of computer time for many runs

and also determining the „cooling schedule‟ is difficult; for example, what is a sufficient

amount of iterations at each temperature? In addition, determining the initial temperature is

also difficult. Starting too high will waste computation time, while starting too low will

decrease the quality of the search.

4.3.2 Tabu search

Tabu search is an iterative procedure for solving discrete combinatorial optimisation

problems. It was first suggested by Glover (1977), has become very popular and been applied

to many difficult combinatorial optimisation problems, in a number of different areas.

Thiesen (1998) stated that the TS approach has four main elements:

 a local search strategy.

 a mechanism to discourage a return to a recently visited solution, the „Tabu list‟.

 a „Tabu tenure‟ policy, used to determine how long a solution will remain in the Tabu list.

 a mechanism to alter the search path when no improvement has been made for some time.

The local search is, usually, a simple, greedy strategy, which finds an improved solution in

the immediate neighbourhood of a current solution. Tabu search is equipped with a special

67

mechanism to avoid being trapped in local optima. It uses a short-term memory to escape

from local optima. To prevent the local search returning immediately to a previously visited

solution and to avoid cycling, in TS moves to recently visited solutions are forbidden

(Glover, 1986). In TS recently visited solutions are added to the Tabu list, and if a solution

found by the local search already exists in the Tabu list it is forbidden, and an alternative,

non-Tabu, solution will be used. To ensure the search does not quickly exclude all

neighbours, solutions are only held in the Tabu list for some period of time. This policy is

usually called Tabu tenure. The mechanism used to adjust the search path differs from

problem to problem, but a common approach is simply to choose a random solution in the

neighbourhood of the current solution. Consequently, Tabu search sometimes allows non-

improving solutions to be used for the sake of avoiding local optima.

The Tabu search algorithm, like most of the computational intelligence methods, provides a

simple method for solving complex problems. However, the method requires advanced

parameter tuning, particularly for Tabu list size (tl) and Tabu tenure. Good parameter setting

can only be found empirically and requires considerable fine-tuning (Stützle, 1998b).

4.3.3 Genetic algorithm

A genetic algorithm is a metaheuristic strategy inspired by Darwin‟s principle of natural

selection. GA employs random choice to guide a highly exploitative search, striking a

balance between the exploration of the feasible domain and the exploitation of good

solutions. Genetic algorithms are a specific type of evolutionary algorithms, which are

population-based, adaptive search algorithms designed to tackle optimisation problems. They

are inspired by models of the natural evolution of species, and use the principle of natural

selection for further evolution. Each individual in an evolutionary algorithm represents a

solution with an associated fitness value.

68

The three key functions used in GA are selection, mutation, and recombination. Selection

prefers fitter individuals to be chosen for the next generation, and for the application of the

mutation and recombination operator. Mutation is a unary operator, aimed at introducing

random modifications to an individual. Recombination combines the genetic material of two

selected individuals, also called „parents‟, by means of a crossover operator to generate new

individuals, called „offspring‟. The crossover operator is usually understood as the main

operator driving the search in genetic algorithms. The idea of crossover is to exchange useful

information between two individuals and, in this way, to generate hopefully better offspring

(Langner et al., 2002).

Elitism may be incorporated as a feature where the fittest member of the current generation

survives into the next generation. Elitism strategy preserves the best individuals in one

generation and translates them to the next generation without any change (Weise, 2009).

Kumar and Rockett (2002) described that in a single-objective optimisation, elitism may have

the disadvantage of premature convergence, but in the case of multi-objective optimisation

the elitism improves the performance. Mutation is understood as a background operator,

which introduces small, random modifications to an individual. To keep the population at a

constant size the selection operator is used, choosing individuals with preferably higher

fitness (survival of the fittest). Finally, the complete cycle of recombination, mutation and

selection is called „generation‟.

Genetic algorithms model the natural processes of the inheritance of coded knowledge and

survival, by fitness or degree of adaptation to the environment. New application of GA

requires only a coding of the problem to this artificial space. However, the quality of such

coding is crucial to the genetic algorithms performance. Operating in this space means using

problem blind operators that often ignore some important information that could be utilised to

guide the search (Janikow, 1993). In addition, determining the size of the population in GA is

69

a crucial factor. Choosing too small a population size increases the risk of converging

prematurely to local minima, since the population does not have enough genetic material to

cover the problem space sufficiently. On the other hand, a larger population has a greater

chance of finding the global optimum at the expense of more CPU time (Viswanadham et al.,

1996).

4.3.4 Evolution strategy

Evolution strategies (ES) were introduced by Rechenberg (1964) and Schwefel (1965). The

first version of the algorithm was a so-called (1+1)-ES, in which one parent created one

offspring by mutation. The offspring replaced the parent if it had a better fitness. After that,

ES has been extended by many studies with a population of parents creating  offspring

using both mutation and recombination. The main difference between ES and the

generational EAs is the selection procedure. Evolution strategies use deterministic selection

whereas selection in generational EAs is probabilistic. Two main selection strategies exist in

ES; the)( -ES and the (,)-ES. In)( -ES, the  parents create  offspring. The

next population is then formed by deterministically selecting the best individuals among the

available  individuals. The number of offspring  is usually less than the total

population size, which gives an algorithm with overlapping populations (Dianati et al. 2002).

For this reason,)( -ES is sometimes referred to as a Steady-state EA (Ursem, 2003). The

other strategy, (,)-ES, also generates  individuals from the  parents. However, in

),( -ES the parent population is not included in the source population in the selection

procedure. The population in (,)-ES is therefore non-overlapping. Hence,  must be

larger than , because individuals are not cloned in ES. Most ES algorithms use self-

adaptation to adjust the search process to the problem (Ursem, 2003). The idea in self-

adaptation is to encode algorithmic parameters in the genome and use these parameters to

70

modify the individual. The hypothesis is that good solutions carry good parameters; hence,

evolution discovers good parameters while solving the problem.

4.3.5 Estimation of distribution algorithms

Estimation of distribution algorithms (EDAs) are also known as probabilistic model-building

genetic algorithms (PMBGA) or iterated density estimation evolutionary algorithms (IDEA)

(Shan al., 2006). EDAs explicitly encode the knowledge accumulated in the course of the

search into well-structured models, typically probabilistic models, and thus it becomes

possible explicitly to exploit that knowledge to improve the efficiency of the search

adaptively. More specifically, these models are inductively learnt from good individuals

(training examples), and are sampled to create the new individuals of the next generation. A

population is not usually maintained between generations, and genetic operators are omitted

from EDAs, either partially or completely. Teytaud (2011) stated that the principle of the

EDA is to use a probability distribution to represent the potential solutions. Teytaud

described how the EDA iteratively estimates the parameters of the distribution by:

 Sampling the domain with the current parameterised distribution.

 Evaluating the sampled points.

 Selecting the best points.

 Rebuilding the probability distribution described by these points.

EDAs are designed to capture the interactions among genes, which represent the internal

structure of problem solutions, and in this way they estimate the distribution of good

solutions directly, rather than by employing genetic operators.

In practice, EDAs are often combined with other heuristics such as local search, guided local

search and genetic algorithms to solve hard optimisation problems (see, for example, Zhang

et. al. (2003a, b, 2004)). Hauschild and Pelikan (2011) stated that building explicit

71

probabilistic models is often more time-consuming than using implicit models defined with

simple search operators, such as tournament selection and two-point crossover. That is why it

may sometimes be advantageous to use implicit models from conventional evolutionary

algorithms instead of explicit models from EDAs.

4.3.6 Differential evaluation

Differential evolution (DE) is one of the recent population-based stochastic evolutionary

optimisation techniques. Storn and Price (1995) first proposed DE as a heuristic method for

minimising non-linear and non-differentiable continuous space functions. Differential

evolution is a population-based search algorithm, which is an improved version of the genetic

algorithm. The main reason why better solutions are constructed is that genetic algorithms

rely on crossover while DE relies on mutation operation. This main operation is based on the

differences of randomly sampled pairs of solutions in the population (Karaboga and Okdem,

2004). In DE, all solutions have the same chance of being selected as parents without

reference to their fitness value. The DE algorithm also uses a non-uniform crossover that can

take child vector parameters from one parent more often than it does from others. By using

the components of the existing population members to construct trial vectors, the

recombination (crossover) operator efficiently shuffles information about successful

combinations, enabling there to be a search for a better solution space.

Like other evolutionary algorithms, the first generation is initialised randomly, and further

generations evolve through the application of a certain evolutionary operator until a stopping

criterion is reached. The optimisation process in DE is carried out with four basic operations,

namely initialisation, mutation, crossover and selection (Vanitha and Thanushkodi, 2011).

4.3.7 Covariance matrix adaptation evolution strategy

The covariance matrix adaptation evolution strategy (CMA-ES) adapts a variance covariance

mutation matrix used by multivariate normal distributions from which mutations are drawn

72

(Hansen and Ostermeier, 2001, Hansen et al., 2003). This enables the algorithm to generate

correlated mutations, speeding up evolution significantly for many real-world fitness

landscapes. Self-adaptation of this mutation matrix is then achieved by integrating

information on successful mutations on its recent evolution path, by making similar

mutations more likely. Compared to many other evolutionary algorithms, an important

property of the CMA-ES is its invariance against linear transformations of the search space.

In practice the linear transformation is learned by the CMA algorithm. This is a powerful

optimisation procedure and performs especially well in rugged search-landscapes with

discontinuities, noise and local optima. The CMA-ES efficiently minimises unimodal

objective functions and is, in particular, superior for ill-conditioned and non-separable

problems (Auger and Hansen, 2005). Hansen and Kern (2004) showed that increasing the

population size improves the performance of the CMA-ES on multimodal functions.

One of the problems with the CMA algorithm, however, is its adhoc and relatively complex

nature. Another problem pertains to its sensitivity to local optima (Wierstra et al., 2008). In

addition, Omidvar and Li (2011) stated that a disadvantage of the CMA-ES is its relatively

high time complexity. This is mainly due to the self-adaptation of the covariance matrix, and

Eigen-decomposition. It has been shown that the time complexity of calculating and updating

the covariance matrix is of order O (n
3
). This makes the CMA-ES more computationally

expensive than other EAs.

4.3.8 Particle swarm optimisation

The particle swarm optimisation (PSO) algorithm was first described by Kennedy and

Eberhart (1995). It is inspired by the social behaviours of bird flocking and fish schooling.

The PSO has recently been applied in many fields because of its simple structure with a small

number of parameters, which simplifies the coding of the algorithm. Scientists found that the

synchrony of flocking behaviour was achieved through maintaining optimal distances

73

between individual members and their neighbours. Thus, velocity plays an important role in

adjusting for the optimal distance. Furthermore, scientists simulated the scenario in which

birds search for food and observed their social behaviour.

Suppose a flock of birds is searching for food in a space where there is only one piece of food

available. Each particle‟s location in the multi-dimensional problem space is a feasible

solution to the problem, which is evaluated with a fitness function. A particle in the swarm

flies through the space near to its own best flying experience and the flock‟s flying

experience (Azadeh et al., 2012). In other words, the strategy of the bird for finding the food

is to change its velocity to fly near the best place that it has already experienced. PSO

actually uses both aspects of cooperation and competition among the individuals in the

population, which means that it combines a local and a global search to reach the global

optima. The distance of the particles to the food is measured by the pre-determined fitness

function in all iterations. The particles in a local neighbourhood share their information about

their „„best‟‟ positions, and then use the information to adapt their own velocities, and thus

update their positions.

In fact, each particle in this swarm has two kinds of intelligence, namely self-intelligence and

social-intelligence (Azadeh et al., 2012). The PSO algorithm is similar to other evolutionary

algorithms. In PSO, the population is the number of particles in a problem space. Each

particle will have a fitness value, which will be evaluated by a fitness function to be

optimised in each generation. Each particle knows its best position and the best position so

far among the entire group of particles. The local best (lbest) of a particle is the best result

(fitness value) so far reached by the particle, whereas the global best (gbest) is the best result

in terms of fitness over the entire population. The particle will have velocity, which directs

the flying of the particle. In each generation the position and the velocity of the particles will

be updated as given by equations (4.2) and (4.3):

74

11   k
i

k
i

k
i vxx (4.2)

)()(2211
1 k

ii
k
ii

k
ik

k
i xgbestrandcxlbestrandcvv  (4.3)

The PSO has gained increasing popularity among researchers and practitioners as a robust

and efficient technique for solving difficult population-based stochastic optimisation

problems. It has been applied successfully to flow-shop scheduling problems (Liao et al.,

2007), multiple-level warehouse layout design problems (Önüt et al., 2008) and optimum

controller design for automatic voltage regulator (AVR) power systems (Aghababa et al.,

2010). PSO is a modern evolutionary algorithm comparable with the genetic algorithm (GA).

It is similar to the GA in some aspects, since it starts with a randomly generated population

(solution), has a fitness function to evaluate the solutions, and uses random techniques to

update the population in all iterations. However in the PSO, unlike the GA, updating the

particles depends on their memory and so does not have special operators. It is also important

to note that: „„it has a more global searching ability at the beginning of the run and a local

search near the end of the run. Therefore, while solving problems with more local optima,

there are more possibilities for PSO to explore local optima at the end of the run‟‟ (Önüt et

al., 2008).

4.3.9 Ant colony optimisation

The ant colony optimisation (ACO) algorithm was first proposed in 1991 by Marco Dorigo,

in his PhD thesis, „Optimisation, Learning, and Natural Algorithms‟, and, since then has

become very popular after its further publication, for solving the travelling salesman problem

(TSP) (Dorigo et al., 1996). ACO algorithms are inspired by the foraging behaviour of real-

life ant colonies, in which individual ants drop a chemical substance called a pheromone on

the path, while moving from the nest to the food source and back. They communicate

information about the food source using pheromones along the ground. In the same way,

artificial ants use a memory mechanism to store some numeric information about the states

75

they visit, achieving the same indirect communication. When an ant finds a food source it

returns to the nest. Since ants on a short path will return to the nest more quickly, more

pheromones will be dropped on the shorter paths. As a result, paths that are more regularly

travelled become more attractive and, by means of that self-strengthening behaviour, will be

used more frequently. Owing to this interesting ant behaviour, it was observed that, after

some time, a colony of ants would select the shortest path from the nest to the food source

(Dorigo et al., 1996). The ant colony optimisation algorithm is based on ant foraging

behaviour, as explained above.

Ant Colony Optimisation is a relatively recently developed technique for solving NP- hard

optimisation problems (Dorigo and Stützle, 2004). ACO has the advantage of using an

adaptive memory, which involves keeping track of recent decisions made and solutions

found, or generating synthetic parameters to describe the search. More specifically, it is based

on the foraging activity of ants, and can be viewed as both a successful application of swarm

intelligence and a metaheuristic.

4.3.10 Conclusion

In summary, owing to the practical importance of optimisation problems, many algorithms

have been devised for their solution. These are classified as either exact or metaheuristic

algorithms. In general, one is interested in solving the AOIS problem as efficiently as

possible, where „efficient‟ usually means as fast as possible. In fact, as a result of the high

complexity and difficulty of optimisation problems, often exact approaches (that guarantee to

find the optimal solution) are only feasible for small size problems, and can require a lot of

computational effort. In contrast, different approaches based on metaheuristics are described,

which are capable of finding, good and sometimes optimal, solutions to complex problems, in

a generally shorter computation time (Bianchi, 2006). In addition, metaheuristics are

designed to be general purpose algorithms that can be applied without major modifications to

76

many problems. The characteristics for exact and metaheuristic optimisation methods will be

discussed in the next sections. The aim is to find the suitable approach to solve the AOIS

problem.

4.4 Classification of metaheuristics

Metaheuristics are typically high-level strategies which guide an underlying, more problem

specific heuristic, to increase their performance. Many of the metaheuristic approaches rely

on probabilistic decisions made during the search. But, the main difference to pure random

search is that in metaheuristic algorithms randomness is not used blindly but in an intelligent

and biased form (Birattari et al., 2001). There are different ways to classify and describe

metaheuristic algorithms. The most common way of classifying metaheuristics used by

Birattari et al. (2001), Blum and Roli (2003), Mills et al. (2003), Ridge (2007) and (Rajab ,

2012) are summarised as follows:

 Memory usage versus memory-less methods. One of the possible characteristic of

metaheuristics is the use of the adaptive memory to influence the future search direction.

Memory is explicitly used in tabu search. Short term memory is used to forbid revisiting

recently found solutions and to avoid cycling, while long term memory is used for

diversification and intensification features. Metaheuristics without adaptive memory

determine their next action solely on the current state of their search process. This means that

they do not have the ability to memorise traces that they used a few cycles before (Ridge,

2007, Mills et al 2003). In ant colony optimisation an indirect kind of adaptive memory of

previously visited solutions is kept via the pheromone trail matrix which is used to influence

the construction of new solutions. Also, the population of the genetic algorithm could be

interpreted as a kind of memory of the recent search experience. On the contrary, simulated

annealing does not use memory functions to influence the future search direction and

therefore is memory-less algorithm.

77

 Population-based versus single-point search. Some (metaheuristic) methods use a

single-point search to create a solution, while other methods use a population. If the

algorithm is working in a population solution, it is a population based algorithm. Otherwise,

it is single point search algorithm, where sometimes it is called a trajectory algorithm like

Tabu search (Blum and Roli 2003, Rajab, 2012).The advantage of using a population is to

increase the exploration of the search space. However, the performance of the method

depends strongly on the procedure of the population manipulated. Population-based methods

evolve a set of points in the search space. In the single-point search, only one single solution

is manipulated at each iteration of the algorithm. Tabu search and simulated annealing are

such single-point search methods. On the contrary, in ACO algorithms, PSO, and GA, a

population of ants, particles or individuals, respectively are used.

 Dynamic versus static objective function. Metaheuristics can also be classified

according to the way they make use of the objective function. Dynamic metaheuristics

modify the fitness landscape, as defined by the objective function, during search to escape

from local minima (Birattari et al., 2001). Tabu search may be interpreted as using a dynamic

objective function, as some points in the search space are forbidden, corresponding to

infinitely high objective function values. Yet, all the other algorithms introduced so far use a

static objective function.

 One versus various neighbourhood structures. Most local search algorithms are based

on one single neighbourhood structure which defines the type of allowed moves. In other

words, the fitness landscape topology does not change in the course of the algorithm. This is

the case for simulated annealing and tabu search. Some metaheuristics allow swapping

between different fitness landscapes to help diversify search. Others operate on one

neighbourhood only. The mutation operator in genetic algorithms may also be interpreted as a

change in the neighbourhood during the local search. Applications of the crossover operator

78

have been interpreted as moves in hyper-neighbourhoods (Birattari et al., 200, Rajab, 2012),

in which a cluster of solutions in genetic algorithms these clusters are of size two is used to

generate new solutions. On the other side, the solution construction process in ant colony

optimisation is not based on a specific neighbourhood structure. Nevertheless, one could

interpret the construction process used in ACO as a kind of local search, but this

interpretation does not reflect the basic algorithmic idea of these approaches.

 Nature-inspired versus non nature-inspired. A minor point for the classification of

metaheuristics is to take into account their original source of inspiration. The algorithmic

approaches try to take advantage of these phenomena for the efficient solution of

combinatorial optimisation problems (Ridge, 2007). There are nature-inspired algorithms,

like genetic algorithms, simulated annealing, particle swarm and ant algorithms, and non

nature inspired ones such as tabu search. This dimension is of little use as most modern

metaheuristics are hybrids that fit in both classes.

Table 4.1 presents the characteristics of the studied optimisation methods. The following

notations are used: () means that the characteristic is present, () that this characteristic is

partially present, and () that the characteristic does not appear. It should be noted that may

not all implementations of these algorithms correspond to this classification, but it rather

gives an indication of the particular characteristics of these methods in their “standard” use.

Metaheuristic methods guarantee of finding optimal solutions is sacrificed for the sake of

getting good solutions in a significantly reduced amount of time. Providing a balance

between the exploitation and the exploration of a given optimisation problem is the most

important characteristic for any metaheuristic technique. The exploitation is the accumulated

search experience. The exploration is to identify regions of the search space, with high

quality solutions in a problem. The core difference between the metaheuristics concerns the

particular way in which they try to reach this balance (Birattari et al., 2001). For example,

79

PSO algorithms combine the local search methods (via self experience) with the global

search method (via neighbouring experience), attempting to balance exploration and

exploitation (Cruz et al., 2004). In ACO the searching behaviour of ant algorithms can be

characterised by two main features, exploration and exploitation. Exploration is the ability of

the algorithm to broadly search through the solution space, whereas exploitation is the ability

of the algorithm to search thoroughly in the local neighbourhood, where good solutions have

previously been found. Higher exploitation is reflected in rapid convergence of the algorithm

to a suboptimal solution, whereas higher exploration results in better solutions at higher

computational cost due to the slow convergence of the method (Moeini and Afshar, 2009).

Every metaheuristic approach should be designed with the aim of effectively and efficiently

exploring a search space. The search performed by a metaheuristic approach should be

intelligent enough to both intensively explore areas of the search space with high quality

solutions, and to move to unexplored areas of the search space when necessary.

The concepts for reaching these goals are nowadays called intensification and diversification

(Blum and Roli, 2003). The main difference between intensification and diversification is that

during an intensification stage the search focuses on examining neighbours of elite solutions.

The diversification stage on the other hand encourages the search process to examine

unvisited regions and to generate solutions that differ in various significant ways from those

seen before. In ACO algorithms, diversification is achieved through the application of

pheromone re-initialisation. Intensification is achieved by letting the restart-best solution or

some ant of the elitist list deposit pheromone. In TS algorithm intensification strategies are

based on modifying choice rules to encourage move combinations and solution features

historically found good. They may also initiate a return to attractive regions to search them

more thoroughly.

80

 Table 4.1: Characteristics of meatheuristic methods

Methods

Characteristics

Memory

usage

Population Dynamic

f(x)

Multiple

neighbourhoods

Nature-inspired

Simulated annealing

Tabu search

Genetic algorithm

Particle swarm

Evolution strategy

Evolution of distribution algorithms

Differential evaluation

Covariance matrix adaption

evolution strategy

Ant colony

81

Since elite solutions must be recorded in order to examine their immediate neighbourhoods,

explicit memory is closely related to the implementation of intensification strategies.

It can be seen from Table 4.1, that some of these (metaheuristic) methods have additional

characteristics when compared to the other techniques. These characteristics are memory

usage and population, and may lead to enhancing the performance of the method. As a result,

a high quality solution can then be obtained. For example, Tabu search uses a short-term

memory to escape from local minima, whereas in ant colony methods, the ants keep in their

memory the partial solution built by leaving pheromones on the path they have traversed on

the construction graph. From one generation to the next, a global memory is updated that

guides the construction of solutions in the successive population. The best solutions found so

far by the ants are used for the memory update. In evolutionary methods, the population of a

genetic algorithm could be interpreted as a kind of memory of the recent search experience.

This characteristic (memory) will guide these methods to identify regions of the search space

with high quality solutions. In PSO, the particles of the swarm fly through hyperspace and

have two essential reasoning capabilities: their memory of their own best position local best

(lbest) and knowledge of the global or their neighbourhood‟s best global best (gbest). In

CMA-ES, selection and recombination are the leading operations.

Some meatheuristic methods are considered as trajectory methods and others are defined as

discontinuous walk methods. The difference between them is the use of a population of

search points, or the use of one single search point. In the latter, only one single solution is

manipulated at each iteration of the algorithm. For example, Tabu search and simulated

annealing are single-point search methods; in every cycle, one single solution is created. On

the other hand, a population of ants is used for ant colony algorithms, particles are used in

PSO and individuals are used in genetic algorithms. However, the performance of a particular

method depends strongly on the way the population is manipulated (Birattari et al. 2001).

82

In terms of representation of the problem ant algorithms have the advantage of being easier to

set to problems where there exists an explicit graph representation (McCallum, 2005). In

ACO algorithms artificial ants are a stochastic constructive procedure that incrementally

builds a solution by adding opportunely defined solution components to a partial solution

under construction. Therefore, the ACO metaheuristic can be applied to any combinatorial

optimisation problem for which a constructive heuristic can be defined (Dorigo and Stützle,

2004). In addition, Selvi and Umarani (2010) stated that the main advantage of the ACO is

the Positive Feedback accounts for rapid discovery of good solutions. Also, it can be used in

dynamic applications. On the other hand, the same authors stated that the PSO method easily

suffers from the partial optimism, which causes the less exact at the regulation of its speed

and the direction.

4.5 Conclusion

It can be seen from Table 4.1, that the characteristics of the optimisation methods were

classified and described. Ant colony optimisation and particle swarm are the two methods

which have the most desirable characteristics of all the methods. To select one of the two

methods it should be tested that whether it is suitable or not for the AOIS problem. Therefore,

it is important to understand the difficulty of the problem using fitness landscape. It should be

noted that to date none of the surveyed studies in chapter 2 investigated fitness landscape for

the AOIS problem. Understanding the geometry of the landscape for the AOIS problem helps

for selecting the appropriate algorithm. The experimental results in section 5.5.2 show that

the ACO is well suited for the AOIS problem than the PSO algorithm. In ACO, the search

process can be used to identify promising regions of the search space, with high quality

solutions. This can be done by using the pheromone trails as an adaptive memory of solution

components, which have been part of the best local minima found so far. The ACO approach

was rather unexplored for the AOIS problem, at the time this research started. The ACO

83

algorithm will be joined to a local search method to improve the performance of the

algorithm. The biological inspiration of ant colony optimisation and how it is transferred into

the algorithms will be described in detail in the next chapter.

84

Chapter 5

Ant colony optimisation

This chapter introduces the biological inspiration of ant colony optimisation along with how

it is transferred into algorithms. This chapter also explains how biological ants find short

paths under controlled experimental conditions, and illustrates how the observation of this

behaviour has been translated into working optimisation algorithms. The general construction

of the ant system algorithm and its extensions also will be explained. The application of ant

colony optimisation (ACO) to solve a variety of combinatorial optimisation problems is

presented. The importance of heuristic information and the local search method for ACO is

described in this chapter.

5.1 The biological inspiration

The ant colony optimisation algorithm was first proposed in 1991 by Marco Dorigo with his

PhD thesis “Optimisation, Learning, and Natural Algorithms” and has since become very

popular after its publication for solving the well-known travelling sales-man problem (TSP)

(Dorigo et al., 1996). Many researchers have since developed ACO variants for tackling well-

known NP-hard problems, and have applied them to a range of different problems such as

telecommunication networks (Di Caro and Dorigo, 1998), quadratic assignment problems

(QAP) (Stützle and Dorigo, 1999), scheduling problems (Kumar et al., 2003), vehicle routing

problems (VRP) (Bell and McMullen, 2004), flexible manufacturing scheduling (Rossi and

Dini, 2007), graph colouring (Bui et al., 2008), assembly line balancing (Baykasoğlu and

Dereli, 2009) and layout planning (Ning et al., 2010). A more exhaustive list of the variety of

applications can be found in Blum (2005).

85

Ants can smell pheromones and they tend to choose, stochastically, paths marked by strong

pheromone concentrations. Ants release these chemical substances on the path while moving

from the nest to food sources and back. The pheromone trail-laying and following behaviour

of some ant species to find the shortest paths has been investigated in controlled experiments

by several researchers. These experiments employed in what have come to be known as the

single and double bridge experiments. The single bridge experiment was designed and run by

Deneubourg et al. (1990), which was cited as the origin of Dorigo‟s work. Goss et al. (1989)

used a double bridge experiment connecting a nest of ants of the Argentine ant species

(Iridomyrmex humilis) and a food source.

Figure 5.1(a) shows the experimental setup for the single bridge experiment. In the

experiment, the nest of a colony of ants and a food source are separated by a binary bridge in

which each branch has the same length. Ants are then free to move between the nest and the

food source. The percentage of ants which choose one or the other of the two branches is

observed over time. In the experiment, there is initially no pheromone on the two branches.

Therefore, the ants do not have a preference and they select the branches with the same

probability. Due to random fluctuations, a few more ants will select one branch over the

other. As ants release pheromones while walking, a greater number of ants on one branch

results in a larger amount of pheromone on that branch. This larger amount of pheromone in

turn encourages more ants to select that branch. Finally, the ants converge on one single path,

as shown in Figure 5.1(b) (Dorigo and Stützle, 2004).

The experiment above can be modified so that the branches of the bridge are of different

lengths (Goss et al., 1989). In this case, the first ants to arrive at the food source are those that

take the shortest branch. Consequently, when they start on the return leg, more pheromone is

present on the short branch than on the long branch, stimulating successive ants to choose the

short branch. In this case, the importance of initial random fluctuations is much reduced, and

86

the stochastic pheromone trail following the behaviour of the ants coupled to differential

branch length is the main mechanism at work.

Figure 5.2 shows the experimental setup and the results of an experiment with a double

bridge having branches of different lengths. In Figure 5.2 (a), the ants are shown as they start

exploring the double bridge. Figure 5.2 (b) shows the distribution of the ants further into the

experiment. Here, most of the ants have converged on the shortest path. Figure 5.2 (c) shows

the distribution of the percentage of ants that selected the shorter path.

0

10

20

30

40

50

60

70

80

90

100

0-20 20-40 40-60 60-80 80-100

%
 o

f
ex

p
er

im
en

ts

% of traffic on one of the branches(b)

Figure 5.1: Single bridge experiment (Deneubourg et al., 1990). In this case, the ants

use one branch or the other in approximately the same number of trials.

(a)

Nest Food

Upper branch

Lower branch

35 cm

87

When the two experiments are compared, the influence of initial random fluctuations in the

second experiment is much reduced. The results of the two experiments were used to

construct a probabilistic model of ant foraging behaviour which forms the core of the ant

colony optimisation metaheuristic. Interestingly, it was found that even when the long path is

twice as long as the short one, not all ants use the short path, but a small proportion may take

the longer one. This may be interpreted as a type of „„path exploration‟‟.

5.2 Ant colony optimisation metaheuristic

Ant colony optimisation is a metaheuristic in which a colony of artificial ants cooperates in

finding good solutions to difficult discrete optimisation problems. The term metaheuristic

was first coined by Glover in 1986 in the first publication of Tabu Search. The term refers to

0

25

50

75

100

0-20 20-40 40-60 60-80 80-100

%
 o

f
ex

p
er

im
en

ts

% of ants selecting the shorther path
(c)

Figure 5.2: Double bridge experiment (Goss et al., 1989); in all trials,

the vast majority of ants chose the short branch.

Food Nest Nest Food

(a)
(b)

88

„„a master strategy that guides and modifies other heuristics to produce solutions beyond

those that are normally generated in a quest for local optimality‟‟ (Glover and Laguna, 1997).

Cooperation is a key design component of ACO algorithms. The choice is to allocate the

computational resources to a set of relatively simple agents (artificial ants) that communicate

indirectly by stigmergy, that is, by indirect communication mediated by the environment.

ACO algorithms can be used to solve combinatorial optimisation problems.

5.2.1 Problem representation

Ant colony optimisation algorithms are based on a parameterised probabilistic model that is

used to model the pheromone trails. Artificial ants build their solutions incrementally by

performing random walks on a connected graph G=(C, L) where C is the set of nodes and L

is the set of connecting arcs, as shown in Figure 5.3. Each routing through the graph G

defines a unique vector of solution components. When a constrained version of the problem

is considered, the problem constraints are built into the ant‟s constructive procedure in such a

way that in every step of the construction process only feasible solution components can be

added to the current partial solution. The ants use pheromone values attached to the arcs

connecting the nodes of the construction graph to make stochastic decisions on how to

traverse it. The value of this probability parameter for the arc connecting any two nodes i and

j is denoted by 𝜏𝑖𝑗 .

Source

Destination

Figure 5.3: Ants construct solutions by building a path from

a source to a destination node (Dorigo and Stützle, 2004)

89

5.2.2 The metaheuristic

Many ACO algorithms follow a standard form and can be viewed as three procedures,

generally referred to as ConstructAntsSolutions, UpdatePheromones and DaemonActions

(Dorigo and Stützle, 2004). Depending on the application and the designer of an algorithm,

these procedures can be scheduled and synchronised in any number of ways. The ACO

framework is outlined in the following procedure:

Procedure Ant Colony Optimisation

 Initialise pheromone trails, calculate heuristic information

 WHILE termination conditions not met DO

ConstructAntsSolutions

UpdatePheromones

DaemonActions {optional}

 ENDWHILE

End Ant Colony Optimisation

ConstructAntsSolutions: An ant builds a solution incrementally by moving through the

nodes of the graph G as shown in Figure 5.3. Ants travel by applying a stochastic local

decision strategy that makes use of pheromone trails (ij) and heuristic information (ij) on

connections of the graph. While moving, the ant keeps in memory the partial solution it has

built in terms of the path it has traversed on the graph. Previously visited nodes are

considered off-limits in future construction steps. Subsequently, starting from the current

node, an ant moves to still unvisited nodes according to the probability distribution as shown

in equation (5.1) until a tour is completed.
















  




k
i

k
i

Nr irir

ijij
k
ij

Nj

Nj
t

t

tp k
i

if0

if
][)]([

][)]([

)((5.1)

90

Where k
iN is the neighbourhood of ant k when in node i. The pheromone trails and heuristic

information are weighted via two parameters,  and . They determine the relationship

between the heuristic information and the pheromone and are always positive. The

neighbourhood of node i contains all the nodes directly connected to node i in the graph

G=(C, L), except for the predecessor of node i. In this way, the ants avoid returning to the

same node they visited immediately before node i. An ant repeatedly hops from node to node

using this decision policy until it eventually reaches the destination node. Due to differences

among the ants‟ paths, ants travelling on shorter paths will reach their destinations faster.

In ACO algorithms, artificial ants are stochastic solution construction procedures, which are

biased by artificial pheromones and heuristic information. In fact, in the initial stages of the

search, the pheromones, being set to initial random values, do not guide the artificial ants in a

useful way. This leads to creating tours of very poor solution quality. The main role of

heuristic information is to avoid this, by initially biasing ants so that they can build

reasonably good tours from the very beginning search of the algorithm. Heuristic information

can be derived from a problem instance to guide ants in the solution construction process.

The heuristic information is defined in accordance with the characteristics of the problem that

is yet to be solved, on a case-by-case basis. In many cases, the heuristic information is the

cost, or an estimate of the cost, of adding the component or connection to the solution under

construction (Dorigo and Stützle, 2004).

 Heuristic information review

Several types of heuristic information are applied in various algorithms. For example, in the

TSP, the distance between cities is an obvious and computationally inexpensive heuristic to

use; in other problems, it may be much more difficult to find, or too expensive to compute,

91

meaningful heuristic information which helps to improve performance (Dorigo and Stützle,

2004).

Stützle and Hoos (2000) described that the ant system and all other ACO algorithms for the

TSP use heuristic information ijij d/1 ; that is, the heuristic desirability of going from city i

directly to city j is inversely proportional to the distance between the two cities.

Liang and Smith (2004) used an ACO method to solve the redundancy allocation problem

(RAP). The RAP is a series system of s independent-out-of-n subsystems as shown in Figure

5.4. A subsystem i is functioning properly if at least ki of its ni components are operational. A

series-parallel system is where ki=1 for all subsystems. In the formulation of a series-parallel

system problem, for each subsystem, multiple component choices are used in parallel.

The aim is to select the optimal combination of the components and redundancy levels to

meet system level constraints while maximising system reliability. Heuristic information is

used as follows:

ijij

ij
ij

wc

r




Figure 5.4: Series-parallel system configuration (Liang and Smith, 2004)

n

2

n2

3

1

1 2 s

ks k2 k1

n

2

n1

3

1
n

2

ns

3

1

92

where rij, cij and wij represent the associated reliability, cost and weight of the component for

the subsystem. Components with higher reliability, and lower cost and weight have a greater

probability of selection.

Spiliopoulos and Sofianopoulou (2008) applied ACO for the manufacturing cell design

problem. The aim was to decentralise and create manufacturing cells by grouping the

machines into clusters and the various parts into part families. After that, the processing of

each part family was allocated to a single machine cluster. As a result, the processing times,

transport and queuing can be reduced and the need for frequent set-up can be eliminated.

They proposed heuristic information which is used to calculate the attractiveness of assigning

machine i to every candidate cell k that is not already occupied in full as follows:

tabukKk

c
n

kj
j

ij

ik 










,...1

1

1

1



The tabu set contains the cells that are saturated. Also, kj denotes that machine j is not

allocated to cell k. Therefore, the sum in the denominator is the “external” total cost between

machine i and machines already allocated to cells other than k. The smaller this value, the

more attractive is the allocation of machine i to cell k.

Ning et al. (2010) applied the max-min ant system to solve the construction site layout

planning (CSLP) problem. The max-min ant system will be described in more detail in

section 5.3.4. CSLP is a dynamic multi-objective optimisation problem as there are different

facilities employed in the different phases of a construction project. The CSLP problem was

modelled as a QAP under two objective functions of minimising the representative score of

safety/environment concerns and the total handling cost of interaction flows between the

facilities associated with the construction site layout. They used heuristic information to

assign facility i to location j as follows:

93

ji

ij
df 


1

where the two vectors fi and dj represent the flow potential of facility i and the distance

potential of location j, respectively. They are calculated by the sum of the flows (closeness

relationship) from facility i to all other facilities and the sum of the distances from location j

to all other locations, respectively. The lower the value of dj, the more central the location is

considered to be, and the higher the value of fi, the more important the facility is considered

to be.

It is concluded that heuristic information is important for ACO and helps to improve the

performance of ACO. It can be seen from the preceding review that each type of problem

should have a specific type of heuristic information. According to the literature review, this

heuristic information has not yet been constructed for the allocation of inspection station

(AOIS) problem, because this is the first time that the ACO method has been applied to the

AOIS problem. There is a need to create appropriate heuristic information for the AOIS

problem. In this research, a novel heuristic information method for ACO will be constructed

for the AOIS problem and presented in chapter 6.

UpdatePheromones: Pheromone values are subject to update and change dynamically in the

course of programme execution, while heuristic values usually remain static throughout the

search. The set of pheromone values represents the memory of the algorithm; the set of

heuristic values indicates the desirability of going from node i to node j. This kind of

pheromone update is called an online step-by-step pheromone update. Once an ant has built a

solution, it can (by using its memory) retrace the same path backward and update the

pheromone trails of the used connections according to the quality of the solution it has built.

This is called an online delayed pheromone update. The solution quality is gauged by

evaluating the objective function for the given solution components (input variable values).

94

The better the solution quality, the higher the amount of pheromone will be deposited on the

arcs connecting the nodes visited in the construction of the solution.

A further essential concept in ant colony optimisation is pheromone evaporation. Pheromone

evaporation is the process through which the strength of the pheromone trail on the

components decreases over time. Pheromone evaporation is very important to avoid a very

quick convergence of the algorithm toward the near-optimal region. It implements a useful

form of forgetting, favouring the exploration of new areas in the search space.

DaemonActions: Daemon actions can be used to implement centralised actions which cannot

be performed by a single ant. In other words, it represents the situation where some extra

commands need to be processed on a global scale. A good example of a daemon action is

adding a local search to the ACO algorithm (Dorigo et al., 1996). The importance of adding a

local search to the ACO algorithm will be described in section 5.4.

This framework is implemented by many ant colony algorithms and it is important to view

each algorithm with its motivating domain to gain an understanding of the differences that

define them as separate algorithms.

5.3 Ant system (AS)

This algorithm explains a number of characteristics, positive feedback, a distributed

architecture and a solution construction procedure. It is based on three initial attempts at

defining the algorithm: Ant-Density, Ant-Quantity (Dorigo et al., 1991a) and Ant-Cycle

(Colorni et al., 1992). The three original algorithms were applied to the TSP and differed in

the amount of pheromone laid and the timing of the trail update. Ant-Density used a constant

update after every step an ant took. Ant-Quantity used an amount proportional to the distance

between cities i and j (,
ijc

Q
where Q was an arbitrary parameter and cij was the cost of

95

moving from city i to city j). Ant-Cycle was the first to perform the trail update at the end of

the construction process and was updated with a value proportional to the length of the tour,

,
kL

Q
where Lk was the length of the k-th tour. Ant system implements the Ant-Cycle method

of updating at the end of the ant generation and activity function in the Procedure ACO

Metaheuristic. The main components of the algorithm are the ants‟ solution construction and

the pheromone update. An ant chooses to move from the current node to the next adjacent

node based on a rational combination of two factors, namely the heuristic information (ij)

of that move and the quantity of pheromone on the edge (ij) which is to be traversed. The

pheromone matrix (τ) is the memory of the algorithm, allowing indirect communication

between ants. The next node is selected based on the probability transition rule as described

in equation (5.1). Equation (5.1) is an equation defining how new solutions are integrated into

the pheromone matrix. After all the ants have constructed their tours, the pheromone trails are

updated using equations (5.2) and (5.3).

   
m
k

k
ijijij ttt 1)()()1()1((5.2)

where m is the number of ants and ρ is a parameter that reduces the pheromone on unused

edges, sometimes referred to as the learning rate or pheromone decay.















otherwise0

antbyusedis),(arcif
)(

)(

kji
sf

Q

t
k

k
ij (5.3)

where Q is the total quantity of pheromone per unit length of the trail laid on the edge (i, j) by

the k-th tour at time t and f (sk) is the length of the k-th ant‟s tour.

Initial experiments conducted on a set of benchmark problems applied by Dorigo et al.

(1991b) found that the performance of Ant-Cycle was much better than the other two

96

algorithms. As a result, research on AS focused on improving the characteristics of Ant-

Cycle, which is now known as the Ant System, while the other two algorithms were ignored.

The Ant System was applied to the QAP by Maniezzo and Colorni (1999). The Ant System

algorithm joined with local search obtained solutions of comparable quality to the Greedy

Randomised Adaptive Search Procedure (GRASP) with improved processing time

(McCallum, 2005).

A number of algorithmic improvements have been proposed to improve Ant System

performance. All these improvements have in common that they introduce a form of elitism

which is able to direct the search more strongly towards the best tours. In addition, because

the major concern in AS was the treatment of pheromone trail intensities on arcs which may

leads to early stagnation. The following sections are a description of the main extensions of

the AS algorithm.

5.3.1 Ant-Q

The first main extension to the Ant System was found in Gambardella and Dorigo (1995),

with an adaptation in Taillard and Gambardella (1997). It was a mixture of the Ant System

and Reinforcement Learning. Let AQ(r, s), read Ant-Q-value, be a positive real value

connected to the arc (r, s). It is the Ant-Q equivalent of Q-learning Q-values, and is aimed to

indicate how useful it is to make move from city r to city s. Let HE(r, s) be a heuristic value

connected to node (r, s) which allows a heuristic evaluation of which moves are better (in the

TSP, the inverse of the distance is usually chosen).

Assume that k is an agent whose task is to construct a tour in the TSP: visit all the cities and

return to the starting city. Connected to k, there is a list)(rJk of cities not visited, where r is

the current city. This list uses a kind of memory to prevent transitions to previously visited

97

cities and to force the ant to build legal tours. An ant k placed in city r moves to city s using

the equation (5.4), called the action choice rule (or state transition rule):

 











 







otherwise

if)],([)],([maxarg 0
)(

S

qqurHEurAQ

s
rju k

 (5.4)

where δ and β are parameters which bias the relative importance of the learned AQ-values

and the heuristic values, q is a value chosen randomly with uniform probability in [0, 1], 0q

)10(0  q is a parameter such that the higher 0q , the smaller the probability of making a

random choice (good values of 0q tend to be close to 1(Stützle et al., 2010)) and S is a

random variable selected according to a probability distribution given by a function of the

AQ(r, u) and HE(r, u) values, with).(rJu k These AQ-values were updated by equation

(5.5).

)),(max),((),()1(),(zsAQsrAQsrAQsrAQ
kJz (5.5)

where Jk is the list of cities still not visited by ant k and



is the discount rate (horizon) which

is a value in the range [0, 1]. Gambardella and Dorigo (1995) suggested  = 0.3. The idea of

local trail updates and global trail updates was introduced in their work. The purpose of the

former was to try and diversify the pheromone matrix, as using global trail updates alone was

found to converge the matrix too early. The other rules were all very similar to those of the

Ant System.

The most interesting contribution of the work of Gambardella and Dorigo (1995) was the

definition of the λ-branching factor. The λ -branching factor calculates an estimate of the size

of the search space being focused on by the algorithm at any point in time. Its definition is

based on the following concept: if for a given node i the concentration of the pheromone trail

on approximately all the arcs exiting from it becomes very limited, the freedom of choice for

98

expanding partial solutions from that node is very small. As a result, if this condition occurs

concurrently for all nodes of the graph, the part of the search space that is effectively

searched by the ants becomes very small. The branching factor for node i is defined as

follows: if
max
i is the maximum and

min
i is the minimum trail intensity on arcs exiting from

node i, the λ-branching factor is given by the number of arcs exiting from i which have trail

intensity as given in equation (5.6). The average-branching factor is the average of the

branching factors of all nodes and gives an indication of the size of the search space explored

by the ants. For example, if the average-branching factor is very close to 3, it means that, on

average, three arcs incident to each node are likely to be chosen. The parameter λ acts as a

threshold level, which is set to a value in the range 0 < λ <1. To eliminate the influence of

different settings for λ, Ridge (2007) suggested that a fixed value (λ= 0.05) may be used.

)(minmaxmin
iiiij   (5.6)

where
max
i and

min
i are the extreme pheromone intensity values in the pheromone matrix

(τ), i is a node and j is the arc connects between two nodes.

In Gambardella and Dorigo (1995), Ant-Q was compared to the Ant System using the TSP

and was generally found to be better in terms of the mean solution found, but the best results

obtained in number of iterations for each algorithm were the same. Mariano and Morales

(1999) used Ant-Q in the design of water distribution irrigation networks, a complex real-

world problem. Gambardella and Dorigo (1995) used Ant-Q to successfully solve TSP

(Oliver 30) that has been solved by genetic algorithm. They found that the mean (424.44) and

the standard deviation (0.46) achieved by the Ant-Q were better than the mean (425.44) and

the standard deviation (0.51) achieved by GA.

99

5.3.2 Ant colony system (ACS)

The ACS was introduced by Dorigo and Gambardella (1996 and 1997) to improve the

performance of the AS. A number of aspects of the Ant-Q and Ant System were fused to

create an improved version denoted as the ACS algorithm. The concept of the algorithm is

based on a number of changes made to the original ant system. The aim was to find a balance

between exploration and exploitation to avoid early convergence. There are three main

differences between the ACS and AS: tour construction, local pheromone trail updates and

global pheromone trail updates. The three main differences are:

Tour construction: in the ACS, ants use a different decision rule, called the pseudo-random-

proportional rule, in which an ant k on node i chooses the node k
iNj to move to as shown

in equation (5.7):





















otherwise

if})()max{(arg 0

J

Nj

qq

j
k
i

ijij

 (5.7)

where q is a random number uniformly distributed over [0, 1], and]0,1[
0
q

is a tuneable

parameter to modulate the degree of exploration. Thus, the best possible move, as indicated

by the pheromone trail and the heuristic information, is made with probability 0 < q0 < 1

(exploitation); with probability 01 q a move is made based on the random variable J with

distribution given by equation 5.1 (biased exploration). Dorigo and Gambardella (1996 and

1997) explained that the decision rule has a two-fold purpose: when 0qq  , the decision rule

exploits the information available on the problem, while when 0qq  , it performs a biased

exploration.

Global pheromone trail update: in the ACS, only the global best ant is allowed to add

pheromone after each iteration. Thus, the update is implemented as given by equation (5.8):

100

)(Δ)()1()1(ttt

gb
ijijij  (5.8)

where gb is the global-best ant.

 best
ij

L
t

1
)(Δ 

where Lbest is the best solution so far.

Local pheromone update: in addition to the global pheromone trail updating rule, ants use

the local update rule that they apply immediately after having crossed an arc (i, j) during tour

construction, as shown in equations (5.9).

 0Δ)1( ijij (5.9)

where  (0, 1] is a parameter governing pheromone decay and o is the parameter

specifying the initial value of the pheromone matrix.

The ACS has been used to solve the Assembly Line Balancing problem joined with local

search to improve solutions (McCallum, 2005). The algorithm outperformed many

metaheuristics. Silva et al. (2002) applied the ACS algorithm to Logistic Process Optimising.

They used a simulator to investigate how the parameters influenced the quality of the

schedules produced. These experiments were based on real-world data. The results achieved

by the ACS proved to be better than the previously used method.

5.3.3 Rank-based ant system (ASrank)

The rank-based Ant System is a further improvement on the Ant System (Bullnheimer et al.,

1997). In this algorithm, the global-best tour is used to update the pheromone trails.

Furthermore, a number of the best ants of the current iteration are allowed to update the

pheromone trail. For this aim, the ants are sorted by tour length (f (s1) ≤ f (s2) ≤ ….. ≤ f (sm)),

and the quantity of pheromone an ant may deposit is weighted according to the rank r of the

ant. In each iteration, only the (w-1) best ranked ants and the ant that produced the best-so-far

101

tour are allowed to lay some quantity of pheromone. The global best solution gives the

strongest feedback of weight w. The rth best ant of the current iteration is allowed to drop

maximum amount of pheromone {0, w-r}. The notation is given below and is followed by the

altered ASrank pheromone update rule as given by equation (5.10):

 r is the rank of an ant by fitness, for instance r=1 points to the ant with rank of 1.

 wbest is the fitness of the best ant found so far.

 ω is the number of ants to rank (w-1).

 r
ijΔ is the increase of trail intensity on an edge (i ,j) caused by the r-th best ant.

 Lr is the tour length of the r-th best ant.


r
ijΔ

is the increase of the trail intensity on an edge (i ,j) caused by the elitist ants.

 w is the number of elitist ants. Elitist ants are those that are allowed to imprint on the

pheromone matrix.

 L
gb

 is the tour length of best solution found.

 Q measures the influence of the new information relative to the influence of the initial

trail level.

)(Δ)(Δ)()1(
1

1

twttt
gb
ij

r
ij

w

r
ijij 





 (5.10)

where







 



otherwise0

),(edgeonant travelbest th -r theif/}{

)(Δ

jiLQrw

t
rbest

r
ij












otherwise0

foundsolutionbest theofpartis),(edgeif

)(Δ

ji
L

Q
w

t
gb

gb
ij

102

Empirical results in Bullnheimer et al. (1997) suggest that ASrank performs better than AS.

The average deviation from the optimal solution obtained by the ASrank was 1.81%, whereas

the average deviation from the optimal solution obtained by the AS was 2.57%. In

Bullnheimer et al. (1999) ASrank was compared to AS, to a genetic algorithm and to simulated

annealing. It was found that for the larger TSP cases (the largest case with 132 cities); the

performance of the ASrank was found to be superior to the genetic algorithm and the simulated

annealing procedure.

5.3.4 Max-min ant system (MMAS)

The max-min ant system was introduced by Stützle and Hoos (1997, 1998 and 2000). Its

concept is based on using elitism to introduce exploitation to the original ant system and to

avoid early stagnation of the search. Stagnation will be described in this section. The MMAS

was initially applied to the TSP and QAP and enjoyed greater success than the original Ant

System algorithm (Stützle, 1997, Stützle and Hoos, 1998). The MMAS differs in three key

aspects from the AS:

(i) Only one single ant is allowed to reinforce pheromone trails after each iteration. This

ant may be the one which found the best solution in the current iteration (iteration-best

ant) or the one which found the best solution from the beginning of the trail (global-

best ant).

(ii) Values for pheromone trails are limited to an interval [τmin, τmax] in order to avoid early

stagnation of the search, hence the name max-min.

(iii) Deliberately initialising the pheromone trails 0 to max in this way achieves a higher

exploration of solutions at the start of the algorithm.

(iv) Pheromone trails are reinitialized when the system approaches are stagnated or when

no improved tour has been generated for a certain number of consecutive iterations.

103

In MMAS, only one ant is permitted to update the pheromone matrix after every iteration.

This ant provides either the global best ant (gb) or the local best ant (lb) solution. The

modified pheromone trail update rule is given by equation (5.11).

)()()1(ttt best
ijij  (5.11)

where
)(

1
)(

best

best
ij

sf
t  and bests may be either the ant with the iteration-best tour or the one

with the global-best tour and  is the pheromone evaporation rate in order to avoid unlimited

accumulation of the trail; the value of  should be (0 <  ≤1).

The use of only one solution, either the global best (gb) or local best ant (lb), for the

pheromone update is the most important means of search exploration in the MMAS. With

this choice, solution elements which frequently occur in the best found solutions receive a

large reinforcement. In the MMAS, when using only the global-best ant, the search may

concentrate too quickly around this early global-best solution and the exploration of possibly

better tours is limited. Consequently, the danger of getting trapped in poor quality solutions is

higher. On the other hand, using the local best ant favours the exploration of possibly better

tours since, especially in the starting phase of the algorithm, the local best ant will differ

considerably and early mistakes are more easily avoided. The local and global search is also

used in PSO algorithm. The PSO actually uses both aspects of cooperation and competition

among the individuals in the population, which means it combines local and global search to

reach the global optima, see section 4.3.8. In addition, intermediate approaches can be

applied, such as choosing by default the local best ant to update the pheromone trails and

using the global best tour only every fixed number of iterations. This mixed strategy which is

based on local-best ant and global-best ant for updating pheromone trails will be used in the

AOIS problem. The aim of this strategy is to obtain stronger exploration of the search space

early in the search and stronger exploitation of the overall best solution later in the run.

104

The MMAS and ACS both exploit the best solutions by using only a single ant in the

pheromone trail update. However, an important difference between them is the different

interpretation of exploitation and exploration. Exploitation in the ACS is mainly interpreted

as choosing a high parameter value for
0

q , see equation (5.7). In this way, the accumulated

knowledge on the problem is exploited by constructing a solution that can be interpreted as a

slight modification of the best solution found so far. Exploration in the ACS is obtained using

a biased random move according to equation (5.1) with a probability of (01 q) (Stützle,

1998b).

On the other hand, in MMAS, exploitation is mainly interpreted as choosing one single ant,

either the local-best ant or the global-best ant, for the pheromone update. Jointly, with a

rather high parameter value for ρ, this will slowly shift the probability distribution given by

equation (5.1) towards solution components (arcs) which have been shown to be contained in

the best solutions. Exploration in the MMAS is derived from explicit pheromone trail limits

which aim to increase the solution exploration of the algorithm.

One of the major important features in the MMAS is avoiding of stagnation. Stagnation is

the situation in which all ants follow the same path and construct the same tour, which in

general is highly suboptimal (Dorigo et al., 1996). In other words, stagnation of the search

occurs, for example, in the following situation. If the amount of pheromone on only one arc

incident from a node is very high compared to the other arcs, this arc has a high probability of

always being selected using equation (5.1). If such a situation occurs at all nodes, the tour

corresponding to the best one found so far will be constructed by most ants and the search for

better solutions stagnates. To avoid this situation, one possibility is to limit the pheromone

trail. This goal can be achieved by limiting the values for pheromone trails to an interval

105

[τmin, τmax]. After updating pheromone at the end of each iteration, the pheromone trails ij on

all arcs are reinforced to be within these limits, as shown in equation (5.12).

 maxmin)(  tij (5.12)

The maximum limit of the trail intensity for the MMAS is calculated as shown in equation

(5.13) (Stützle and Hoos, 2000).

)(

1

1

1

opt
max

sf



 (5.13)

where max

is the maximal pheromone trail and)(optsf is the optimal solution value for the

problem. Clearly, the optimal solution value is not known before the run, and f (sopt) is used

as an estimate of that value and then is adapted during the running of the algorithm.

The lower limit of the trail intensity shown in equation (5.14) is calculated with consideration

of a number of assumptions. First, it was assumed that the best tours would be found just

before stagnation and that, more importantly, better tours were to be found near to the best

tours. In such a case, the probability that the best tour found is constructed in one iteration is

significantly higher than zero. Through experimentation this property has been shown to be

reasonable for TSP benchmark problems (Stützle and Hoos, 2000, Stützle, 1998b). The other

assumption was that the main influence on tour construction was the relationship between the

upper and lower trail limits.

 1max
min ,

)1(





 n

best
dec

dec

dec

pp
pavg

p (5.14)

where min represents the lower limit for the pheromone trail strength and avg is the average

number of available options the ant has to choose from at any decision point. The best

solution found is constructed with a probability pbest which is significantly higher than 0. The

optimal value for probability pbest is 0.05 (Stützle and Hoos, 2000, Ridge, 2007). Other

106

authors, such as Ridge (2007), calculated the lower trail limit
n2

max
min


  , where n is the

problem size (e.g. number of cities). Stützle (1998a) set the lower pheromone trail limit to

5

max
min


 for the Flow Shop Problem.

Search progress in the MMAS implies a specific interpretation, by the particular way in

which the pheromone trails are initialised. The pheromone trail reduces due to evaporation to

)()1(tt ijij  after each iteration of the algorithm. Only the pheromone trails of arcs

participating in the best tours increase their pheromone trail or keep them at the upper trail

limit, because only the best ant is allowed to update the pheromone trail. Arcs which do not

obtain regular reinforcement to their pheromone trail will be maintained lower and be chosen

more rarely by the ants. In this sense, errors made in the past are avoided in the MMAS. An

error is associated with choosing arcs that lead to fairly bad tours; these are denoted as poor

arcs. Thus, the pheromone trail on poor arcs decreases gradually and only good arcs keep a

higher level of pheromone. These good arcs are then combined by the probabilistic tour

creation to generate improved tours (Stützle and Hoos, 2000).

Stützle and Dorigo (1999) applied the MMAS to the TSP and their results compared to

Iterated Local Search. The MMAS found a better solution than the other algorithms used for

77% of the problems on an average run. The MMAS was used in Stützle (1998b) to attack the

Flow Shop Problem. The algorithm outperformed a number of other methods such as

Simulated Annealing and Multiple Descent. The experimental results in Stützle and Hoos

(2000) demonstrate that the MMAS achieves strongly improved performance compared to

the AS and to other improved versions of the AS for the TSP; moreover, the MMAS is

among the best available algorithms for the QAP. The MMAS was applied to the University

Timetabling Problem by Socha et al. (2002 and 2003). The paper showed that the algorithm

performed better at a set of problem instances than an algorithm using the local search with

107

random starting solutions. Ning et al. (2010) applied the MMAS to the construction site

layout planning (CSLP) problem. CSLP problem is a dynamic multi-objective optimisation

problem as there are different facilities employed in the different phases of a construction

project. The CSLP problem was modelled as a QAP under two objective functions of

minimising the representative score of safety/environmental concerns and the total handling

cost of interaction flows between the facilities associated with the construction site layout.

The experimental results show that the safety level is improved and the construction cost is

reduced.

 Features of MMAS algorithm

The following are the important features for the MMAS algorithm:

1. One of the major important features in the MMAS algorithm is avoiding too early

stagnation.

2. By using only one single ant in the MMAS algorithm the pheromone trail update, the

best solutions can be better exploited.

3. By using the adaptive memory allows the previously visited workstations to be kept by

means of the pheromone trail matrix, which is used to influence the construction of new

better solutions.

4. The heuristic information helps to find acceptable solution in the early stages of the

search process.

5. The collective interaction of a population of ants leads to increase the exploration of the

search space.

6. MMAS algorithm starts with initial high pheromone trial which is leads to increase

exploration of the search space.

108

5.4 Local search mechanisms

Research in ant colony optimisation has shown that for applications on combinatorial

optimisation problems, the best results are obtained if the ants are enhanced by additional

capabilities. The local search is part of the DaemonActions of the ACO algorithm as shown in

the ACO framework in section 5.2.2. In many of the most efficient implementations of ACO

algorithms, ants may apply local search to improve the solutions they have constructed

(Dorigo and Gambardella, 1997, Stützle and Hoos, 2000). Therefore, many researchers have

developed local search for ACO and have applied these methods to a range of different

problems such as the redundancy allocation problem (Liang and Smith, 2004), the inter-cell

layout problem in cellular manufacturing (Solimanpur et al., 2004), single row layout in

flexible manufacturing systems (Solimanpur et al., 2005), image pre-processing (Laptik and

Navakauskas, 2009) and construction site layout planning (Ning et al., 2010). The reason for

adding local search algorithms to ACO is to enhance performance and to yield high quality

solutions, such that near-optimal solutions can be found. Advantages and disadvantages of

using local search can be explained as following:

 Advantages of local search

1. Cost of generating neighbouring solutions: typically, for generating a neighbouring

solution the computational complexity is much lower than generating a new solution

from scratch. In addition, for evaluating a neighbouring solution, it often does not need

to generate it explicitly at all.

2. Cost of evaluating neighbouring solutions: typically∆-evaluation can be done in a

computational cost that is much less than computing solution cost from scratch (Stützle,

2003).

109

 Disadvantages of local search

1. Iterative improvement may take exponential time in the worst case but usually this

occurs only rarely and for few problems.

2. Problem of local optimality.

The particular local search used is almost completely problem-dependent, but the important

idea is that a solution to the problem in hand has an identifiable solution neighbourhood.

Usually, the neighbourhood of a solution can be defined as all those solutions which may be

different from the original solution by a single „„step‟‟. The most well-known local search

algorithm, called iterative improvement, first builds an initial solution by some means

(possibly creating one at random). The algorithm then checks through some or all of the

neighbours of the initial solution looking for better solution. If an improved solution is

obtained, then the current solution is replaced with it and the process repeats until no further

improvement can be found. A drawback of this algorithm is that it may stop at poor quality

local optima. As a result, possibilities have to be devised to improve its performance. One

would be to increase the size of the neighbourhood used in the local search algorithm.

Clearly, there is a higher possibility to obtain an improved solution, but it also takes longer

time to assess the neighbouring solutions. This leads to this approach being impractical as the

neighbourhoods increase. Another possibility is to allow the local algorithm to generate a

new random solution. However, the search space normally contains a massive number of

local optima. As a result, this approach becomes increasingly ineffective as the problem

becomes complex.

Several applicable improvements of local search methods have been suggested. The aim is to

avoid these drawbacks of iterative improvement methods. The improvement of the local

search methods is based on either by accepting worse solutions, hence allowing the local

search to escape from local optima, or by creating good starting solutions for local search

110

algorithms in a more intelligent way (such as ACO) than just providing random initial

solutions (Solimanpur et al., 2004). Moreover, since the improvement algorithms start from

bad solutions, the computation time required by improvement algorithms would be more.

Besides, ant algorithms are population-based adaptive metaheuristics that are able to

construct relatively good solutions and therefore their integration with a local search

mechanism may result in optimum or near optimum solutions. Owing to the fact that the

quality of initial solutions created by ant algorithms is good, the integrated local search

mechanism needs only a few iterations to enrich these solutions to their local optimum

resulting in reasonable computation time. In addition, to yield a further reduction in run-time

and to focus the local search around the part where potentially improve can be found don’t

look bits is used (Ferreira et al., 2012). This prevents cycling, and also helps to promote a

diversified coverage of the search space.

To apply iterative improvement algorithms, two commonly recognised approaches are first

ascent and best ascent. In the first method, the first neighbour which is an improvement is

selected, whereas the second method searches through all potential neighbouring solutions

and then selects the one which offers the greatest improvement. In TSP, the 2-opt

neighbourhood is defined as a neighbour if it differs by at most two arcs. This can be

generalised to deal with k arcs. An example of a solution and an improved neighbour is given

in Figure 5.5.

The idea of using a mechanism to generate initial solutions which are improved by a

subsequent local search is also applied in other nature-inspired algorithms such as simulated

annealing and genetic algorithms. The most recent of these nature-inspired algorithms is ant

colony optimisation. In the ACO algorithm, the search process can be used to identify

promising regions of the search space with high quality solutions. This can be done by using

111

pheromone trails as an adaptive memory of solution components which have been part of the

best local minima found so far.

Figure 5.5: Illustration of a 2-opt neighbour in the TSP. (s is an improved neighbour of s

because it varies by two arcs, and its tour length is 4-four less than s) (Ritchie, 2003).

These solution components are combined in subsequent iterations by a stochastic

construction mechanism, which is biased by the pheromone trails and local heuristic

information. A further advantage of using a constructive algorithm such as the MMAS is that

by creating good initial solutions, the subsequent local search requires fewer steps to arrive at

a local optimum. However, based on the previous literature review in chapter 2, none of the

surveyed methods in the AOIS problem used local search to improve their performance.

Local search methods for the AOIS problem will be developed to improve the performance of

the MMAS algorithm and will be introduced in the next chapter.

5.5 Fitness Landscape

It should be noted that none of the studies surveyed in chapter 2 investigated the fitness

landscape for the AOIS problem. As a result, this section will provide further information

about understanding the fitness landscape of the AOIS problem. In the AOIS problem, it is

clear that a process including n serial stages offers
n2 possible inspection combinations. As

the number of stages increases, complete enumeration of all combinations becomes

3

3

1

2

2
1

4

1

2
2

s

3

1

2

4

1

2
2 3

s

112

prohibitive. Therefore, the application of metaheuristic methods is essential for developing a

tractable solution algorithm, as these methods need limited computational effort while

yielding a nearly optimal solution. The objective of this research is to allocate limited

inspection stations in a serial multistage manufacturing process. If this is done, the total

manufacturing cost of a product can be reduced without affecting the quality of the product.

The total cost is defined as the sum of the costs of production and inspection, and internal and

external failure costs. In the AOIS problem, it is possible that not all locations of the

inspection stations are economically equivalent. Because of the difference in cost structure in

inspection places and process characteristics, some combinations of inspection plans may

prove to be economically preferable to others. This is because the product is processed

through different operations by different machines. These machines are different from each

other in terms of their characteristics such as operation cost, scrap cost, rework cost,

inspection cost and defective rate. The differences in process characteristics lead to

differences in the cost structure of inspection plans. Understanding the geometry of the

landscape for the AOIS problem may help in choosing the appropriate algorithm to solve the

AOIS problem.

Fitness landscape was first introduced by Wright (1932) in a study of evolutionary theory.

Intuitively, the fitness landscape can be imagined as a mountainous region with hills, craters,

and valleys. The local search algorithm can be pictured as a wanderer performing a biased

walk in this landscape. His goal is to find the lowest point (in the case of minimisation

problems such as the AOIS problem) in this landscape. It is obvious that the task for the

wanderer strongly depends on the ruggedness of the landscape, the distribution of the valleys

and craters and the local minima in the search space, and the overall number of local minima

(Yamada, 2003). It is widely agreed that the performance of metaheuristics depends strongly

on the characteristics of the underlying search space. The difficulty of searching in a given

113

problem search space is related to the structure of the fitness landscape (Smith et al.,

2002).The fitness landscape of a combinatorial optimisation problem is defined by a triplet

),,(fN where is the set of solutions called the search space, N is a neighbourhood

function and f is an evaluation function (Marmion et al., 2012). With this definition, the

notion of the neighbourhood between solutions takes a significant place in the resolution of

combinatorial problems. This notion is used in local searches as the application of a defined

operator. Thus, an analysis of such a fitness landscape will be helpful in order to understand

the structure of a problem from a local search point of view.

The fitness landscape determines the shape of the search space as encountered by a local

search algorithm. Marmion et al. (2012) stated that a fitness landscape could be seen in 2D or

3D, as a topographic representation of the problem where the relief is given by the difference

of the fitness between neighbouring solutions. The link between landscape and search

algorithm is given by the neighbourhood search (NS) operators used in the algorithm.

Because these operators generate new points in the search space relative to a given point, the

distance between two solutions is equal to the minimum number of required applications of

the operator to move from the first one to the second one (Yamada, 2003;Marmion et al.,

2012).

Consider local search algorithms like the ACO: if the average cost difference between

neighbouring solutions is, on average, small, the landscape will be well suited to a local

search algorithm; if the average cost difference between neighbouring solutions is high, the

landscape is rather rugged and may contain many local minima and be badly suited to a local

search algorithm (Angel and Zissimopoulos, 2000).The distribution of local minima and their

relative location with respect to global optima is an important criterion for the effectiveness

of adaptive algorithms like ACO algorithms. For analysing this aspect of the fitness

114

landscape, the correlation between solution fitness and the distance to optimal solutions has

been studied by Weinberger (1990), Stadler (1996) and Merz and Freisleben (2000).

5.5.1 A distance measure

The fitness landscape analysis relays on a distance metric for AOIS solutions. To measure the

difference between two permutation inspection plans s and s , an appropriately defined

distance is required. The distance between two points (solutions) can be defined as the

minimum number of elementary move operators which have to be applied to transform one

permutation into the other permutation. In the case of the AOIS problem, the swap operator is

used. The swap operator is widely used for permutation problems (Marmion et al., 2012).The

swap distance is based on the swap move which exchanges a pair of inspection stations i and

j with ji  . The calculation of the exact swap distance between two permutations is

nontrivial (Czogallaand Fink, 2012). In order to reduce computational complexity, a path in

the swap neighbourhood may be calculated by position-wise comparison of the two parent

permutationsand . If an inspection station in  is not in the same position as in it is

swapped to the correct position and the move is stored.

5.5.2 Fitness distance correlation

Fitness distance correlation (FDC) was first proposed by Jones and Forrest (1995) as a

measure of problem difficulty for evolutionary methods. It was first used to analyse the

hardness of a problem for a genetic algorithm, but it also gives very useful hints on the

effectiveness of adaptive algorithms which use discontinuous trajectories, such as the ACO

algorithm (Stützle, 2000). An FDC analysis has been conducted for various combinatorial

optimisation problems, including travelling salesman problems (Boese, 1995), flow-shop

scheduling problems (Reeves, 1998), graph partitioning problems (Merz and Freisleben,

1998) and timetabling problems (Ochoa et al., 2009).The FDC is important for the

115

interpretation of search performance of discontinuous metaheuristics. This is because the

notion of search space region is tightly coupled with the notion of distance between solutions.

The task of adaptive restart algorithms like the ant colony optimisation is to guide the search

towards regions of the search space containing high quality solutions and, possibly, the

optimum. Recall that the most important guiding mechanism of these metaheuristics is the

objective function value of solutions. This guidance mechanism relies on the intuition that the

better a solution is, the more likely it is that even better solutions will be found close to it. In

particular, the fitness distance correlation describes the relationship between the fitness (cost)

of solutions and their distance to best-known solutions or optimum solutions.

In other words the FDC is the correlation between the quality of a solution and its distance to

an optimal solution. The FDC states how closely fitness and distance to an optimal solution

are related. Hence, if a problem shows a high FDC, algorithms combining adaptive solution

generation and local search may be expected to perform well. For ACO algorithms this is the

case because the most important guidance mechanism of ACO algorithms is the solution

quality of the solutions constructed by the ants; the better a solution, the more its solution

components will be reinforced. Yet if no such correlation exists, or, even worse, if cost and

distance are negatively correlated, the fitness gives only little or no guidance towards better

solutions and the ACO algorithm may perform poorly on such problems.

In a problem instance with high FDC, good solutions tend to be tightly clustered or,

equivalently, to share many solutions attributes. Consequently, an adaptive search algorithm

should be able to exploit these similarities during a search. The easiest way to measure the

extent to which the fitness function values are correlated with distance to the optimum is to

examine a problem with known optima, take a sample of individuals and compute the FDC,

given the set of (fitness, distance) pairs. Formally, given a set F={f1,f2,...,fn} of individual

116

fitnesses and a corresponding set D={d1,d2,...,dn} of the n distances to an optimal solution or

to the nearest global optimum, the FDC is defined by Jones and Forrest (1995)as:

DF

FDC
FDC


 (5.16)

where F and D are the standard deviations of F and D, respectively and are defined by

equation (5.17).

 


n

i
iF ff

n 1

2)(
1

,  


n

i
iD dd

n 1

2)(
1

 (5.17)

CFD is the covariance of F and D. The covariance CFD is defined by equation (5.18):






n

i
iiFD ddff

n

1
C

1
)-)(-((5.18)

where f and d are the means of F and D respectively.

High FDC values indicate that fitness and distance to the optimum are related, and that the

search promises to be relatively easy for the technique being used, since there is a path to the

optimum via solutions with increasing fitness. For minimisation problems, the ideal fitness

function will have FDC=1 (Jones and Forrest, 1995). Similarly, in the AOIS problem, a high

positive correlation between the solution cost and the distance to the optimum indicates that

the better the solution, the closer the algorithm gets, on average, to the optimum. If no such

correlation exists or it is very weak, the fitness gives only little guidance towards better

solutions. As discussed by Jones and Forrest (1995), Jaszkiewicz and Kominek (2003) and

Muller and Sbalzarini (2011), the coefficient FDC is expected to be near 1 for a globally

convex single-funnel or a big valley structure and around 0 for needle-in-a-haystack problems

and problems without any global structure. A negative value of FDC indicates a “deceiving”

and misleading landscape.

117

An FDC analysis for the AOIS problem search space using the PSO and MMAS algorithms

being studied, which examine all possible allocations of the inspection stations problem, is

plotted. Each algorithm is combined with a local search method (swap). These two

algorithms are used here because they have the most desirable characteristics of all the

methods described in chapter 4. The aim is to find an algorithm suitable for tackling the

AOIS problem. Often, a fitness distance plot is made to gain insight into the structure of the

landscape, in addition to calculating the correlation coefficient (Ochoa et al., 2009). The

fitness distance plot is done by plotting the fitness of points in the search space against their

distance to the optimum or best-known solution. This type of analysis, often called fitness

distance analysis, can be used to investigate not only the correlation between arbitrary points

in the search space, but also the distribution of local optima within the search space.

Figure 5.6 shows scatter plots of percentage deviation from the optimum versus the distance

from the optimal solution for 15 workstations for the AOIS problem. The number of feasible

solutions for this number of workstations is 2
15

=32,768. For this number of workstations the

optimal solution is known. Each point gives the distance to the optimum (x-axis) and the

solution quality as the percentage deviation from the optimum (y-axis). The plots show a

strong correlation between the solution quality and the distance to the optimum, which can be

seen be by the fact that better local optima tend to be closer to the optimal solution.

Figure 5.6: Fitness distance scatter plots for 15 workstations for the AOIS problem

0

0.2

0.4

0.6

0.8

1

1.2

0 3 6 9 12 15

P
er

ce
n
ta

g
e

d
ev

ia
ti

o
n
 f

ro
m

o
p

ti
m

u
m

Distance to the optimum

ACO

0

0.2

0.4

0.6

0.8

1

1.2

0 3 6 9 12 15

P
er

ce
n

ta
g
e

d
ev

ia
ti

o
n

 f
ro

m

o
p

ti
m

u
m

Distance to the optimum

PSO

118

It can be seen that for the ACO algorithm that there are local optima which are much closer to

the optimum solution than there are for the PSO algorithm. The results for the FDC analysis

are given in Table 5.1, which shows the average percentage deviation from the optimum, the

average distance to the optimum, the respective ratios to the maximum possible distance, and

the correlation coefficients. It can be concluded that, on average, the better the solution

quality, the closer a solution is to an optimal solution in the AOIS problem. Comparing the

results of the FDC analysis indicates the potential usefulness of the ACO approach to the

AOIS problem. The FDC for the ACO algorithm is 0.831, which indicates a strong

correlation between the solution quality and the distance to the optimum. Similarly, the FDC

obtained by the PSO is 0.57, which also shows there is a good correlation between the

solution quality and the distance to the global optimum. The studies introduced by

Jaszkiewicz and Kominek (2003), Grahl et al. (2007) and Muller and Sbalzarini (2011)

showed that high FDC coefficients are an indicator for the presence of a big valley structure.

A big valley structure means that local optima tend to be relatively close to each other and to

the global optimum. In a big valley structure, the local search can potentially drive the search

towards the neighbourhood of an optimal solution (Grahl et al., 2007).The results indicate

that the landscape produced by the ACO has deeper valleys. Thus it seems that the ACO

should move to a local optimum with a better quality more easily than the PSO does.

Table 5.1: Results of the FDC analysis for 15 workstations for the AOIS problem
Method

Average % avgd-opt avgd-opt/n FDC

PSO 1.72 8 0.53 0.57

ACO 0.166 4 0.26 0.831

Average %: the average percentage deviation from the optimum, avgd-opt: the average distance to the optimum,
avgd-opt/n: the ratio between average distance to the optimum (avgd-opt/n) and the problem size (n: is the number

of workstations), FDC: fitness distance correlation coefficient.

Further analysis on different AOIS problems using the ACO algorithm is presented in Table

5.2. The solutions are interconnected differently in the search space according to the

119

neighbourhood function. Pair-wise distances of a population of solutions are meaningful for

characterising the search space. The usual statistics of all these distances are computed. Thus,

the comparison of distances between solutions of the local optima helps to characterise

whether the solutions are identically distributed and dispersed, according to whether or not

they are local optima. The distribution of solutions should help us to understand if they are

close or not, and if local optima are in the same part of the search space (Marmion et al.,

2012). The indicators standing for mean, standard deviation, minimum, maximum and

quartile values are then computed to estimate the width of the search space. Table 5.2

presents the average distance to the optimum, the respective ratios to the maximum possible

distance, the minimum, the median (Med), the first quartile value (Q1), the third quartile

value (Q3), the maximum and the FDC. It is concluded that, on average, the better the

solution quality the closer a solution is to an optimal solution in the AOIS problem. The

quartiles (Q1 and Q3) and median show that the good solutions are very concentrated, and

that the distances between the solutions are homogenous and small. As a result the algorithm

stays in a limited region of the search space. The FDC for the ACO algorithm indicates a

strong correlation between the solution quality and the distance to the optimum for each

problem considered.

Table 5.2: Results of the FDC analysis for different AOIS problems using the ACO
Problem

size

Avgd-opt Avgd-opt/n Min Med Q1 Q3 Max FDC

15 4 0.26 3 5 4 6 10 0.831

16 6 0.375 4 6
5 7 12 0.78

18 8 0.44 7 9
8 10 14 0.79

20 11 0.55 9 11
9 12 16 0.76

avgd-opt: the average distance to the optimum, avgd-opt/n: the ratio between average distance to the optimum

(avgd-opt/n) and the problem size, Min :minimum distance, Med: median, Q1:first quartile, Q3: third quartile, Max:

maximum distance and FDC: fitness distance correlation coefficient.

120

5.6 Conclusion

Ant colony optimisation has been described followed by the Ant System and its extension

versions. Different ant colony versions were studied, leading to the MMAS algorithm being

proposed to tackle the AOIS problem. The MMAS has been shown to perform significantly

better than many optimisation methods, especially with complex problems. It was found that,

in the AOIS problem, there is a need to construct heuristic information which aids the

performance of the MMAS. Research has shown that when the MMAS is applied to

combinatorial optimisation problems, the performance of ant algorithms is best when joined

with local search methods. The local search in the MMAS algorithm aims to improve the

solutions constructed by the ants. In the AOIS problem, a complete solution (inspection plan)

is achieved when an ant visits workstations in the serial multistage manufacturing process. As

there are a limited number of inspection stations available. Therefore, the number of

workstation to be visited by an ant is restricted by the number of inspection stations available.

The advantage of using the MMAS is the adaptive memory that allows the previously visited

workstations to be kept by means of the pheromone trail matrix, which is used to influence

the construction of new solutions. In particular, this matrix will include the paths (inspection

positions) that ants have visited. Subsequently, the path which has the lowest cost will be

used more frequently by subsequent ants. In addition, the MMAS has the ability to avoid

early stagnation using pheromone trail bounds. Also, by using only one single ant in the

pheromone trail update, the best solutions can be better exploited. The fitness distance

correlation (FDC) for the AOIS problem using the MMAS algorithm indicates strong

correlation between the solution quality and the distance to the optimum. This indicates that

the MMAS algorithm is well suited to the AOIS problem. The application of the MMAS

algorithm on the AOIS problem will be described in the next chapter.

121

Chapter 6

Max-min ant system for the allocation

of inspection stations

__

In this chapter, the MMAS algorithm is evaluated against a new type of problems known as

the allocation of inspection stations (AOIS) in serial multistage manufacturing processes. The

MMAS is an improved version of the Ant System, which was proposed by Stützle and Hoos

for combinatorial optimisation problems. It was designed to have a relatively long initial

exploration phase with a subsequent transition to an intensive exploitation phase. To improve

the performance of the MMAS algorithm, the max-min ant system needs to be enhanced with

local search. Six local search methods which are well-known and suitable for the AOIS

problem are used. The aim of the methods is to create improved inspection plans. Also, two

novel heuristics information for the MMAS algorithm have been created. The heuristic

information for the MMAS algorithm is exploited as a novel means to guide ants to build

reasonably good solutions from the early stages of search of the algorithm.

6.1 Allocation of the inspection stations problem

Figure 6.1 schematically represents the concept of serial processing workstations in a serial

multistage manufacturing process. Actual production strategies, similar to this representation,

are typical of batch manufactured products. In the general case, there are n discrete

processing stages through which the work in-progress is routed in a fixed sequence. The first

processing workstation receives the raw materials in batches of a certain size, and the last

workstation is involved in shipment of the final product. As the items within a batch move

through the processing workstations, they may incur defects. The purpose of inspection is to

separate conforming product units from non-conforming ones to avoid further processing of

122

items that are already defective. Each inspection station is characterised by its inspection

cost. The objective is to allocate limited inspection stations in a serial multistage

manufacturing process. As a result, the total manufacturing cost of a product can be reduced

without affecting the quality of the product. The total cost is defined as the sum of the costs

of production, inspection, internal and external failure costs. Every processing workstation

entails a constant unit processing cost. Each processing workstation has a known probability

of resulting in a production error. At each inspection operation, two types of inspection errors

may occur with known probabilities: classification and subsequent disposal of a conforming

unit as non-conforming, and classification of a non-conforming unit as conforming, allowing

it to proceed to the next operation in the system. Units classified as non-conforming are

removed from the mainstream flow and are scrapped or reworked. Once an item is identified

by an inspection station as being defective, it is assigned to a repair facility at the same

processing workstation.

WS IS Workstation Possible inspection station

Stage i+1 Stage 1

Conformed

Input

Rework

Scrap

 Non-conformed

IS1 WS 1 WSi+1 IS i+1

Stage i

WS i IS i

Scrap

Rework

 Non-conformed

Rework

 Non-conformed

Scrap

Stage n

Output

WS n IS n

Rework

 Non-conformed

 Scrap

Figure 6.1: Structure of a serial multistage production system with inspection stations

123

The rework option consists of the execution of a repair operation on the units classified as

non-conforming. The repair operation entails the addition of a constant unit repair cost to

each unit. After its completion, the repaired units are merged with the units classified as

conforming, so that no distinction between the repaired units and the others remains. At the

end of the process, the external failure cost represents repair and replacement that is incurred

for each non-conforming unit that exits the system.

6.2 Max-min ant system for the inspection allocation problem

The standard MMAS presented by Stützle and Hoos (2000) was derived from the standard

ACO. The MMAS algorithm was described in more detail in section 5.3.4 for the interested

reader. The following are the elements of MMAS algorithm for solving the allocation of

inspection stations problem:

(1) Pheromone trail initialisation.

(2) Heuristic information.

(3) Construction of solutions.

(4) Selection probability.

(5) Pheromone updating.

(6) Pheromone trail limits.

(7) Termination condition.

These elements are described in the following subsections.

6.2.1 Pheromone trail initialisation

In the AOIS problem, the pheromone trail strength (pheromone trail matrix) is initialised as

the maximum max possible trail strength for all edges. This type of trail initialisation is

chosen to increase the exploration of solutions during the first iterations of the algorithm. The

trail strength then will reduce due to evaporation. After the first iteration of MMAS, the trails

124

will be bounded to take values within the specified limits as will be described in section

(6.2.6). As only the best ant is allowed to update its tour, and only the trails of arcs

participating in the best tours are strengthened or maintained at the upper trail level max .

Hence, arcs that do not receive any reinforcement will continuously lose their trail strength

and be selected more rarely by the ants.

6.2.2 Heuristic information

In this section, the importance, inspiration and method of computation of heuristic

information are described. Heuristic information is defined in accordance with the

characteristics of the problem that is yet to be solved. The aim is to find appropriate heuristic

information for the MMAS algorithm to tackle the AOIS problem, as a result of which a near

optimal solution can be obtained.

 Importance of heuristic information

In the MMAS algorithm artificial ants are the stochastic solution construction procedures,

which are biased by artificial pheromones)(ij and heuristic information)(ij , as will be

described in section 6.2.4. In the initial stages of the search, the pheromones, initially being

set to random values, do not guide the artificial ants in a useful way. This leads to the creation

of trails of very poor solution quality. The major task of heuristic information is to avoid this

by initially biasing ants so they can build rationally good trails from the very first search of

the algorithm. As described in chapter 5, the ACO approach was rather unexplored for the

AOIS problem at the time that this research started. There is no heuristic information created

for the AOIS problem. In addition, heuristic information is apart from the ACO algorithm, as

will be shown in equation (6.3). Thus there is a need to create heuristic information for the

AOIS problem. The significance of the contribution in this section is that the heuristic

information makes ACO algorithms (AS, ACS, Ant-Q and MMAS) more efficient in solving

real-world problems in a number of different areas of the AOIS problem. Examples are the

125

rigor of the inspections (acceptance limits) for each inspection station, the number of

inspections executed (sample size-sampling frequency) for each inspection station and these

issues are able to include different production configuration such as assembly and non-serial.

In addition, heuristic information increases ability of the ACO to find high-quality solutions

to AOIS problems in a reasonable time. Angus (2008) indicated that the use of a heuristic

value, whenever possible, considerably improves ACO performance. Furthermore, by

introducing heuristic information the probable search space (the search space most likely to

be explored) becomes much smaller than the original search space.

 Inspiration of the heuristic

As described in the literature review in chapter 5, in many cases the heuristic information is

the cost, or an estimate of the cost, of adding the component or connection to the solution

under construction. Different problems required different heuristic information. In the AOIS

problem there are many costs incurred by inspection operations or by processing operations

resulting from passing the raw materials through a sequence of processing workstations.

These costs are the inspection cost, replacement cost, reworking cost, manufacturing cost,

penalty cost and scrap cost. The problem is which of these costs to use and how to link them

with the heuristic value. Therefore, attention should be given during the selection of these

costs. In an AOIS problem, the defect rate generated at each processing workstation has a

great impact on the characteristics of the AOIS problem. This is because the defective items

lead to an increase in the total manufacturing cost. This cost is increased considerably if these

defects are allowed to pass through subsequent processing workstations. It should be noted

that the aim of heuristic information is to guide the ants when assigning inspection stations to

workstations, as a result of this the total cost is minimised. Placing inspection stations after

workstations that generate highly defective items lead to minimising the total manufacturing

costs.

126

On the other hand, it is impractical to select external failure costs (replacement and repair) as

a guide to the heuristic information. This is because the external failure cost only occurs

when defective items reach the customer. In addition, external failure cost usually occurs

only at the last workstation. In the case of reworking cost, it cannot be taken as a guide to

heuristic information toward promising regions of the search space. This is because the

reworking cost is usually less than other costs, such as operation or scrap costs. As a result,

using the rework cost as heuristic information leads to ineffective inspection positions. In the

case of scrap cost, it is dependent on the complexity and value of the product. Also it is

ineffective to use scrapping cost as a guide to the heuristic information. On the other hand,

operation cost is an important characteristic for the AOIS problem. This is because the

operation cost is calculated for all items processed at every processing workstation,

regardless of whether or not an inspection is performed at any of the processing workstations.

Therefore, placing inspection stations before these workstations will minimise the total cost

through the detection of defective items, before wasting additional costs by continuing to

process them. Inspection cost is also an important characteristic for the AOIS problem. It is

clear that the minimum inspection cost leads to the minimum total cost of a product.

It is evident that operation cost, defect rate and inspection cost are the most appropriate

factors to be considered as guides to heuristic information for the best inspection plans of the

search space. Heuristic information can be described as a rule of thumb which serves as a

guideline for generating a solution for the AOIS problem. Figure 6.2 shows the inspiration of

the heuristic information for the AOIS problem. Two novel heuristic methods are created to

guide the ant to locate an inspection station to a workstation based on the concerns of

operation cost (Uk), inspection cost (ICk) and defect rate (Zk), respectively. These methods are

the operation cost and defect rate method (OCDM), and the Scores Method (SM).

127

The originality of the contribution in this section is that these methods have never been

applied to this type of AOIS problem or in different areas. In particular, the SM was first used

by Shetwan et al. (2011) as a new heuristic method to solve the AOIS problem as a part of

this research. Previous heuristic information methods were based on a simple idea such as in

TSP. However, the concept of the two heuristic methods is more complex and very different

from those in the previous literature. Further to investigation of the characteristics for the

AOIS problem which were described above, a number of steps are required to reach to the

development of these two heuristic information methods as will be described in next

subsections.

There are several methods to compute the heuristic information of each move. Since the

heuristic information is calculated for all moves in all ants it may significantly reduce the

Characteristics

of AOIS

problem

MMAS

algorithm

AOIS

problem

Heuristic

Information

Figure 6.2: Inspiration of heuristic information for AOIS problem

IS: inspection station

128

efficiency of the algorithm, and thus should be computed in an efficient manner. In the earlier

implementations of ant algorithms, heuristic information was calculated either a priori or a

posteriori (Chaharsooghi, 2008). In the first category of implementations, the static heuristic

information is first calculated at the start and remains unchanged during the running of the

algorithm. In the second category, the dynamic heuristic information depends upon the

current state of the ant. Two contradictory aspects are to be considered in the calculation of

heuristic information. These are: (1) the efficiency of calculation, and (2) the quality of

information. The implementations with a priori heuristic information are efficient but do not

thoroughly indicate the desirability of moves. On the other hand, one advantage of using a

dynamic heuristic method is that the precise estimation of the desirability of each move is

obtained, although the efficiency of computation is not satisfactory. In this research, a novel

method has been developed for calculating heuristic information for the AOIS problem by

considering these aspects.

The heuristic information should, intuitively, prefer workstations which have a high operation

cost, high defect rate and low inspection cost. This avoids processing items that are already

defective by continuing to process them, otherwise unnecessarily greater costs will incur. In

the AOIS problem, moving the ant from the current node to the next adjacent node does not

influence the values of the operation cost, inspection cost or defect rate. Hence the proposed

heuristic information is assumed to be a static heuristic value and can be pre-computed before

applying the algorithm.

 OCDM

The OCDM is based on the operation cost (Uk), inspection cost (ICk) and defect rate (Zk). To

use these costs and the defect rate in the developed algorithm there is a need to link them via

mathematical formula. Clearly, by multiplying the operation cost (Uk+1) with the defect rate

(Zk) at each workstation results in different cost components throughout the serial line. For

129

example if a workstation k has a higher defect rate compared to the other workstations, and

workstation k+1 has a higher operation cost compared to the other workstations, this leads to

a higher desirability for allocating an inspection station at workstation k. In contrast, the

minimum inspection cost at workstation k leads to a higher desirability for allocating an

inspection station at workstation k. Therefore, the heuristic information is calculated by

considering these characteristics (operation cost, defect rate and inspection cost). The

heuristic information pertaining to move v = (i, k) is denoted by ik . This move indicates the

desirability of locating inspection station i to workstation k as shown in equation (6.1).

k

kk
ki

IC

ZU)]1([1
,


  (6.1)

If a workstation k has a higher defect rate, low inspection cost and workstation (k+1) has a

higher operation cost, this workstation k has a greater probability of being selected.1 is added

to equation (6.1) for avoiding the result of 0, in cases where the defect rate is zero.

To apply the OCDM, a multistage manufacturing process is considered, consisting of five

workstations arranged in a serial manner using real data and involving manufacturing of

pistons. This case study introduced by Kaya and Engin (2007) to define the sample size at

attributes control the chart in multistage processes. The piston is one of the most important

moving components in the engine. Pistons whose casting stages are completed are processed

on machines which are equipped with CNC machines on five different workstations. These

operations, such as processing, turning and drilling, are shown in Figure 6.3. The defect rate,

unit inspection cost and unit operation cost at each workstation are given in Table 6.1. It

should be noted that the drilling machine does not produce any defect.

It is assumed that there are three inspection stations to be located in the serial line. It is also

assumed that during the search of the algorithm an ant is randomly placed on the third

130

workstation (WS3), this ant then has many choices to move to locate the second inspection

station, as shown in Figure 6.4.

 Table 6.1: Unit operation cost, unit inspection cost and defective rate for piston production

 Workstation (WS)

1 2 3 4 5

Unit operation cost (Uk) 25 100 150 50 60

Unit inspection cost (IC,k) 30 20 25 35 50

Defect rate (Zk) 0.01 0.014 0.0 0.028 0.071

1

4

2

3

5

Turning

Processing of

piston ring

(CNC)

Drilling

Processing of pin

Turning (CNC)

Figure 6.3: Flow of piston production (Kaya and Engin, 2007)

Figure 6.4: The choices for an ant at WS3 to locate the next inspection station

WS 5

Output

Input

WS 1 WS 2

WS 3

WS 4

? ? IS1
?

1,3

2,3

4,3

131

The heuristic information will guide that ant to move to the next workstation that has a higher

defect rate, operation cost and low inspection cost. Using equation (6.1) the following results

show all possible moves for that ant:

366.3
30

)]01.01(100[
1,3 




605.7

20

)]014.01(150[
2,3 




762.1

35

)]028.01(60[
4,3 




In the MMAS algorithm the heuristic information is superscript to beta ][ij and 0 as

will be shown in equation (6.3). Based on these calculations the sequence of workstations that

have a higher probability of being selected by the ant placed on WS3 is: WS2 and then WS1.

These workstations have a higher desirability (60.72,3  , 36.31,3 ) for the ant. The

pseudo-code of the developed OCDM heuristic information is outlined in the following

procedure:

Procedure of heuristic information

 Initialise: Uk+1, and Zk and number of workstations

 For j=1: number of workstations

Calculate heuristic information using equation (6.1)

 End

End Procedure

Return heuristic information

 Scores method (SM)

The SM is based on the operation cost (Uk) and defect rate (Zk). The importance of using

these rules is respectively to avoid processing defective items in subsequent operations and to

avoid the high processing costs for items that are already defective. The question is how to

combine these two rules together to guide the ants to locate inspection stations. Consider the

same multistage manufacturing process consisting of five workstations arranged in a serial

132

manner using real data involving the manufacturing of pistons. The unit operation cost (Uk)

and defect rates (Zk) at each workstation are given in Figure 6.5. Assuming that during the

algorithm search an ant was placed on the fourth workstation (WS4), based on these two rules

the ant has two choices of movement to locate the next inspection station, as shown in Figure

6.5. These choices are whether to allocate an inspection station after WS5, which has a high

defect rate (Z5=0.071), or before WS3, which has a high operation cost (U3=150). The ant

must only move to one workstation to assign an inspection station. This leads to the use of a

SM which is a combination of the two choices in one.

The SM is created to allow the heuristic information to guide the ant and locate an inspection

station based on the concerns of operation cost (Uk) and defect rate (Zk). The scores to locate

an inspection station before or after workstation k are determined as SU,k and SZ, k. Those two

kinds of score represent how important it is to allocate an inspection station for detecting

workstation k by individually considering the operation cost and defect rate. The two upper

limits of the scores are assumed to be equal to n (n=number of workstations). After that, these

values are decreased gradually by 1 in each assigned score to the workstations based on the

higher values of Uk and Zk. As shown in Figure 6.1, there are n workstations in a serial

multistage manufacturing system, and either SU,k or SZ,k are determined to be n, n-1,. . . ,1.

Output

Input
WS 1 WS 2 WS 3

WS 4

WS 5

Z1=0.01 Z2=0.014 Z3=0.0 Z4=0.028 Z5=0.071

U1=25 U2=100 U3=150 U4=50 U5=60

?
?

Figure 6.5: Importance of using the Scores Method

133

In the case of operation cost, the higher the Uk, the greater the priority to allocate (higher

score) an inspection station at the previous workstation k-1. The larger the SU,k, the higher the

priority to locate an inspection station at workstation k. An earlier workstation will have a

higher priority if two or more workstations have equal operation costs. Considerations should

be given that SU,k is always set at the earliest workstation. This avoids the processing of

already defective items, otherwise unnecessarily greater costs will incur. Wild (1989) pointed

out that the accumulation cost resulting from processing items that are already defective

increases as the number of processing workstations increases.

In the case of the defect rate, the higher the Zk, the larger priority to allocate (higher score) an

inspection station at workstation k. The larger the SZ,k, the higher priority to locate an

inspection station after workstation k. If two or more workstations have the same defect rate,

the higher priority to locate an inspection station is given to the last workstation. This will

guarantee the best quality of product sold to the customer. On the other hand, if two or more

workstations have the same defect rate and none of them is the last workstation, an earlier

workstation will have a higher SZ,k, priority to locate an inspection station after workstation k.

This avoids further work on scrapped units. After that, the total score (Sa.k) of locating an

inspection station for each workstation will be: Sa,k= SU,k+ SZ,k. The higher the total score Sa,k

is for the workstation, the higher the priority for placing an inspection station at it.

Table 6.2 shows an example for determining these scores. As can be seen from Table 6.2 that

workstation 3 has a higher operating cost (U3=150) than the other workstations. This gives

priority to assign high score (SU, 2 =n, SU, 2 =5) at the previous workstation k-1 (workstation

2). Also workstation 2 has a higher operating cost (U2=100) than the other workstations. This

also gives priority to assign high score (SU, 1 =n-1, SU, 1 =4) at the previous workstation k-1

(workstation 1). The same procedure is applied to the rest of workstations. In case of defect

rate Zk, workstation 5 has a characteristically high defect rate (Z5=0.071) than the other

134

workstations. This gives priority to assign high score (SZ, 5 =n, SZ, 5 =5) after workstation 5.

Also workstation 4 has a characteristically high defect rate (Z4=0.028) than the other

workstations. This also gives priority to assign high score (SZ, 4 =n-1, SZ, 4= 4) after

workstation 4. The same procedure is applied to the rest of workstations. The total scores at

each workstation (Sa,k) will be: Sa,1=SU,1+ SZ,1=4+2=6, Sa,2= SU,2+SZ,2=5+3=8. The same

procedure is applied to the rest of workstations. The final step is to determine the priority (Pk)

to the total scores for each workstation. Clearly, the total scores at workstation 2 (Sa, 2=8) is

higher than the others. This gives the higher priority to the workstation 2 (P2=1) to allocate an

inspection station (the first inspection station) at it. Also the total scores at workstation 4

(Sa, 4=7) is higher than the others. This also gives the higher priority to the workstation 4

(P4=2) to allocate an inspection station (the second inspection station) at it. The same

procedure is applied to the rest of workstations.

 Table 6.2: Example of determining scores for the heuristic information

 k
ij

P


1

1

 (6.2)

Considering the same example of multistage manufacturing process described above for

piston production that used real data. The defect rates and unit operation cost at each

workstation are given in Table 6.2. The sequence of workstations based on the SM (higher

priority) is: WS2, WS4, WS5, WS1, and WS3. In the MMAS algorithm the heuristic

information is superscript to beta ][ij and 0 , as will be shown in equation (6.3). In this

 Workstation (WS)

1 2 3 4 5

Operation cost (Uk) 25 100 150 50 60

Scores of operation cost (SU,k) 4 5 2 3 1

Defect rate (Zk) 0.01 0.014 0.0 0.028 0.071

Scores of defect rate (SZ,k) 2 3 1 4 5

Total score Sa,k=SU,k+SZ,k 6 8 3 7 6

Priority (Pk) 4 1 5 2 3

135

case, if kij P the highest desirability for allocating an inspection station goes to

workstation 3, which has priority (Pk=5) (the lowest priority), then workstation 1 which has

priority (Pk=4), and so on. To ensure that the heuristic information will guide the ant to the

right workstation with the higher priority (Pk=1, 2,..., n) as determined in Table 6.2, the

heuristic information is calculated by taking the inverse of Pk as shown in equation (6.2).

In this case, the workstations with higher priority have a greater probability of selection. 1 is

added to avoid dividing by 0. To apply the developed heuristic information on the serial

multistage manufacturing process which produces pistons and is based on real data, as shown

in Figure 6.6, it is assumed that an ant placed randomly on WS4. Subsequently that ant has

many choices to assign the next inspection station. Based on the data in Table 6.2 and by

using equation (6.2) all possible moves for that ant are computed as follows:

2.0
41

1
1,4 












50.0
11

1
2,4 












166.0

51

1
3,4 












250.0

31

1
5,4 












It is assumed that there are three inspection stations available to be distributed along the line.

Then the workstations with highest priority are WS2 (2,4) and WS5 (5,4). Therefore, the

first and the second inspection stations will be placed after WS2 and WS5 respectively, and

the third inspection station is already placed randomly after WS4.

3,4

1,4 5,3

WS 1 WS 2 IS1 WS 3

WS 4

WS 5

IS2 IS3

5,4
2,4

Figure 6.6: All possible moves from WS4 to locate inspection stations based on Pk

136

The pseudo-code of the developed SM heuristic information is outlined in the following

procedure:

Procedure of heuristic information

 Initialise: Uk, Zk and number of workstations

 For i=1: number of workstations

 Assign scores for Uk-1, and Zk %Higher Uk-1 or Zk is the higher priority to assign

scores%

End

 For k=1: number of workstations

 Calculate Sa, k = SU, k + SZ, k

 End

 Determine priority Pk

End Procedure

Heuristic information =1/1+Pk

6.2.3 Construction of the solution

A feasible and complete solution of the formulated AOIS problem is considered as a static

connected graph G=(C, L) where C is the set of nodes or workstations where [C=1,...n

(n=number of workstations)] and L is the set of undirected arcs connecting them as shown in

Figure 6.2. Each arc is weighted by a pair of numbers { ijij  , }, where ij is the pheromone

trail level and ij is the heuristic information as described in the previous section. For the

tour construction, initially each ant k is placed on a randomly chosen workstation (WS). For

example, when an ant is placed on workstation i as shown in Figure 6.7, then, starting from

that workstation, an ant moves to a still unvisited workstation according to the probability

distribution as will be described in the next section until a tour is completed. An ant

stochastically prefers to move to workstations which are high heuristic (ij) values and

which are connected by an arc with a high pheromone value. The move of that ant is not

affected by the feed-forward of the manufacturing process but it is affected by the arcs

137

between (workstations or nodes) which have high strength of pheromone trails and high

desirability based on heuristic information.

Figure 6.7: Graph representation of the AOIS problem

Consider that three inspection stations have to be placed along a serial multistage

manufacturing process consisting of eight processing workstations. Assume that an ant has

visited WS3, WS4 and WS6 in any sequence (forward or backward or combination). It means

that the inspection stations are located after WS3, WS4 and WS6. In the MMAS, the

algorithm, each ant uses is a list to keep track of the workstations it has visited and the partial

tour constructed so far is recorded as well. This list is also used to avoid moves to already

visited workstations and for the ant to build legal tours. The list is denoted by Tabuk. Solution

construction by artificial ants can then be imagined as a walk over a weighted, fully

connected graph where the nodes represent the workstations and the arcs are connections

between the workstations. In the AOIS problem, the objective is to find the inspection plan

that has the lowest total cost. In the proposed algorithm, it is assumed that each ant initially

assigns a limited number of inspection stations to corresponding workstations in serial

multistage manufacturing processes.

)1,()1,(, ii )1,()1,(,  iiii 

),(),(, nini 

WS 1

(node 1)

WS i

(node i)

WS i+1

(node n+1)

WS n

(node n)

Input
Output

138

6.2.4 Selection probability

In all the implementations of ant algorithms, an ant chooses a move to go from its current

state (workstation), to the next adjacent state (workstation), based on a rational combination

of two factors, namely the desirability (heuristic information ij) of that move and the

quantity of pheromone on the edge which is to be traversed ij . In the AOIS problem, ants

prefer workstations connected by arcs with a high pheromone trail. In the AOIS problem,

when located at workstation i, ant k moves to workstation j chosen according to the

probability distribution given by equation (6.3):
















  




k
i

k
i

Nr irir

ijij

k
ij

Nj

Nj
t

t

tp k
i

if0

if
][)]([

][)]([

)((6.3)

where  and  are the parameters that determine the relative dependence on pheromone

trail intensity and local information, respectively, and
k
iN is the feasible neighbourhood of

ant k, that is, the set of workstations which ant k has not yet visited.

6.2.5 Pheromone updating rule

In the MMAS, only one single ant is used to update the pheromone trails after each iteration.

Consequently, the modified pheromone trail update rule is given by equation (6.4):

)(Δ)()1()1(ttt best
ijijij  (6.4)

)(Δ best tij is defined by equation (6.5).











otherwise0

ant by used is) ,(arc if
)()(Δ

kji
sf

Q

t bestbest
ij (6.5)

where)(bestsf denotes the solution cost (inspection plan cost) of either the iteration-best (s
ib

)

or the global best solution (s
gb

) and Q is the total amount of pheromone deposited by an ant

139

on the edges of the path. However, the particular value of Q does not have a significant

influence on the final performance of the algorithm (Dorigo et al., 1996; Zhi-He, 2008).  Is

the pheromone evaporation rate; in order to avoid unlimited accumulation of the trail, the

value of  should be (0 <  ≤ 1).

In the AOIS problem, a mixed strategy between gbS and ibS is used to update the pheromone

trail. This is done to obtain gradually shifting emphasis from the iteration-best to the global-

best solution for the pheromone trail update. A transition between a stronger exploration of

the search space early in the search to a stronger exploitation of the overall best solution later

in the run can then be achieved (Stützle and Hoos, 2000; Wong and See, 2009).

6.2.6 Pheromone trail limits

Stützle and Hoos (2000) proposed the provision of dynamically evolving bounds on

pheromone trail intensities such that the pheromone intensity on all paths is always within a

specified range. As a result, all paths will have a reasonably good probability of being

selected and, thus, a wider exploration of the search space is encouraged. The MMAS uses

upper max and lower min bounds to ensure that pheromone intensities are set within a given

range. By limiting the range of values for the pheromone trail, this influences the pheromone

trails such that one can easily avoid large relative differences between the pheromone trails

during the employment of the algorithm. In the AOIS problem, after updating the pheromone

trail at the end of an iteration, the following operation will be applied to the pheromone trail

on both edges and points as shown in equation (6.6):























max
old

max

max
old

min
old

min
old

min

)(,

.),(

)(,

)(









t

t

t

tnew
 (6.6)

140

The upper and lower pheromone bounds are calculated as shown in equations (6.7 and 6.8).

)(

1

1

1
max

optsf



 (6.7)

where max is the maximal pheromone trail and opts is the estimated optimal inspection plan

that has the lowest cost.

n

n

best

best

pavg

p






)1(max

min
 (6.8)

where min is the minimal pheromone trail and pbest is the probability; the best values for pbest

are 0.05 (Ridge, 2007 and Stützle and Hoos, 2000). avg is the average number of options

available the ant has to choose from at any decision point (an ant has to choose among
2

n

workstations (n= number of workstations)). The best solution found is constructed with a

probability pbest which is significantly higher than 0.

6.2.7 Termination condition

Algorithms require a termination condition to control the computational time, similar to other

metaheuristics such as genetic algorithms, Tabu search, simulated annealing. This can be

done in a number of ways, e.g. repeating the algorithm for a maximum number of iterations,

running for a stipulated time and the maximum CPU time has been spent. In this research, it

was decided to run the algorithm until the maximum number of algorithm iterations had been

reached. This type of termination was used by many of studies (e.g. Liang and Smith, 2004,

Ning, 2010, Thepsonthi and Özel, 2012).

 6.3 Improving constructed solutions through local search

As described in chapter 5 that none of the previous metaheuristics methods in the literature

review used local search to improve their performance. It has been shown that in other area

141

metaheuristics with local search perform better than metaheuristics without local search

optimisation (Duda, 2006). Particularly, in ACO, it has been shown that local search applied

to the solutions that the ants have constructed can improve the performance of an ACO

algorithm, and to yield high quality solutions (Merkle et al., 2002). In addition, the local

search is part of the DaemonActions of the ACO algorithm as described in chapter 5.

The local search mechanism known as iterative improvement is used to improve the

performance of the MMAS algorithm. It replaces the current solution with a better one and

stops as soon as no improved neighbouring solutions can be found. In the AOIS problem,

while running the MMAS algorithm when all inspection stations have been allocated to

workstations, a complete solution has been constructed by an ant. The constructed solution is

represented in the inspection plan with its total cost. Because of the metaheuristics methods

which were used to solve the AOIS problem none of them used local search. Therefore, many

local search methods in other problems such as vehicle routing problems, quadratic

assignment problems, travelling sales man problems and job scheduling problems are

investigated. In this research, six neighbourhood structures which are well-known in these

problems are used to improve the performance of the MMAS algorithm (Goksal et al., 2012;

Deroussi et al., 2006). Consider a serial multistage manufacturing process consisting of six

workstations. Figures 6.3-6.8 show the inspection plan which is constructed by an ant (old

inspection plan) for the six workstations where 0: no inspection and 1: an inspection is

located after a workstation k. The constructed inspection plan is improved by applying six

neighbourhood structures. These neighbourhood structures are explained as follows:

Crossover: a two-point crossover sets two crossover points at random, and takes a section

between the points from the inspection plan. In the following example, the two crossover

points are set after the second and fourth inspection stations respectively. The symbol |

indicates a crossover point. The resulting two-point crossover has the effect of dividing the

142

inspection plan into three parts. Recombining the three parts result in the creation of a new

inspection plan, as shown in Figure 6.8.

Interchange: randomly interchange two inspection stations that may not be adjacent in the

created inspection plan, as shown in Figure 6.9.

Swap: two neighbourhood inspection stations are swapped randomly in the created

inspection plan, as shown in Figure 6.10.

0 1 0

0 1 0 0 1 1 old inspection plan

new inspection plan 1

1 0

Figure 6.8: Two-point crossover

0 0 0

0 0 1 0 1 1 old inspection plan

new inspection plan 1

1 1

Figure 6.9: Interchange two inspection stations

0 0 1

1 0 0 0 1 1 old inspection plan

new inspection plan 1

0 1

Figure 6.10: Swap two neighbourhood inspection stations

143

Single insertion: one inspection station is picked randomly and then inserted into all the

positions of the created inspection plan, as shown in Figure 6.11.

Delete and add: delete one inspection station randomly in the created inspection plan, and

then add it randomly in a new position in the inspection plan, as shown in Figure 6.12.

Block insertion: two inspection stations are picked randomly and then inserted into all the

positions of the created inspection plan, as shown in Figure 6.13.

Figure 6.12: Delete and add one inspection station

0 1 0 0 1 1 old inspection plan

0 0 1 0 1 1

new inspection plan

old inspection plan with

deleted inspection station
0 1 0 1 1

0 1 0 0 1 1

0 1 0 0 1 1 old inspection plan

new inspection plan

Figure 6.13: Insert two inspection stations through the inspection plan

1 1 0 0 1 0

0 1 0 0 1 1 old inspection plan

new inspection plan

Figure 6.11: Insert one inspection station through the inspection plan

144

To yield a further reduction in run-time and to focus the local search around the part where

potentially improvement can be found don’t look bits are used. Don‟t look bits were first used

in the context of local search for the TSP in Bentley (1992). More recently, it was used by

Ferreira et al. (2012). This technique is extended in a straightforward way to the AOIS

problem. For the AOIS problem, every inspection station is associated with a don‟t look bit.

When first applying local search, all the don‟t look bits are turned off (set to 0). If for an

inspection station no improving move is found, the don‟t look bit is turned on (set to 1) and

the inspection station is not considered as a starting inspection station in the next local search

iteration. If an inspection station is involved in a move and changes its location, the don‟t

look bit is turned off. It should be noted that by applying the local search method to the

created inspection plan (old inspection plan), the total cost of the new inspection plan is

changed. This research focuses on minimising the total manufacturing cost of a product. The

objective function (total cost) is calculated for each new inspection plan created by applying

local search. Whenever an improvement of the objective function is detected, the new

solution replaces the old one, and the process continues until no further improvement is seen.

The improved solutions are then used to update the pheromone trails. All these

neighbourhood structures are applied to the MMAS algorithm and then compared in terms of

the solution quality and processing time needed by each of these local searches.

There exist a large number of possible choices when combining local search with ACO

algorithms. Some of these possibilities relate to the fundamental question of how effective

and how efficient the local search should be. In fact, in most local search procedures, the

better the solution quality returned, the higher the computation time required. This translates

into the question whether for a given computation time it is better to frequently apply a quick

local search algorithm that only slightly improves the solution quality of the initial solutions,

145

or whether a slow but more effective local search should be used less frequently. These issues

will be considered in the conducted experiments in chapter 8.

6.4 Pseudo-code of the max-min ant system

In this section, the elements discussed above are synthesised to evolve the proposed MMAS

algorithm. The pseudo-code of the developed max-min ant system for the AOIS problem is

outlined in the following procedure:

Initialise

 Set values of parameters number of ants, max-iterations, α, ß and ρ

 Initialise pheromone trails matrix

 Calculate the heuristic information

 While (termination condition not met) do

 Randomly place each ant in one node

 For k = 1 to A (number of ants)

 For i =1 to number of inspection stations

 Choose the next workstation to visit according to the stochastic

decision rule using equation (6.3)

 Assign inspection station

 End for

 End for

 Calculate the objective function (total cost) S

 Apply local search S 

 If)(Sf  <)(Sf

 S = S

 End

 Update pheromone trails

 Check upper and lower pheromone trails

Check stopping criterion

 End While;

 Return the best solution found

146

6.5 Conclusion

The MMAS algorithm was developed for tackling the AOIS problem in serial multistage

manufacturing processes. The algorithm assumes that there are limited inspection stations

available and allocating inspection stations reduces the total manufacturing cost. The MMAS

uses a mixed strategy between the best global ant and best local ant to update the pheromone

trails in order to obtain the best performance. The advantage of using a constructive

algorithm such as the developed MMAS algorithm is that by generating reasonably good

initial solutions, the following local search needs fewer iterations to reach a local optimum.

Tow heuristic information methods have been created for the AOIS problem. These heuristic

information methods are inspired by the characteristics of the AOIS problem, in particular

operation cost, defects rate and inspection cost. Six local search methods for the AOIS

problem have also been constructed. The MMAS algorithm is combined with local search in

order to enhance the performance and to yield a high quality solution. Well tuned parameters

are needed to efficiently initiate the MMAS algorithm and a method to find optimal

parameter settings has been investigated in the course of this research.

147

Chapter 7

Case studies selection

The max-min ant system algorithm was developed to tackle the AOIS problem in the

previous chapter. To test the effectiveness of the MMAS algorithm, it must be compared

against other search methods. An important issue for the comparison of algorithms is the

identification of appropriate case studies. In this chapter, different case studies were

investigated. The aim was to select appropriate case studies to assess the performance of the

MMAS algorithm. A total of 44 cases were taken from the literature and studied in terms of

their characteristics. This led to dividing the cases into two groups. The first group includes

cases which relatively match with the developed general cost model (GCM) in terms of the

assumptions of the developed GCM. As a result, the cases which are more appropriate to the

GCM will be selected. The second group includes rejected cases which do not match with the

GCM developed, in terms of the assumptions of the developed GCM. The following section

describes the characteristics of these case studies followed by the assumptions of the

developed GCM.

7.1 Characteristics of the case studies

The aim was to find case studies with characteristics considered appropriate for the GCM.

The GCM was developed under the assumption of a limited number of inspection stations

available. Similarly, the objective of almost all the case studies reviewed was to determine

inspection points in a serial multistage manufacturing process in order to minimise the total

cost. The characteristics of the case studies include production configuration, number of

workstations, number of inspection stations, manufacturing cost, inspection errors, inspection

148

cost, internal failure cost, external failure cost, constraints and solution approach. All these

characteristics were described in details in chapters 2 and 3.

Most of the characteristics which were included in these case studies are described above.

The aim was to find suitable case studies to assess the developed MMAS algorithm. The

assessment of the case studies will be based on the assumptions of the GCM.

7.2 Assumptions of the general cost model

The developed GCM is focused on a serial multistage manufacturing process. It takes into

account the constraints on inspection resources. As a result, the total manufacturing cost of a

product can be reduced without affecting the quality of the product. The GCM for a serial

multistage manufacturing process is based on the following assumptions which should be

taken into consideration during the assessment of the case studies:

 Production configuration is assumed to be a serial multistage manufacturing process.

 There is a limited number of inspection stations (e.g. a limited budget) to be

distributed in the production line.

 The aim of the objective function is to minimise the total manufacturing cost while

maintaining the quality of the product. The total system cost is the sum of the total

cost of processing and inspecting the parts produced in the system.

 Sample inspection is used if an inspection station is located after a workstation in the

sequence.

 No more than one inspection station can be assigned after each workstation.

Table 7.1 shows the case studies which are relatively closely well-matched to the GCM. Each

case study is represented by the first author‟s name followed by a two-digit publication year.

The order of case studies is organised in chronological order by the year in which the paper is

published. It should be noted that (Yes) means that this characteristic was included in the case

149

study and (-) means that this characteristic was not included in the case study. To simplify the

selection procedure, the following criteria were used to select the appropriate case studies:

 Data availability

As can be seen from Table 7.1, there are some data which were not considered in the

developed models used by the authors, such as replacement cost and external cost in case

study (1). This might have occurred for the sake of simplicity in order to allow a tractable

formulation model and solution. On the other hand, some data in the case studies are missing.

For example, in case study (3), some data were not given, such as the quantity of items

entering the system, the number of inspection stations and the penalty cost. In case study (5),

the authors included the external failure cost in their model (replacement and repair costs),

but values were not given for the experiment parameters or the scrap cost in the internal

failure cost. In case (6), the unit inspection cost was not provided by the authors. In case

study (12), the case included only inspection and scrap costs but did not provide the input

material (number of items entering the system), unit scrap cost or unit inspection cost.

 Matching to the general cost model

In this section, the purpose is to look for cases that considered similar assumptions as the

developed GCM. In addition, how these assumptions were treated through the case study was

evaluated, taking into consideration that some assumptions might be adapted or reconsidered.

For example, some case studies assumed that inspection was error free. In the GCM in

chapter 3, both types of errors were incorporated into the GCM. This assumption was adopted

in the developed GCM simply by setting parameters of inspection errors α=0 and β=1. In case

study (1), the authors were interested in the reliability of each machine and the inspection

time. These issues were not included in the developed GCM. In case study (2), although the

case considered a limited number of inspection stations, they assumed that multiple

inspection stations might be located after a workstation.

150

 Table 7.1: Characteristics of case studies relatively closely match with the GCM

Case

study

number

Author
Production

Configuration

Number

of WS

Number

of IS

Man

cost

Inspection

error

Inspection cost Internal failure cost
External failure

cost
Constraints

Solution

approach Fixed

Variable

Repair/
Rework

cost

Scrap cost
Repair

cost

Repl.

cost

1 Park (88) Serial 4 _ Yes Free of

error

Yes Yes Yes Yes _ _ _ IP

2 Raz (91) Serial 10 Multiple Yes I and II _ Yes Yes _ Penalty cost _ B&B

3 Viswanad-

ham (96)

Serial and

assembly

5-25 _ Yes I and II _ Yes Yes Yes Penalty cost

_ GA and SA

4 Bai (96) Serial 4-10 1-3 _ I and II _ Yes Yes _ Penalty cost

Limited

inspection

stations&

rate of

inspection

DP

5 Lee (98) Serial _ _ Yes I and II Yes Yes Yes Yes Yes Yes Limited

inspection

stations &

inspection

time

Heuristics

6 Shiau (02) Serial 7 2,3,5 Yes I and II _ Yes Yes Yes Yes Yes Limited

inspection

stations

Heuristics

7 Langner

(02)

Serial 6 _ Yes I and II _ Yes Yes _ _ _ AOQL GA

8 Shiau (03a) Serial 7 3 Yes I and II _ Yes Yes Yes _ _ Limited

inspection

stations

Heuristics

9 Shiau (03b) Serial 5 3 Yes I and II _ Yes Yes _ Yes Yes Limited

inspection

stations

Heuristic

10 Rau (05) Serial 6-16 _ Yes I and II Yes Yes Yes Yes Penalty cost

_ Heuristic

11 Shiau (07) Serial 5 3 Yes I and II _ Yes Yes Yes Yes Yes Limited

inspection

stations

GA

12 Sadegheih

(07)

Serial 10 3 – Free of

error

_ Yes _ Yes _ _ – GA

13 Van Volsem

(07)

Serial 6 _ _ Free of

error

_ Yes Yes _ Penalty cost

_ GA

Man.: manufacturing, Repl.: replacement, I and II: Type I and type II inspection errors, AOQL: average of outgoing quality level.

151

On the other hand, in the GCM, it is assumed that no more than one inspection station can be

assigned after each workstation. In case study (4), the case included assumptions such as the

rate of processing, the rate of production and the rate of inspection. All these assumptions are

not incorporated in the GCM. In case study (7), the objective function was constrained by the

average outgoing quality level which is not included in the GCM. In addition, the number of

items to be inspected was randomly based on a sample size selected at each workstation.

However, in the GCM, when inspection is performed, 100% of items are inspected. In case

study (13) the case was interested in determining the rigor of the inspections (acceptance

limits) for each inspection station. These issues are not included in the GCM.

The case studies used various optimisation methods to solve the AOIS problem. These

optimisation methods included exact and approximate methods. It should be noted that most

of these case studies used the total manufacturing cost and processing time to test the

performance of their optimisation methods against the optimal solution. The optimal solution

was obtained using the complete enumeration method (CEM). The CEM checks for all

possible combinations of inspection plans in the search space. As a result, the quality of the

solution obtained by a method can be measured by its closeness to the optimal solution. The

running time is the processing time required to execute the computer programmes for

problem-solving in a computer system. It was found that case studies (8) and (9) were nearly

identical in terms of the experiment parameters used, and both of them used the heuristic

method to approach the AOIS problem. Because case study (9) is more appropriate for the

GCM, and also because case study (8) did not consider the external cost, case study (8) was

therefore excluded from consideration.

7.3 Cases not matching the general cost model

Table 7.2 shows the cases which were reviewed and investigated but rejected because their

characteristics, constraints and assumptions did not match with the developed GCM.

152

 Table7.2: Characteristics of case studies not match with the GCM

Case

study

number

Author
Production

Configuration

Number

of WS

Number

of IS

Man

cost

Inspection

error

Inspection cost Internal failure cost
External failure

cost
Constraints

Solution

approach Fixed

Variable

Repair/

Rework
cost

Scrap cost
Repair

cost

Repl.

cost

14 Lindsay

(64)

Serial 9 _ _ Free of

error

_ Yes _ Yes _ _ AOQL DP

15 White (65) Serial 6 _ _ Free of

error

_ Yes _ Yes _ _ _ DP

16 Pruzan (67) Serial 5 _ Yes Free of

error

Yes Yes _ Yes _ _ _ DP

17 White (69) Serial 5 _ Yes Free of

error

Yes Yes Yes Yes Yes _ _ DP

18 Eppen (74) Serial 9 _ _ I and II _ Yes _ Yes _ _ DP

19 Enrick (75) Serial _ _ Yes I and II _ Yes Yes _ _ _ DP

20 Ballou (82) Serial 3 _ _ I and II _ Yes _ Yes Penalty cost – NLP

21 Peters (84) Serial 13 _ Yes Free of

error

Yes Yes Yes Yes Penalty cost – DP

22 Hsu (84) Serial 4 _ Yes Free of

error

_ Yes _ Yes _ _ DP

23 Gunter (85) Assembly 9 _ – Free of

error

Yes Yes Yes _ _ _ DP

24 Ballou (85) Serial 3 _ Yes I and II _ Yes _ _ Penalty cost _ NLP

25 Raz (87) Assembly 5 _ _ I and II _ Yes _ Yes _ _ I and II B&B

26 Yum (87) Serial 3,10 _ Yes I and II _ Yes Yes Yes _ _ _ LP

27 Tayi (88) Serial 5 _ Yes Free of

error

_ Yes Yes Yes Penalty cost

_ NLP

28 Barad (90) Serial 8 _ Yes Free of

error

_ Yes Yes _ _ _ _ Heuristic

29 Raghava-

chari (91)

Serial 5 _ Yes Free of

error

Yes Yes Yes Penalty cost – DP

30 Chengalur

(92)

Serial

3 _ Yes I and II _ Yes _

Yes Penalty cost

Limited

inspection

stations

DP

153

 Table7.2: Characteristics of case studies not match with the GCM (continued)

Case

study

number

Author
Production

Configuration

Number

of WS

Number

of IS

Man

cost

Inspection

error

Inspection cost Internal failure cost
External failure

cost
Constraints

Solution

approach Fixed

Variable

Repair/

Rework
cost

Scrap cost
Repair

cost

Repl.

cost

31 Taneja (94)

Non-

serial/serial

5 _ Yes I and II _ Yes _ Yes _ _ AOQL and

Limited

inspection

stations

GA

32 Jewkes (95) Serial _ _ _ Free of

error

_ Yes Yes _ Yes _ _ NLP

33 Narahari

(96)

Non-serial 4 _ _ Free of

error

_ _ Yes Yes _ _ NLP

34 Deliman

(96)

Serial 5 Yes II _ Yes Yes Yes Penalty cost

_ MDP

35 Chen (99) Assembly _ _ Yes Free of

error

_ Yes Yes Yes _ _ SA

36 Jang (02) Serial 6 _ Yes Free of

error

Yes _ Yes _ _ _ Limited

inspection

stations

MDP

37 Kogan (02) Serial 6 5 _ Free of

error

_ Yes _ _ Penalty cost

_ NLP

38 Emmons

(02)

Non-serial 9 _ Yes Free of

error

_ Yes _ _ _ _ _ Heuristic

39 Hadjinicola

(03)

Assembly 3 _ Yes Free of

error

_ Yes Yes Yes _ _ _ NLP

40 Kakade

(04)

Serial 2 _ _ Free of

error

_ Yes Yes _ Penalty cost

Rate of

inspection

SA

41 Valenzuela

(04)

Serial 2 _ Yes Free of

error

_ Yes Yes _ Penalty cost

_ TS

42 Rau et

al.(05)

Non-serial 4,8,16 _ _ I and II Yes Yes Yes Yes Penalty cost Limited

inspection

stations

Heuristic

43 Penn (06) Assembly 8 _ Yes Free of

error

Yes Yes _ Yes Penalty cost

_ DP

44 Galante

(07)

Serial 10 _ Yes I and II _ Yes _ _ Penalty cost

_ GA

154

For example, some of them studied different system structures such as assembly and non-

serial systems, as in case studies (23) and (25). Some others were interested in studying

different issues in their case studies. For example, in case study (27), the case study was

interested in quality control procedures, in-process inventory and reprocessing. Furthermore,

in case study (44), both inspection allocation and operation scheduling were included

concurrently. These issues are not included in the GCM.

7.4 Conclusion

Based on these assessments explained above, cases (10) and (11) were selected to be used as

testing problems for the developed GCM. Most of the assumptions of the developed GCM

were matched by the selected cases. It should be noted that some assumptions will need to be

adapted. For example the selected case study (10) used the average deviation from the optimal

solution (DFOS) and the standard deviation of DFOS to measure the solution quality of their

method. However, the case study did not specify the number of cases generated by each size

of workstation. Therefore, in experiments, each size of workstation should randomly generate

a number of cases using a uniform random number generator in order to calculate the average

DFOS and standard deviation of DFOS. Also, in case study (10), items of external failure cost

were represented as aggregated (penalty cost). This assumption will be adapted in the

developed GCM. In addition, in case study (10), the number of inspection stations to be

located is missing. To adopt this assumption, the developed GCM will be tested with various

numbers of inspection stations.

In case study (11), the defective rate and the inspection errors were not specified by the

author; therefore, they will be assumed based on similar values used in the earlier literature

review in chapter 2. Also, the penalty cost will be assumed to match the complexity of the

problem. However, the penalty cost usually depends on the kind of the product produced by

the company and its complexity.

155

All the selected cases tested their optimisation methods by using processing time and total

cost against the optimal solution obtained by CEM. The aim of all the selected cases was to

minimise the total manufacturing cost. In addition, all the selected cases used inspection of

100% of items if inspection was needed after a workstation. The selected cases will be used to

assess the developed MMAS algorithm as presented in chapter 10. To solve the AOIS

problem using the developed MMAS algorithm, must first the MMAS parameter values be

tuned very well. A method has been proposed to find the optimal combination of the most

influential parameter values of the MMAS algorithm. This method is presented in the next

chapter.

156

Chapter 8

Tuning MMAS parameters

The AOIS problem has been approached using a number of different techniques reported in

next chapter that vary in their methods and efficiency. These methods are SA, GA, PSO and

MMAS algorithm. It is well known that metaheuristic methods are highly dependent on their

parameters setting. The metaheuristic is instantiated with several parameters which have to be

set manually. Solving problems with the metaheuristic methods is related to the parameter

settings concerned in the algorithm, and a good parameter combination will provide the

algorithm with overall search capability and a fast convergence rate. In contrast, with

unsuitable parameter values, the algorithm convergence will be too fast or too slow, and may

prevent the algorithm from finding the best solution. To solve the AOIS problem using the

developed these algorithms, parameter values for these algorithms must first be tuned very

well. A method has been developed to find the optimal combination of the most influential

parameter values of the SA, GA, PSO and MMAS algorithms for tackling the AOIS problem

in this chapter.

8.1 Experimental framework

A multistage manufacturing system model consisting of 12 processing workstations arranged

in a serial manner was used to allocate five inspection stations. The sample size sk is set at 80

and the acceptance number (ak) for workstation k is set at 1. This case study will be labelled

as the „„general cost model case study‟‟. For this number of workstations, the full

enumeration of the search space can be generated in a reasonable time. It should be noted that

in the AOIS problem, an inspection station is placed only after the workstation which is in

need of inspection. For example, assume that the constructed inspection plan for the general

157

cost model case study was (011110000001); this means that inspection is performed only

after the second, third, fourth, fifth and last workstations. Table 8.1 shows the experimental

parameters of the developed general cost model and their ranges.

 Table 8.1: Experimental parameters for the general cost model case study

The experimental parameters were set based on similar experiments in the literature, and the

results can be easily interpreted using simple mathematics. These experimental parameters

were used to generate 50 different cases. These cases were randomly generated in order to

represent the characteristics of different manufacturing systems. In other words, these cases

represent 50 different problems. The experimental parameters for the general cost model case

study in Table 8.1 are described below:

1. Batch size (B). This is the number of units entering the system.

2. Manufacturing cost (Uk). This is the unit cost of producing one unit at processing

workstation k.

3. Inspection cost (ICm). This is the unit cost of inspecting one unit at inspection station m

located after processing workstation k.

Parameters Range Brief description

B 1000 Batch size

Uk [50, 100] Unit manufacturing cost (£)

ICm [40, 50] Unit inspection cost (£)

Zk [0.09, 0.18] Defective rate

αm [0.01, 0.03] Type-I inspection error

βm [0.01, 0.03] Type-II inspection error

uk [30, 120] Unit scrapping cost (£)

gk [40, 80] Unit reworking cost (£)

δk [0.05, 0.09] Repairing probability

158

4. Probability of non-conforming (Zk). This is the probability of producing a non-

conforming unit at processing workstation k.

5. Probability of type I error (αm). This is the probability that an inspection station m

placed after processing workstation k classifies a CU unit as an NCU, and rejects it.

6. Probability of type II error (βm). This is the probability that an inspection station m

placed after processing workstation k classifies an NCU as a CU and forwards it for

further processing.

7. Unit scrapping cost (uk). This is the unit cost of scrapping one unit at processing

workstation k.

8. Unit rework cost (gk). This is the unit cost of reworking one unit at processing

workstation k.

9. Probability of repairing a defective unit (δk). This is the probability of repairing a

defective unit at processing workstation k.

8.2 Experimental design

To evaluate the performance of the MMAS algorithm, the results obtained by these methods

were compared against the optimal results which were obtained by the complete enumeration

method. The aim is to measure deviation from optimal solution (DFOS) for the results

obtained by the developed algorithms. In AOIS problem, the total cost (TC) is the sum of

processing and inspecting the parts produced in the system as described in chapter 3. Solution

quality can be measured by the closeness of the developed algorithms solution to the optimal

solution. In other words, the solution quality of a method is indicated by the DFOS. The

DFOS is calculated as given by equation (8.1):

 %1
CEMofTC

algorithmofTC
DFOS 








 (8.1)

159

The complete enumeration method (CEM) is very well-known and has been used as a

benchmark by many of studies in the literature. This is because the CEM checks for all the

possible combinations of inspection plans in the search space. An advantage of using the

complete enumeration method is that the optimal solution is known. It should be noted that in

the AOIS problem, an inspection station is placed only after the workstation which is in need

of inspection.

The following steps describe the complete enumeration method:

Step1: Generate all possible location combinations of inspection plans for the general cost

model case study. Store the generated inspection plans in the database.

Step2: Filter inspection plans by checking all inspection plans as to whether they fit the

constraint to the required number of inspection stations (a limited number of

inspection stations). If an inspection plan matches the number of inspection stations

required, this inspection plan will be considered. If this condition is not met, the

inspection plan will be rejected, because it is unnecessary to check the inspection

plans for unsatisfactory assignment location combination. Store the filtered inspection

plans in database.

Step3: Evaluate all filtered inspection plans which match the number of inspection stations

required. Store the evaluated inspection plans in the database.

Step4: Determine the feasible inspection allocation plan that has the lowest total cost.

CEM was used as benchmark to test the performance of the developed method under the

tested parameters. To do so, the MMAS approached the AOIS problem using the specified

parameters. The experimental parameters in Table 8.1 were used to generate 50 different

cases. These cases were randomly generated in order to represent the varying characteristics

of different manufacturing systems. The parameter combination yielded 252 different

parameter combinations and the MMAS algorithm was then applied on 50 different cases.

160

For each of the 50 test cases, 800 evaluations were performed by the algorithms and repeated

30 times to generate average deviation from optimal solution (DFOS) for the test cases.

8.3 Tuning MMAS parameters

The study of the impact of various parameters on the behaviour of ACO algorithms has been

an important subject since the first articles by Dorigo et al. (1991a, 1996). Using good

parameter values for the MMAS algorithm is important both with the respect to efficiency

and effectiveness. Tuning the parameters for any optimization algorithm is at least as

important as designing the algorithm itself.

8.3.1 Summary of MMAS parameters

This section will introduce a summary of MMAS parameters.

α : Controls the relative importance of pheromone level (ij) of the ant in the process of

movement when guiding the ant colony search. Its size reflects the strength of random factors

in the path search of the ant colony, and it should be a positive value. A value of zero would

turn the algorithm into a standard greedy one, since no pheromone information would be used

(Gaertner, 2004). On the other hand, higher values cause the ants to perform too little

exploration.

β : Reflects the degree of importance of the heuristic information (ij) and the importance of

the location of inspection stations relative to workstations. With higher β values, a lot of

exploration will occur during the execution of the algorithm. In other words, the greater the β

value, the greater the chance that the ant will choose the nearest node, and the convergence

rate in the search will accelerate, but the algorithm may be easily trapped into a local optima.

On the other hand, a β value of zero means that the desirability of locating an inspection

station is completely irrelevant, and only the pheromone trail level is used by the algorithm to

choose which path to take.

161

ρ : Controls the evaporation of pheromone in the environment. It indicates the pheromone

volatilisation factor, and its size is directly connected to the global search ability and the rate

of convergence of the ant colony algorithm. It is intuitively limited by 10   . Pheromone

evaporation reduces the influence of the pheromones deposited in the early stages of the

search, when artificial ants can build poor-quality solutions (Dorigo and Stützle, 2004). 1-ρ is

the pheromone residue factor, reflecting the degree of interaction between individual ants.

When 1 , the pheromone is wiped after every iteration. A value of 0 would lead to

continually increasing pheromone levels since the pheromone would never evaporate

(Gaertner, 2004).

0 : Specifies the initial pheromone level on all edges. Intuitively, the pheromone trail

strength (pheromone trail matrix) in the MMAS algorithm is initialised as the maximum max

possible trail strength for all edges. This type of trail initialisation is chosen to increase the

exploration of solutions during the first iterations of the algorithm. Also, the initial

pheromone trail 0 could be set to any value, because after the first iteration, the pheromone

trail will be forced to fall within [maxmin ,].

max : This is the maximum possible pheromone trail or the largest possible amount of

pheromone added after any iteration. It is calculated by equation (6.7). In the AOIS problem,

opts is the optimal inspection plan that has the lowest cost and is used to determine an

appropriate value for max . Clearly, the optimal solution value is not known before running

the algorithm and opts

is used as an estimate of that value. Consequently, the upper trail

limit is adapted during the running of the algorithm.

min : This is the minimum possible pheromone trail, and is calculated by equation (6.8).

Many other authors use a different equation to determine min ; for example, Ridge (2007)

162

calculated the lower trail limit
n2

max
min


  , where n is the problem size (e.g. the number of

workstations), and Stützle (1998b) set the lower pheromone trail limit to
3

max
min


  .

pbest: This is the probability that an ant will construct the best solution. The experimental

results in different areas confirmed that the best value of pbest

is 0.05. Examples are Afshar

(2009) in network optimisation problems, Stützle and Hoos (2010) in QAP and Shuang et al.

(2011) in TSP.

numAnts: Represents the number of ants used by the algorithm. Clearly, the more ants used,

the slower the algorithm will be. On the other hand, using too few ants means that no

meaningful pheromone matrix is created and the search will take more iterations to find the

best solution. It should be noted that, when the MMAS was applied to the TSP without

considering local search, the best results were obtained by increasing the number of ants

proportionally to the instance size. However, this option may not be the best when local

search is added to the MMAS algorithm (Stützle, 1998b, Stützle and Hoos 2010).

Q: This is the total amount of pheromone released on all paths by the ants in one cycle. The

experimental results conducted by Dorigo et al. (1996) and Zhi-He (2008) showed that the

pheromone strength Q has no obvious influence on the performance of the ant colony

algorithm.

Max-cycles: Controls the number of iterations of the algorithm. Fewer iterations will not be

enough to produce good solutions, and increased iterations may lead to unsatisfactory

efficiency of the computation. In the AOIS, the MMAS is terminated when the maximum

number of algorithm iterations has been reached.

In summary, using good parameter values for the MMAS algorithm is important both with

respect to efficiency and effectiveness. With so many parameters, many of which seem to

interact non-linearly with each other, establishing the optimal values for all parameters is a

163

very time-consuming task. From the description of these parameters, it can be seen that the

selection of ,  and in the MMAS algorithm has the greatest influence on algorithm

performance. Further, many researchers in different area pointed out that these parameters are

the most important parameters and have great influence on the performance of MMAS, Ning

et al (2010) in layout problems, Fidanova et al. (2011) in Multiple knapsack problems, Wu et

al (2011) in QAP, and Liang et al. (2012) in scheduling problems. A method to optimise the

most influential parameters , and is presented in this chapter.

8.3.2 MMAS parameter settings

The parameter values used in ACO algorithms are often very important in obtaining good

results. Dorigo and Stützle (2002) suggested that the exact values of the parameters are often

problem-dependent. Unless indicated otherwise, the following parameter settings were used:

 - Controls the relative importance of pheromone. The values: low [0.6, 0.8, 0.9],

medium [1, 2, 3, 4, 5] and high [6, 7, 8, 9, 10] of this parameter were tested for

tuning the algorithm.

 - Controls the ratio between the importance of pheromone and the importance of

the location of inspection stations. The values [0, 1, 2, 3, 4, 5] of this parameter

were tested for tuning the algorithm.

0 - Specifies the initial pheromone level on all edges. This matrix of initial

pheromone was set to max . Stützle and Hoos (2000) have explained that this

should be fairly high to encourage initial exploration during the first iterations.

bestp

-

Probability =0.05 as suggested by Stützle and Hoos (2000) and Ridge (2007).

 - Controls the evaporation of pheromone in the environment, and is always set in

the range 10   .  was tested with the values [0.01, 0.02, 0.05].

Q- Q=n, where n is the number of workstations (Spiliopoulos and Sofianopoulou,

2008).

164

max-

cycles

Controls the number of iterations of the algorithm, the maximum iterations is set

at 800.

To explore better solution components and to avoid premature convergence of the MMAS

algorithm, a mixed strategy was used to update pheromone trails. In the first 300 iterations,

the iteration best ant
ib

s is used to update the pheromone trails, and then every tenth iteration,

the global best ant gbs is used for the pheromone trails update. By gradually shifting the

emphasis from the iteration best to the global best solution for the pheromone trail update, a

transition between exploration of the search space in early stages to exploitation of the overall

best solution in later stages can be achieved.

In the conducted experiments, two possible settings for the number of ants were investigated.

In first variant, denoted as MMAS10+ls, 10 ants were used and every ant applied local search

to its tour. In the second variant, denoted as MMAS+ls+ib, the algorithm started with a fixed

number of 10 ants and then the number of ants which applied local search was then

successively increased by one after a certain number of iterations. This variant only allows

the iteration best ant to apply local search because, in this case, if all ants applied local

search, the computation times would be too long.

8.4 Results

In this section, the computational results in terms of optimal parameters for MMAS, SA, GA

and PSO algorithms are presented. The DFOS confidence interval (95%) for MMAS is also

presented. Variations in  and for the MMAS algorithm are discussed.

8.4.1 Optimal parameters for MMAS

Table 8.2 shows the average DFOS obtained by the MMAS10+ls algorithm for the studied

case. The performance of the MMAS10+ls algorithm was tested against the CEM using

equation (8.1) under the studied parameters.

165

 Table 8.2: Average
*
DFOS for the MMAS10+ls algorithm (shading indicates the best result)

 β α 0.6 0.8 0.9 1 2 3 4 5 6 7 8 9 10

0 ρ=0.01

18.6 18.6 18.6 18.5 18.5 15.5 15.5 14.5 18.6 18.6 18.6 18.6 18.6

ρ=0.02 18.6 18.6 18.6 18.6 18.6 18.6 18.6 18.6 18.9 18.9 18.9 18.9 18.9

ρ=0.05 18.6 18.6 18.6 18.6 18.6 18.6 18.6 18.6 18.6 18.9 18.9 18.9 18.9

1 ρ=0.01

18.6 18.6 3.2 1.9 1.9 1.9 1.9 0.12 0.12 0.9 0.9 0.9 0.9

ρ=0.02 18.6 18.6 3.2 3.2 3.2 0.9 0.9 0.12 0.12 0.9 0.9 0.9 0.9

ρ=0.05 18.6 18.6 3.2 0.7 0.7 0.21 0.21 0.12 0.9 0.9 0.9 0.9 0.9

2 ρ=0.01 18.6 18.6 3.2 3.2 3.2 3.2 3.2 0.7 0.7 0.9 0.9 0.9 0.9

ρ=0.02 18.6 18.6 3.2 3.2 3.2 0.9 0.9 0.12 0.12 0.9 0.9 0.9 0.9

ρ=0.05 18.6 18.6 3.2 3.2 3.2 0.7 0.2 0.12 0.12 0.9 0.9 0.9 0.9

3 ρ=0.01 18.6 18.6 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 18.6 18.6 18.6

ρ=0.02 18.6 18.6 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 18.6 18.6

ρ=0.05 18.6 18.6 3.2 3.2 3.2 1.9 1.9 1.9 1.9 1.9 18.6 18.6 18.6

4 ρ=0.01 18.6 18.6 3.2 3.2 3.2 3.2 3.2 3.2 3.2 18.9 18.9 18.9 18.9

ρ=0.02 18.6 18.6 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 18.9 18.9

ρ=0.05 18.6 18.6 3.2 3.2 3.2 3.2 3.2 18.6 18.6 18.6 18.9 18.9 18.9

5 ρ=0.01 18.6 18.6 3.2 3.2 3.2 3.2

3.2

3.2 3.2 3.2 18.6 18.6 18.6 18.6

ρ=0.02 18.6 18.6 3.2 3.2 3.2 3.2 3.2 3.2 18.9 18.9 18.9 18.9 18.9

ρ=0.05 18.6 18.6 3.2 3.2 3.2 3.2 3.2 18.6 18.6 18.9 18.9 18.9 18.9

 *Each DFOS × 0.001

166

In the variant MMAS10+ls, 10 ants were used and all ants were allowed to perform a local

search. As described above, a mixed strategy between the iteration best ant and the global

best ant was used to update the pheromone trails. The algorithm was executed per (,  ,)

parameter triplet for the 50 case studies. The best average DFOS obtained by MMAS10+ls are

shaded in grey. It should be noted that this research was concerned with calculating the

average DFOS; hence, the results presented in Table 8.2 are the average DFOS, not the

optimal solution. The best combination of parameters for the MMAS10+lsalgorithm is shown

in Table 8.3.

 Table 8.3: Best combination of parameters for MMAS10+ls

Parameters

β ρ α

1 0.01 5,6

0.02 5,6

0.05 5

2 0.02 5,6

0.05 5,6

The graphics in Figure 8.1 are box-plots for different combinations of ,  and . The box

length gives an indication of the sample variability and the line across the box shows where

the sample is centred. The position of the box in its whiskers and the position of the line in

the box also tell us whether the sample is symmetric or skewed, either to the right or left. In

Figure 8.1 (a, b and c) the parameters of MMAS are kept as standard values and the

parameter is varied within its specified range. It should be noted that when 0 it means that

no heuristic information is used. The best result DFOS obtained is 0.0145. By increasing 1

, as shown in Figure 8.1 (d, e and f), the range ofvalues that obtained best results are 5 ,

6 and ρ=0.01. By increasing ρ to 0.02, the optimal range ofvalues remained the same. By

increasing ρ to 0.05, the best average of DFOS is obtained when 5 .

167

0

0.005

0.01

0.015

0.02

0.025

1 2 3 4 5 6 7 8 9 10 11 12 13

D
F

O
S

α

(a) β = 0 and ρ= 0.01

0

0.005

0.01

0.015

0.02

0.025

1 2 3 4 5 6 7 8 9 10 11 12 13

D
F

O
S

α

(b) β =0 and ρ = 0.02

0

0.005

0.01

0.015

0.02

0.025

1 2 3 4 5 6 7 8 9 10 11 12 13

D
F

O
S

α

(c) β=0 and ρ= 0.05

0

0.005

0.01

0.015

0.02

0.025

1 2 3 4 5 6 7 8 9 10 11 12 13
D

F
O

S

α

(d) β= 1 and ρ =0.01

0

0.005

0.01

0.015

0.02

0.025

1 2 3 4 5 6 7 8 9 10 11 12 13

D
F

O
S

α

(e) β=1 and ρ=0.02

0

0.005

0.01

0.015

0.02

0.025

1 2 3 4 5 6 7 8 9 10 11 12 13

D
F

O
S

α

(f) β=1 and ρ=0.05

0

0.005

0.01

0.015

0.02

0.025

1 2 3 4 5 6 7 8 9 10 11 12 13

D
F

O
S

α

(g) β=2 and ρ=0.01

0

0.005

0.01

0.015

0.02

0.025

1 2 3 4 5 6 7 8 9 10 11 12 13

D
F

O
S

α

(h) β=2 and ρ=0.02

0

0.005

0.01

0.015

0.02

0.025

1 2 3 4 5 6 7 8 9 10 11 12 13

D
F

O
S

α

(i) β=2 and ρ=0.05

0

0.005

0.01

0.015

0.02

0.025

1 2 3 4 5 6 7 8 9 10 11 12 13

D
F

O
S

α

(j) β=3 and ρ=0.01

1 2 0.6

.6

0.8

.6

0.9 3 4 5 6 7 8 9 10

1 2 0.6

.6

0.8

.6

0.9 3 4 5 6 7 8 9 10 1 2 0.6

.6

0.8

.6

0.9 3 4 5 6 7 8 9 10

2 0.6

.6

0.8

.6

0.9 3 4 5 6 7 8 9 10 1

1 2 0.6

.6

0.8

.6

0.9 3 4 5 6 7 8 9 10

1 2 0.6

.6

0.8

.6

0.9 3 4 5 6 7 8 9 10

1 2 0.6

.6

0.8

.6

0.9 3 4 5 6 7 8 9 10

1 2 0.6

.6

0.8

.6

0.9 3 4 5 6 7 8 9 10

1 2 0.6

.6

0.8.

6

0.9 3 4 5 6 7 8 9 10

1 2 0.6

.6

0.8

.6

0.9 3 4 5 6 7 8 9 10

168

0

0.005

0.01

0.015

0.02

0.025

1 2 3 4 5 6 7 8 9 10 11 12 13

D
F

O
S

α

(k) β=3 and ρ=0.02

0

0.005

0.01

0.015

0.02

0.025

1 2 3 4 5 6 7 8 9 10 11 12 13

D
F

O
S

α

(l) β=3 and ρ=0.05

0

0.005

0.01

0.015

0.02

0.025

1 2 3 4 5 6 7 8 9 10 11 12 13

D
F

O
S

α

(m) β=4 and ρ=0.01

0

0.005

0.01

0.015

0.02

0.025

1 2 3 4 5 6 7 8 9 10 11 12 13

D
F

O
S

α

(n) β=4 and ρ=0.02

0

0.005

0.01

0.015

0.02

0.025

1 2 3 4 5 6 7 8 9 10 11 12 13

D
F

O
S

α

(o) β=4 and ρ=0.05

0

0.005

0.01

0.015

0.02

0.025

1 2 3 4 5 6 7 8 9 10 11 12 13

D
F

O
S

α

(p) β=5 and ρ=0.01

0

0.005

0.01

0.015

0.02

0.025

1 2 3 4 5 6 7 8 9 10 11 12 13

D
F

O
S

α

(q) β=5 and ρ=0.02

0

0.005

0.01

0.015

0.02

0.025

1 2 3 4 5 6 7 8 9 10 11 12 13

D
F

O
S

α

(r) β=5 and ρ=0.05

1 2 0.6

.6

0.8

.6

0.9 3 4 5 6 7 8 9 10 1 2 0.6

.6

0.8

.6

0.9 3 4 5 6 7 8 9 10

1 2 0.6

.6

0.8

.6

0.9 3 4 5 6 7 8 9 10

1 2 0.6

.6

0.8

.6

0.9 3 4 5 6 7 8 9 10

1 2 0.6 0.8 0.9 3 4 5 6 7 8 9 10

Figure 8.1: Influence of parameters α, β and ρ on the performance of MMAS-10+ls

for the AOIS problem

1 2 0.6

.6

0.8

.6

0.9 3 4 5 6 7 8 9 10

1 2 0.6 0.8 0.9 3 4 5 6 7 8 9 10

1 2 0.6 0.8 0.9 3 4 5 6 7 8 9 10

169

In the case of 2 , as shown in Figure 8.1 (g, h and i), the best results were obtained when

ρ=0.01 and in the range of values of 5 and 6.This situation was repeated by increasing ρ to

0.02 and 0.05. Whenwas increased to =3, 4 and 5, as shown in Figures 8.1 (j–r), the

performance of the MMAS10+ls became ineffective for obtaining good solutions. A big

variation in the objective function value was observed when parameter  changed from 0.9 to

5. It can be seen that the performance of the MMAS algorithm is worse than in previous

cases, except for 2 . However, when  =3, 4 and 5 the variation in performance of MMAS

is not very significant.

From the analyses above, one can see that parameters ,  and ρ are significant factors. From

a sensitivity perspective, the parameters and  are sensitive parameters. This is likely

because they control the relative importance of the trail versus visibility, which relates to the

essence of MMAS.

Table 8.4 shows the average DFOS for the same number of 50 cases conducted with the

MMAS+ls+ib algorithm. In this variant, the algorithm started with a fixed number of 10 ants,

and then the number of ants applying local searches was successively increased by one after a

certain number of iterations (50). The aim was to obtain a good compromise between solution

quality and computational speed. In this variant, only the best iteration ant was allowed to

apply the local search. A mixed strategy between the best iteration ant and the best global ant

was used to update the pheromone trails. As shown in Table 8.4, the best averages of DFOS

obtained by MMAS+ls+ib are shaded grey. The best results were obtained with β=1, ρ=0.01

and in the range 7 and 8. By increasing ρ=0.02 and 0.05 the range of values which

obtained the best results decreased to 5 and 6. In the case of β =2 the best results were

obtained with 5 and 6 and ρ=0.02. By increasing ρ to 0.05 the best results are obtained

with 6 .

170

 Table 8.4: Average DFOS for the MMAS+ls+ib algorithm (shading indicates the best result)

β α 0.6 0.8 0.9 1 2 3 4 5 6 7 8 9 10

0 ρ=0.01 18.6 18.6 18.6 18.5 18.5 15 15 14.5 18.6 18.6 18.6 18.6 18.6

ρ=0.02 18.6 18.6 18.6 18.6 18.6 18.6 18.6 18.6 18.6 18.9 18.9 18.9 18.9

ρ=0.05 18.6 18.6 18.6 18.6 18.6 18.6 18.6 18.6 18.6 18.9 18.9 18.9 18.9

1 ρ=0.01 3.2 3.2 3.2 1.9 1.9 1.9 1.9 1.9 1.9 0.21 0.21 4.2 4.2

ρ=0.02 3.2 3.2 3.2 3.2 3.2 0.7 0.7 0.12 0.12 0.21 0.21 4.1 4.1

ρ=0.05 3.2 3.2 3.2 0.72 0.72 0.21 0.21 0.12 0.12 0.19 0.19 4.1 4.1

2 ρ=0.01 18.9 3.2 3.2 3.2 3.2 3.2 3.2 0.7 0.7 1.2 1.5 2.1 4.1

ρ=0.02 18.9 3.2 3.2 3.2 3.2 1.3 0.7 0.15 0.15 1.5 1.5 2.4 4.1

ρ=0.05 18.9 3.2 3.2 3.2 3.2 0.7 0.2 0.21 0.15 1.2 1.5 2.4 4.1

3 ρ=0.01 5.2 5.2 5.2 5.2 5.2 5.2 5.2 3.2 3.2 3.2 18.6 18.6 18.6

ρ=0.02 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 3.2 3.2 3.2 18.6 18.6

ρ=0.05 5.2 5.2 5.2 5.2 5.2 4.1 4.1 4.1 4.1 4.1 18.6 18.6 18.6

4 ρ=0.01 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 18.9 18.9 18.9 18.9

ρ=0.02 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 18.9 18.9

ρ=0.05 5.2 5.2 5.2 5.2 5.2 5.2 5.2 18.6 18.6 18.6 18.9 18.9 18.9

5 ρ=0.01 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 18.6 18.6 18.6 18.6

ρ=0.02 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 18.9 18.9 18.9 18.9 18.9

ρ=0.05 5.2 5.2 5.2 5.2 5.2 5.2 5.2 18.6 18.6 18.9 18.9 18.9 18.9

*Each DFOS × 0.001

171

The best combinations of parameters for the MMAS+ls+ib algorithm are presented in Table 8.5.

Table 8.5: Best combinations of parameters for MMAS+ls+ib

Parameters

β ρ α

1 0.01 7,8

0.02 5,6

0.05 5,6

2 0.02 5,6

 0.05 6

The results for different combinations of ,  and are plotted in Figure 8.2 to determine the

relationship between these three parameters. Figure 8.2 shows influence of each parameter

 , and when using the variant MMAS+ls+ib algorithm. The performance of MMAS+ls+ib is

very similar to the previous MMAS10+ls algorithm. However the best results were obtained

when  =1 and 2 and 5 and 6 as shown in Figure 8.2 (b, c). As  >2 the performance of

the MMAS algorithm worsens. It can be observed that the parameters ,  and ρ are

significant factors in the MMAS algorithm. Also, it can be observed that the parameters and

 are sensitive parameters. This is likely because they control the relative importance of the

pheromone trails versus heuristic information, which relates to the essence of MMAS

algorithm.

8.4.2 Confidence intervals

The confidence interval (CI) provides a range that is highly likely (95% or 99%) to contain

the parameter being estimated. The 95% CI is defined as “a range of values for a variable of

interest constructed so that this range has a 95% probability of including the true value of the

variable” (Attia, 2005). Due to sampling, the point estimate is probably not identical to the

population parameter. Table 8.6 shows the 95% DFOS CIs for the MMAS10+ls algorithm. The

results are based on the same general cost model case study. As a general rule, the narrower

the CI the better it is. In this chapter, the aim is to tune the optimal parameters to find the

172

minimum total cost for the AOIS problem. As a result, the best parameters are those that

produce the lowest DFOS. In Table 8.6 the best results corresponding to the best parameters

are shaded in grey. These parameters produced the narrowest CI.

t

0

0.01

0.02

0.03

0.04

0.05

0
.6

0
.9 2 4 6 8

1
0

D
F

O
S

α

β=0

0.01

0.02

0.05

ρ

(a)

0

0.005

0.01

0.015

0.02

0
.6

0
.9 2 4 6 8

1
0

D
F

O
S

α

β=1

0.01

0.02

0.05

ρ

(b)

0

0.005

0.01

0.015

0.02

0
.6

0
.9 2 4 6 8

1
0

D
F

O
S

α

β=2

0.01

0.02

0.05

(c)

ρ

0

0.005

0.01

0.015

0.02
0

.6

0
.9 2 4 6 8

1
0

D
F

O
S

α

β=3

0.01

0.02

0.05

(d)

ρ

0

0.005

0.01

0.015

0.02

0
.6

0
.9 2 4 6 8

1
0

D
F

O
S

α

β=4

0.01

0.02

0.05

(e)

ρ

0

0.005

0.01

0.015

0.02

0
.6

0
.9 2 4 6 8

1
0

D
F

O
S

α

β=5

0.01

0.02

0.05

(f)

ρ

Figure 8.2: Influence of parameters α, β and ρ on the performance of MMAS+ls+ib for the

AOIS problem

173

Table 8.6: 95% DFOS confidence intervals for MMAS10+ls

 α 0.6 0.8 0.9 1 2 3 4 5 6 7 8 9 10

β=0

ρ=0.01 (18.45,18.74) (18.46,18.73) (18.45,18.74) (18.33,18.66) (18.35,18.64) (15.01,15.98) (15.00,15.99) (14.36,14.63) (18.46,18.73) (18.46,18.73) (18.45,18.74) (18.44, !8.75) (18.51,18.68)

ρ=0.02 (18.48,18.71) (18.47,18.72) (18.48,18.71) (18.48,18.71) (18.48,18.71) (18.47,18.72) (18.48,18.71) (18.48,18.71) (18.72,19.07) (18.72,19.07) (18.74,19.05) (18.74,19.05) (18.74,19.05)

ρ=0.05 (18.49,18.70) (18.47,18.72) (18.48,18.71) (18.49,18.70) (18.48,18.71) (18.49,18.70) (18.48,18.71) (18.47,18.72) (18.48,18.71) (18.75,19.04) (18.75,19.04) (18.75,19.04) (18.75,19.04)

β=1

ρ=0.01 (18.45,18.74) (18.46,18.73) (3.10, 3.28) (1.80, 1.99) (1.81, 1.98) (1.81, 1.98) (1.81, 1.98) (0.095,0.104) (0.095,0.104) (0.891,0.908) (0.891,0.908) (0.891,0.908) (0.891,0.908)

ρ=0.02 (18.45,18.74) (18.46,18.73) (3.12, 3.27) (3.11, 3.287) (3.12, 3.27) (0.892,0.907) (0.892,0.907) (0.095,0.104) (0.095,0.104) (0.891,0.908) (0.891,0.908) (0.891,0.908) (0.891,0.908)

ρ=0.05 (18.45,18.74) (18.46,18.73) (3.10, 3.29) (0.69, 0.70) (0.69, 0.70) (0.187,0.212) (0.187,0.212) (0.088,0104) (0.891,0.908) (0.891,0.908) (0.891,0.908) (0.891,0.908) (0.891,0.908)

β=2

ρ=0.01 (18.45,18.74) (18.46,18.73) (3.11, 3.28) (3.11, 3.28) (3.11, 3.28) (3.10, 3.29) (3.11, 3.28) (0.691,0.708) (0.691,0.708) (0.89,0.907) (0.89,0.907) (0.89,0.908) (0.89,0.908)

ρ=0.02 (18.45,18.74) (18.46,18.73) (3.11, 3.28) (3.11, 3.28) (3.11, 3.28) (0.89, 0.908) (0.89, 0.907) (0.094,0.105) (0.094,0.105) (0.89,0.907) (0.89,0.907) (0.89,0.908) (0.89,0.908)

ρ=0.05 (18.45,18.74) (18.46,18.73) (3.11, 3.29) (3.10, 3.29) (3.11, 3.28) (0.69, 0.708) (0.19, 0.206) (0.094,0.105) (0.094,0.105) (0.89,0.906) (0.89,0.908) (0.89,0.908) (0.89,0.908)

β=3

ρ=0.01 (18.45,18.74) (18.46,18.73) (3.12, 3.29) (3.11, 3.28) (3.12, 3.29) (3.11, 3.28) (3.10, 3.27) (3.11, 3.28) (3.10, 3.27) (3.11, 3.27) (18.45,18.74) (18.44,18.75) (18.51,18.68)

ρ=0.02 (18.45,18.74) (18.46,18.73) (3.12, 3.29) (3.11, 3.28) (3.12, 3.29) (3.11, 3.28) (3.11, 3.28) (3.10, 3.27) (3.12, 3.29) (3.11, 3.28) (3.12, 3.29) (18.45,18.76) (18.45,18.70)

ρ=0.05 (18.45,18.74) (18.46,18.73) (3.10, 3.27) (3.11, 3.28) (3.12, 3.29) (1.80, 1.98) (1.81, 1.98) (1.81, 1.98) (1.80, 1.98) (18.0, 19.8) (18.5, 18.6) (18.4, 18.7) (18.4, 18.75)

β=4

ρ=0.01 (18.45,18.74) (18.46,18.73) (3.12, 3.29) (3.10, 3.27) (3.11, 3.28) (3.10, 3.27) (3.11, 3.28) (3.10, 3.27) (18.7, 19.05) (3.10, 3.27) (18.74,19.05) (18.74,19.05) (18.74,19.05)

ρ=0.02 (18.45,18.74) (18.46,18.73) (3.11, 3.28) (3.12, 3.29) (3.12, 3.29) (3.11, 3.28) (3.11, 3.28) (3.10, 3.27) (18.7, 19.05) (3.10, 3.27) (18.74,19.05) (18.74,19.05) (18.74,19.05)

ρ=0.05 (18.45,18.74) (18.46,18.73) (3.11, 3.28) (3.10, 3.29) (3.11, 3.28) (3.10, 3.27) (3.12, 3.29) (18.48,18.71) (18.48,18.71) (18.48,18.71) (18.75,19.05) (18.74,19.05) (18.75,19.05)

β=5

ρ=0.01 (18.45,18.74) (18.46,18.73) (3.10, 3.27) (3.12, 3.29) (3.11, 3.28) (3.10, 3.29) (3.10, 3.27) (3.12, 3.29) (3.12, 3.29) (18.46,18.73) (18.45,18.74) (18.44,18.75) (18.51,18.68)

ρ=0.02 (18.45,18.74) (18.46,18.73) (3.11, 3.28) (3.11, 3.28) (3.11, 3.28) (3.12, 3.29) (3.10, 3.27) (3.11, 3.28) (18.74,19.05) (18.75,19.04) (18.76,19.06) (18.75,19.04) (18.75,19.04)

ρ=0.05 (18.45,18.74) (18.46,18.73) (3.11, 3.28) (3.10, 3.27) (3.12, 3.29) (3.11, 3.28) (3.11, 3.28) (18.48,18.71) (18.48,18.71) (18.72,19.07) (18.74,19.06) (18.74,19.05) (18.74,19.05)

*Each confidence interval (lower, upper) × 0.001

174

8.4.3 Variations in  and 

Different values were compared for the MMAS parameters and on the same general cost

model case study. These two parameters determine the mutual influence of the trail strength

() and the heuristic information () on the choice of the next workstation. As can be seen

from Figure 8.3 the parameter settings of and have a considerable influence on the

performance of the MMAS.In the experiments conducted the evaporation rate is set to 0.01,

0.02 and 0.05, as shown in Figure 8.3 (a, b and c). The results obtained in this experiment are

consistent with our understanding of the algorithm: a high value ofmeans the trail is very

important and therefore ants tend to choose workstations chosen by other ants in the past. On

the other hand, low values of make the algorithm very similar to a stochastic greedy

algorithm. It can be observed that when  (e.g. 8 and β=1) then the algorithm will

make decisions based mainly on the information learned, as represented by the pheromone.

This is true until the value of β becomes very high (e.g. β=4 or 5), in this case even if there is

a high amount of trail on an edge, an ant always has a high probability of choosing another

workstation that has a higher desirability. In other words, if β >2 (e.g. β=4) the algorithm will

act as a greedy heuristic algorithm, mainly selecting workstations that have the maximum

cost (higher desirability) and disregarding the impact of these decisions on the final solution

quality. As a result the algorithm does not find very good solutions in the number of cycles

used in the experiment. However, when 5 the pheromone strength loses its dominant status

during the searching process and becomes ineffective in guiding the ant towards good

solutions regions.

High values of β and/or low values ofmake the algorithm very similar to a stochastic

greedy algorithm. It should be noted that the parameter ρ is present in the pheromone update

rule. The evaporation rate is vital in the ability of the algorithm to explore different solutions

and to avoid becoming trapped in a local optimum.

175

0.6 0.8 0.9 1 2 3 4 5 6 7 8 9 10

0
0.002
0.004
0.006
0.008

0.01
0.012
0.014
0.016
0.018

0.02

0 2 4

D
F

O
S

β

ρ=0.01

0.5 0.6 0.8 0.9 1 2 3 4 5 6 7 8 9 10
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0 1 2 3 4 5

D
F

O
S

β

ρ=0.02

0.5 0.6 0.8 0.9 1 2 3 4 5 6 7 8 9 10
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0
2

4

D
F

O
S

β

ρ=0.05





(b)



Figure 8.3: Analysis of MMAS10+ls algorithm

(c)

a

(a)

176

A high value of evaporation rate allows much greater exploration but can lead to early

convergence, as will be described in more detail the following sections. In this example, 5

inspection points are chosen out of the 12 available, so over 41 % of the

processes/inspections receive an increase in pheromone. In the problem under consideration,

the best result is obtained for parameter combinations β =1, 2 and 5 , 6 as indicated by the

lowest point in blue colour which represents the lowest total cost as shown in Figure 8.3.

Table 8.7 shows the 95% DFOS CIs for the MMAS+ls+ib algorithm. The results are also based

on the same general cost model case study. It can be seen from Table 8.7 the best results

corresponding to the best parameters are shaded with grey colour. The same general cost

model case study is applied to the MMAS+ls+ib to study the influence parameters and . In

the conducted experiments the evaporation rate is set ρ= 0.01, 0.02 and 0.05 as shown in

Figure 8.4 (a, b and c). It can be seen from Figure 8.4 that the variation between and in the

MMAS+ls+ib is very similar to the previous MMAS10+ls algorithm which is described above in

this section. In the problem under consideration, the best result is obtained for parameter

combinations β =1, 2 and 5 as indicated by the lowest point in blue which represents the

lowest total cost as shown in Figure 8.4.

8.5 Tuning of genetic algorithm parameters

Genetic algorithms (GA) are inspired by models of natural evolution of species and use the

principle of natural selection, which favours individuals that are more adapted to a specific

environment for survival and further evolution. Each individual in an evolutionary algorithm

typically represents a solution with an associated fitness value. Parameter values of GA must

be tuned in advance in order to fully specify a complete GA. Inappropriate parameter values

may not be able to solve problems effectively.

177

Table 8.7: 95% DFOS confidence intervals for MMAS+ls+ib

 α 0.6 0.8 0.9 1 2 3 4 5 6 7 8 9 10

β=0

ρ=0.01 (18.44,18.75) (18.44,18.75) (18.44,18.75) (18.22,18.66) (18.33,18.66) (15.02,15.97) (15.00,15.99) (14.35,14.62) (18.44,18.75) (18.45,18.74) (18.45,18.74) (18.45,18.75) (18.50,18.66)

ρ=0.02 (18.47,18.72) (18.47,18.72) (18.48,18.71) (18.48,18.71) (18.48,18.71) (18.47,18.72) (18.48,18.71) (18.48,18.71) (18.72,19.07) (18.72,19.07) (18.74,19.05) (18.74,19.05) (18.74,19.05)

ρ=0.05 (18.48,18.71) (18.47,18.73) (18.48,18.71) (18.50,18.71) (18.50,18.71) (18.49,18.70) (18.47,18.72) (18.47,18.72) (18.48,18.71) (18.74,19.05) (18.75,19.04) (18.75,19.04) (18.75,19.04)

β=1

ρ=0.01 (3.24, 3.35) (3.23, 3.34) (3.24, 3.35) (1.80, 1.99) (1.81, 1.98) (1.81, 1.98) (1.81, 1.98) (1.81, 1.98) (1.81, 1.98) (0.188, 0.21) (0.188, 0.21) (3.97, 4.02) (3.97,4.02)

ρ=0.02 (3.24, 3.35) (3.10, 3.29) (3.12, 3.27) (3.11, 3.28) (3.12, 3.27) (0.893,0.908) (0.892,0.907) (0.096,0.105) (0.096,0.105) (0.188, 0.21) (0.188, 0.21) (3.97, 4.02) (3.97, 4.02)

ρ=0.05 (3.11, 3.28) (3.10, 3.29) (3.10, 3.29) (0.68, 0.708) (0.69, 0.707) (0.187,0.212) (0.187,0.212) (0.096,0.106) (0.097,0.107) (0.192,0.20) (0.191,0.208) (3.96,4.01) (3.96, 4.01)

β=2

ρ=0.01 (18.80,18.95) (3.10, 3.29) (3.11, 3.28) (3.11, 3.28) (3.10, 3.29) (3.10, 3.29) (3.11, 3.28) (0.691,0.706) (0.691,0.708) (0.965,1.03) (1.47,1.52) (2.48,2.51) (3.96, 4.01)

ρ=0.02 (18.8,18.95) (3.10, 3.29) (3.11, 3.28) (3.11, 3.28) (3.11, 3.28) (0.89, 0.908) (0.89, 0.907) (0.094,0.105) (0.094,0.105) (1.47,1.52) (1.47,1.52) (2.48,2.51) (3.97, 4.02)

ρ=0.05 (18.8,18.95) (3.11, 3.28) (3.10, 3.29) (3.10, 3.29) (3.12, 3.27) (0.69, 0.709) (0.19, 0.206) (0.097,0.106) (0.094,0.105) (0.96,1.03) (1.47,1.52) (2.48,2.51) (3.97, 4.02)

β=3

ρ=0.01 (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (3.10, 3.29) (3.10, 3.29) (3.11, 3.28) (18.46,18.73) (18.46,18.73) (18.46,18.73)

ρ=0.02 (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (3.12, 3.29) (3.11, 3.28) (3.12, 3.29) (18.45,18.76) (18.45,18.70)

ρ=0.05 (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (3.97, 4.02) (3.97, 4.02) (3.97, 4.02) (3.97, 4.02) (3.97, 4.02) (18.55, 18.6) (18.44, 18.7) (18.4, 18.75)

β=4

ρ=0.01 (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (18.75,19.04) (18.75,19.04) (18.74,19.05) (18.74,19.05)

ρ=0.02 (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (18.74,19.05) (18.74,19.05)

ρ=0.05 (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (18.48,18.71) (18.48,18.71) (18.48,18.71) (18.75,19.05) (18.74,19.7) (18.75,19.05)

β=5

ρ=0.01 (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (18.46,18.73) (18.45,18.74) (18.44,18.75) (18.51,18.68)

ρ=0.02 (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (18.74,19.05) (18.75,19.04) (18.76,19.06) (18.75,19.04) (18.75,19.04)

ρ=0.05 (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (18.48,18.71) (18.48,18.71) (18.72,19.07) (18.74,19.05) (18.74,19.05) (18.74,19.05)

*Each confidence interval (lower, upper) × 0.001

178

0.6 0.8 0.9 1 2 3 4 5 6 7 8 9 10
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0
2

4

D
F

O
S

β

ρ=0.01

0.6
0.8

0.9
1 2 3 4 5 6 7 8 9 10

0
0.002
0.004
0.006
0.008

0.01
0.012
0.014
0.016
0.018

0.02

0
2

4

D
F

O
S

β

ρ=0.02

0.6
0.8 0.9 1 2 3 4 5 6 7 8 9 10

0
0.002
0.004
0.006
0.008

0.01
0.012
0.014
0.016
0.018

0.02

0
2

4
β

D
F

O
S

ρ=0.05

Figure 8.4: Analysis of MMAS+ls+ib algorithm

 (c)

a

(a)

a



(b)

a



179

On the other hand, finding the optimal setting will increase the overall search capability and

better solutions can be found. The parameter settings are based on general recommendations

found in textbooks on GA/EA‟s (Michaelewicz and Fogel, 2000, Reeves, 1993), on an insight

into the problem specifics, as suggested by Silver (2004), and on several exploratory test

runs.

8.5.1 Summary of GA parameters

There are three parameters that affect the performance of a GA: population size, crossover

probability and mutation probability.

Population size: is the number of individuals used in one generation. GA‟s with a low size

population are prone to premature convergence. This is because a GA has very few

possibilities to perform a crossover and only a small part of the search space is explored. On

the other hand, if the population size is large, it slows down the convergence rate of the

algorithm and increases the number of objective function evaluations.

Crossover probability: is the percentage of individuals in the mating pool able to perform

recombination or exchange. Crossover is a continuous variable within [0, 1]. If there is no

crossover, the offspring is an exact copy of its parents. If there is crossover, the offspring is

made from parts of the parents' individuals. If the crossover probability is 100%, then all

offspring are made by crossover. Crossover introduces new solution strings into the

population and searches for better strings. However it is good to allow a part of the population

to survive in the next generation.

Mutation probability: is a unary operator, aimed at introducing random modifications in an

individual. Mutation is a continuous variable within [0, 1]. If there is no mutation, the

offspring carries crossover information or is an exact copy of the parents, however without

any change in the information. If mutation occurs the chromosome changes, if the mutation

probability is 100%, the whole chromosome will change. A low mutation rate may result in a

180

loss of some important characteristics in a population. Mutation is used to prevent the falling

of the GA into local extreme, although it should not occur very often as then the GA will in

fact change into a random search (Yuan and Gallagher, 2005).

In summary, different studies pointed out that population size, crossover probability and

mutation rate are the most influential parameters in the performance of a GA (Smit and

Eiben, 2011, Van Volsem, 2007). A method to optimise these parameters is presented in this

chapter.

8.5.2 GA parameter settings

The values chosen for the GA parameters are representative of the range of values typically

seen in the literature (Smit and Eiben, 2011, Sadegheih, 2007, Van Volsem, 2007).The

application of the GA to the general cost model are repeated here for each of the

combinations of the following parameter levels:

Population size: number of individuals (inspection plans) used in one generation. The

values: low [20, 30, 40], medium [50, 60, 70] and high [80, 90, 100] of this parameter were

tested for the tuning of the algorithm.

Crossover rate: the values [0.10, 0.20, 0.60, 0.8 and 0.90] were tested for the tuning of the

algorithm.

Mutation rate: the values [0.001, 0.002, 0.003, 0.004, 0.005, 0.01, 0.017 and 0.02] were

tested for the tuning of the algorithm.

8.5.3 Results

The same general cost model case study is used to test the GA, which consists of 50 different

problems. Different parameter combinations of the GA were then applied for each of these

combinations in order to calculate the average DFOS. The aim is to tune the parameters of

the GA. The results obtained by the method are compared against the optimal results obtained

181

by the CEM. The aim is to measure the DFOS for the results obtained by the GA. The

optimal parameters are those that can obtain the minimum DFOS. Table 8.8 shows the best

combinations of the GA parameters. The results from different parameter combinations of the

GA tuning are presented in Appendix D.

Table 8.8: Optimal GA parameters

Population Cross over Mutation rate Average

DFOS

80 0.8 0.005 0.0012

8.6 Tuning simulated annealing parameters

Simulated Annealing (SA) is a stochastic search method, emulative of the physical annealing

process, in which an alloy is cooled gradually so that a minimal energy state is achieved. Just

like other optimisation methods, the algorithm of simulated annealing consists of operating

parameters that should be set appropriately in order to achieve the best performance. The

most efficient cooling schedule may be found through trial and error, and by observing the

effect on both the quality of the resulting solution and the rate at which the process converges

(Demirkol et al., 2001). The parameter settings were based on the general recommendations

of Guo and Zheng (2005), Sadegheih (2007) and Kolahan and Abachizadeh (2010).

8.6.1 Summary of SA parameters

The cooling schedule of a SA algorithm consists of four components.

Starting temperature: the initial temperature acts as the state of the system at the beginning

of the optimisation procedure. In general, the initial temperature is set in a way that allows

the acceptance of most transitions in the neighbourhood moves. In other words, the

Boltzmann distribution acceptance criterion should be approximately equal to 1 at the starting

temperature, 1)/Cexp(0  T where C is the difference between the amount of the objective

function of the current and candidate solutions (Guo and Zheng, 2005).

182

Temperature decrement: is the most important variable in the entire SA algorithm. The

method in which the temperature parameter is reduced is an important feature of this

algorithm. At every iteration k the temperature is decreased according to the formula,

kk TT 1 where the parameter , usually called the cooling rate, is such that (0 <<1)

(Kolahan and Abachizadeh, 2010). The cooling schedule is the way in which the temperature

is decremented and is critical to the success of the algorithm.

Iterations at each temperature: possibly the second most important factor that determines

the computational effort required to run a particular cooling schedule for simulated annealing

is the number of transitions in one temperature step. The number of iterations at each

temperature is chosen so that the system is sufficiently close to the stationary distribution at

that temperature (Suman and Kumar, 2006). Enough iterations at each temperature should be

performed if the temperature is to be periodically decreased. If too few iterations are

performed, all represented states will not be searched and the solution will not be able to

reach the global optimum.

Final temperature: it is common to let the temperature decrease until it reaches zero,

however this can make the algorithm run for a long time, especially when a geometric

cooling schedule is being used. In practice it is not necessary to let the temperature reach zero

because as it approaches zero the chances of accepting a worse move are almost the same as

the temperature being equal to zero. Therefore the stopping criteria can either be a suitably

low temperature or the moment at which the system is “frozen” at the current temperature

(i.e. no better or worse moves are accepted) (Kolahan and Abachizadeh, 2010). The

maximum number of iterations is another approach. The maximum number of subsequent

iterations allowed without any improvement is also another appropriate criterion.

In summary, the temperature decrement and number of trials per temperature step have the

greatest influence on the simulated annealing algorithm‟s performance. The most efficient

183

cooling schedule may be found through trial and error and by observing the effect on both the

quality of the resulting solution and the rate at which the process converges (Demirkol,

2001). A method to optimise these parameters is presented in this chapter.

8.6.2 SA parameter settings

The values chosen for SA parameters are representative of the range of values typically seen

in the literature (Kolahan and Abachizadeh, 2010, Sadegheih, 2007). The application of the

SA to the general cost model is repeated here for each of the combinations of the following

parameter levels:

Temperature decrement: the values [0.4, 0.5, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9 and 0.95]

were used to tune the algorithm.

Iterations at each temperature: the values [100, 300, 500, 800 and 1200] were used to tune

the algorithm.

8.6.3 Results

The same general cost model case study is used to test the SA algorithm. Different parameter

combinations of the SA were then applied to the cases for each of these combinations in order

to calculate the average DFOS. The aim is to tune parameters of the SA. The results obtained

by the method are then compared against the optimal results obtained by the CEM. The aim

is to measure the DFOS for the results obtained by the SA. The optimal parameters are those

that can obtain the minimum DFOS. Table 8.9 shows the best combinations of the SA

parameters. The results from different parameter combinations of SA tuning are presented in

Appendix E.

Table 8.9: Optimal SA parameters

Temperature

decrement

Iterations at each temperature Average

DFOS

0.85 300 0.0007

184

8.7 Tuning particle swarm optimisation parameters

Particle swarm optimisation (PSO) is a population-based stochastic optimisation technique

inspired by the social behaviour of birds flocking or fish schooling. Particle swarm

optimisation (PSO) is a population-based stochastic optimisation technique inspired by the

social behaviour of birds flocking or fish schooling. Selecting the best parameters inertia

weight, cognitive coefficient, and number of particles (ω, c1, c2, M) for PSO is another model

selection task. Several empirical and theoretical studies have been performed on the

parameters of PSO from which useful information can be obtained (Clerc and Kennedy,

2002, Kennedy and Mendes, 2002, Ozcan and Mohan, 1999, Reyes and Coello, 2006, Shi

and Eberhart, 1998, 1999). In this section, a simulation of various parameter settings under

different conditions for defining the best parameter combination for the AOIS problem is

presented.

8.7.1 Summary of PSO parameters

The most influential parameters in the performance of PSO are the cognitive coefficients, c1,

c2, inertia weight ω and number of particles (Aliabadi et al., 2011, Hsieh et al., 2007,

Rezazadeh et al., 2009).

Inertia weight: inertia weight „„ω‟‟ was not mentioned by Eberhart and Kennedy (1995), but

was introduced by Shi and Eberhart (1998). Its goal is to control the impact of the past

velocity of a particle over the current one, influencing the local and global exploration

abilities of the algorithm. Shi and Eberhart found that a PSO with an inertial weight in the

range of 0.8 to 1.2 has, on average, a better performance; that is it has a greater chance of

finding the global optimum within a reasonable number of iterations. On the other hand, a

large value of ω keeps particles at high velocity and prevents them from becoming trapped in

local optima. A small value of ω maintains particles at a low velocity and encourages them to

exploit the same search area.

185

Cognitive coefficients: c1 and c2 are cognitive coefficients and are both constants between

zero and one. Thus the particle flies through potential solutions toward the local best (lbest)

and the global best (gbest) in a navigated way while still exploring new areas by the

stochastic mechanism to escape from local optima. The cognitive coefficients c1 and c2

represent the weightings that pull each particle toward lbest and gbest. Low values let

particles wander around their local neighbourhood, while high values cause particles to fly

towards, or past, optimal solutions (Yin et al., 2006).Different problems will have different

values, and these range from1 to 4 (Hsieh et al., 2007,Shuang et al., 2011,Yin et al., 2006).

Number of particles: in a PSO the population is the number of particles in a problem space.

Particles are initialised randomly. Each particle will have a fitness value, which will be

evaluated by a fitness function to be optimised in each generation. In the population or

swarm, more particles may increase the success of searching for optima due to more thorough

sampling of the state space. However, more particles require more evaluation runs, leading to

a higher optimisation time cost.

8.7.2 PSO parameters settings

The values chosen for PSO algorithm parameters are representative of the range of values

typically seen in the literature (Aliabadi et al., 2011, Hsieh et al., 2007, Liao et al., 2007). The

application of PSO to the general cost model is repeated here for each of the combinations of

the following parameter levels:

Inertia weight (ω): four levels (0.8, 0.9, 1.1 and 1.2) are used to test the PSO algorithm.

Cognitive coefficients (c1 and c2): six levels for each coefficient are used to test the PSO

algorithm (1, 1.5, 2, 2.5, 3 and 3.5). In these experiments the parameters c1 and c2 are tested

by making them equal and unequal, and making c1 larger than c2, and vice versa.

Number of particles: different sizes of particles are used to test the PSO algorithm (10, 20,

40, 60, 80 and 100).

186

8.7.3 Results

The same general cost model case study is used to test the PSO algorithm. Different

parameter combinations of the PSO algorithm were then applied to the cases for each of these

combinations in order to calculate the average DFOS. The aim is to tune the parameters of

the PSO algorithm. The results obtained by the algorithm are then compared against the

optimal results obtained by the CEM. The aim is to measure the DFOS for the results

obtained by the PSO algorithm. The optimal parameters are those that can obtain the

minimum DFOS. Table 8.10 shows the best combinations of the PSO algorithm parameters.

The results from different parameter combinations of PSO tuning are presented in Appendix

F.

Table 8.10: Optimal GA parameters

Inertia weight Number of

particles

c1 c2 Average

DFOS

1.1 80 2 2 0.0007

8.8 Conclusion

The optimal combinations of the most influential parameters were identified for the MMAS

algorithm, SA, GA and PSO. These algorithms were applied to the same general cost model

case study in order to calculate the average DFOS. As a result, the optimal parameters can

then be obtained to tackle the AOIS problem. It was found that these optimal parameters led

to a significantly improved performance of the developed algorithms. For a specific problem

the optimal parameters will be slightly different, but these results suggest that these

parameters should be suitable for many AOIS problems with a similar structure. Early

indications show that MMAS algorithm outperforms the other relevant algorithms in terms of

solution quality. Two different variants of the MMAS algorithm were developed. The two

variants were MMAS10+ls, and MMAS+ls+ib. The experimental results confirmed that the

performance of the MMAS, GA, SA and PSO algorithms depends on the appropriate setting

187

of the parameters. Following the tuning of the parameters for the MMAS algorithm, in the

next chapter the behaviour of the MMAS algorithm will be investigated. Furthermore, the

best parameters obtained for the SA, GA and PSO algorithms will be used to test

performance of the MMAS algorithm in chapter 10.

188

Chapter 9

Behaviour of MMAS and sensitivity analysis

__

In this chapter, the behaviour of MMAS and the sensitivity of the control parameters for the

AOIS problem are studied. Different variants of the MMAS algorithm are tested. The

convergence of the MMAS algorithm is given through the simulations of the general cost

model case study. The importance of the local search and heuristic information for the

MMAS algorithm are discussed. Global and iteration best versus a mixed strategy for

updating pheromone trials are investigated. A stagnation measure is implemented to indicate

the degree of diversity of the solutions constructed by the ants.

9.1 MMAS behaviour

In order to investigate the capability of the MMAS to solve the AOIS problem, the

convergence of the algorithm and the impact caused by the parameter settings are

investigated. To do so, nine sets of parameters [=1, β=1,2,3, ρ=0.01] [=2, β=1,2,3,

ρ=0.01] [=5, β=1,2,3, ρ=0.01] [=1, β=1,2,3, ρ=0.02] [=2, β=1,2,3, ρ=0.02] [=5,

β=1,2,3, ρ=0.02] [=1, β=1,2,3, ρ=0.05] [=2, β=1,2,3, ρ=0.05] [=5, β=1,2,3, ρ=0.05]

were tested in the same general cost model case study. In Figures 9.1 to 9.9, the x-axis stands

for 400 iteration steps and the y-axis is the value of the objective function (total cost). These

figures illustrate the fact that parameter variations strongly affect the speed of the

convergence of the objective function. Under the parameter settings of=1, β=1 and ρ=0.01,

as shown in Figure 9.1, convergence occurred within 270 iteration steps. As β increased to 2,

the convergence occurred early within 175 iteration steps. However there was no

convergence within the 400 iteration steps with parameter settings of =1, β=3 and ρ=0.01.

189

Under parameter settings of=2, β=1, 2, 3 and ρ=0.01, as shown in Figure 9.2, convergence

occurred early within 125 iteration steps with β=1. By increasing β=2 and 3 the convergence

occurred within 175 iteration steps and within 300 iteration steps respectively.

.

By increasing to 5, as shown in Figure 9.3, convergence occurred earlier, within 50 iteration

steps when β=1 and in 150 iteration steps when β=2 and 3. It can be observed from Figures

9.1 to 9.9 that as and ρ increased and β decreased convergence occurred early. The results

showed that the ratio between and β was the key deriver to the convergence speed of the

results. Since and β are the parameters of relative influence of the pheromone strength and

5.85

5.9

5.95

6

6.05

6.1

6.15

0 50 100 150 200 250 300 350 400

T
o

ta
l

co
st

Number of iterations

beta=1 beta=2 beta=3

5.85

5.95

6.05

6.15

6.25

6.35

6.45

0 50 100 150 200 250 300 350 400

T
o

ta
l

 c
o

st

Number of iterations

beta=1 beta=2 beta=3

Figure 9.1: Comparing the convergence of MMAS under parameter settings 01.0,1 

Figure 9.2: Comparing the convergence of MMAS under parameter settings 01.0,2 

×
1

0
5

×
1

0
5

190

the heuristic information respectively, the relative influence of the pheromone strength,

which dominated the searching process, makes the convergence occur early.

With the status of the pheromones on the searching trails dominated, the heavily accumulated

pheromones would strongly bias the choice of ants. In such a manner, more and more

subsequent ants would choose the same trail, and consequently convergence would occur.

Conversely, when the pheromone strength lost its dominant status during the searching

process, i.e. the ratio between and β became smaller and smaller, the influence of

pheromone strength would not be used as the indicator of choice. In this circumstance, the

convergence speed would decrease, and convergence would be delayed.

5.85

5.9

5.95

6

6.05

0 50 100 150 200 250 300 350 400

T
o

ta
l

co
st

Number of iterations

beta=1 beta=2 beta=3

5.85

5.95

6.05

6.15

6.25

6.35

6.45

6.55

0 50 100 150 200 250 300 350 400

T
o

ta
l

co
st

Number of iterations

beta=1 beta=2 beta=3

×
1

0
5

Figure 9.3: Comparing the convergence of MMAS under parameter settings 01.0,5 

Figure 9.4: Comparing the convergence of MMAS under parameter settings 02.0,1 

×
1

0
5

191

5.85

5.95

6.05

6.15

6.25

6.35

6.45

6.55

0 40 80 120 160 200 240 280 320 360 400

T
o

ta
l

co
st

Number of iterations

beta=1 beta=2 beta=3

5.85

5.95

6.05

6.15

6.25

6.35

6.45

6.55

0 50 100 150 200 250 300 350 400

T
o

ta
l

co
st

Number of iterations

beta=1 beta=2 beta=3

5.85

5.95

6.05

6.15

6.25

6.35

6.45

6.55

0 50 100 150 200 250 300 350 400

T
o

ta
l

co
st

Number of iterations

beta=1 beta=2 beta=3

Figure 9.5: Comparing the convergence of MMAS under parameter settings 02.0,2 

Figure 9.6: Comparing the convergence of MMAS under parameter settings 02.0,5 

Figure 9.7: Comparing the convergence of MMAS under parameter settings 05.0,1 

×
1

0
5

×
1

0
5

×
1

0
5

192

From Figures 9.1 to 9.9, the convergence speeds under parameter settings=5 and β=1, were

faster than those with parameter settings of=1 and β=3. The larger the ratio between and

β, the faster the convergence speed under the parameter ρ=0.05. Thus the convergence speed

under parameters=5 and β=1 occurred earlier than that under parameters=1 and β=3.

Correspondingly, there was no convergence when  . It can be seen from Figures 9.4 and

9.7 that when the algorithm converged to the optimal solution, the pheromone trails were

initialised to the maximum pheromone trails (max) after a certain number of iteration steps

5.85

5.95

6.05

6.15

6.25

6.35

6.45

6.55

0 50 100 150 200 250 300 350 400

T
o

ta
l

co
st

Number of iterations

beta=1 beta=2 beta=3

5.85

5.95

6.05

6.15

6.25

6.35

6.45

6.55

0 50 100 150 200 250 300 350 400

T
o

ta
l

co
st

Number of iterations

beta=1 beta=2 beta=3

Figure 9.8: Comparing the convergence of MMAS under parameter settings 05.0,2 

Figure 9.9: Comparing the convergence of MMAS under parameter settings 05.0,5 

×
1

0
5

×
1

0
5

193

(300 and 200 iterations respectively). The aim is to increase exploration of the search space.

It can be observed from both Figures 9.4 and 9.7 that the ants continue to explore a subset of

the search space as computation proceeds. In fact this feature is one of the features of the

MMAS as described in chapter 6. In summary, the ratio between and β is identified as the

key deriver to convergence speed using MMAS. The results showed that the larger the ratio

between and β, the faster the speed of convergence.

Figure 9.10 depicts the evolution curves of MMAS with ρ varying from 0.01 to 0.1,  =5,

 =1, =0.05 and the other parameters are kept at standard values. The curves are for

different values of ρ and are averages of 50 independent executions. It can be observed from

Figure 9.10 that a better convergence speed is obtained when larger values of ρ are used.

However, with increasing ρ, the best values of different curves will increase and the search

may stop within less iterations. This is due to the fact that larger pheromone evaporation

ratios on arcs will accelerate pheromone evaporation and, hence, the search concentrates

earlier around the best trails seen so far.

Figure 9.10: Evolution curves of MMAS for different values of

0

2

4

6

8

10

12

14

16

0 60 120 180 240 300 360 420 480

B
ra

n
ch

in
g
 f

ac
to

r

Number of iterations

ρ=0.01 ρ=0.02 ρ=0.05 ρ=0.07 ρ=0.08 ρ=0.1

194

If ρ is large it is easy to reach marked relative differences between the pheromone trails on

arcs contained in high quality trails, and those which are not part of the best trails in a few

iterations, so the algorithm may stagnate and prematurely converge. Otherwise, for a lower ρ

the pheromone trails on arcs which do not belongs to the high quality trails will not decrease

faster, and the algorithm will be able to explore a wider search space, although longer

evolution iterations will be needed. Therefore, if larger total evolution iteration is used, a

lower ρ can be selected for obtaining a better converging value; otherwise a higher ρ will be

helpful for a better convergence speed.

9.2 Sensitivity analysis

The vast majority of papers reviewed did not consider sensitivity analysis. Sensitivity

analysis was only performed on models to test the optimal solution in the models developed

by Yum and McDowell (1987) and Parak et al. (1988).This was most probably because their

models were developed using Integer Linear Programming, and hence they included it easily.

As the MMAS algorithm relies on a number of user-defined parameters that control its

behaviour, sensitivity analysis for the most influential parameters ,  andwas conducted

to study the importance of each parameter for the AOIS problem considered. The purpose of

the sensitivity analyses was to obtain a detailed understanding of the impact of each of the

user-defined MMAS parameters on the algorithms‟ searching behaviour. To achieve this,

each parameter was varied over a specified range, while all other parameters were maintained

at their „standard‟ values.

It is well known that the number of workstations is one of the most important characteristics

for the AOIS problem. In a serial multistage manufacturing process, as the problem size

increases the number of inspection stations allocation possibilities increases exponentially in

the search space size. To study the influence of the studied parameters on increasing the

number of workstations, experimental studies are implemented on different sizes of AOIS

195

problem. Four different sizes of the AOIS problem are conducted. These sizes are 15, 16, 17

and 18 workstations. The number of feasible solutions generated from these workstations

grows from 32,768 to 262,144. The aim is to determine the influence of MMAS parameters

on the performance of the algorithm, particularly when the number of workstations increases.

Each parameter was varied over a specified range, while all other parameters were kept at

their „standard‟ values.

Figure 9.11 shows the influence of parameteron different sizes of the AOIS problem. Each

point is the average of 50 runs of the MMAS algorithm. The value ofdetermines the

relative importance of the pheromone level of the ant in the process of movement when

guiding the ant colony search.

Figure 9.11: Sensitivity analysis of parameter for different AOIS problems

It can be seen from Figure 9.11 that the best results are obtained when 82  . However,

the variation between these values is not so significant in terms of solution quality. On the

other hand, when 1 , the algorithm shows poorer performance in terms of solution quality.

This is because the pheromone strength in the algorithm is not enough to guide ants to the

0

0.005

0.01

0.015

0.02

0.025

0.6 0.8 0.9 1 2 3 4 5 6 7 8 9 10

D
F

O
S

α

WS=15 WS=16 WS=17 WS=18

196

best regions of the solution space. In this case, the influence of the pheromone strength is

ineffective to guide ants to the good solutions. It is concluded that the parameter is less

sensitive within the specified range as the number of workstations significantly increases.

Figure 9.12 shows the influence of parameter  on different sizes of the AOIS problem. The

value of  determines the relatively important degree of the heuristic information and the

importance of the location of inspection stations relative to the workstations. It can be seen

from Figure 9.12 that the best results are obtained with  values 1 and 2. However, the

variation between these two values is not greatly significant in terms of solution quality. On

the other hand, when  =0 the algorithm shows a poorer performance. This situation is

repeated when  > 2.

Figure 9.12: Sensitivity analysis of parameter for AOIS problems

Figure 9.13 shows the influence of parameter  on different sizes of the AOIS problem. The

aim is to represent different characteristics of manufacturing systems, in other words, to

represent different AOIS problems. The value of ρ determines the evaporation speed of the

pheromone trace. The evaporation rate is vital in the ability of the algorithm to explore

different solutions and to avoid becoming trapped in a local optimum. The higher the value,

0

0.004

0.008

0.012

0.016

0.02

0.024

0 1 2 3 4 5

D
F

O
S

WS=15 WS=16 WS=17 WS=18



197

the faster the pheromone will evaporate and hence the faster the algorithm converges. On the

other hand, using a very low value of ρ leads to more exploration of the MMAS algorithm

and high quality solutions may be missed. Since the figure does not show significant

differences between the values of 0.01 and 0.1, it can be stated that the model has a consistent

behaviour for a broad range of values of ρ. At these values the best results can be obtained.

These results are optimal values or near optima values. It is concluded that the parameter ρ is

less sensitive to changes in the number of workstations.

Figure 9.13: Sensitivity analysis of parameter for AOIS problems

In summary, the experimental results confirmed that the studied parameters , and  do not

have a significant influence on the performance of the MMAS algorithm as the number of

workstation is increased.

9.3 Importance of the heuristic information

As described in chapter 6, two novel heuristic information methods were created to guide the

ant to locate the inspection stations of workstations. These methods are operation cost,

inspection cost, and defect rate method (OCDM) and Scores Method (SM). It should be noted

0.0003

0.0013

0.0023

0.0033

0.0043

0.0053

0.0063

0.0073

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

D
F

O
S

ρ

WS=15 WS=16 WS=17 WS=18

198

that there was no heuristic information created for the AOIS problem. In this section, the

performance of the MMAS without using heuristic information (indicated by MMAS-NH) is

compared to its performance when using it. It should be noted that not using heuristic

information is simply achieved by setting 0 . The comparison of MMAS variants with and

without using heuristic information is applied on the case study consisting of 15 workstations.

The optimal solution for this number of workstations is known and all feasible solutions

using CEM can be enumerated within a reasonable time. Experimental results are conducted

for the MMAS algorithm with heuristic information (MMAS-OCDM and MMAS-SM) and no

heuristic information (MMAS-NH). The results are based on the average of 50 different cases

randomly generated from the general cost model case study; in other words, these cases

represent 50 different problems. The experimental results for the MMAS algorithm with

heuristic information (MMAS-OCDM and MMAS-SM) and with no heuristic information

(MMAS-NH) in terms of the average number of optimal solutions, best average DFOS, worst

average DFOS values and average processing time are presented in Table 9.1. The

experimental results showed that the performance of the MMAS algorithm, in terms of

solution quality when using heuristic information, was significantly better than without

heuristic information. In particular, the OCDM heuristic information is better than the SM.

 Table 9.1: Comparison of MMAS with and without heuristic information

Algorithm
Average number

of optimal

solutions (%)

Best average

DFOS

(not optimal)

Worst average

DFOS

Average time

(seconds)

MMAS-NH 0 0.0186 0.52 12

MMAS-OCDM 80 0.00015 0.0125 15

MMAS-SM 74 0.00033 0.0103 17

The reason for this is that the OCDM type is based on three characteristics of the AOIS

problem, operation cost, defect rate and inspection cost. The main aim of the heuristic

information is to guide the ants through the assigning of inspection stations to workstations.

199

The workstations that have higher results have a higher probability to be selected by the ant.

Placing inspection stations based on these characteristics lead to the detection of defective

items before moving further to subsequent operations. As a result the total cost can then be

minimised. On the other hand, the SM type of heuristic information is based on scores of

operation cost and defect rate. This method takes scores of the operation cost and defect rate

and use a combination of the two choices in one.

Figure 9.14 shows the convergence of MMAS toward near optimal solutions with and

without using heuristic information. It is clear that in the case of MMAS-NH the ants are

moving away from the near optimal solution. However, when using heuristic information in

the cases of MMAS-OCDM and MMAS-SM the ants gradually attempted to follow the shortest

path. As a result, the solution gradually moved towards the close-to-optimal solution, as the

ants found almost similar paths.

It is clear from the results that the heuristic plays a central role in guiding the algorithm and

that a good heuristic applied strongly can produce accurate results. This is because using

heuristic information makes the probable search space (the search space most likely to be

5.85

5.95

6.05

6.15

6.25

6.35

6.45

6.55

6.65

0 50 100 150 200 250 300 350 400

T
o

ta
l

co
st

Number of iterations

MMAS-SM MMAS-OCDM MMAS-NH

Figure 9.14: Comparing the convergence of MMAS with and without

heuristic information

×
1

0
5

200

explored) becomes much smaller than the original search space. It is concluded that it is

important to use heuristic information with the MMAS algorithm for tackling the AOIS

problem.

9.4 Importance of local search

It has been proven that a local search applied to the solutions that the ants have constructed

can improve the performance of an ant colony‟s optimisation algorithm. It should be noted

that of the metaheuristic methods used in the literature review for tackling the AOIS problem,

none of them used local search to improve the performance of their models. In this study, as

described in chapter 6, six well-known neighbourhood structures are used to improve the

performance of the MMAS algorithm. These are: crossover (CO), interchange(IC), swap

(SW), single insertion (SI), delete and add (DA), and block insertion (BI). The MMAS

algorithm is applied on different sizes of workstations with each of these local search

methods. As described in chapter 6, to yield a further reduction in run-time and to focus the

local search on promising regions where potential improvements can be found, don‟t look

bits method is used. The comparison between them is based on the average deviation from

the optimal solution and average CPU time. The results are based on the average of 50

different cases randomly generated for each problem size. The aim is to represent the

different characteristics of the AOIS problem.

It can be seen from Table 9.2 that the local search methods developed have considerably

improved the performance of the MMAS algorithm. This improvement can be observed in

the average deviation from the optimal DFOS solution. In particular, the local search methods

of crossover, single insertion and block insertion have better performance than the other

methods in terms of solution quality. The superior results indicate the successful

incorporation of the local search with the MMAS algorithm to escape local minimum points

and increase the possibility of finding a better solution.

201

 Table 9.2: Comparison of the local search effectiveness for the AOIS problem

WS

No local search CO IC SW SI DA BI

DFOSavg timeavg

(s)
DFOSavg timeavg

(S)
DFOSavg timeavg

(s)
DFOSavg timeavg

(s)
DFOSavg timeavg

(s)
DFOSavg timeavg

(s)
DFOSavg timeavg

(s)

12 0.0053 13 0.00012 11 0.0007 12 0.0008 12 0.00012 11 0.0008 12 0.00012 10

13 0.0043 15 0.00018 12 0.0008 14 0.0008 13 0.00015 12 0.0009 14 0.00014 11

14 0.0042 16 0.00017 14 0.0008 15 0.0009 14 0.00018 15 0.004 15 0.00016 14

15 0.0052 18 0.00018 16 0.0009 16 0.0009 18 0.00018 20 0.0009 17 0.00019 17

Average 16 0.00057 13 0.0008 14 0.00085 14 0.0005 15 0.00165 15 0.00052 13

202

This good performance can even be observed when the number of feasible solutions grows

from 4,096, in the case of 12 workstations, to 32,768, in the case of 15 workstations.

Regarding computation times, it is worth noting that in all cases the local search takes less

time than the sum of the computation times necessary for the MMAS algorithm starting from

an initial solution. This effect is caused by the good starting solution for the second local

search and the fewer number of improvement steps necessary to reach a local optimum.

Applying the ant algorithm to problems of different sizes makes a difference in terms of

speed. Generally, the bigger the problem the longer it takes to find good, very good or

optimal solutions.

Figures 9.15 and 9.16 are box-plots showing the performance of the MMAS algorithm

without and with local search methods. It can be observed from Figure 9.15 that when no

local search is used the data is skewed to the left. This is also repeated in the case of using

SW. The top whisker is much longer than the bottom whisker. In the case of using SI, DA,

and BI the whiskers are absent. In the case of the IC method the length of the whiskers is

shorter than the length of the box. As the problem size increased to 15 workstations, as shown

in Figure 9.16, the results are very similar to the results obtained in Figure 9.15.

Figure 9.15: Box-plot showing the performance of MMAS with and without

local search for 12 workstations problem

5.8

5.85

5.9

5.95

6

6.05

6.1

6.15

No-Local

search

CO IC SW SI DA BI

T
o

ta
l

co
st

×
1

0
5

203

The results determined that the performance of the MMAS significantly improved by using

local search methods. It can be seen that the median of the MMAS algorithm with local

search is closer to the optimal solution, which is indicated by a dashed line, than the median

of the MMAS without using local search. This good performance can also be observed when

the number of feasible solutions is significantly increased.

9.5 Stagnation measures

An indication of the performance of MMAS can be given by the development of the average

branching factor during the algorithm‟s run. During the running of the MMAS algorithm, if

the distribution of the pheromone on the trails becomes too unbalanced due to pheromone

depositions the ants will generate very similar solutions, causing the search to stagnate. In

order to enable the algorithm to detect such situations a branching factor is implemented in

the AOIS problem to measure stagnation, which can indicate how explorative the search

behaviour of the ants is. Using the average λ-branching factor as described in chapter 5, it is

somehow possible to measure the size of the area under analysis at any moment. In general,

the best solutions are found when the average branching factor is rather low, that is when the

5.8

5.85

5.9

5.95

6

6.05

6.1

6.15

6.2

6.25

6.3

1 2 3 4 5 6 7

T
o

ta
l

 c
o

st
×

1
0

5

Figure 9.16: Performance of MMAS with and without local search for 15

workstations problem

No local

search
CO SI SW IC DA BI

204

algorithm has an almost converged space (Pellegrini and Moretti, 2009). In fact, the average

branching factor at which the best trails are found also depends on the problem size, as shown

in Figure 9.17. To increase the exploration of the MMAS, which is one of its features

described in chapter 6, the pheromone trails are initialised to their upper trail limit if the

average branching factor  indicates that the MMAS is near convergence. It can be seen that

as the number of iterations increases the solution moves closer to better results.

Figure 9.17: Plot of average branching factors for the AOIS problem

The branching decreases with the number of iterations. In the AOIS problem, the pheromone

trails are initialised to their upper trail limit if  =1.4 in the case of n=15 workstations,  =

1.3 in the case of n=16 workstations,  =1.25 in the case of n=17 workstations and  =1.17 in

the case of n=18 workstations, as shown in Figure 9.17. The experimental results confirmed

that these average branching factors at which the best trails are found in the AOIS problem.

Since  does not change greatly from iteration to iteration,  is measured every fifth

iteration. These measures can be used as termination criteria or to reinitialise the algorithm

0

2

4

6

8

10

12

14

16

18

0 50 100 150 200 250 300 350 400

B
ra

n
ch

in
g
 f

ac
to

r

Number of iterations

WS=15 WS=16 WS=17 WS=18

205

when no new areas of the search space are explored. In the AOIS problem these measures are

used to increase the exploration of the search space as described in section 9.1.

9.6 Global and iteration best versus mixed strategy

As described earlier in this chapter, updating the pheromone trails for the MMAS algorithm

was done using a mixed strategy
gbib

s


. The aim of this strategy is to obtain stronger

exploration of the search space early in the search and stronger exploitation of the overall

best solution later in the run. This mixed strategy specifies that in the first 300 iterations the

iteration best ant
ib

s is used to update the pheromone trails, and then every tenth iteration the

global best ant gbs is used for the pheromone trail update. To test the performance of this

mixed strategy it was compared with the other two methods for updating pheromone trails, s
ib

and s
gb

. The parameter values for the MMAS algorithm were set as follows: 5 , 1 and

02.0 . The rest of the parameters remained the same. The MMAS algorithm was applied

on all 50 cases for the same case study (the general cost model case study).

The results are illustrated in Table 9.3. It can be seen that the mixed strategy used to update

the pheromone trails showed better performance in terms of solution quality than the other

two strategies. The box-plot in Figure 9.18 shows the performance of MMAS for the MMAS

variants. The length of the whiskers far exceeds the length of the box. In all methods the top

whisker is much longer than the bottom whisker. The line of MMAS-S
gb

is gravitating

towards the top of the box. In the other methods the line is close to the centre. The results

confirmed that the performance of the MMAS when using the mixed strategy is much better

than the other two strategies. It can be seen that the median of the mixed strategy is closer to

the optimal solution, indicated by a dashed line, than the iteration best ant and the global best

ant. In general, using the global best ant to update the pheromone trails does not seem to be a

very good idea for MMAS. Nevertheless, the global best ant may sometimes be used to

206

reinforce the trials to direct the search more strongly. A main advantage of doing so is that a

faster convergence of the algorithm can be achieved.

 Table 9.3: Comparison between different strategies for updating pheromone trails

MMAS variants
Average number of

optimal solutions

(%)

Best average

DFOS

Worst average

DFOS

s
ib
 76 0.00015 0.0186

s
gb

 74 0.00020 0.0189

gbib
s



79 0.00012 0.0186

Figure 9.18: Performance of MMAS for different strategies for updating pheromone trails

9.7 Comparing variants of MMAS

Three different variants of the MMAS algorithm were developed and tested. In the first

variant, denoted MMAS10+ls, 10 ants were used and every ant applied a local search to its

trail. In the second variant, MMAS+ls+ib, the algorithm started with a fixed number of 10 ants

and then the number of ants that applied the local search was successively increased by one

after a certain number of iterations. The third variant used the MMAS algorithm without local

search, denoted MMAS-nls. Table 9.4 shows the results obtained by the different variants of

the MMAS algorithm during the setting of the parameters.

5.8

5.85

5.9

5.95

6

6.05

6.1

1 2 3

T
o

ta
l

co
st

MMAS-S
ib+gb MMAS-S

ib MMAS-S
gb

×
1

0
5

207

 Table 9.4: Comparison between different variants of the MMAS algorithm

MMAS variants
Best average

DFOS

Worst average

DFOS

Average

processing

time (seconds)

MMAS10+ls 0.0001 0.018 16

MMAS+ls+ib 0.0002 0.026 14

MMAS-nls 0.005 0.026 13

The comparison between the three variants of the MMAS algorithm in terms of solution

quality and processing time was based on the CEM. It can be seen that the MMAS10+ls

showed better performance than the other two variants in terms of solution quality. It can also

be seen that the best average DFOS obtained by the three variants were very close to the

optimal solution. On the other hand, the MMAS+ls+ib algorithm needed less processing time to

reach a near-optimal solution compared with the other two variants. It was found that by

adapting the number of ants applying the local search, a good compromise between

convergence speed and solution quality can be obtained. The computation results presented in

this section suggest that, especially for larger problems, using the MMAS+ls+ib algorithm may

be advantageous. In the variant MMAS-nls algorithm, the processing time was slightly higher

compared with the other two variants. This is because the algorithm needed more iterations to

arrive at a near-optimal solution.

9.8 Conclusion

In summary, the ratio between and β is identified as the key deriver to the convergence

speed using MMAS, and thus to finding the optimal solution. The results showed that the

larger the ratio between and β, the faster the convergence speed and thus the faster an

optimal solution is found. In terms of sensitivity analysis, it was found that the parameters ,

β and ρ are less sensitive within the specified range as the number of workstations is

significantly increased. It was also found that using a mixed strategy to update the pheromone

trails showed better performance than the other methods. The results showed that applying

208

the local search to the MMAS algorithm has significantly improved the performance of the

algorithm. This good performance can even be observed when the number of feasible

solutions increased significantly. It was observed that the MMAS algorithm, when combined

with local search methods of crossover, single insertion and block insertion, present better

performance than when combined with other local search methods. Furthermore, the

experimental results suggest that it is important to use heuristic information with the MMAS

algorithm in order to obtain a high quality solution. The computational results with respect to

solution quality and computation times confirm that the effectiveness of the MMAS

algorithm lies in its considerably shorter execution time and robustness. After tuning the

parameters for the MMAS algorithm, the algorithm will be applied to four experiments to

demonstrate its effectiveness. This is presented in the next chapter.

209

Chapter 10

Experimental results and discussion

The AOIS problem has been approached using a number of different techniques reported in

this chapter that vary in their methods and efficiency. The complete enumeration method

(CEM) is used as benchmark to test the MMAS algorithm against the rule of thumb (ROT),

a pure random search algorithm (PRS), SA, GA and PSO algorithms. In total, four

experiments were conducted to test performance of the MMAS algorithm against the other

methods. These experiments utilised different experimental parameters to tackle the AOIS

problem, such as size of the problem, assumptions, and methods used. The performance of

the MMAS algorithm was compared to standard methods as well as those in the experimental

case studies. The developed algorithms have been coded in MATLAB and executed on a 2.2

GHz CPU with 4 GB RAM in order to remain comparable in terms of the computational

time.

10.1 Experiment 1

Experiment 1 uses the same general cost model case study used in Section 8.1 of chapter 8.

The general cost model case study consisting of 12 processing workstations arranged in a

serial manner in order to allocate five inspection stations. With this number of workstations,

the full enumeration of the search space can be generated in a reasonable amount of time. The

same experimental parameters for the developed general cost model and their ranges apply,

as described in Section 8.1. The batch size is assumed to be 1000 and the sample size is set to

be 80 for each case. These experimental parameters are used to randomly generate 100

different cases. These 100 cases are stored in database and will be reused in the other

developed methods in this experiment as shown in Figure 10.1. Two performance measures

210

are used to evaluate the algorithms: deviations from the optimal solution (DFOS) and

execution saving time. The DFOS is calculated by the following equation (10.1):

 %1
CEMofcost Total

atheofcost Total
DFOS

lgorithm








 (10.1)

Figure 10.1: General cost model methodology experiment

Computer Execution Time (ET) is the CPU time it takes to execute the problem-solving

computer programs. An efficient method should provide significant savings in terms of

execution time over the CEM. The savings execution time is determined by equation (10.2):

%
 CEM of ET

algorithm theof ET
1timeExecution 








 (10.2)

PRS

General cost model

case study

Randomly generated

100 cases

Database stored

100 different cases

CEM ROT

Results evaluated

GA PSO MMAS SA

Optimal

solutions

(benchmark)

211

The AOIS problem will be tackled using six different algorithms. These are CEM, rule of

thumb (ROT), SA, GA, PSO and MMAS. For each of the 100 test cases, 800 evaluations

were performed by the algorithms and repeated 30 times to generate average for the test

cases. The objective of these experiments is to find the allocation of a limited number of

inspection stations in a serial multistage manufacturing process, with a reduction in the total

cost as the end result. These methods will be presented in the next subsections.

10.1.1 Complete enumeration method

The CEM was applied to the general cost model case study with 100 different randomly

generated cases. Here, the aim is to find optimum inspection plans that have the lowest total

cost for each case. Each case study contains many inspection plans that are equivalent to the

required number of inspection stations (a limited number of inspection stations) in this

experiment. However, not all inspection stations are economically equivalent. Figure 10.2

displays the histogram of the optimal total cost for the studied cases produced by the CEM

for the 100 cases.

 Figure 10.2: Histogram for the optimal cost from CEM

0

5

10

15

20

25

30

35

40

45

47-50 50-53 53-56 56-59 59-62 62-65 65-68 68-71 71-74

F
re

q
u
en

cy

Total cost

×10
4

212

These total costs represent the lowest (optimal) costs of the inspection plans in each of the

studied cases, and will be used as the benchmark for testing the other methods in this chapter.

The testing will be carried out by measuring DFOS for each case study solved by the other

methods. An effective method should provide solutions (total cost) very close to this optimal

solution. The average total cost for the experiment was 550,063.6 with a standard deviation

of 31,776.

10.1.2 Rule of thumb-a

The rule of thumb method (ROT-a) is based on the following two simple rules (Lee and

Chen, 1996): (1) inspect before costly operations (Uk) in order to avoid the high processing

costs for items that are already defective, and (2) inspect after operations that generally result

in a high rate of defectives (Zk) in order to avoid processing defective items in subsequent

operations. The rule of thumb method was applied to the same 100 different random cases,

the results which are illustrated in Figure 10.3. The histogram displays the distribution of the

total cost produced by the ROT-a method. It can be seen that this histogram is also skewed

to the right, with a peak between 530,000 and 680,000 and a long tail to 740,000. The

average total cost for the studied cases with the ROT-a method was 605,222. The average

similarity of the ROT-a method to the optimal average was 88.59%, indicating that many of

inspection plans do not conform to the optimal cost. In addition, it was found that the

standard deviation obtained by the ROT-a method for the studied cases was 45,631.

Figure 10.4 shows the DFOS percentage histogram for the studied cases achieved by the

ROT-a method. The average DFOS was 0.0884, with a standard deviation of 0.054. The best

and worst values of DFOS obtained by the ROT-a method were 0.0012 and 0.227,

respectively.

213

Figure 10.3: Total cost histogram for the ROT-a method

 Figure 10.4: Percentage of DFOS histogram for the ROT-a method

 (is not the same scale as the other methods)

10.1.3 Simulated annealing (SA)

Simulated annealing coupled with local search was implemented to solve the same 100

different cases. SA is a non-deterministic algorithm used to solve difficult optimisation

0

5

10

15

20

25

30

47-50 50-53 53-56 56-59 59-62 62-65 65-68 68-71 71-74

F
re

q
u
en

cy

Total cost

0

2

4

6

8

10

12

14

16

18

20

P
er

ce
n
ta

g
e

DFOS

×10
4

×10
-4

214

problems. It starts from an initial solution (possibly randomly generated) and generates a new

solution in each step, which is either accepted or rejected according to the acceptance

probability function as described in Section 4.3.1. The simulated annealing procedure and the

pseudo-code are given in Appendix B. When implementing SA for the AOIS problem, the

execution was terminated when either the optimal value is reached or if there is no

improvement in the optimal value for a number of temperature reduction stages.

The results obtained by the SA method are illustrated in Figure 10.5. The histogram shows

the distribution of the total cost obtained by the SA method. The average total cost for the

experiment was 550,347.

Figure 10.5: Histogram of the total cost from the SA method

The average similarity to the optimal average was found to be 99.94%, which indicates that

most of the inspection plans are equivalent to the optimal solution. In addition, the standard

deviation for the total cost for the SA method was 32,678 having a similarity to the optimal

standard deviation of 99.92%. It can be seen in Figure 10.6 that SA reaches the optimal

solution in 65% of the conducted number of experiments. The average DFOS for the studied

0

5

10

15

20

25

30

35

40

45

47-50 50-53 53-56 56-59 59-62 62-65 65-68 68-71 71-74

F
re

q
u
en

cy

Total cost

×10
4

215

cases achieved by the SA method was 0.0006, with a standard deviation of 0.0012. Generally,

the results of DFOS that were not optimal were nevertheless close to the optimal solution,

with the best and the worst results being 0.0007 and 0.0080, respectively.

Figure 10.6: Percentage of DFOS histogram for the SA method

10.1.4 Genetic algorithm (GA)

The Genetic algorithm coupled with local search methods was also applied to the same 100

different cases for general cost model case study. GA is also a non-deterministic algorithm

used to solve difficult optimisation problems. In the GA technique, a single initial solution,

most likely randomly generated, initial solution is used, starting with a population that is

representative of the search space. This is generally done by randomly generating a fixed

number of individuals. The algorithm then applies several procedures to the population in an

attempt to improve their fitness. GA is based on the idea that most solutions contain at least

some useful information, and that by sharing it, a better solution can be constructed. It should

be noted that the parameters for the GA are tuned in chapter 8. The GA procedure and

pseudo-code are given in Appendix C. The results obtained by the GA method are illustrated

in Figure 10.7. The average total cost of inspection plans for the same 100 random cases

0

10

20

30

40

50

60

70

P
er

ce
n
ta

g
e

DFOS

×10
-4

216

obtained by the GA was 552,335, being 99.74% similar to the optimal average. In addition,

the standard deviation was 32,874, with 99.30% agreement with the optimal standard

deviation.

 Figure 10.7: Histogram for the total cost from GA

Figure 10.8 displays the DFOS histogram achieved by GA for the experiment. As can be seen

from Figure 10.8, GA reaches the optimal solution (identical to the CEM) in 25% of the

conducted number of experiments. It was found that the average DFOS achieved by the GA

was 0.0024, with a standard deviation of 0.002. The non-optimal results of the DFOS are as

follows: a best result of 0.0007 and a worst result of 0.0094.

10.1.5 Particle swarm optimisation (PSO)

Particle swarm optimisation is a stochastic optimisation technique and also a population

based search algorithm, inspired by social behaviour of bird flocking or fish schooling. After

tuning the parameters for the PSO algorithm in chapter 8, the PSO algorithm is applied to the

same general cost model case study. As in the preceding sections, the results obtained by the

PSO algorithm are then tested against the optimal results obtained by the CEM. The results

0

5

10

15

20

25

30

35

40

47-50 50-53 53-56 56-59 59-62 62-65 65-68 68-71 71-74

F
re

q
u
en

cy

Total cost

×10
4

217

obtained by PSO are illustrated in Figure 10.9. The average total cost achieved by the PSO

algorithm was 550,350, having a more reliable performance with 99.94% agreement with the

optimal average. In addition, the standard deviation of the total cost achieved by the PSO was

31,714.06.

Figure 10.8: Percentage of DFOS histogram for GA

 Figure 10.9: Histogram for the total cost from PSO

Figure 10.10 shows the DFOS percentage achieved by the PSO. It was found that the PSO

algorithm reaches the optimal solution (identical to the CEM) in 65% of the conducted

0

5

10

15

20

25

30

P
er

ce
n
ta

g
e

DFOS

0

5

10

15

20

25

30

35

40

45

47-50 50-53 53-56 56-59 59-62 62-65 65-68 68-71 71-74

F
re

q
u
en

cy

Total cost

×104

×10 -4

218

experiments. In addition, it was found that the average DFOS for the studied cases achieved

by the PSO algorithm was 0.0004, with a standard deviation of 0.00069. In general, the non-

optimal results were close to the optimal solution, the best and worst DFOS being 0.00015

and 0.0028, respectively.

 Figure 10.10: Percentage of DFOS histogram for PSO

10.1.6 Max-min ant system

After tuning the parameters for the MMAS algorithm in chapter 8, its performance is

evaluated with the same general cost model case study. As in the previous sections, the

results obtained by the MMAS algorithm are then evaluated against the optimal results

obtained by the CEM. The following parameters were used by the MMAS algorithm: β=1,

α=5 and ρ=0.02. The results obtained by MMAS are illustrated in Figure 10.11. The average

total cost achieved by the MMAS algorithm was 550,186, having a more reliable

performance with 99.97% agreement with the optimal average. This high agreement also

indicates that the vast majority of the total cost of inspection plans is very close to the

optimum. In addition, the standard deviation of the total cost achieved by the MMAS was

31,586. Figure 10.12 shows the DFOS percentage achieved by the MMAS. It was found that

the MMAS algorithm reaches the optimal solution (identical to the CEM) in the vast majority

0

10

20

30

40

50

60

70

80

P
er

ce
n
ta

g
e

DFOS

×10 -4

219

of the conducted experiments 79%. In addition, it was found that the average DFOS for the

studied cases achieved by the MMAS algorithm was 0.00017, with a standard deviation of

0.0005. These results are very small, indicating the effectiveness of the MMAS algorithm. In

general, the non-optimal results were very close to the optimal solution, the best and worst

DFOS results being 0.0001 and 0.0028, respectively.

Figure 10.11: Histogram for the total cost from MMAS

 Figure 10.12: Percentage of DFOS histogram for MMAS

0

5

10

15

20

25

30

35

40

45

47-50 50-53 53-56 56-59 59-62 62-65 65-68 68-71 71-74

F
re

q
u
en

cy

Total cost

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
n
ta

g
e

DFOS

×104

×10
-4

220

10.1.7 A pure random search (PRS)

A pure random search algorithm is developed to solve the AOIS problem. This is done to

ensure that the solutions found by the MMAS algorithm are not just lucky strikes. The PRS

algorithm is based on generating random solutions (10,000 random solutions) and the best a

hundred solutions are selected. The results which are obtained by the PRS algorithm are

illustrated in Figure 10.13. The histogram displays the distribution of the total cost produced

by the PRS algorithm. The average total cost for the random solutions with the PRS

algorithm was 628,819. In addition, it was found that the standard deviation obtained by the

PRS algorithm was 61589.2

Figure 10.14 shows the DFOS percentage histogram for the studied cases achieved by the

PRS algorithm. The average DFOS was 0.1244, with a standard deviation of 0.0560. The best

and worst values of DFOS obtained by the PRS algorithm were 0.0303 and 0.2467,

respectively.

Figure 10.13: Total cost histogram for the PRS algorithm

0

5

10

15

20

25

F
re

q
u
en

cy

Total cost

×10
4

221

 Figure 10.14: Percentage of DFOS histogram for the PRS algorithm

 (is not the same scale as the other methods)

10.1.8 Comparing performance of the algorithms

 Descriptive statistics are a quick and concise way to extract the important characteristics of a

dataset. The main goal of descriptive statistics is to quickly describe the characteristics of the

underlying distribution of a dataset through a simplified set of values. The most common

technique for summarising data is the box-plot graph. Figure 10.15 illustrates box-plot for the

performance of the algorithms approaching the AOIS problem against the CEM. It can be

observed that the PRS and the ROT-a appear to have larger variability than the other four

algorithms.

In addition both of them have long whiskers, which represent a wide ranging population.

However, all algorithms are reasonably symmetric. Based on the lower and the upper

whiskers there are no obvious outliers in any of the algorithm‟s data. As can be seen from the

plot, the centre of the PRS and the ROT algorithm exceed the other algorithms. However, SA

and GA algorithms appear to have similar centres, and all their centres are above the CEM

0

2

4

6

8

10

12

14

16

18
P

er
ce

n
ta

g
e

DFOS

×10
-4

222

centre (optimal solution). Except for MMAS algorithm, the centre of the PSO algorithm is

much better than the other algorithms.

 Figure 10.15: Performance of the algrithms against CEM for the AOIS problem

On the other hand, MMAS and CEM have similar centres. This confirmed that the vast

majority of the inspection plans produced by the MMAS algorithm are identical to the CEM,

which indicates the effectiveness of the MMAS algorithm. It is concluded that the

performance of the MMAS algorithm in terms of solution quality is better than the other

methods.

10.1.9 Solutions for experiment 1

The introduction of inspection stations into the production process, although constituting an

additional cost; however, at some level of inspection points it is expected that such costs will

be recovered from the benefits realized through the identification of defective items. Hence

determining the optimal location of inspection stations is a very important decision. Of

significance in such decisions are the trade-offs between the explicit costs of detection, repair

and replacement associated with a particular inspection plan, and the implicit costs of

unnecessary additional investment in a faulty item (and/or the costs of transmitting a

nonconforming product beyond the boundaries of the process) when no inspection is

45000

50000

55000

60000

65000

70000

75000

80000

85000

1 2 3 4 5 6 7

T
o

ta
l

co
st

CEM SA GA PSO ROT-a MMAS PRS

223

conducted. It is possible that not all locations of inspection stations are economically

equivalent; more likely given the differentials in cost structures and process characteristics,

some combinations of inspection places may prove to be economically preferable to others.

The cost of AOIS problem involves many characteristics, including inspection errors (type I

and type II), internal failure cost (rework and scrap), external failure cost (repair and

replacement), inspection cost (fixed and variable) and manufacturing cost. As described in

chapter 2, no literature considers all these characteristics together. However, the general cost

model is developed to consider all these characteristics. As a result, the total manufacturing

cost of a product can be reduced without affecting the quality of the product.

There are five inspection stations to be allocated in a serial multistage manufacturing process.

The algorithms applied to the same general cost model case study. The total solutions

produced by the algorithms are 600 solution, or inspection plans. It is impractical to discuss

every individual solution. Therefore, in this section two cases (1.1 and 1.2) are selected in

order to discuss their solutions, as shown in Tables 10.1 and 10.2. It should be noted that the

studied cases are randomly generated, and therefore every case study has different

characteristics for the workstations in terms of inspection cost, operation cost, rework cost

and defect rates, as shown in Tables 10.2 and10.3. The inspection plans obtained by the SA,

GA, PSO and MMAS algorithms are the inspection plans that have the lowest total cost.

Table 10.1: Inspection plans for case study 1.1

Algorithms
Workstations

Total cost
1 2 3 4 5 6 7 8 9 10 11 12

CEM 0 1 1 1 0 0 0 0 0 1 0 1 519,370

PRS 0 0 1 0 1 0 0 1 1 0 1 0 582,160

ROT-a 0 1 1 0 0 0 0 1 1 0 0 1 570,270

SA 0 1 1 1 0 0 0 0 0 1 0 1 519,370

GA 0 1 1 0 0 0 0 1 0 1 0 1 529,020

PSO 0 1 1 1 0 0 0 0 0 1 0 1 519,370

MMAS 0 1 1 1 0 0 0 0 0 1 0 1 519,370

224

 Table 10.2: Inspection plans for case study 1.2

Algorithms
Workstations

Total cost
1 2 3 4 5 6 7 8 9 10 11 12

CEM 0 1 1 1 0 0 0 0 1 0 0 1 457,760

PRS 1 0 1 0 1 0 0 0 1 1 0 0 571,510

ROT-a 1 1 0 0 1 0 0 0 1 0 1 0 561,914

SA 0 1 0 1 1 0 1 0 0 0 1 0 461,840

GA 0 1 0 1 0 1 1 0 0 0 0 1 480,497

PSO 0 1 0 1 0 0 1 0 0 1 0 1 460,170

MMAS 0 1 1 1 0 0 0 0 1 0 0 1 457,760

In case study 1.1, the MMAS placed the inspection stations after workstations 2, 3, 4, 10 and

12. As can be seen from Table 10.3 the inspection stations at workstations 2,3 and 4 are

placed before processing workstations 3, 4 and 5,which characteristically have a higher

operating cost (U3=99.797, U4=97.723 and U5
=
86.601). As a result, to avoid processing items

those are already defectives in subsequent processing workstations by continuing processing

them. In addition, workstations 2, 3 and 4 have a characteristically low inspection cost

compared to the other workstations (IC2=40.300, IC3=41.491 and IC4=40.655). As there are a

limited number of inspection stations, the last two inspection stations are placed at

workstations 10 and 12. For workstation 10 the inspection station is placed before processing

workstation 11 which has a high operation cost (U11=90.512) to avoid processing defective

items in subsequent processing workstations, note that workstation 10 has a low inspection

cost (IC10=40.65) compared to the other workstations.

For workstation 12 this entails the avoidance of penalty costs. In particular, to guarantee that

no defective items reach the customer. As can be seen from Table 10.1, many inspection

plans obtained by SA, PSO and MMAS algorithms are identical to the solution obtained by

the CEM. On the other hand, the inspection plan obtained by GA is different to the optimal

solution. The difference lies in the location of the inspection station at workstation 4, which is

placed at workstation 8.

225

 Table 10.3: Experimental parameters for case study 1.1
Experimental

parameters

Workstations

1 2 3 4 5 6 7 8 9 10 11 12

Zk 0.1191 0.1323 0.1596 0.1516 0.1144 0.1157 0.0913 0.1675 0.1696 0.1401 0.1691 0.1799

Uk 73.518 87.129 99.797 97.723 86.601 73.613 74.468 72.594 89.400 86.733 90.512 89.386

ICm 48.765 40.300 41.491 40.655 47.655 42.160 48.371 44.841 44.773 40.651 43.653 44.567

αm 0.0286 0.0177 0.0280 0.0210 0.0201 0.0113 0.0271 0.0122 0.0164 0.0138 0.0189 0.0134

βm 0.0150 0.0188 0.0206 0.0120 0.0273 0.0294 0.0284 0.0294 0.0156 0.0220 0.0164 0.0261

uk 31.231 109.877 98.251 97.385 30.739 46.572 57.99 46.56 52.043 86.348 60.156 112.931

gk 76.822 49.7105 77.612 76.981 79.636 76.018 51.326 52.546 60.783 73.476 79.613 71.638

δk 0.0670 0.0835 0.0560 0.0830 0.0804 0.0724 0.0873 0.0516 0.0556 0.0565 0.0727 0.0762

Table 10.4: Experimental parameters for case study 1.2
Experimental

parameters

Workstations

1 2 3 4 5 6 7 8 9 10 11 12

Zk 0.1097 0.1766 0.1641 0.1496 0.1531 0.1252 0.0999 0.1310 0.1745 0.1490 0.1790 0.1500

Uk 61.018 97.766 95.336 62.388 53.555 68.249 65.734 70.165 54.719 89.750 61.323 74.937

ICm 49.079 40.598 41.714 40.912 46.367 47.040 44.171 48.143 41.760 43.765 42.336 44.401

αm 0.0172 0.0263 0.0183 0.0225 0.0177 0.0284 0.0114 0.0187 0.0188 0.0122 0.0133 0.0178

βm 0.0118 0.0170 0.0150 0.0198 0.0149 0.0253 0.0284 0.0189 0.0187 0.0237 0.0226 0.0104

uk 52.977 85.158 95.232 104.579 32.870 55.745 51.374 74.618 114.360 43.620 32.106 109.837

gk 46.374 53.665 68.739 78.009 76.893 66.2411 74.972 61.324 66.369 72.864 66.329 68.178

δk 0.0654 0.0887 0.0805 0.0692 0.0814 0.0740 0.0660 0.0866 0.0852 0.0638 0.0796 0.0614

226

This location aims to avoid additional costs that may result from workstation 9 with a higher

operation cost (U9=89.400), whilst at the same time detecting defective items from

workstation 8 with a higher defect rate (Z8=0.1675). It should be noted that despite the

operation cost at workstation 9 (U9=89.400) being higher than the operation cost at

workstation 5 (U5=86.601), and the defect rate at workstation 8 (Z8=0.1675) being higher

than that at workstation 4 (Z4=0.1516), the total cost of the inspection plan obtained by the

GA of 529, 020 is higher than the total cost achieved by the MMAS algorithm or the optimal

cost of 519,370.

The reason for this is that the early inspection station which was placed at workstation 4 in

the inspection plan of the MMAS detected defective items before wasting additional

resources by continuing to process them in subsequent workstations. In other words, the

additional costs resulting from workstation 4 is much greater than the unnecessary costs

resulting from workstation 8. This shows the effectiveness of the MMAS algorithm, with the

advantage of using adaptive memory. The memory capability in the MMAS algorithm allows

the algorithm to keep a record of the lowest cost of the inspection plans.

Except for the PRS algorithm, inspection plan obtained by the ROT-a method different from

all other algorithms particularly in comparison with the MMAS algorithm. Inspection points

are placed before the workstations that have higher operation costs or after workstations that

have higher rates of defective items. Thus the first and the second inspection stations are

placed before workstations 3 and 4 which have higher operation costs (U3=99.797

U4=97.723), as shown in Table 10.3. Consequently the third inspection station at workstation

8 is placed before workstation 9 with a higher operation cost (U9=89.400). Whereas the

fourth and the fifth inspection stations are placed after workstations 9 and 12 respectively,

which generate higher defect rates (Z9=0.1696 and Z12=0.1799).The results of the ROT-a

method indicate that the operation costs and the defect rate at a particular workstation do not

227

directly influence the inspection decision. On the other hand, it was found to be essentially

dependent on the processing costs and defect rates at other workstations. Regarding the PRS

algorithm, the total cost of the inspection plan obtained by the PRS algorithm is 582,160,

which is higher than that obtained by other algorithms. This is because the PRS algorithm did

not have any operator to guide the algorithm to good solutions.

In case study 1.2, the MMAS algorithm placed inspection stations at workstations 2, 3, 4, 9

and 12. As can be seen from Table 10.4, workstations 2, 3, 4 and 9 have a characteristically

high defect rate (Z2=0.1766, Z3=0.1641, Z4=0.1496 and Z9=0.1745). In addition, inspection

costs at these workstations is characteristically relatively low compared to the other

workstations (IC2=40.598, IC3=41.714, IC4=40.912 and IC9=41.760). Placing these

inspection stations at those workstations aim to identify defective items before passing them

to the subsequent processing workstations. As a result, the total cost of the inspection plan

can be minimised. The last inspection station is placed at workstation 12. This leads to

avoiding external failure costs and to guarantee no defective items reach the customer.

Regarding the inspection plan obtained by the PSO algorithm, it is slightly different from the

optimal solution. The difference is that the inspection station placed in the optimal solution at

workstation 3 is now placed at workstation 7. Furthermore, the inspection station at

workstation 9 in the optimal solution is now placed at workstation 10. This combination of

inspection stations led to a greater total cost compared with the inspection plan produced by

the MMAS algorithm.

As can be seen from Table 10.4, the inspection plan achieved by the GA is different from the

optimal solution. The difference is found in the placement of the inspection station at

workstation 3 in the optimal solution, which is now placed at workstation 6. Also the

inspection station at workstation 10 in the optimal solution is now placed at workstation 7.

228

The total cost obtained by this inspection plan is greater than the cost obtained of the MMAS

algorithm.

Concerning the inspection strategy obtained by the SA algorithm, it is also different from the

optimal solution. The difference lies in that the inspection station which in the optimal

solutions placed at workstation 3, in this case is placed at workstation 5. A further difference

is in the inspection station at workstation 9 in the optimal solution, which is placed at

workstation 7 and in the inspection station at workstation 12 in the optimal solution which on

this occasion is placed at workstation 11. As a result, the total cost obtained by SA algorithm

is much greater than the total cost achieved by the MMAS algorithm.

Regarding the solutions obtained by ROT-a, the inspection plan is different from all other

algorithms. Inspection points are placed before those workstations that have higher operation

cost or after workstations that have a higher number of defectives items. The first, the second

and the third inspection stations are placed before workstations 2, 3 and 10 which have

characteristically higher operation costs (U2=97.766, U3=95.336 and U10=89.750), as shown

in Table 10.3. The fourth and the fifth inspection stations are placed after workstations 5 and

11 which have characteristically higher defect rates (Z5=0.1531 and Z11=0.1790). Concerning

the inspection strategy obtained by the PRS algorithm, it was found that the total cost of the

inspection plan obtained by the PRS is much greater than the total cost obtained by the other

algorithms.

 Summary

The optimal inspection policy in a serial multistage manufacturing process has been studied.

It has been proven that the solution approach using the MMAS algorithm gives better quality

results in comparison with the other relevant algorithms when considering total inspection

cost as the performance measure. The interpretation is that the MMAS algorithm outperforms

the other algorithms because is enhanced with heuristic information. By using the heuristic

229

information the probable search space (the search space most likely to be explored) a much

smaller space than the original search space will be explored. The purpose of the heuristic

information in the MMAS algorithm is to guide the ants toward identifying promising regions

of the search space. The search space in the general cost model case study for the AOIS

problem is 2
12

=4096 possible combinations for allocating inspection points. The heuristic

information reduces this search space by guiding ants when assigning inspection stations to

workstations with a high operation cost, defect rate and low inspection cost. Placing

inspection stations at these workstations leads to reducing any unnecessary and avoidable

costs, such as the cost of additional processing operations on a defective part in subsequent

processing workstations. As a result, the total cost of the inspection plan can be minimised. In

addition, the memory capability in the MMAS allows the algorithm to keep a record of

previous search paths using the pheromone matrix. This matrix includes the paths (inspection

positions) that the ants have visited. Thus, the path with the lowest cost will be used more

frequently by subsequent ants. Furthermore, by applying a local search to the solutions that

the ants have found the total cost can be further reduced. The local search works exchange

inspection points, as a result of which the cost structure of the inspection plan is changed.

This leads to improving the performance of the algorithm.

10.1.10 Discussion

The results of the MMAS algorithm and the other developed methods in Experiment 1 are

summarised in Table 10.5. This experiment used a general cost model case study consisting

of 12 processing workstations arranged in a serial manner in order to allocate five inspection

stations. With this number of workstations, the full enumeration of the search space can be

generated in a reasonable amount of time. This led to the use of CEM as a benchmark to

compare the algorithms. The experimental parameters of the general cost model were used to

generate 100 different cases, which represent the characteristics of different manufacturing

230

systems. For each of the 100 test cases, 800 evaluations were performed which are repeated

30 times to generate average for the test cases.

Table 10.5: Performance of developed methods for Experiment 1

Methods % of

optimal

solution

Average

total

cost(£)

 Total

cost

Average

DFOS


DFOS

Best*

result

(DFOS)

Worst

result

(DFOS)

CEM 100 550,063 31,776 (Datum)

SA 65 550,347 32,689 0.0006 0.0012 0.0007 0.0080

GA 25 552,335 32,874 0.0024 0.002 0.0007 0.0094

PSO 70 550,350 31,714.06 0.0004 0.0006 0.00017 0.0028

MMAS 79 550,186 31,586 0.0001 0.0005 0.00012 0.0028

ROT-a 0.0 606,221 45,630.6 0.0994 0.0510 0.0011 0.2147

PRS 0.0 628,819 61,589.2 0.1244 0.0560 0.0303 0.2467

*Best result (DFOS): excluding the solutions that coincide with CEM optimal.

The results show that the MMAS algorithm clearly outperformed the other methods in all

performance measures. It was found that the MMAS algorithm could find the optimal

solution (identical to the CEM) in vast majority 79% of case studies. In addtion, MMAS was

able to identify high-quality solutions with an average DFOS of 0.0001, which is clearly

superior to the other methods. Likewise, it was found that the standard deviation obtained by

the MMAS algorithm was much better than the other methods, also indicating the strength of

the MMAS algorithm. In addition, the best and the worst results achieved by the MMAS

algorithm are significantly better than the other methods, demonstrating the effectiveness of

the MMAS algorithm. On the other hand, the average DFOS for the PSO method was better

than the SA, and GA methods. In addition, the best and the worst results achieved by the PSO

method is much better than the SA and GA methods. SA is based on only dealing with a

single best solution, that having the best cost for one of the objectives, and not with a set of

non-dominated solutions. Accepting worst solution enables the search to escape from the

local optima, but this may also cause revisiting of previously evaluated points in the search

231

space and which also means the search is not adequately diversified. It was found that the

average DFOS for the SA method was better than that for the GA method. In addition, the

worst DFOS value 0.008 for SA was better than that of the GA method 0.0094; however, the

best DFOS values for these two methods ended up being the same. Except for the PRS

algorithm, the solution quality obtained by the ROT-a method was less than all the other

methods in the comparison. Table 10.5 also shows that the solution quality obtained by the

PRS algorithm was worse than all the other methods in the comparison. This was expected,

because the PRS algorithm was based on placing inspection stations purely randomly and did

not have any operator to guide the algorithm to good solutions.

Regarding running times, Table 10.6 shows the average execution time of the applied

methods and the percentage of time saved in comparison with the CEM, by using Equation

(10.2). With the exception of the ROT-a method, the MMAS algorithm shows a faster

execution time than the other three methods. On the other hand, the percentage of time saved

for the ROT-a method is the greatest among all the methods. The reason for this is due to the

simplicity of the ROT-a computational process; it is completed in just one iteration.

However, the solution quality produced by the ROT method is rather far from the optimal

solution.

Table 10.6: Time performance of Experiment 1 methods compared to CEM

Method Average execution

time(seconds)

Time saved (%)

CEM 90 0.0

PRS 3 96

ROT-a 2 97

SA 45 50

GA 55 38

PSO 40 55

MMAS 35 61

232

10.2 Experiment 2

The data used in Experiment 2 are based on case study by Engin et al. (2008), which used

real data that involved the manufacturing of an engine valve. Engin et al. (2008) proposed a

fuzzy model solved with genetic algorithms for attribute control charts in multistage

processes. The aim in the study by Engin et al. (2008) was to find acceptance numbers (e.g.

determine whether to accept or reject a production lot of material) at each stage of the

multistage process, resulting in the minimisation of cost at each stage. They applied their

model to an engine valve manufacturing firm. The valves went through 24 or 36 different

processing operations. Figure 10.16 is shown the operations of 24 processing workstations.

These operations consist of different machines that are equipped with computer-controlled

machinery. It should be noted that this case study was not originally an AOIS problem.

This case study was selected because it is considered a large problem comparing to the

previous case study (general cost model) from which the performance of the MMAS

algorithm against the SA, GA, PSO, PRS and ROT-a methods could be evaluated. In

addition, this case study is based on real data and most of the required data for the MMAS

algorithm are available. The number of feasible solutions in this experiment is 2
24

=16,777,216.

It AOIS problem, as the size of the problem grows, so the number of inspection station

allocation possibilities increases exponentially, CEM has computational times that are too

long for practical purposes. Therefore, an optimal solution for this experiment cannot be

obtained with CEM in a reasonable time. For this reason, the comparison between the

algorithms will be based on absolute values rather than DFOS. Table 10.7 shows the

experimental parameters and their ranges for Experiment 2. Because the case study of Engin

et al. (2008) did not consider inspection errors which might occur at inspection points, the

233

developed general cost model for the AOIS problem in this experiment thus assumes that the

inspection is performed free of error. This assumption is simply adapted by setting the

inspection error parameters in the general cost model to: α=0 and β=1.

Cut of Head

Material
1

First Grinding of

Angle

13

First Cut of Length

11
Marketing

23

First Grinding of

Stem

12
Packaging

24

Friction Welding

8
Finish Grinding of

Stem

20

Heat Treatment
9

Chrome Plating

21

Test of Welding
10

Quality Control

22

Inflation
3

4

Radius Turning

15

Press
4

4

Machining of

Groove

16

4

Press

5
Grinding of Stem

17

Heat Treatment

6
Finish Grinding of

Tip

18

Flex

7
Finish Grinding of

Angle

19

Cut of Stem

Material

2

4

Head Turning

14

4

Figure 10.16: Operations of engine valve (Engin et al., 2008)

234

Table 10.7: Experimental parameters for Experiment 2

Because both the unit inspection and unit reworking costs are unavailable, they are assumed

to be reasonable values. In reality, inspection cost is significantly less than manufacturing

cost. Therefore, the inspection and reworking costs are assumed to be 10% and 25% of the

manufacturing cost, respectively. Some previous studies used this assumption (e.g. Lee and

Unnikrishnan, 1998). Penalty cost is the cost associated with the final production of

undetected non-conforming items that reach the customer. Penalty cost is assumed in these

ranges based on the price of the cost valves. The firm generally produces the valve at a cost

of $1–$5 (Engin et al., 2008). This range of the penalty cost is expected to cover issues such

as replacement, repairs, return products, and other services.

All developed methods (i.e., ROT-a, PRS, SA, GA, PSO and MMAS) were applied to 100

different randomly generated cases for solving the AOIS problem. These cases, generated by

a uniform random number generator, represent the characteristics of different manufacturing

systems. It is assumed that there are a limited number of inspection stations 8 available to be

allocated to the different processing workstations; this number was chosen to match the value

used by Engin et al., (2008). In terms of solution quality, it is important to report the average

solution quality created by the applied methods, because for increasing problem sizes, this is

the most important discriminating factor. Therefore, the evaluation of the performance of the

Parameters Range Brief description

B 1000 Batch size

Uk [0.075, 0.085] Unit manufacturing cost ($)

ICm [0.0075, 0.0085] Unit inspection cost ($) (assumed)

Zk [0.004, 0.01] Defective rate

uk [0.25, 0.270] Unit scrap cost ($)

gk [0.018, 0.022] Unit reworking cost ($) (assumed)

δk [0.03, 0.09] Repairing probability

Penalty cost [2, 10] Each defective item that reaches the customers ($) (assumed)

235

developed methods will be based on the average of the total cost and the average execution

time. The results obtained by the methods in Experiment 2 are presented in Table 10.8. It can

be seen that the MMAS algorithm performs considerably better than the other methods in

terms of solution quality (average total cost). In addition, the standard deviation of the total

cost obtained by the MMAS algorithm is less than the other developed methods, indicating a

more reliable performance for the MMAS algorithm. These experimental results confirm that

the MMAS algorithm outperforms the other methods even when the AOIS problem is

significantly increased. Table 10.8 also shows that the solution quality produced by the PRS

algorithm is much less than the other methods.

 Table 10.8: Performance of the studied methods for Experiment 2

Methods Average total

cost ($)
 Total cost Average

execution time

(seconds)

PRS 2571.68 8.25 4

ROT-a 2556.65 10.08 3

SA 2505.56 4.09 90

GA 2508.44 4.95 110

PSO 2503.63 4.23 89

MMAS 2492.76 1.56 86

Regarding processing time, the MMAS has the least average processing time as compared to

the other methods, except for the ROT-a method. Indeed, the average processing time

provided by the ROT-a method is the smallest among all methods, due to its simplicity and

the fact that it does not need more than one pass to arrive close to the optimal solution. In

reality, the production management of firms are more interested in solution quality rather

than processing time, as long as the execution time of the method is reasonable. The GA

method has the highest average processing time because its steps to reach the solution are

longer than the other methods, and it also incorporates a local search method. It should be

noted that genetic algorithms require large number of response (fitness) function evaluations

236

depending on the number of individuals and the number of generations. Therefore, genetic

algorithms may take long time to evaluate the individuals.

As described in section 5.5.2, the fitness distance correlation (FDC) for the AOIS problem

indicates a strong correlation between the solution quality and the distance to the optimum.

The high fitness distance correlation indicates that the search space of the AOIS problem is a

globally convex, single-funnel landscape or big valley structure. A big valley structure means

that local optima tend to be relatively close to each other and to the global optimum. In a big

valley structure the MMAS can potentially drive the search towards an optimal solution or

near optimal solution. In other words, this high correlation suggests that the local optima are

radially distributed in the problem space, with the global optima as the centre, and the more

distant the local optima are from the centre the worse their objective function values. Hence,

by tracing local optima step by step, moving from one optimum to nearby slightly better

ones, one can eventually reach a near global optimal solution.

10.2.1 Solutions for experiment 2

As in the previous section, the solutions obtained by the relevant algorithms for the engine

valve case study are presented. Since it is impractical to discuss every individual solution

obtained by the relevant algorithms, two cases (2.1 and 2.2) are selected in order to discuss

their solutions. Tables 10.9 and 10.10 show the results and the experimental parameters

respectively for case study 2.1. Tables 10.11 and 10.12 show the results and the experimental

parameters respectively for case study 2.2. The inspection plans obtained by SA, GA, PSO

and MMAS algorithms are the inspection plans that have the lowest total cost. In case study

2.1, no inspection is selected for the first workstation (cut off head material) for the

inspection plan obtained by the MMAS method. This means that the cost avoidance of

detecting defective products in workstation 1 does not outweigh the cost of performing an

inspection at this workstation.

237

 Table 10.9: Inspection plans Case study 2.1

Algorithms
Workstations

Total

cost 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

PRS 0 1 0 1 0 1 1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 2670.8

ROT-a 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 1 1 2605.3

SA 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 0 0 1 2510.3

GA 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 1 0 1 0 2515.6

PSO 0 1 1 1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 1 2493.8

MMAS 0 1 1 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 0 0 0 1 2488.7

 Table 10.10: Experimental parameters for case study 2.1

Experimental

parameters

Workstations

1 2 3 4 5 6 7 8 9 10 11 12

Zk 0.0056 0.0091 0.0097 0.0083 0.0056 0.005 0.0073 0.0073 0.0093 0.0097 0.0065 0.0083

Uk 0.0740 0.0817 0.0854 0.0796 0.0838 0.0821 0.0765 0.0770 0.0769 0.0846 0.0804 0.0824

ICm 0.0082 0.0081 0.0080 0.0079 0.0084 0.0079 0.0082 0.0078 0.0080 0.0081 0.0075 0.0082

uk 0.2075 0.2537 0.2065 0.2010 0.2132 0.2635 0.2607 0.2570 0.2193 0.2477 0.2067 0.248

gk 0.0180 0.0216 0.0192 0.0203 0.0212 0.0207 0.0204 0.0198 0.0202 0.0216 0.0210 0.0199

δk 0.0832 0.0399 0.0499 0.0470 0.0863 0.0300 0.0465 0.0420 0.0797 0.0442 0.0738 0.0389

Table 10.10: Experimental parameters for case study 2.1 (continued)
Experimental

parameters

Workstations

13 14 15 16 17 18 19 20 21 22 23 24

Zk 0.005 0.0095 0.0089 0.0082 0.0043 0.0080 0.0097 0.0098 0.0047 0.0049 0.0078 0.0095

Uk 0.0810 0.0757 0.0834 0.0826 0.0752 0.0840 0.084 0.0792 0.0782 0.0780 0.0834 0.0802

ICm 0.0078 0.0075 0.0084 0.0076 0.0081 0.0077 0.0078 0.0078 0.0079 0.0084 0.0085 0.0077

uk 0.2615 0.2540 0.2241 0.2166 0.2023 0.2423 0.2618 0.2473 0.2504 0.2549 0.2023 0.2050

gk 0.0192 0.0196 0.0215 0.0181 0.0206 0.0201 0.0191 0.0212 0.0211 0.0193 0.0203 0.0193

δk 0.0498 0.0492 0.0465 0.0696 0.0537 0.0498 0.0890 0.0365 0.0489 0.0823 0.0721 0.0684

238

 Table 10.11: Inspection plans for Case study 2.2

Algorithms
Workstations

Total cost
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

PRS 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 0 0 2660.7

ROT-a 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 1 0 0 1 2595.3

SA 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 1 0 0 1 2508.4

GA 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 1 0 0 1 2513.3

PSO 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 1 0 1 0 2503.33

MMAS 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 1 0 1 0 0 1 2490.5

Table 10.12: Experimental parameters for case study 2.2
Experimental

parameters

Workstations

1 2 3 4 5 6 7 8 9 10 11 12

Zk 0.0057 0.0044 0.0076 0.0071 0.0058 0.0068 0.0084 0.0050 0.0046 0.0057 0.00920 0.0082

Uk 0.0788 0.0791 0.0843 0.0781 0.0753 0.0796 0.0752 0.0826 0.0794 0.0775 0.0797 0.0785

ICm 0.0076 0.0082 0.0083 0.0080 0.0078 0.0077 0.0076 0.0077 0.0080 0.0081 0.0075 0.0078

uk 0.2662 0.2699 0.2536 0.2511 0.2679 0.2599 0.2648 0.2546 0.2565 0.2586 0.2689 0.2614

gk 0.0181 0.0187 0.0213 0.0190 0.0208 0.0196 0.0212 0.0210 0.0184 0.0209 0.0219 0.0190

δk 0.0410 0.0336 0.0771 0.0890 0.0570 0.0340 0.0733 0.0344 0.0501 0.0678 0.0327 0.0468

Table 10.12: Experimental parameters for case study 2.2 (continued)
Experimental

parameters

Workstations

13 14 15 16 17 18 19 20 21 22 23 24

Zk 0.0092 0.0094 0.0062 0.0094 0.0058 0.0082 0.0096 0.0090 0.0074 0.0075 0.0089 0.0097

Uk 0.0780 0.0761 0.0766 0.0843 0.0807 0.0844 0.0845 0.0797 0.0796 0.0844 0.0791 0.0772

ICm 0.0079 0.0079 0.0078 0.0076 0.0080 0.0078 0.0078 0.0083 0.0077 0.0080 0.0077 0.0083

uk 0.2660 0.2553 0.2601 0.2685 0.2699 0.2602 0.2555 0.2502 0.2543 0.2636 0.2689 0.2635

gk 0.0220 0.0180 0.0203 0.0213 0.0193 0.0183 0.0210 0.0196 0.0203 0.0210 0.0202 0.0187

δk 0.0331 0.0424 0.0730 0.0851 0.0894 0.0481 0.0540 0.0511 0.0337 0.0678 0.0689 0.0433

239

In addition, as can be seen in Table 10.10, the operation cost and defect rate at the first

workstation are lower than in the other workstations. The first inspection station in the

inspection plan created by the MMAS is placed before processing workstation 3 (inflation

process) with a high operation cost (U3=0.0854), and after workstation 2 (cut off stem

material), which generates a relatively high defect rate (Z2=0.0091) compared to the other

workstations. This leads to avoiding processing items that are already defective in subsequent

processing workstations. The second inspection station is placed after workstation 3, which

has a high defect rate (Z3=0.0097). This inspection station aims to detect defective items

before allowing them to pass to successive workstations. The third, fourth and fifth inspection

stations are placed before workstations 12 (first grinding of stem), 16 (machining of groove)

and 18 (finishing grinding of tip) with high operation costs (U12=0.0824, U16=0.0826 and

U18=0.0840). These inspection stations aim to avoid unnecessary processing costs in

subsequent processing workstations. The sixth, seventh and eighth inspection stations are

placed at workstations 14 (head turning), 19 (finish grinding of angle) and 24 (packaging)

which generate high defect rates (Z14=0.0095, Z19=0.0095 and Z24=0.0097).

In contrast, these workstations have characteristically low inspection costs (IC14= 0.0075,

IC19=0.0078 and IC24=0.0077).The inspection station at workstation 24 aims to detect any

defective items before reaching the customer. The inspection plan obtained by the PSO is

different from the inspection plan obtained by the MMAS algorithm. The difference is in the

location of the inspection station at workstation 14 (head turning) in the MMAS inspection

plan which is placed at workstation 4 (press) in the PSO inspection plan. This cost structure

of the PSO inspection plan led to a total cost higher than the total cost from the MMAS

algorithm. The inspection plans obtained by GA, SA, ROT and PRS algorithms are also

different from the inspection plan achieved by the MMAS algorithm. As a result, these

240

inspection plans led to higher total costs compared to the total cost obtained by the MMAS

algorithm.

In case study 2.2, as can be observed in Table 10.11, the inspection plans obtained by the

algorithms are different from the one in case study 2.1. This is because the characteristics of

case study 2.2 in terms of operation cost, defect rate, rework cost and inspection cost are

different from those in case study 2.1. The MMAS algorithm distributed the eight inspection

stations through the serial line as can be seen in Table 10.12. Note that workstations 3, 8, 19

and 22 have characteristically high operation costs (U3=0.0843, U8=0.0826, U19=0.0845 and

U22=0.0844). The first four inspection stations are placed at workstations 2 (cut off stem

material), 7 (flex), 18 (finish grinding of tip) and 21 (chrome plating). This leads to avoiding

unnecessary operation costs in subsequent processing workstations. Also from Table 10.12 it

can be observed that workstations 11 (first cut off length) and 16 (machining of groove) have

characteristically low inspection costs and high defect rate (IC11= 0.0075, IC16= 0.0076,

Z11=0.00920 and Z16=0.0094). Therefore, the fifth and the sixth inspection stations are placed

at these workstations. These inspection stations aim to detect the defective items and to avoid

additional costs. Workstations 19 (finish of grinding angle) and 24 (packaging) feature high

defect rates (Z19= 0.0096 and Z24=0.0097) compared with the other workstations, thus the

seventh and the eighth inspection stations are located at these workstations.

In contrast these workstations characteristic with low inspection cost (IC14= 0.0075,

IC19=0.0078 and IC24=0.0077).The inspection station at workstation 24 aims to detect any

defective items before reach to the customer. The inspection plan obtained by the PSO is

different from the inspection plan obtained by the MMAS algorithm. The difference was in

location of the inspection station at workstation 14 (head turning) in MMAS inspection plan

is placed at workstation 4 (press) in PSO inspection plan. This cost structure of PSO

inspection plan led to total cost higher than the total cost in the MMAS algorithm. The

241

inspection plans obtained by GA, SA and ROT-a algorithms are also different from the

inspection plan achieved by the MMAS algorithm. As a result, these inspection plans led to

high total cost comparing with the total cost obtained by the MMAS algorithm.

10.2.2 The trade-off between the MMAS and CEM

In this section, the trade-off between the CEM and MMAS algorithms is applied to the engine

valves case study. As described in section 10.3, the average total cost of the inspection plan

for the engine valves case study consisting of 24 workstations obtained by the MMAS was

$2492.76. It is impractical to solve the problem using CEM in reasonable time due to

computational complexity. Assuming that the average DFOS for the MMAS is 0.0029, this is

the worst DFOS for the general cost model case study. The estimated optimal solution (CEM)

for the 24 workstations is:

 (average total cost of MMAS) – (DFOS ×average total cost of MMAS)

($2492.76) – (0.0029×$2492.76) =$2485.53.

The difference in average total cost between the MMAS and the estimated optimal solution

per batch is:

(average total cost of MMAS) – (the estimated optimal solution): ($2492.76) – ($2485.53)

=$7.23.

This is the cost of using MMAS per batch. As described in chapter 3, the duration of the

computation time for the 24 workstations using CEM is about 2 days. The firm uses a batch

of 1000 units and the average valve price is $3. Assuming that the company works one shift

per day, the total production sold in one day is therefore: 1000×$3=$3000.

The waiting time for the optimal solution using CEM is about 2 days and will cost the

company $6000. On the other hand, the additional cost of using the MMAS to obtain a near

optimal solution for 365 days: $7.23×365=$2638.95.

242

It can be seen that the additional cost of using the MMAS algorithm of $2638.95 is much less

than the waiting time cost of $6000. This additional cost of using the MMAS algorithm is

compared with other additional costs of using GA. The GA is selected because is a very

common algorithm in the literature. The average total cost obtained by the GA was $2508.44.

The difference in average total cost between the GA and the CEM per batch is: (average total

cost of GA) – (average total cost of CEM)

($2508.44) – ($2485.53) =$22.91. The difference in additional cost per batch between the

MMAS and GA is: ($22.91) – ($7.23) =$15.68. The saving in cost of using MMAS over GA

for 365 days: $15.68×365=$5723.

It can be seen that the MMAS algorithm saves $5723 annually over GA for the engine valves

case study consisting of 24 workstations. It is interesting to know the difference between the

best and the worst solutions obtained by the MMAS and PRS algorithm respectively for the

engine valves case study consisting of 24 workstations. The difference in additional cost per

batch between the MMAS and PRS is:

(average total cost of PRS) - (average total cost of MMAS)

($2571.68) – ($2492.76) =$78.92

$78.92×365=$28,805

The MMAS algorithm saving $28,805 annually over the PRS algorithm for the engine valves

case study consisting of 24 workstations. The saving in cost of using the MMAS algorithm is

also compared for the engine valve system consists of 36 workstations. Due to computational

complexity CEM cannot be applied to this number of workstations. As a result, the saving in

cost of using the MMAS algorithm is compared against GA for this number of workstations.

The average total cost resulting from the MMAS algorithm and GA are $5276.6 and GA

$5293.7, respectively. The difference in average total cost between MMAS and GA is:

(average total cost of MMAS) – (average total cost of GA)

243

($5293.7) – ($5276.6) =$17. The saving in cost of using the MMAS algorithm over GA for

365 days is: $17×365=$6205

It can be seen that the MMAS algorithm saves $6205 annually over GA for the engine valves

case study consisting of 36 workstations. In reality, the production management of firms is in

the search for any potential cost savings that can keep the company in a good competitive

position. It is evident that despite the CEM producing the optimal solution, in terms of the

economic aspect is impractical to allocate inspection places using CEM as the number of

workstations (WS) increases (e.g. WS ≥ 24). This impracticality in CEM has led to the use of

the MMAS algorithm that sacrifices the guarantee of finding the optimal solution in order to

find a satisfactory solution in a reasonable time. This agrees with what the vast majority of

case studies in the literature review pointed out, that CEM is an impractical way of finding

the optimal solution as the number of workstations increases significantly. It is concluded that

using MMAS leads to a saving in money by minimising the computation time, the total cost

of the product and keeps the company in a good competitive position.

10.3 Experiment 3

Experiment 3 is based on the case study of Rau and Chu (2005), which considered some

experimental heuristic rules-of-thumb in a serial production system. This experiment is

different from the previous experiments and it is selected for the following reasons: (i) it uses

different experimental parameters from the previous experiments; (ii) it uses 100% inspection

of items when an inspection station is located after a workstation; and (iii) it uses heuristic

method, so the MMAS algorithm can be tested with different method from the previous

methods.

Rau and Chu (2005) developed a heuristic method (HM) that allocates inspection stations

based on the manufacturing cost and the probability of non-conformity at each processing

244

workstation. The procedure of the HM works iteratively until the total profit of the objective

function cannot be further improved. In Rau and Chu (2005), the HM was implemented on a

serial production system with various sizes of workstations, with an aim to find the optimal

location of the inspection stations. Table 10.13 presents the parameters that were used in the

case study. Rau and Chu (2005) used the average and standard deviation of DFOS to measure

the solution quality of their HM. However, Rau and Chu (2005) did not specify the number of

cases generated for each workstation size.

Table 10.13: Experimental parameters for Experiment 3

Parameters Range Description

B 1000 Batch size

Uk [80,150] Unit manufacturing cost (£)

ICm [2, 4] Unit inspection cost (£)

Zk [0.01, 0.03] Defective rate

αm [0.001, 0.002] Type-I error

βm [0.001, 0.002] Type-II error

uk [10, 15] Unit scrapping cost (£)

gk [10, 15] Unit reworking cost (£)

δk [0.2, 0.3] Repairing probability (assumed)

Therefore, it was decided that 50 cases should be randomly generated using a uniform

random number generator for each workstation size in order to calculate the DFOS average

and standard deviation. Rau and Chu (2005) assumed 100 % inspection to items processed in

a workstation if an inspection station is scheduled after it in the sequence. This assumption is

simply adapted in the MMAS by considering full inspection at each inspection station.

MMAS is applied to these cases for each workstation size, and the results obtained by the

MMAS algorithm are presented in Table 10.14. It should be noted that the HM results were

obtained by Rau and Chu (2005), in which a complete enumeration method was used as a

benchmark to test their HM. It can be seen that the MMAS algorithm outperforms the HM in

terms of DFOS average and standard deviation.

245

 Table 10.14: Performance of the methods in Experiment 3

Number of

workstations

HM

MMAS

Average

DFOS

Average

 DFOS

Average

DFOS

Average

 DFOS

6 0.000 0.000 0.000 0.000

8 0.002 0.001 0.000 0.000

10 0.003 0.005 0.000 0.000

12 0.0001 0.001 0.000 0.000

14 0.003 0.002 0.000 0.000

16 0.006 0.007 0.0002 0.0007

As can be seen from Table 10.14, MMAS achieves the optimal solution in all test cases when

the number of workstations is less than 16. When the number of workstations is equal to 16,

the MMAS algorithm produces a solution very close to the optimal solution (i.e., a DFOS

average of only 0.00024). As the problem size increases, the solution quality obtained by the

HM becomes much less than that of the MMAS algorithm. It is concluded that the MMAS

algorithm performs significantly better than the HM in terms of solution quality.

10.3.1 Solutions of experiment 3

As described above in the previous sections it is impractical to discuss every individual

solution obtained by the MMAS algorithm (50 cases), thus one case study (3.1) is selected in

order to discuss their solution. This solution is represented the case study for 16 workstations.

Tables 10.15 and 10.16 show the solutions and experimental parameters respectively for case

study 3.1. It should be noted that Rau and Chu (2005) did not describe the solutions obtained

by the HM. Table 10.16 presents only the solutions obtained by the MMAS algorithm and

CEM for case study 3.1. In case study 3.1, the MMAS placed the five inspection stations after

workstations 1, 3, 7 10 and 16.

As can be seen from Table 10.16 inspection stations at workstations 1,3 and 7 are placed

before processing workstations 2, 4 and 8 which characteristically have a higher operating

cost (U2=144.10, U4=147.16 and U8=145.37).

246

 Table 10.15: Inspection plans for case study 3.1

Algorithms
Workstations

Total cost

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

CEM 1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 161,780

MMAS 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 161,742

 0: no inspection and 1: full inspection

 Table 10.16: Experimental parameters for case study 3.1

Experimental

parameters

Workstations

1 2 3 4 5 6 7 8 9 10 11 12 3 14 15 16

Uk 109.52 144.10 135.45 147.16 125.90 82.49 139.43 145.37 127.51 133.04 132.01 107.45 125.88 91.983 129.42 82.22

ICm 2.05 2.22 2.19 2.16 3.38 2.63 2.23 2.06 2.87 2.76 3.53 3.59 2.37 2.97 2.89 3.29

Zk 0.025 0.022 0.015 0.023 0.023 0.013 0.012 0.020 0.029 0.016 0.021 0.014 0.025 0.015 0.021 0.024

αm 0.0019 0.002 0.0015 0.0011 0.0011 0.0013 0.0018 0.0013 0.0018 0.0012 0.0019 0.0013 0.0012 0.0013 0.0016 0.0015

βm 0.0015 0.0011 0.0011 0.0012 0.0019 0.0013 0.0013 0.0018 0.0013 0.0018 0.0012 0.0015 0.0011 0.0011 0.0013 0.0015

uk 11.75 14.15 12.92 12.74 14.58 11.42 11.42 13.78 13.76 13.76 11.90 12.81 12.92 12.74 14.58 12.92

gk 14.15 12.92 12.74 14.58 11.42 11.98 12.81 12.92 12.74 11.90 14.15 12.92 12.74 14.58 11.42 14.65

δk 0.259 0.246 0.201 0.233 0.216 0.279 0.231 0.252 0.216 0.260 0.226 0.265 0.268 0.274 0.245 0.279

247

As a result, to avoid processing items those are already defectives in subsequent processing

workstations by continuing processing them. In addition, workstations 1, 3 and 7 which

characteristically have a lower inspection cost comparing to the other workstations (IC1=2.05,

IC3=2.19 and IC7=2.23). Because there is limited number of inspection stations, the last two

inspection stations are placed after workstations 9 and 16. Workstation 9 which

characteristically has a higher defective rate (Z9=0.029) to avoid processing defective items

in subsequent processing workstations. For workstation 16 this entails avoidance of penalty

costs.

10.4 Experiment 4

Experiment 4 is based on the case study of Shiau (2007), which considered a serial multistage

manufacturing system. Shiau (2007) developed a unit cost model to represent the overall

performance of an advanced manufacturing system. Since the problem gets more complex as

the problem size increases, Shiau (2007) therefore developed a genetic algorithm to allocate a

limited number of inspection stations in a serial multistage manufacturing system, with the

aim of reducing the total manufacturing cost. The experimental parameters used in the

experiment are presented in Table 10.17. Fifty cases were randomly generated by Shiau

(2007) to represent the characteristics of different manufacturing systems. Shiau (2007)

applied a GA method to these 50 cases, and its performance was measured in comparison to

the CEM optimal solution. Because the defective rate, repairing probability, and inspection

errors were not specified by Shiau (2007), these have been based on ranges from similar

values in previous literature (Lee and Unnikrishnan, 1998). In addition, some external failure

cost items are missing; thus, external failure cost items are represented as an aggregated

penalty cost based on similar values from previous literature (Raz and Kaspi, 1991).

However, it should be noted that the penalty cost usually depends on the type and complexity

of the product produced by the company.

248

 Table 10.17: Experimental parameters for Experiment 4

Parameters Range Description

B 1000 Batch size

Uk [100, 250] Unit manufacturing cost(£)

Zk [0.01, 0.06] Defective rate (assumed)

ICm [1, 10] Unit inspection cost (£)

αm [0.01, 0.03] Type-I error (assumed)

βm [0.01,0.03] Type-II (assumed)

uk [50, 150] Unit scrapping cost (£)

gk [50, 100] Unit reworking cost (£)

δk [0.2, 0.3] Repairing probability (assumed)

Penalty cost [500, 1600] Each defective item that reaches the customers

(£)(assumed)
The MMAS algorithm is applied to the 50 cases for each workstation size, which were

randomly generated using the same experimental parameters. Table 10.18 shows the results

from Shiau (2007), in which the case study was tested for a range of feasible solutions. This

number of feasible solutions is equivalent to 5–13 workstations. However, it was not clear

how many workstations were used in the calculation of the average DFOS for the GA in

Shiau (2007), because he was interested in investigating the computational execution time for

these numbers of workstations. Therefore, the MMAS algorithm tested for the largest number

of workstations, 13. Table 10.18 shows the results obtained by the MMAS algorithm

compared to those in Shiau (2007). It was found that MMAS achieved the optimal solution in

all test cases, allowing us to conclude that the MMAS algorithm outperforms the GA method

in terms of solution quality.

 Table 10.18: Performance of the methods in Experiment 4

Number of workstations Average DFOS

GA MMAS

13 0.0041 0.000

249

10.5 Rule of thumb-b

After conducting the four experiments, it is interesting to analyse the behaviour of the

MMAS algorithm for allocating inspection stations. Therefore, the results (inspection plans)

obtained by the MMAS algorithm for 100 case studies are extensively investigated. These

results represent the lowest total cost of inspection plans obtained by the MMAS algorithm.

This leads us to develop a good new rule of thumb. The developed rule of thumb will be very

useful for industry, as no tuning parameters are needed. As discussed in section 10.1, these

cases were randomly generated in order to represent the varying characteristics of different

manufacturing systems. These characteristics including inspection errors (type I and type II),

internal failure cost (rework and scrap), external failure cost (repair and replacement),

inspection cost (fixed and variable), defective rates and manufacturing cost. As described in

section 6.2.2, some of these characteristics have a greater effect on the total cost of the

product than others. The detailed investigation of the results is presented in Appendix G. The

analysis of the solutions leads to the following observations:

1. The MMAS algorithm always locates an inspection station at the last workstation to

guarantee that no defective items reach the customer.

2. The MMAS algorithm locates an inspection station after the machining operation with

the highest probability of generating nonconforming parts, in order to avoid further work

on units that should be scrapped. If two or more workstations have the same

nonconforming parts, the MMAS algorithm locates an inspection station for the earlier

workstation.

3. The MMAS algorithm locates an inspection station before the most costly machining

operation, in order to avoid the high cost of the machining operations on parts that are

already nonconforming. If two or more workstations have the same operation cost, the

MMAS algorithm locates an inspection station for the earlier workstation.

250

4. The MMAS algorithm is biased towards locating inspection stations before costly

machining operations rather than after workstations with the highest probability of

generating nonconforming parts. Specifically, it was found that about 57-60% of

inspection stations for inspection plans are placed before the most costly machining

operation.

These observations are used to develop a new rule of thumb which is denoted by ROT-b.

ROT-b is applied to the same engine valves case study consisting of 24 workstations (Engin

et al., 2008) to solve the AOIS problem. The case study assumed that there are a limited

number of eight inspection stations to be allocated to the different processing workstations.

Based on these rules, the inspection stations are distributed through the processing

workstations as follows:

1. An inspection station is placed at last workstation in order to avoid a penalty cost.

2. Four inspection stations (four inspection stations out of seven = 60 %) are placed before

the most costly machining operations in order to avoid the high cost of the machining

operation on parts that are already nonconforming. If two or more workstations have the

same operation cost, the priority is to locate an inspection station before the earlier

workstation.

3. The rest of the inspection stations (three inspection stations) are placed after the

machining operations with the highest probability of generating nonconforming parts, in

order to avoid further work on units that should be scrapped. If two or more workstations

have the same nonconforming units, the priority is to locate an inspection station for the

earlier workstation.

The performance of ROT-b is compared against ROT-a and the MMAS algorithm. To do so,

ROT-b is applied to the same 100 cases. The aim is to calculate the average total cost and

standard deviation. Table 10.19 shows performance of the applied methods. It can be seen

251

that the performance of ROT-b is much better than that of ROT-a, but is worse than the

MMAS algorithm. Table 10.20 presents the solutions obtained by ROT-a and ROT-b for one

case study selected from the 100 cases. The inspection stations in Table 10.20 are located

based on the rules described by each of ROT-a and ROT-b. Table 10.21 shows the

characteristics of each workstation in the selected case study, in terms of unit operation cost

and defective rates.

 Table 10.19: Comparing performance of ROT-a, ROT-b and the MMAS

Methods Average total cost ($)  Total cost

ROT-a 2556.65 35.08

ROT-b 2526.51 32.26

MMAS 2492.76 1.56

It can be seen from Tables 10.20 and 10.21 that there is a strong link between the places of

inspection stations and their characteristics. As an example, an inspection station is located at

the last workstation. This is done to guarantee that no defective items reach the customer.

Also, four inspection stations, which represent 60% of the remaining seven inspection

stations, are placed before workstations 12, 15, 16 and 20 which have higher operation costs

(U12=.0.0832, U15=00845,U16=0.0845 and U20=0.0827). The rest of the inspection stations are

placed after workstations 6, 18 and 22 which are characterised by a high defective rate

(Z6=0.0083, Z18=0.0084 and Z22=0.0085). Although workstation 20 has the same defective

rate (Z20=0.0083) as workstation 6, according to ROT-b the priority is given to the earlier

workstation which is workstation 6.

It is concluded that the analysis of behaviour of the MMAS algorithm for allocating

inspection stations has led to develop a new a rule of thumb. The ROT-b performed much

better than ROT-a. The advantage of the rule of thumb is its simplicity of method: no tuning

parameters are needed, so it is preferred by industry.

252

Table 10.20: Inspection plans for the selected Case Study

Algorithms
Workstations

Total cost

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

ROT-a 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 0 2595.3

ROT-b 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 1 2503.33

MMAS 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 1 0 1 0 0 1 2490.5

Table 10.21: Unit operation cost and defective rates for the selected Case Study

Experimental

parameters

Workstations

1 2 3 4 5 6 7 8 9 10 11 12

Zk 0.0081 0.0080 0.0075 0.0078 0.0077 0.0083 0.0078 0.0080 0.0077 0.0081 0.0078 0.0082

Uk 0.0818 0.0826 0.0824 0.0789 0.0816 0.0767 0.0821 0.0753 0.0778 0.0755 0.0760 0.0832

Workstations

13 14 15 16 17 18 19 20 21 22 23 24

Zk 0.0082 0.0082 0.0080 0.0076 0.0077 0.0084 0.0077 0.0083 0.0080 0.0085 0.0076 0.0079

Uk 0 .0819 0.0782 0.0845 0.0845 0.0753 0.0794 0.0788 0.0827 0.0769 0.0799 0.0795 0.0815

253

10.6 Discussions

The four above experiments applied the research methodologies of the MMAS algorithm to

the AOIS problem. In this section, all of the experiments are compared and discussed. The

four experiments considered different experimental parameters in terms of problem size,

assumptions, and optimisation methods. The aim in all of the experiments was to find the

optimal inspection allocation such that the total manufacturing cost could be reduced. Table

10.22 shows the performance of the MMAS algorithm in Experiments 1 and 2 against the

other methods. In these two experiments, the AOIS problem was solved with the CEM,

ROT-a, b, PRS, SA, GA, PSO and MMAS methods. Table 10.23 shows the performance of

the MMAS algorithm for Experiments 3 and 4 in comparison with methods in selected case

studies from previous literature. It can be seen that there are more performance measures in

Experiments 1 and 2 as opposed to the remaining experiments. This is because the data for

the first two experiments were created for this research, thus enabling the measurement of

performance measures. In particular, the optimal solution could be obtained by the CEM in

Experiment 1, thus, many performance measures, such as DFOS and number of optimal

solutions, were used.

The average solution quality from the applied methods is shown, as well as the standard

deviation of the solution quality and the worst DFOS result. The aim of most of the

experiments was to determine where the inspection operations should be located in order to

minimise the total cost. The total cost is the sum of the costs of production, inspection, and

failures (during production and after shipment). All of the experiments, except Experiment 2,

used CEM as benchmark to test the methods. It can be seen that each experiment generated

30–100 cases to represent the features of different manufacturing systems, to a total of 580. It

was assumed in all experiments that there were a limited number of inspection stations

available to be allocated among the different processing workstations, ranging from 3 to 8.

254

Table 10.22: Performance of MMAS for Experiments1and 2
Experiment

Number

of cases

generated

Number

of

inspection

stations

Number

of WS

Used

method

% number

of optimal

solution

Average

total cost

Average

 Total

cost

Average

(DFOS)

Average

 DFOS

Worst

result

(DFOS)

Average

processing

time (s)

Savings

time %

Experiment 1

100 5 12 ROT-a 0.0 605,222 45,631 0.0884 0.054 0.277 2 97

PRS 0.0 628,819 61,589 0.1244 0.0560 0.246 3 96

SA 65 550,347 32,678 0.0006 0.0012 0.008 45 50

GA 25 552,335 32,874 0.0024 0.0021 0.009 55 38

PSO 70 550,350 31,699 0.0004 0.00069 0.0028 40 55

MMAS 79 550,186 31,586 0.0001 0.00050 0.0029 35 61

Experiment 2 100 8 24 ROT-a n/a 2556.65 35.08 n/a n/a n/a 3 n/a

ROT-b n/a 2526.51 32.26 n/a n/a n/a 4 n/a

PRS n/a 2571.68 8.25 n/a n/a n/a 4 n/a

SA n/a 2505.561 4.09 n/a n/a n/a 90 n/a

GA n/a 2521.44 29.95 n/a n/a n/a 110 n/a

PSO n/a 2503.63 4.23 n/a n/a n/a 89 n/a

MMAS n/a 2492.76 1.56 n/a n/a n/a 86 n/a

n/a: not applicable because not possible to perform CEM, WS: Workstation

255

Table 10.23: Performance of MMAS for Experiments 3 and 4
Experiment Number of

cases

generated

Number of

inspection

stations

Number

of WS

Solution

technique

Average

(DFOS)


DFOS

Experiment 3

50 3 6 HM 0.000 0.000

 MMAS 0.000 0.000

8 HM 0.002 0.001

 MMAS 0.000 0.000

4 10 HM 0.003 0.005

 MMAS 0.000 0.000

12 HM 0.0001 0.001

 MMAS 0.000 0.000

5 14 HM 0.003 0.002

 MMAS 0.000 0.000

16 HM 0.006 0.007

 MMAS 0.0002 0.0007

Experiment 4

50 5 13 GA 0.0041

n/a

MMAS 0.000 n/a

 In addition, each experiment tested a different number of workstations, ranging from 6 to 24.

This range of workstations generated a range of feasible solutions from 64 to 16,777,216. It is

well known that as the number of workstations increases, the number of feasible solutions

increases significantly. Consequently, as the problem increased in size, the comparison

between the MMAS algorithm and the other developed methods became based on the

absolute value instead of the CEM benchmark. For these large cases, the optimal solution

could not be obtained in a reasonable amount of time. In the AOIS problem, it is possible that

not all inspection station plans are equivalent in terms of total cost, since some combinations

of inspection stations may be economically preferable to others, most likely due to the

difference in cost structures of the inspection plans and the process characteristics. The best

256

method is one that is able to produce the best combination of inspection stations, leading to

the optimal solution, or close to the optimal solution. In other words, the main concern of

these experiments is how close the solutions are to the optimal solution.

In Tables 10.22 and 10.23, some performance measures appear as (n/a), since not all

performance measures were considered in all of the experiments. Most of the case studies in

the experiments were interested in solution quality, particularly in terms of DFOS. It can be

seen from Tables 10.22 and 10.23 that the average DFOS solution quality obtained by the

MMAS algorithm is considerably better than the solutions obtained by the other methods in

all the experiments except for Experiment 2. In all the experiments, the standard deviation of

the total cost of inspection plans obtained by the MMAS algorithm is also significantly

smaller than the other methods, indicating that the MMAS algorithm is the most reliable and

effective. It was found that the MMAS algorithm reaches the optimal solution in the vast

majority of the experiments. The MMAS algorithm reached the optimal solution 79% of the

time in Experiment 1 and in all other experiments when the number of workstations was less

than 16. However, when the number of workstations equalled 16 (i.e., in Experiment 3), the

MMAS produced a solution not at, but very close to the optimal solution 0.00024.This

optimal solution was obtained with CEM when the full enumeration of the search space could

be generated in a reasonable time. It was also found that the worst DFOS result obtained by

the MMAS algorithm was much better than the other methods. The reason for the good

performance of the MMAS algorithm is due to its heuristic information, local search method

and the advantage of memory. Regarding the PSO algorithm, the algorithm reached the

optimal solution 70% of the time in Experiment 1. This indicates the effectiveness of the

algorithm as the fitness distance correlation (FDC) obtained by the PSO was 0.57, which

shows there is a good correlation between the solution quality and the distance to the

optimum.

257

However, the SA and GA methods, in fact, use the same local search methods as the MMAS

algorithm; nevertheless, these methods did not perform as well as MMAS. It was found that

the average DFOS obtained by the heuristic methods in Experiments 3 was not as good as

that in the MMAS algorithm. On the other hand, the average DFOS obtained from

Experiment 1using GA method was much better than that in Experiment 4. The results show

that the average DFOS obtained by a pure random search (PRS) algorithm was rather far

from the optimal solution as compared with all the other methods. The PRS algorithm was

based on placing inspection stations purely randomly and did not have any operator to guide

the algorithm to good solutions. This confirms that the solutions found by the MMAS

algorithm were not just lucky strikes. Also the results show that the average DFOS obtained

by the ROT-a method was rather far from the optimal solution as compared with all the other

methods. Yet, the ROT-a method was unable to approach the optimal solution, which was

found by the MMAS, SA, GA and PSO methods in Experiment 1. The results obtained by the

MMAS algorithm for 100 case studies are investigated and leading to develop new rule of

thumb (ROT-b) to tackle the AOIS problem. The performance of the ROT-b is tested against

the MMAS and ROT-a. It was found that the performance of ROT-b is much better than that

of ROT-a, but is worse than the MMAS algorithm.

In terms of saving money on long term, it was found that the additional cost of using the

MMAS algorithm to obtain near optimal solution is much less than the waiting time cost

resulting of using the CEM. Also, it was found that the MMAS algorithm saving $6205

annually over the very well known method GA for engine valves case study consisting of 36

workstations. In addition, the MMAS algorithm saving $28,805 annually over the worst

solution obtained by the PRS algorithm for the engine valves case study consisting of 24

workstations.

258

The MMAS algorithm requires less processing time to reach near optimal solutions as

compared with the other studied methods. The reduction of the processing time becomes very

obvious when the problem increases in size. For example, the time saved over the CEM

optimisation method was found to be up to 61% when the number of feasible solutions in

Experiment 1 was greater than 4,000. In the MMAS algorithm, by adapting the number of

ants that apply the local search, a good compromise between convergence speed and solution

quality can be obtained. On the other hand, the PSO method requires less time to reach close

to the optimal solution as compared to SA and GA. It can be seen that PSO is a competitive

technique to the MMAS algorithm in terms of processing time. In contrast, the execution time

provided by the ROT-a method is significantly less than all the other methods. This is

because the ROT-a method is based on a simple algorithm and it can reach the optimal

solution in one pass. In reality, however, solution quality is of more concern to companies as

opposed to the processing time, provided that the execution time is reasonable. It is

concluded that the MMAS algorithm is the best approach for the AOIS problem, particularly

when the number of workstations increases considerably.

259

Chapter 11

Conclusions and future work

This research was focused on determining the optimal allocation of inspection stations

(AOIS) in serial multistage manufacturing processes. This research contributes to knowledge

by developing a general cost model including all the main characteristics that are described in

section 2.6 for solving the AOIS problem. In addition, the optimality was defined in terms of

minimising the cost per conforming output unit accepted by the customer. The general cost

model was developed under the assumption that only a limited number of inspection stations

(e.g. owing to a limited budget) were available. In this chapter, the main results presented in

the thesis are outlined and some directions and perspectives for future research are discussed.

The ant colony optimisation (ACO) algorithm was proposed to tackle the AOIS problem. It

should be noted that the ACO approach was rather unexplored for the AOIS problem, at the

time this research started. The ACO was proposed after different optimisation methods were

investigated. It was found that the ACO technique has the most characteristics among the

other studied methods. Different ant colony versions were studied, leading to the MMAS

algorithm being proposed as a novel approach to tackle the AOIS problem. The fitness

distance correlation (FDC) for the AOIS problem using the MMAS algorithm indicates

strong correlation between the solution quality and the distance to the optimum. This

indicates that the MMAS algorithm is well suited to the AOIS problem (see section 5.5.2). It

should be noted that none of the studies surveyed in chapter 2 investigated the fitness

landscape for the AOIS problem. This research provides further information about

understanding the fitness landscape of the AOIS problem. MMAS is an ant colony

optimisation algorithm that was designed originally to begin with a very explorative search

260

phase and, subsequently, to make a slow transition to an intensive exploitation of the best

solutions found during the early search. Three different variants of the MMAS algorithm

were developed to tackle the AOIS problem. The performance of the MMAS algorithm was

compared to the complete enumeration method (CEM), genetic algorithm (GA), simulated

annealing (SA), particle swarm optimisation (PSO), a pure random search algorithm (PRS)

and rule of thumb (ROT-a, b), supported by the methods used by the case studies in the

experiments conducted. The following subsections illustrate the types of experiments used,

and the main conclusions obtained in this research.

11.1 Experimental review

Four experiments were conducted to test the performance of the MMAS algorithm. These

experiments considered different experimental parameters, in terms of the size of the

problem, assumptions and methods, which were used to solve the problem. The data for

Experiments 1 and 2 were generated randomly, based on a uniform random distribution.

However, the first experiment‟s experimental parameters were based on assumed values, and

considered a relatively small-scale problem with 12 workstations. Within this number of

workstations, the full enumeration of the search space can be generated in a reasonable time.

This allows the performance of the MMAS algorithm to be tested in comparison with the

optimal solution. Therefore, the comparison between the MMAS algorithm and the other

developed methods, GA, SA, PSO, PRS and ROT-a, was based on deviation from the optimal

solution (DFOS). In the second experiment, the experimental parameters were based on real

data, and it was a larger-scale problem than Experiment 1, with 24 workstations. Hence, the

comparison between the MMAS algorithm and the other developed methods was based on

absolute value. The aim of the second experiment was to test the performance of the MMAS

algorithm when the AOIS problem grows significantly. Both Experiments 1 and 2 used a

261

random sample of 100 cases to represent the characteristics of different manufacturing

systems.

Experiments 3 and 4 were also used to test the performance of the developed MMAS

algorithm. These experiments were based on data of case studies, which were selected from

the earlier literature review. In addition, Experiments 3 and 4 are different from the previous

experiments in terms of their experimental parameters, assumptions, methods and inspection

strategy (100% inspection of items). These experiments considered the number of

workstations, ranging from 6 to16. Therefore, the comparison between the MMAS and the

methods developed by the case studies in the experiments conducted was based on DFOS.

The two experiments generated the number of cases randomly, and each consisted of 50

cases. The total number of cases generated from the four experiments was 550, and these

represented different characteristics of manufacturing systems. The number of workstations

which were considered by the four experiments led to the generation of a number of feasible

solutions in the search space, ranging from 64 to 16,777,216.

11.1.1 Local search

None of the metaheuristic methods used in the literature review used local search to improve

the performance of their models. This work gives the details of an implementation of a local

search method for the AOIS problem. It is widely agreed that in many of the most efficient

implementations of ACO algorithms, the ants may apply a local search to improve the

solutions they have constructed. In addition, the local search is part of the DaemonActions of

the ACO algorithm. Therefore, many local search methods in other problems such as vehicle

routing problems, quadratic assignment problems, travelling salesman problems and job

scheduling problems have been investigated. In this research, six local search methods which

are well-known in these problems are used and tested to improve the performance of the

MMAS algorithm. These methods are crossover, interchange, swap, single insertion, delete

262

and add and block insertion. To yield a further reduction in run-time and to focus the local

search around the part where potential improvements can be found, the don‟t look bits

method was used. The experimental results show that the local search methods developed

improved the performance of the MMAS algorithm considerably. This improvement can be

observed in the average deviation from the optimal solution DFOS. In particular, the local

search methods of crossover, single insertion and block insertion performed better than the

other methods in terms of solution quality (see section 9.4).The superior results indicate the

successful incorporation of the local search with the MMAS algorithm to increase the

possibility of finding a better solution. This good performance can also be observed by

varying the number of workstations. MMAS reached the optimal solution in certain

conditions in 79% of the experiments conducted, particularly in Experiment 1(see section

10.1.6). In addition, despite the GA and SA methods that were developed and combined with

the same local search method used in the MMAS algorithm, the local search method in the

MMAS performed better than the other two methods. This is because the initial solutions

created by the MMAS are good, and therefore the subsequent local search requires fewer

steps to arrive at a good quality solution.

11.1.2 Heuristic information

It is well known that artificial ants in MMAS need heuristic information to guide them, so

that they can build reasonably good solutions from the initial search of the algorithm. There is

no heuristic information created for the AOIS problem. In addition, heuristic information is

part of the ACO algorithm. Thus, there is a need to create heuristic information for the AOIS

problem. In many cases heuristic information is the cost, or an estimate of the cost, of adding

the component or connection to the solution under construction. In the AOIS problem there

are many costs incurred by inspection operations or processing operations resulting from

passing the raw materials through a sequence of processing workstations. These include the

263

costs of inspection, replacement, reworking, manufacturing, penalties and scrapping. It was

found that the operation cost, defective rate and inspection cost are the most appropriate

factors to consider as a guide to the heuristic information toward the best inspection plans of

the search space.

This research contributes to knowledge by developing two novel heuristic methods to guide

the ant to locate an inspection station to a workstation based on the concerns of operation cost

(Uk), inspection cost (ICk) and defective rate (Zk), respectively. These are the Operation Cost

and Defective rate Method (OCDM) and the Scores Method (SM). The MMAS algorithm

with two types of heuristic information MMAS-OCDM and MMAS-SM and with no heuristic

information MMAS-NH was applied to 50 different cases generated randomly from the

general cost model case study. The experimental results determined that the performance of

the MMAS algorithm, in terms of solution quality when using heuristic information, was

significantly better than without using heuristic information (see section 9.3). Specifically, it

was found that the best average DFOS obtained by the MMAS-OCDM and MMAS-SM were

0.00015 and 0.00033 respectively. However, when no heuristic information MMAS-NH was

used, the best average DFOS was 0.0186. It is concluded that it is important to use heuristic

information with the MMAS algorithm for tackling the AOIS problem.

11.1.3 MMAS tuning parameters

Selecting relevant parameters in the MMAS can have a great impact on the algorithm‟s

performance, and a good combination of parameters will increase the overall search

capability and convergence of the algorithm. On the other hand, inappropriate values will

certainly slow down the process of discovering the best solution to the AOIS problem, and

may even prevent the algorithm from finding the best solution. The optimal combination of

the most influential parameters for the MMAS algorithm, applied to 50 case studies, was

264

identified. These cases were generated randomly using a uniform distribution, in order to

represent the characteristics of different manufacturing systems. The MMAS algorithm was

applied to these cases for each triplet (α, β, ρ) of parameter settings, in order to optimise the

average DFOS. It was found that these optimal parameters significantly improved the

performance of the MMAS algorithm (see section 8.4.1). In addition, the experimental results

determined that the performance of the MMAS, GA, SA and PSO algorithms depends on the

appropriate setting of parameters. For a specific problem, the optimal parameters will be

slightly different, but the suggested parameters should be good for many AOIS problems with

a similar structure.

11.1.4 MMAS behaviour

Measurement of convergence of the MMAS algorithm is important to stop the algorithm

needlessly running when the optimum solution has already been achieved. To investigate the

convergence of the MMAS algorithm towards a near optimal solution, extensive experiments

were conducted. These experiments tested the most influential parameters ,  and of the

MMAS algorithm. In addition, as the MMAS algorithm relies on a number of parameters that

control its behaviour, sensitivity analysis for the most influential parameters ,  and was

used. The aim was to determine how “sensitive” the model is to changes in the value of the

parameters of the model. Parameter sensitivity is usually performed as a series of tests in

which the modeller sets different parameter values to see how a change in the parameter

causes a change in the behaviour of the MMAS algorithm.

The results determined that the ratio between and β was the key driver of the convergence

speed of the results. Since and β are the parameters of relative influence of the pheromone

strength and the heuristic information respectively, the relative influence of the pheromone

strength which dominated in the searching process makes the convergence happen early. The

265

results showed the optimum ratio between and β (25). It was found that when 

(e.g. 15) the convergence speed is faster. Correspondingly, there was no convergence

when  (e.g. 31). Regarding the  parameter (evaporation rate),it was found that if

is large (e.g. 05.0), it is easy to find marked relative differences between the pheromone

trails on arcs contained in high quality tours and those which are not part of the best tours in a

few iterations, so the algorithm may stagnate and prematurely converge. Otherwise, for a

lower ρ (e.g. 01.0), the pheromone trails on arcs which do not belong to the high quality

tours will not decrease faster and the algorithm is able to explore a wider search space, but

longer evolution iterations are needed. Therefore, if a larger total evolution iteration is used, a

lower can be selected for obtaining a better convergence value; otherwise, a higher will

help achieve a better convergence speed (see section 9.1).

Regarding sensitivity analysis, it should be noted that the vast majority of papers reviewed

did not consider this issue. This research provides further information about understanding

the sensitivity analysis of the AOIS problem. As MMAS algorithm rely on a number of user-

defined parameters that control their behaviour, sensitivity analysis for the most influential

parameters ,  andwas conducted. The aim was to study the importance of each parameter

for increasing the number of workstations in the AOIS problem. Four different sizes of AOIS

problem are tested, with 15, 16, 17 and 18 workstations. The experimental results show that

the studied parameters ,  and do not have a significant influence on the performance of

the MMAS algorithm when the number of workstations is increased (see section 9.2). The

experimental results show that from a sensitivity perspective the parameters and are

sensitive parameters to a fixed cost model.

Updating the pheromone trails for the MMAS algorithm was done using a mixed strategy

gbib
s


. The aim of this strategy was to obtain stronger exploration of the search space early

266

in the search and stronger exploitation of the overall best solution later in the run. This mixed

strategy specifies that in the first 300 iterations, the iteration best ant
ib

s was used to update

the pheromone trails, and then, at every tenth iteration, the global best ant gbs was used for

the pheromone trail update. To test the performance of this mixed strategy, it was compared

with the other two methods for updating pheromone trails, s
ib

 and s
gb

. The results showed

that the performance of the MMAS in terms of average deviation from the optimal solution

when using mixed strategy is much better than the other two strategies (see section 9.6).

Specifically, it was found that the average DFOS obtained by the MMAS when the mixed

strategy was used was 0.00012, but when the iteration best ant and the global best ant were

used, the average DFOS were 0.00015 and 0.0002 respectively.

In this research, three variants of the MMAS algorithm were developed and tested. In the first

variant, denoted as MMAS10+ls, 10 ants were used and every ant applied local search to its

tour. In the second variant, MMAS+ls+ib, the algorithm started with a fixed number of 10 ants

and then the number of ants which applied local search was then successively increased by

one after a certain number of iterations. The third variant uses the MMAS algorithm without

local search and is denoted as MMAS-nls. The results showed that the best average DFOS

obtained by the MMAS10+ls algorithm was 0.00012, whereas the best average DFOS obtained

by the MMAS+ls+ib and MMAS-nlsalgorithms were 0.0002 and 0.005 respectively (see section

9.7). It was concluded that the MMAS10+ls algorithm performs better than the other two

variants in terms of solution quality.

On the other hand, the MMAS+ls+ib algorithm needed less processing time to reach a near-

optimal solution compared with the other two variants. It was found that by adapting the

number of ants which apply local search, a good compromise between convergence speed

and solution quality can be obtained. The computational results presented in this section

267

suggest that, especially for larger problems, using the MMAS+ls+ib algorithm may be

advantageous. In the variant MMAS-nls algorithm, the processing time was slightly higher

than with the other two variants.

11.1.5 Major results

The results showed that the MMAS algorithm reached the optimal solution in the vast

majority of the experiments conducted. In Experiments 1 and 2, the MMAS algorithm

performed much better than the other methods. The optimal solution of the experiments was

obtained by using a complete enumeration method. This is because the full enumeration of

the search space can be generated in a reasonable time. The experimental results confirmed

that the average DFOS obtained by the MMAS algorithm was significantly better than the

solutions obtained by the other methods, in all the experiments. In addition, in all the

experiments, the standard deviation of the total cost of inspection plans obtained by the

MMAS was much less than the other methods. This indicates a more reliable performance of

the MMAS algorithm. In Experiment 1, it was found that even the worst result of the DFOS

obtained by the MMAS algorithm is much better than the other methods developed.

The results showed that the PSO method developed reached an optimal solution in 70% of

the experiments conducted. This percentage was lower than the MMAS algorithm, which

achieved 79% for the same number of experiments. In addition, the solution quality, in terms

of average DFOS, achieved by the PSO method was close to the optimal solution. PSO

therefore comes second among the developed methods in terms of solution quality, and as a

result, the PSO method could be considered a competitive technique to the MMAS algorithm.

On the other hand, the results of the experiments showed that SA and GA reached the optimal

solution in 65% and 25% of experiments respectively. In particular, the performance of GA

for tackling the AOIS problem, in terms of solution quality, was much poorer than the

268

MMAS and PSO. Apart from the PRS algorithm, the solution quality obtained by the ROT-a

method was lower than the other methods studied, particularly in comparison with the

MMAS algorithm. The solution quality obtained by the PRS algorithm was thus the worst of

all the methods studied, particularly in comparison with the MMAS algorithm, because the

solutions obtained were purely random. The results obtained by the MMAS algorithm for 100

case studies were extensively investigated, leading to the development of a new rule of thumb

(ROT-b) to tackle the AOIS problem. The performance of ROT-b was tested against ROT-a

and the MMAS algorithm. The three algorithms were applied to the same 100 case studies for

engine valves consisting of 24 workstations. The average total costs obtained by the ROT-a,

ROT-b and the MMAS algorithm were 2556.65, 2526.51 and 2492.76 respectively. It was

concluded that the performance of ROT-b in terms of solution quality was much better than

that of ROT-a, but was worse than the MMAS algorithm. The rule of thumb developed will

be very useful for industry, as no tuning parameters are needed.

Regarding saving money in the long term, it was found that the additional cost of using the

MMAS algorithm to obtain a near optimal solution is much less than the waiting time cost

resulting from using CEM for the engine valves case study consisting of 24 workstations.

Also, it was found that the MMAS algorithm costs $6205 less annually than the GA for the

engine valves case study consisting of 36 workstations. In addition, the MMAS algorithm

costs $28,805 less annually than the PRS algorithm for the engine valves case study

consisting of 24 workstations. It was concluded that using the MMAS saves money by

minimising the computation time and the total cost of the product, and keeps the company in

a good competitive position.

In terms of processing time, all the developed methods applied in Experiments 1 and 2 were

tested by using CPU time. This is the time taken to execute the computer programs for

problem-solving in the computer system. It should be noted that an efficient method should

269

provide a significant saving in execution time over the complete enumeration method. The

experimental results confirmed that, except for the ROT method, the MMAS algorithm

needed less processing time to reach a near optimal solution than the other optimisation

methods. This is very clear, as the AOIS problem increases significantly with the number of

processing workstations. In contrast, the execution time provided by the ROT-a method was

significantly less than the other methods used. This is because the ROT-a method is based on

a simple algorithm, and the solution can be obtained in just one iteration. However, the

solution quality obtained by the ROT-a method was worse than the other methods. In real

life, the production management in firms is more interested in solution quality than

processing time, provided the execution time of the method used is reasonable. On the other

hand, the processing time needed by the GA to reach a solution close to the optimal was

much greater than the other methods. It is well known that the main drawback of the GA is

that it requires a large number of response (fitness) function evaluations depending on the

number of individuals and the number of generations. Therefore, genetic algorithms may take

a long time to evaluate the individuals.

In summary, the strength of the MMAS algorithm was demonstrated in its considerably

shorter execution time and robustness. As a result, the MMAS algorithm is found to be a

proper approach for tackling the AOIS problem, even when the number of workstations

increases significantly.

11.2 Future work

For future research the following possible area may be studied:

 The incorporation of the material handling cost in the case of inspection not immediately

performed after the processing workstation but at a special inspection location. The

material handling cost is incorporated explicitly into the problem to make it more realistic.

270

The material handling cost is a function of distance travelled, type of handling equipment,

type of product, inspection station layout. Therefore, in this case, the cost of inspection

will include the cost of physical inspection and the cost of material handling.

 Online tuning of the MMAS algorithm is an alternative to offline tuning. Based on the

results obtained, the parameters given here for the AOIS problem applications performed

very well over a wide range of instances. Nevertheless, in other applications, adaptive

versions, which tune the parameters dynamically during the algorithm‟s execution, may

increase the algorithm‟s robustness. Typically, this consists of the modification of an

algorithm‟s parameter settings while solving a problem instance. A potential advantage of

an online modification of parameters is that algorithms may adapt better to the particular

instance‟s characteristics.

 The ant system and its variants have been applied to a variety of discrete and continuous

optimisation. However, some famous optimisation problems have not been tackled with

ant algorithms yet such as material requirements planning (MRP) and multi-objective

problems. This is most often as a result of difficulties in finding a representation of the

solution space that can be travelled by ants. Based on the results obtained in this research,

further research is needed to find solutions to these difficulties, and apply the ACO to an

ever increasing range of problems.

11.3 Contribution of the thesis

This thesis delivers a number of contributions to the field of allocation of inspection stations

and development of optimisation algorithms, especially to the area of Ant Algorithms.

11.3.1 General cost modelling formulation

The cost of the AOIS problem involves many characteristics, including inspection errors

(type I and type II), internal failure cost (rework and scrap), external failure cost (repair and

271

replacement), inspection cost (fixed and variable) and manufacturing cost. No literature has

previously considered all these characteristics together. This is because many earlier studies

were more interested in developing new heuristic methods to approach the complexity of the

AOIS problem. These simplified assumptions are also introduced to allow a tractable

formulation model and solution. The simplified assumptions in those cost models in the

literature review have led to the lack of generality. All the cost models surveyed assumed that

when an inspection is performed after the processing workstation, 100% inspection occurs.

This assumption increases the cost of inspection and inspection time. In addition, all the cost

models studied used the total cost per input unit and the total cost per output unit as the

objective function. However, a customer totally sophisticated in quality determination is

hypothesised, that is, one who can determine the quality of an item with 100% accuracy.

Furthermore, all previous cost models were represented external failure cost items as

aggregate or only include one of them.

This research contributes to knowledge by developing a general cost model (GCM) to include

all the characteristics of the AOIS problem described above. The developed cost model also

contributes to knowledge by determining the locations of inspection stations using the

sampling inspection plan. Furthermore, the GCM is developed such that the optimality is

defined in terms of minimising the cost per item accepted by the customer. To do so, the

general cost model is developed such that the number of conforming parts can be computed

at each processing workstation. Also the external failure costs are represented to be more

complex to include all of its items. Introducing all these issues into the GCM significantly

increases the level of complexity, makes the general cost model is very different from those

in the previous literature and maintains the generality. Figure 11.1 shows the contribution of

the GCM in serial multistage manufacturing processes.

272

11.3.2 Evaluating the MMAS algorithm on the AOIS problem

A max-min ant system (MMAS) algorithm was evaluated against a new type of problems

known as the allocation of inspection stations (AOIS) in serial multistage manufacturing

processes. This was a problem because, in the allocation problem, when the number of

processing workstations increases, the processing time required for solving the problem

grows exponentially, and the complete enumeration method becomes impractical. Empirical

validation shows that the MMAS algorithm is effective and efficient compared to other

metaheuristics algorithms. A method has been developed to find the optimal combination of

the most influential parameter values for the MMAS algorithm. This work is important

because it shows the link between the theoretical and practical algorithms being developed in

the field. Also, this work provides further information on optimisation by evaluating MMAS

algorithm on this type of AOIS problem in a serial multistage manufacturing process.

11.3.3 Developing two heuristic information methods

Two heuristics information methods for the problem of allocating inspection stations have

been constructed. The two novel heuristic methods are created to guide the ant to locate an

inspection station at a workstation. These are the Operation Cost and Defective rate Method

Costs and

characteristics

of AOIS

problem

Limited resources

of inspection

stations

Sampling

inspection

Optimum allocation of inspection

stations in multistage manufacturing

processes

Figure 11.1: Contribution of the GCM in serial multistage manufacturing processes

273

(OCDM) and the Scores Method (SM). The originality of the contribution is that these

methods have never been applied to this type of AOIS problem or in different areas. In

particular, the SM was first used by Shetwan et al. (2011) as a new heuristic method to solve

the AOIS problem as a part of this research. Previous heuristic information methods were

based on a simple idea such as in TSP. However, the concept of the two heuristic methods is

more complex and very different from those in the previous literature. Specifically, the steps

of SM include investigation of the characteristics for the AOIS problem, selecting the most

important characteristics, assigning scores for each workstation, finding the total scores,

compute the priority, link the priority via mathematical formula and implementing the

heuristic information method. The significance of the contribution is that the heuristic

information makes ACO algorithms (AS, ACS, Ant-Q and MMAS) more efficient in solving

real-world problems in a number of different areas of the AOIS problem. Examples are the

rigor of the inspections (acceptance limits) for each inspection station, the number of

inspections executed (sample size-sampling frequency) for each inspection station and these

issues are able to include different production configuration such as assembly and non-serial.

Furthermore, by introducing heuristic information the probable search space becomes much

smaller than the original search space. In addition, the heuristic information increases the

ability of ACO to find high-quality solutions in a reasonable time.

11.3.4 Developing a good new rule of thumb

A good new rule of thumb has been developed to solve the AOIS problem. The solutions

obtained by the MMAS algorithm for solving the AOIS problem are extensively investigated.

Investigation of inspection plans is done by looking at the positions of inspection stations in

the solutions obtained and comparing them with their characteristics. The aim is to analyse

the behaviour of the MMAS algorithm for allocating inspection stations. The analysis of the

solutions leads to the development of a good new rule of thumb. The importance of the rule

274

of thumb lies in the simplicity of its method: no tuning parameters are needed, so it is

preferred by industry.

275

Appendix A

This appendix describes the exact methods used in the literature review.

1. Integer programming

An integer programming problem is any linear programming model in which some or all the

variables are restricted to be integral (Hillier and Lieberman, 2010). In its most general form,

the aim in such a program is to assign integers to a set of variables such that a set of linear

inequalities are satisfied and a linear goal function is minimised or maximised. It is widely

known that many real-world problems can be captured conveniently by integer programs

(Jonsson and Nordh, 2006). An integer programming problem can be formulated as follows:

integer,0

tosubject

xx

bAx

xcMax T

x





where x is the vector of variables to be solved for, A is a matrix of known coefficients, and c

and b are vectors of known coefficients. The expression „cx‟ is called the objective function,

and the equations „Ax≤ b‟ are called the constraints.

2. Linear programming

Linear programming is a technique for optimisation models in which the objective and

constraints functions are strictly linear. Linear programming is one of the most successful

disciplines within the field of operation research (Hamdy, 2003). In its standard form, the

linear programming problem calls for finding non-negative x1,....,xn so as to maximise a linear

function 


n

j
jj xc

1
 subject to a system of linear equations:

a11 x1 +.....+a1n xn=b1

am1 x1 +.....+am n xn=bm

This problem can be stated in vector notation as:

xcT Maximise

subject to bxA 

0x

276

where
nmR A is assumed to have linearly independent rows, and mRb and c, nRx .

In fact, any problem of maximising or minimising a linear function subject to linear equation

and equalities can be easily reduced to the standard form (Megiddo, 1991).

3. Non-linear programming

Nonlinear programming is the process of solving a system of equalities and inequalities over

a set of unknown real variables, along with an objective function to be maximised or

minimised (Hamdy, 2003). In general, the non-linear programming problem is to find

x = (x1,x2,...,xn) so as to

maximise f(x),

subject to

gi (x)≤ bi, for i = 1,2,...,n,

and x ≥0,

where f(x) and the gi(x) are given functions of the n decision variables. There are many

different types of nonlinear programming problems, depending on the characteristics of the

f(x) and gi(x) functions (Hillier and Lieberman, 2010).

4. Branch and Bound

Branch and Bound algorithm is a general algorithm for finding optimal solutions of various

optimisation and combinatorial optimisation problems. In particular, the idea of branch-and-

bound algorithms is based on partitioning the solution set and using lower bounds to

construct a proof of optimality without an exhaustive search. That is, a search tree is built,

where each node represents a partition of the set of solutions, and each child of a node is a

subset of that partition (this is the „branch‟ part). An algorithm is available for calculating a

lower bound on the cost of any solution in a given subset (the „bound‟ part). The search tree

is searched by using the lower bounds to remove whole sub-trees, effectively reducing the

number of checked solutions. Clearly, the partitioning and the way the lower bound is defined

have a major impact on the performance of the algorithm (Di Caro, 2004).

5. Dynamic programming

Dynamic programming is a recursive method, which determines the optimum solution to an

n-variable problem by decomposing it into n stages, with each stage constituting a single

variable sub-problem. Each stage has a number of states associated with the beginning of that

stage. The number of states may be either finite or infinite. Thus the full recursion tree

277

generally has polynomial depth and an exponential number of nodes (Hamdy, 2003).

Dynamic programming works at best by computing the value of each state in an effective

way, and using these values to compute the optimal decision policy.

Assume that decision variables xn (n=1, 2, 3, 4) be the immediate destination on stage n for a

problem consisting of 4 stages. Given that s is state and xn as the immediate destination.

Given s and n, let xn* denote any value of xn (not necessarily unique) that minimizes fn(s, xn),

and let f n* (s) be the corresponding minimum value of fn(s, xn). Let fn (s, xn) be the total cost

of the best overall policy for the remaining stages as shown in equation C1:

)}({min
1)(** nnsx

xsn
xfcf

n
n


 C1

The value of csxn is the cost to move from state i to state j, which is denoted by cij, by setting i

= s (the current state) and j= xn (the immediate destination).

Therefore, finding the optimal policy decision starting in state s, at stage n, requires finding

the minimum value of xn. The recursive relationship among dynamic programming problems

is summarised below:

N = number of stages.

n = represents current stage (n=1, 2,…, N).

sn = current state for stage n.

xn = decision variable for stage n.

*
nx = optimal value of xn (given sn).

csxn= constant.

),(nnn xsf = contribution of stages n, n+1,…,N to objective function if system starts in state

sn at stage n, immediate decision is xn , and optimal decisions are made after, as given by

equation C2:

),(*

)(* nnnsn
xxff

n
 C2

The recursive relationship will always be in the form given by equation C3:

)},({min)(*
nnnxnn xsfsf

n
 C3

where),(nxnsnf would be written in terms of)(,, 1
*

1  nnnn sfxs , and some measure of the

immediate contribution of xn
to the objective function. With the addition of)(1

*
1  nn sf

on the

278

right–hand side,)(* nn
sf is defined in terms of)(1

*
1  nn sf , which makes the expression for

)(* nn sf
 a recursive relationship. The solution procedure starts at the end and moves

backwards, stage by stage, recursively, time finding the optimal policy for that stage until it

finds the optimal policy, starting at the initial stage. This optimal policy yields an optimal

solution for the entire problem (Hillier and Lieberman, 2010).

Appendix B

This appendix contains the steps which describe simulated annealing procedure and pseudo-

code. The basic steps of a SA algorithm are as follows:

Step1 Generate an initial feasible solution for the problem (inspection plans). This is the first

current solution. Set the initial temperature, number of repetitions at each temperature

step, the rule for decreasing the value of temperatures, the number of transitions at

each temperature, and the time at which annealing should be stopped are referred to as

the cooling schedule.

Step2 Generate a new set of solution/s from the current solution.

Step3 Evaluate the solution in terms of the objective function. Keep track of the best

solution found so far.

Step4 If the newly generated solution is better than the current solution update the current

solution to the newly found better solution. If not, the new solution is accepted

depending on the p[accept] Metropolis‟s criterion (Metropolis et al., 1953). In

practice, this probabilistic acceptance is achieved by generating a uniformly random

number R in [0, 1] and comparing it with p[accept]. If R < P[accept], the newly

solution is accepted and becomes the current solution, otherwise the newly solution is

rejected and the current solution stays the same.

Step5 Iterate through steps 2, 3and 4 for the number of transitions at each temperature.

Step6 Adjust the cooling temperature using the decided reduction criterion. Iterate through

steps 2, 3, 4 and 5 for the decided number of times. After ending the last iteration,

stop. Print the best solution found so far.

279

Appendix C

This appendix contains the steps which describe genetic algorithm procedure and pseudo-

code. The following steps describe the genetic algorithm procedure:

Step1 Generate a set of initial chromosomes (solutions randomly) with a population size,

which is the quantity of chromosomes used in the study (inspection plans). In this

research, initial populations of 50 inspection plans randomly generated are deemed to

be appropriate (Langner et al., 2002). The fitness function is evaluated to each

individual solution.

Step2 Roulette wheel selection method is used to reproduce the higher performance

chromosomes and place them into a mating pool.

Step3 Recombination is performed based on a crossover rate which is the percentage of

chromosomes in the mating pool to perform recombination or exchange. Two pieces

of chromosomes in the mating pool is selected in a random way. Using the One-Point-

Crossover method, randomly determine the crossover point. All genes beyond this

point in the chromosome string are swapped between the two parent chromosome

strings.

Step4 According to a mutation rate, which is the percentage of chromosomes in the mating

pool to perform mutation, this number of chromosome in the mating pool is selected

randomly. Find a mutation point in these chromosome strings at random, and then

change the gene at this position. This step is performed to avoid local optima.

Step5 A new population is developed through reproduction, crossover, and mutation, and

then the fitness function value of all the chromosomes can be calculated. Compare the

chromosome having the best fitness function value with that in the last generation,

and select the chromosome having the best fitness function value to keep for the next

generation.

Step6 If the execution has not yet reached the end condition, then repeat Steps 2 to 5. A

generation number is set for stopping the procedure.

280

Appendix D

The results for different parameter combinations for optimising GA are presented in Tables

D1-D5.

Table D1: Average
*
DFOS for GA (Cross over 0.1)

Population Mutation rate
0.001 0.002 0.003 0.004 0.005 0.01 0.017 0.02

20 14.1 13.9 14.6 14.0 14.0 14.10 14.2 14.2
30 13.7 13.5 13.3 13.5 13.5 12.9 13.6 14.0

40 13.4 13.8 13.5 13.9 13.4 14.0 14.2 13.4

50 13.2 13.3 12.6 13.0 13.0 13.5 13.4 13.5

60 12.7 13.3 13.1 13.3 13.1 13.4 13.2 12.9

70 12.9 12.5 12.9 12.5 12.7 12.7 12.9 12.7

80 12.6 12.2 12.2 12.6 12.0 12.4 12.3 12.4

90 14.1 14.0 14.0 13.9 14.6 14.10 14.2 14.2

100 12.9 13.6 14.0 13.5 13.5 13.7 13.5 13.3

*DFOS×0.001

Table D2: Average
*
DFOS for GA (Cross over 0.2)

Population Mutation rate
0.001 0.002 0.003 0.004 0.005 0.01 0.017 0.02

20 11.7 11.8 11.8 11.9 11.8 12.2 11.8 11.8

30 11.7 11.8 11.9 11.7 12.1 11.6 11.9 11.6

40 12 11.8 11.8 11.7 11.6 11.9 11.6 12

50 11.6 11.4 11.7 11.8 11.7 11.9 11.6 11.

60 8.8 8.6 8.4 8.7 8.2 8.2 8.8 8.5

70 8.2 8.0 7.9 7.6 7.5 8.2 7.6 8.0

80 8.1 7.8 7.7 8.3 7.6 8.1 7.9 7.8

90 8.0 7.6 8.0 7.9 7.6 8.0 7.9 8.0

100 8.3 7.6 8.1 8.1 7.6 7.7 8.3 7.6

*DFOS×0.001

Table D3: Average
*
DFOS for GA (Cross over 0.6)

Population Mutation rate
0.001 0.002 0.003 0.004 0.005 0.01 0.017 0.02

20 7.7 7.6 7.6 7.5 70 7.4 7.5 7.6

30 7.1 7.0 7.1 7.1 6.7 6.8 7.0 7.1

40 7.0 7.0 7.1 7.1 6.7 6.7 6.8 7.2

50 7.3 7.0 7.0 7.1 6.7 7.2 7.0 7.1

60 7.2 7.1 7.2 7.0 6.9 6.7 7.0 7.1

70 6.8 6.7 6.9 6.7 6.7 6.8 6.9 6.9

80 5.8 6.1 5.9 5.5 5.3 6.0 5.7 5.8

90 6.2 5.8 6.1 6.1 5.7 6.2 5.9 6.4

100 6.6 6.2 5.8 6.0 5.4 5.8 6.0 6.1

*DFOS×0.001

281

Table D4: Average
*
DFOS for GA (Cross over 0.8)

Population Mutation rate
0.001 0.002 0.003 0.004 0.005 0.01 0.017 0.02

20 5.3 4.7 4.8 4.9 4.6 4.9 4.7 4.8

30 3.7 3.8 4.0 3.8 3.9 3.6 4.2 4.2

40 2.1 3.3 2.1 3.3 2.1 3.3 2.1 3.3

50 2.1 3.3 2.1 3.3 2.1 3.3 2.1 3.3

60 2.1 2.1 3.3 2.1 2.0 2.1 3.3 2.1

70 1.9 1.9 2 1.8 1.8 1.9 2.0 2.0

80 1.5 1.5 1.4 1.3 1.2 1.3 1.4 1.4

90 3.3 2.1 3.3 3.3 2.1 3.3 2.1 3.3

100 2.1 3.3 3.3 3.3 2.1 3.3 2.1 3.3

*DFOS×0.001

Table D5: Average
*
DFOS for GA (Cross over 0.9)

Population Mutation rate
0.001 0.002 0.003 0.004 0.005 0.01 0.017 0.02

20 2.5 2.6 2.6 2.4 2.4 2.5 2.6 2.6

30 2.4 2.5 2.6 2.2 2.4 2.3 2.6 2.6

40 2.4 2.3 2.6 2.2 2.3 2.3 2.6 2.6

50 2.4 2.3 2.6 2.6 2.2 2.3 2.6 2.6

60 2.4 2.3 2.6 2.6 2.2 2.3 2.6 2.6

70 2.6 2.5 2.4 2.4 2.1 2.5 2.4 2.5

80 2.5 2.4 2.4 2.3 2.0 2.3 2.6 2.6

90 2.6 2.9 2.7 2.5 2.5 2.6 2.7 2.9

100 2.9 2.7 2.7 2.6 2.6 2.9 2.9 2.9

*DFOS×0.001

Appendix E

The results for different parameter combinations for optimising SA are presented in Table E1.

Table E1: Average
*
DFOS for SA

Iterations at each

temperature

Temperature decrement

0.4 0.5 0.6 0.65 0.7 0.75 0.8 0.85 0.9

100 1.5 1.5 1.5 1.5 1.4 1.4 1.4 1.3 1.4

200 1.3 1.3 1.2 1.3 1.2 1.1 0.95 0.94 0.95

300 1.3 1.2 1.2 1.2 1.1 1.1 0.94 0.9 0.95

400 1.3 1.3 1.2 1.2 1.2 1.1 0.95 0.93 0.98

500 1.3 1.3 1.3 1.2 1.2 1.2 0.98 0.94 0.96

600 1.4 1.4 1.3 1.2 1.2 1.1 1.0 0.95 1.0

700 1.3 1.3 1.2 1.2 1.2 1.1 1.1 0.98 1.1

800 1.3 1.3 1.3 1.3 1.2 1.2 1.2 1.0 1.2

900 1.4 1.4 1.4 1.4 1.2 1.2 1.2 1.1 1.2

1000 1.4 1.4 1.3 1.3 1.3 1.3 1.3 1.2 1.3

1100 1.4 1.4 1.4 1.4 1.4 1.3 1.3 1.3 1.4

1200 1.5 1.5 1.5 1.4 1.4 1.4 1.5 1.3 1.5

*DFOS×0.001

282

Appendix F

The results for different parameter combinations for optimising PSO are presented in Tables

F1-F4.

Table F1: Average
*
DFOS for PSO (ω=0.8)

Number

of

 Particles

Cognitive coefficients

 c1=1
c2=1

1

c1=1
c2=1.5

1

c1=1.5
c2=1

1

c1=1.5
c2=1.5

1

c1=2
c2=2

1

c1=2
c2=2.5

1

c1=2.5
c2=2

1

c1=2.5
c2=2.5

1

c1=3
c2=3

1

c1=3
c2=3.5

1

c1=3.5
c2=3

1

c1=3.5
c2=3.5

1

10 2.5 2.5 2.5 2.1 2.1 2.3 2.4 2.4 2.4 2.4 2.5 2.5

20 2.5 2.5 2.5 2.1 2.0 2.3 2.3 2.4 2.4 2.5 2.5 2.5

40 2.1 2.1 2.1 2.1 2.0 2.2 2.2 2.2 2.4 2.4 2.4 2.4

60 1.9 1.9 1.9 1.8 1.75 1.8 1.8 1.9 1.9 1.9 1.9 2.1

80 1.9 1.9 1.9 1.8 1.8 1.8 1.8 1.9 1.9 1.9 1.9 1.9

100 2.1 2.1 1.9 1.8 1.8 1.8 1.8 1.9 1.9 2.0 2.0 2.1

*DFOS×0.001

Table F2: Average
*
DFOS for PSO (ω=0.9)

Number

of

 Particles

Cognitive coefficients

 c1=1
c2=1

1

c1=1
c2=1.5

1

c1=1.5
c2=1

1

c1=1.5
c2=1.5

1

c1=2
c2=2

1

c1=2
c2=2.5

1

c1=2.5
c2=2

1

c1=2.5
c2=2.5

1

c1=3
c2=3

1

c1=3
c2=3.5

1

c1=3.5
c2=3

1

c1=3.5
c2=3.5

1

10 1.2 1.2 1.2 1.2 1 1.3 1.3 1.3 1.3 1.3 1.3 1.4

20 1.2 1.2 1.2 0.98 0.98 1.1 1.1 1.1 1.1 1.1 1.1 1.2

40 0.97 0.97 0.97 0.93 0.85 0.82 0.82 0.83 0.84 0.84 0.84 0.85

60 0.83 0.82 0.82 0.82 0.78 0.8 0.79 0.79 0.8 0.8 0.81 0.85

80 0.82 0.83 0.83 0.82 0.8 0.82 0.83 0.83 0.84 0.84 0.86 0.86

100 0.84 0.84 0.84 0.84 0.8 0.84 0.84 0.84 0.84 0.84 0.86 0.87

*DFOS×0.001

Table F3: Average
*
DFOS for PSO (ω=1.1)

Number

of

 Particles

Cognitive coefficients

 c1=1
c2=1

1

c1=1
c2=1.5

1

c1=1.5
c2=1

1

c1=1.5
c2=1.5

1

c1=2
c2=2

1

c1=2
c2=2.5

1

c1=2.5
c2=2

1

c1=2.5
c2=2.5

1

c1=3
c2=3

1

c1=3
c2=3.5

1

c1=3.5
c2=3

1

c1=3.5
c2=3.5

1

10 1.1 1.1 1.1 1.2 1 1.1 1.2 1.2 1.3 1.3 1.3 1.4

20 1.1 1.1 0.97 0.95 0.92 0.93 0.94 0.94 0.98 1.1 1.1 1.2

40 0.83 0.82 0.82 0.83 0.8 0.82 0.82 0.83 0.8 0.82 0.83 0.85

60 0.83 0.82 0.82 0.8 0.8 0.75 0.79 0.79 0.8 0.8 0.81 0.85

80 0.82 0.83 0.83 0.82 0.7 0.82 0.83 0.83 0.84 0.84 0.86 0.86

100 0.84 0.84 0.84 0.84 0.8 0.84 0.84 0.84 0.84 0.84 0.86 0.87

*DFOS×0.001

283

Table F4: Average
*
DFOS for PSO (ω=1.2)

Number

of

 Particles

Cognitive coefficients

 c1=1
c2=1

1

c1=1
c2=1.5

1

c1=1.5
c2=1

1

c1=1.5
c2=1.5

1

c1=2
c2=2

1

c1=2
c2=2.5

1

c1=2.5
c2=2

1

c1=2.5
c2=2.5

1

c1=3
c2=3

1

c1=3
c2=3.5

1

c1=3.5
c2=3

1

c1=3.5
c2=3.5

1

10 1.1 1.1 1.1 1.2 1 1.1 1.2 1.2 1.3 1.3 1.3 1.4

20 1.1 1.1 1.1 1.1 0.98 1.0 1.1 1.1 1.1 1.1 1.1 1.2

40 1.1 1.2 1.2 1.2 0.97 0.92 0.92 0.95 0.95 0.97 0.97 0.97

60 0.94 0.94 0.94 0.9 0.85 0.94 0.94 0.94 0.94 0.94 0.94 0.95

80 0.96 0.96 0.96 0.9 0.88 0.94 0.94 0.94 0.95 0.95 0.95 0.95

100 094 0.94 0.94 0.95 0.90 0.94 0.94 0.94 0.94 0.94 0.96 0.96

*DFOS×0.001

Appendix G

This appendix describes the detailed investigation of the solutions for 100 case studies

obtained by the MMAS algorithm that led to develop ROT-b.

As described in section 10.1, the 100 case studies were randomly generated in order to

represent the varying characteristics of different manufacturing systems. These characteristics

including inspection errors (type I and type II), internal failure cost (rework and scrap),

external failure cost (repair and replacement), inspection cost (fixed and variable), defective

rates and manufacturing cost. Some of these characteristics have a greater effect on the total

cost of the product than others. For example, the operation cost at processing workstations is

an important characteristic for the AOIS problem. This is because the operation cost is

calculated for all items processed at every processing workstation, regardless of whether or

not an inspection is performed at any of the processing workstations. In addition, the

defective rates generated at workstations are an important characteristic for the AOIS

problem. This is because the workstations that have a high defective rate lead to an increase

in the total manufacturing cost of the product. For a particular characteristic, the importance

of that characteristic depends on whether its value at a workstation is high or low. For

example, workstations which characteristically have a higher operating cost have more

influence on the total cost of the product than the other workstations. On the other hand,

workstations which characteristically have a lower unit inspection cost have more influence

on the total cost of the product than the other workstations. The influence of the characteristic

can be observed when an inspection station is frequently located at a workstation having that

characteristic, through the inspection plans. The investigation of the inspection plans is

284

carried out by looking at where the inspection stations are located and whether the value of

the characteristic at a workstation is high or low.

The aim is to find any link or relationship between the places of inspection stations and the

characteristics, and to see how the MASS algorithm behaved for locating these inspection

stations. In other words, the aim is to find which of these characteristics have the greatest

impact on the effectiveness of the MMAS algorithms on placing inspection stations. The

investigation also includes the characteristics of the processing workstations which are

located after each inspection station in the inspection plans. This is because some locations of

inspection stations may be influenced by such characteristics as operation cost.

Because the investigation is done manually, it is difficult to investigate all 100 cases at once.

To simplify the investigation, the inspection plans of the 100 cases are divided into 10 groups

in sequence, each of which consists of 10 inspection plans. The same procedure is used for

their characteristics. A spreadsheet for each characteristic of the workstations for the

inspection plans is prepared. The width of the spreadsheet is equal to the number of

workstations. In the first inspection station of the first inspection plan, all characteristic

values for workstation k (where the first inspection station is located) are checked to find out

which of them has a greater influence than the others. Figure G1 shows the importance of the

characteristics at workstation k in the inspection plan where the first inspection station is

located. In particular, Figure G1 (a) shows that the defect rate (Z) has a greater influence than

the others. Therefore, this characteristic is considered and recorded in the spreadsheet. In

contrast, Figure G1 (b) shows that no characteristic has a great influence on the total cost of

the product. Therefore, nothing recorded in the spreadsheet. The same procedure is used for

the other inspection stations in the first inspection plan (the second inspection station, the

third inspection station,..., the last inspection station). The characteristic that has the greatest

influence on the MMAS for locating each inspection station in the inspection plans is

recorded in the spreadsheet corresponding to the workstation. The same procedure is used for

the other inspection plans. After that all these characteristics are collected and analysed.

285

Figure G1: Importance of the characteristics at workstation k

U Z IC α β u g δ

C
h
ar

ac
te

ri
st

ic

v
al

u
e

Characteristics

U Z IC α β u g δ

C
h
ar

ac
te

ri
st

ic

v
al

u
e

Characteristics

High

Low

High

Low

(a)

(b)

286

References

Abramson, D. and Abela, J. (1992). A parallel genetic algorithm for solving school

timetabling problem, Appeared in 15 Australian Computer Science Conference, Hobart,

pp.1-11.

Aghababa, M. P., Shotorbani, M. A. and Shotorbani, M. R. (2010). An adaptive particle

swarm optimization applied to optimum controller design for AVR power systems,

International Journal of Computer Applications 11(10):22–29.

Aliabadi, M., Jolai, F., Mehdizadeh, F. and Jenabi, M. (2011). A flow shop production

planning problem with basic period policy and sequence dependent set up times, Journal

of Industrial and Systems Engineering, 5(1):286-304

Angel, E. and Zissimopoulos, V. (2000). Towards a classification of combinatorial

optimisation problems relatively to their difficulty for generalized local search algorithms,

Discrete Applied Mathematics, 99, pp. 261-277.

Angus, D. (2008). Niching Ant Colony Optimization, PhD thesis, faculty of information &

communication technologies, Swinburne University of Technology Melbourne, Australia.

Attia, A. (2005). Evidence-based medicine corner: Why should researchers report the

confidence interval in modern research? Middle East Fertility Society Journal,

10(1):78:81.

Auger, A. and Hansen, N. (2005). A restart CMA evolution strategy with increasing

population size, In Proceedings of the IEEE Congress on Evolutionary Computation (CEC

2005), 2, pp. 1769-1776.

Azadeh, A., Sadegh, M.S. and Amiri, A.S. (2012). A particle swarm algorithm for inspection

optimisation in serial multistage processes, Applied Mathematical Modelling, 36(4):1455-

1464.

Bai, D. and Yun, H. (1996). Optimal allocation of inspection effort in a serial multistage

production system, Computers Industrial Engineering, 30(3): 387-396.

Ballou, D.P. and Pazer, H.L. (1982). The impact of inspector fallibility on the inspection

policy in serial production systems, Management Science, 28(4): 387-399.

Ballou, D.P. and Pazer, H.L. (1985). Process improvement versus enhanced inspection in

optimised systems, International Journal of Production Research, 23(6):1233-1245.

287

Barad, M. (1990). A break even quality level approach to location of inspection station in

multistage production process, International Journal of Production Research, 28(1):29-45.

Baykasoğlu, A. and Dereli, T. (2009). Simple and U-type assembly line balancing by using

an ant colony based algorithm, Mathematical and Computational Applications,

14(1):1-12.

Bell, J. E. and McMullen, P. R. (2004). Ant colony optimisation techniques for the vehicle

routing problem, Advanced Engineering Informatics, 18, pp. 41–48.

Bentley, J. L. (1992). Fast algorithms for the geometric travelling salesman problem, ORSA

Journal on Computing, 4, pp. 387–411.

Bianchi, L. (2006). An ant colony optimisation approach to the probabilistic travelling

salesman problem, A case Study in Stochastic Combinatorial Optimisation, Universit´e

Libre de Bruxelles.

Birattari, M., Paquete, L., Stützle, T. and Varrentrapp, K. (2001). Classifications of

methurestics and design of experiments for the analysis of components, Technical report

AIDA-01-05, Darmstadt University of technology, Darmstadt, Germany.

Blum, C. (2005). Beam-aco-hybridizing ant colony optimisation with beam search:

Applications to open shop scheduling, Computers and Operations Research,

32, (6): 1565–1591.

Blum, C, Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview and

conceptual comparison. ACM Computing Surveys, 35(3):268–308.

Boese, K. (1995). Cost versus distance in the travelling salesman problem, Technical Report

TR-950018, UCLA CS Department.

Bui, T. N., Nguyen, T. H., Patel, C. M. and Phan, K. T. (2008). An ant-based algorithm for

coloring graph, Discrete Applied Mathematics, 156, pp. 190–200.

Bullnheimer, B., Hartl, R. and Strauss, C. (1997). A new rank based version of the ant

system, A computational Study, Technical Report, University of Vienna, Institute of

Management Science.

Bullnheimer, B., Hartl, R.F. and Strauss, C. (1999). An improved ant system algorithm for

the vehicle routing problem, Annals of Operations Research, 89, pp.319–328.

Campanella, J. (1990). Principles of quality costs, second edn, ASQ Quality Press,

Milwaukee,WI.

288

Carson, Y. and Maria, A. (1997). Simulation optimisation: methods and application,

Proceedings of the Winter Simulation Conference, ed. S. Andradóttir, K. J. Healy, D. H.

Withers, and B. L. Nelson, pp.118-126.

Clerc, M. and Kennedy, J. (2002). The particle swarm Explosion, stability, and convergence

in a multi-dimensional complex space,” IEEE Trans. Evol. Comput., 6, pp. 58–73.

Chen, T. and Thornton, A. (1999). Quantitative selection of inspection plans, Proceedings of

the ASME Design Engineering Technical Conferences, Las Vegas, Nevada.

Chengalur, I.N., Ballou, D.P. and Pazer, H.L. (1992). Dynamically determined optimal

inspection strategies for serial production process, International Journal of Production

Research, 30(1): 169-187.

Colorni, A., Dorigo, M. and Maniezzo, V. (1992). An investigation of some properties of an

ant algorithm. In R.Manner and B.Manderick, editors, Proceedings of the Parallel

Problem Solving from Nature Conference (PPSN 92), 509:520, Elsevier publishing.

Congram, K. R. (2000). Polynomially searchable exponential neighbourhoods for sequencing

problems in combinatorial optimisation, PhD thesis, University of Southampton, UK.

Cruz, J. B., Chen, G., Li, D., and Wang, X. (2004). Particle swarm optimization for resource

allocation in UAV cooperative control, Proceedings of the AIAA Guidance, Navigation,

and Control Conference and Exhibit, Rhode Island.

Czogalla, J. and Fink, A. (2012). Fitness landscape analysis for the no-wait flow-shop

scheduling problem, J Heuristics, 18, pp. 25–51.

Dianati, M., Song, I., and Treiber M. (2002). An Introduction to Genetic Algorithms and

Evolution Strategies, Technical report. University of Waterloo, Ontario, N2L 3G1,

Canada.

Deliman, C.N. and Feldman, M.R. (1996). Optimisation of process improvement and

inspection location for serial manufacturing, International Journal of Production

Research, 34(2): 395–405.

Demirkol, I., Ersoy,C., Caglayan,M. U. and Delic, H. (2001). Location area planning in

cellular networks using simulated annealing, Twentieth Annual Joint Conference of the

IEEE Computer and Communications Societies, Proceedings IEEE.

Deneubourg, J.L., Aron, S., Goss, S., and Pasteels, J.M. (1990). The self-organizing

exploratory pattern of the Argentine ant, Journal of Insect Behaviour, 3, pp. 159–168.

289

Deroussi, L., Gourgand, M. and Norre, S. (2006). New effective neighbourhoods for the

permutation flow shop problem, Research Report LIMOS/RR-06-09.

Di Caro, G. (2004). Ant colony optimisation and its application to adaptive routing in

telecommunication networks, PhD thesis, faculty of sciences, Free University of Brussels,

Blegium.

Di Caro, G. and Dorigo, M. (1998). Ant Net: Distributed stigmergetic control for

communications networks, Journal of Artificial Intelligence Research, 9, pp.317–365.

Dorigo, M. and Di Caro, G. (1999). Ant algorithms for discrete optimisation, Artificial Life,

5(3): 137-172.

Dorigo, M. and Gambardella, L. M. (1996). A study of some properties of Ant-Q. In Voigt,

H., Ebeling, W., Rechenberg, I. and Schwefel, H., editors, Proceedings of PPSN96

International Conference on Parallel Problem Solving from Nature, 656-665, Springer-

Verlag.

Dorigo, M. and Gambardella, L. M. (1997). Ant colony system: a cooperative learning

approach to the travelling salesman problem, IEEE Transactions on Evolutionary

Computation, 1(1):53-66.

Dorigo, M., Maniezzo, V. and Colorni, A. (1996). The ant systems: optimisation by a colony

of cooperative agents, IEEE Transaction on systems, Man, Machine and Cybernetics, Part

B, 26(1): 29-41.

Dorigo, M., Maniezzo, V. and Colorni, A. (1991a). The ant system: an autocatalytic

optimising process, Technical report, Politecnico di Milano, Italy. No.91-016 Revised.

Dorigo, M., Maniezzo, V. and Colorni, A. (1991b). Positive feedback as a search strategy,

Technical Report 91-016, Dipartimento di Elettronica, Politecnico di Milano, IT.

Dorigo, M. and Stützle, T. (2002). The ant colony optimisation metaheuristic: Algorithms,

applications, and advances, In Glover, F. and Kochenberger, G., editors, Handbook of

Metaheuristics, vol. 57 of International Series in Operations Research and Management

Science, pp. 251-285. Kluwer Academic Publishers, 2002.

Dorigo, M. and Stützle, T. (2004). Ant colony optimisation, The MIT Press, Cambridge,

Massachusetts.

290

Duda, J. (2006). Local search and nature based metaheuristics: a case of flow-shop

scheduling problem, Proceedings of the International Multi-conference on Computer

Science and Information Technology, pp. 17–24.

Eglese, W. R. (1990). Simulated annealing a tool for operational research, European Journal

of Operational Research, 46, pp. 271-281.

El Gamal, A.A., Hemachandra, L.A., Shperling, L. and Wei, V.K. (1987). Using simulated

annealing to design good codes, IEEE Transaction Information Theory, IT-33, 1,

pp. 116-123.

Emmons, H. and Rabinowitz, G. (2002). Inspection allocation for multistage deteriorating

production systems, IIE Transactions, 34, pp.1034-1041.

Engin, O., Celik, A. and Kaya, I. (2008). A fuzzy approach to define sample size for

attributes control chart in multistage processes: an application in engine valve

manufacturing process, Applied Soft Computing, 8, pp.1654–1663.

Enrick, N.L. (1975). Towards optimisation of inspection allocation Part I and II, Industrial

Management, 17(4): 7–11.

Eppen, G.D. and Hurst, G.E. (1974). Optimal location of inspection station in a multistage

production process, Management Science, 20(8): 1194-1200.

Espinoza, F. P., Minsker, B.S. and Goldberg, D.E. (2005). Adaptive hybrid genetic algorithm

for groundwater remediation design, Journal of Water Resources Planning and

Management, 131(1): 14-25.

Ferreira, E., Goldbarg, G. and Goldbarg, M. (2012). An experimental study of variable depth

search algorithms for the QAP, Pesquisa Operationa, 32(1): 165-195.

Fidanova, S., Marinov, P. and Atanassov, K. (2011). Sensitivity analysis of ACO starts

strategies for subset problems, Journal on Data Semantics, 6046, PP. 256-263.

Gaertner, D. (2004). Natural algorithms for optimisation problems, Final Year Project

Report, Imperial College, UK.

Galante, G. and Passannanti, G. (2007). Integrated approach to part scheduling and inspection

policies for a job shop manufacturing system, International Journal of Production

Research, 45(22): 5177-5198.

Gambardella, L. M. and Dorigo, M. (1995). Ant-Q: A reinforcement learning approach to the

travelling salesman problem, In International Conference on Machine Learning, 252-60.

291

Gardner, L.L., Grant, M.E. and Rolston, L.J. (1995). Using simulation to assess costs of

quality, in Alexopoulos, C. Kang, K. Lilegdon, R. & Goldsman, D. (Eds), Proceedings of

the Winter Simulation Conference, Arlington, VA, IEEE Press, Piscataway, NJ, 945-951.

Glover, F. (1986). Future paths for integer programming and links to artificial intelligence,

Computers and Operations Research, 13(5):533–549.

Glover, F. (1977). Heuristics for integer programming using surrogate constraints, Decision

Sciences, 8, pp. 156-166.

Gluga, R, Kay, J., Lister, R. Kleitman, S. and Lever, T. (2011).Over confidence and

confusion in using bloom for programming fundamentals assessment, Technical report

681, School of Information Technologies, University of Sydney.

Goksal, F., Karaoglan, I. and Altiparmak, F. (2012). A hybrid discrete particle swarm

optimization for vehicle routing problem with simultaneous pickup and delivery,

Computers & Industrial Engineering, in Press.

Goss, S., Aron, S., Deneubourg, J. L., and Pasteels, J. M. (1989). Self-organized shortcuts in

the Argentine ant, Naturwissenschaften, 76, pp. 579–581.

Grahl, J., Radtke, A., Minner, S. (2007). Fitness landscape analysis of dynamic multi-product

lot-sizing problems with limited storage, In: Günther, H.-O., Mattfeld, D.C., Suhl, L.

(eds.) Management logistischer Netzwerke, Entscheidungsunterstützung, Informations

systeme und OR-Tools, pp. 257–277. Physica, Heidelberg.

Gunter, I.S. and Swanson, A.L, (1985). Inspector location in convergent production units,

International Journal of Production Research, 23(6): 1153-1169.

Guo, Q.J. and Zheng, L. (2005). A modified simulated annealing algorithm for estimating

solute transport parameters in streams from tracer experiment data, Environmental

Modelling & Software, 20, pp. 811–815.

Hadjinicola, C.G. and Soteriou, C.A. (2003). Reducing the cost of defects in multistage

production systems: a budget allocation perspective, European Journal of Operational

Research, 145(3): 621–634.

Hamdy, A.T. (2003). Operations research, seventh edn, Prentice Hall.

Hansen, N. and Kern, S. (2004). Evaluating the CMA evolution strategy on multimodal test

functions, In Xin Yao et al., editors, Parallel Problem Solving from Nature – PPSN VIII,

LNCS 3242, pp. 282-29.1

292

Hansen, N., Muller, S.D. and Koumoutsakos, P. (2003). Reducing the time complexity of the

derandomized evolution strategy with covariance matrix adaptation (CMA-ES), Evol.

Comput., 11(1):1-18.

Hansen, N. and Ostermeier, A. (2001). Completely derandomized self-adaptation in evolution

strategies. Evol. Comput., 9(2):159-195.

Hauschild, M. and Pelikan, M. (2011). An introduction and survey of estimation of

distribution algorithms, Swarm and Evolutionary Computation, 1(3):111–128.

Hauskrecht, M. (2000). Value-function approximations for partially observable Markov

Decision Processes, Journal of Artificial Intelligence Research, 13(2000): 33-94.

Hillier, F.S. H. and Lieberman, G. J. (2010). Introduction to operations research, ninth edn,

New York, McGraw-Hill.

Hsieh, C., Chen, M. and Chen. P.(2007). Particle swarm guided evolution strategy, In Hod

Lipson, editor, Genetic and Evolutionary Computation Conference (GECCO '07), pages

650:657, London, England, 7-11 July, 2007.

Hsu, S.J. (1984). A hybrid inspection system for the multistage production process,

International Journal of Production Research, 22(1): 63-69.

Hurst, E.G. (1973). Imperfect inspection in a multistage production process, Management

Science, 20: 378-384.

Jang, W. and Shanthikumar, J.G. (2002). Stochastic allocation of inspection capacity to

competitive processes, Naval Research Logistics, 49(1): 78-94.

Jaszkiewicz, A. and Kominek, P. (2003). Genetic local search with distance preserving

recombination operator for a vehicle routing problem, European Journal of Operational

Research 151, pp.352–364.

Jewkes, M.E. (1995). Optimal inspection effort and scheduling for a manufacturing process

with repair, European Journal of Operational Research, 85(2): 340-351.

Janikow, C. Z. (1993). A knowledge-intensive genetic algorithm for supervised learning,

Machine Learning, 13, pp.189-223.

Jones, T. and Forrest, S. (1995) Fitness distance correlation as a measure of problem

difficulty for genetic algorithms. In L.J. Eshelman, editor, Proceedings of the 6th

InternationalConference on Genetic Algorithms, pages 184–192. Morgan Kaufman, San

Francisco.

293

Jonsson, P. and Nordh, G. (2006). Generalised integer programming based on logically

defined relations, Proceedings of the 31st International Symposium on Mathematical

Foundations of Computer Science (MFCS-2006), pp. 549–560.

Jupe, S.C. (2009). Active management of distributed generation based on component thermal

properties, PhD thesis, School of Engineering and computing sciences, Durham

University.

Kakade, V., Valenzuela, J. and Smith, J. (2004). An optimisation model for selective

inspection in serial manufacturing systems, International Journal of production Research,

42(18): 3891-3909.

Kalpakjian, S. and Schmid, S. (2006). Manufacturing engineering and technology, fifth edn,

Pearson Prentice Hall.

Kang, KS. Ebeling, A.K. and La, S. (1990). The optimal location of inspection stations using

a rule-based methodology, Computer and Industrial Engineering, 19(1-4): 272-275.

Karaboga, D. and Okdem, S. (2004). A Simple and global optimisation algorithm for

engineering problems: differential evolution algorithm, Turk J Elec Engin, 12(1), 53-60.

Kaya, I. and Engin, O. (2007). A New approach to define sample size at attributes control

chart in multistage processes: an application in engine piston manufacturing process,

Journal Material Process Technology, 18, pp. 38–48.

Kennedy J. and Eberhart R. C. (1995). Particle swarm optimization, Proceedings of IEEE

International Conference on Neural Networks, Piscataway (1995) 1942–1948.

Kennedy, J and Mendes, R. (2002). Population structure and particle swarm performance, in

Proc. IEEE Congr. Evol. Comput., Honolulu, HI, pp. 1671–1676.

Kim, J. (2010). Examining the relationship between algorithm stopping criteria and

performance using elitist genetic algorithm, Proceedings of the 2010 Winter Simulation

Conference, 3220-3227.

Kirkpatrick, S., Gelatt, C.D. and Jr. (1983). Optimisation by simulated annealing, Science,

220(4598): 671-680.

Kogan, K. and Raz, T. (2002). Optimal allocation of inspection effort over a finite planning

horizon, IIE Transactions, 34, pp. 515-527.

294

Kolahan, F. and Abachizadeh, M. (2010). Optimizing turning parameters for cylindrical parts

using simulated annealing method, International Journal of Engineering and Applied

Sciences, 6(3): 149-152.

Kumar, R. and Rockett, P. (2002). Improved sampling of the pareto front in multi-objective

genetic optimisations by steady state evolution: a Pareto Converging Genetic Algorithm,

In Evolutionary Computation, 10 (3):283 – 314.

Kumar, R., Tiwari, M. K. and Shankar, R. (2003). Scheduling of flexible manufacturing

systems: An ant colony optimisation approach, I Mech E, pp.1443–1453.

Langner, A., Montgomery, D. and Carlyle, W. (2002). Solving a multistage partial inspection

problem using genetic algorithms, International Journal of Production Research, 40(8):

1923-1940.

Laptik, R. and Navakauskas, D. (2009). Max-min ant system in image pre-processing,

Electronics and electrical engineering, Kaunas: Technologija, 1(89):21–24.

Lee, J. and Chen, F.F. (1996). Inspection sequencing and part scheduling for flexible

manufacturing systems, European Journal of Operational Research, 95(2): 344–355.

Lee, J. and Unnikrishnan, S. (1998). Planning quality inspection operations in multistage

manufacturing systems with inspection errors, International Journal of Production

Research, 36(1): 141-155.

Liao, C., Tsengb, C. and Luarn, P. (2007). A discrete version of particle swarm optimization

for flow-shop scheduling problems, Computers & Operations Research, 34, 3099 – 3111.

Liang, Y. and Smith, A. E. (2004). An ant colony optimisation algorithm for the redundancy

allocation problem, IEEE Transactions on Reliability, 53(3): 417-423.

Liang, Y.C., Lee, Z.S. and Chen, Y.S. (2012). A novel ant colony optimization approach for

on-line scheduling and due date determination, J Heuristics, 18, pp: 571–591.

Lindsay, G.F. and Bishop, A.B. (1964). Allocation of screening inspection effort a dynamic

programming approach, Management Science, 10(2): 342-352.

Mandroli, S. Shrivastava, K. and Ding, Y. (2006). A survey of inspection strategy and sensor

distribution studies indiscrete-part manufacturing processes, IIE Transactions,

38, pp. 309-328.

Maniezzo, V. and Colorni, A. (1999). The ant system applied to the quadratic assignment

problem. IEEE Transactions on Knowledge and Data Engineering, 11(5):769-778.

295

Maria, A. (1997). Introduction to modelling and simulation, Proceedings of the 1997 Winter

Simulation Conference, ed. S. Andradóttir, K. J. Healy, D. H. Withers, and B. L. Nelson,

pp.7-13.

Mariano, C.E. and Morales, E. (1999). A multiple objective Ant-Q algorithm for the design

of water distribution irrigation networks, Technical Report HC-9904, Instituto Mexicano

de Tecnologı´a del Agua, Mexico.

Marmion, E. M., Jourdan, L. and Dhaenens. C. (2012). A fitness landscape analysis and

metaheuristics efficiency, J Math Model Algor, pp.1-24.

McCallum, E.T. (2005). Understanding how knowledge is exploited in ant algorithms, PhD

thesis, School of Informatics, University of Edinburgh.

Megiddo, N. (1991). Linear programming, Encyclopaedia of Microcomputers, 1991.

Merz, P. and Freisleben, B. (2000). Fitness landscape analysis and memetic algorithms for

the quadratic assignment problem. IEEE Transactions on Evolutionary Computation 4,

337–352.

Merz P., Freisleben, B. (1998). Memetic algorithms and the fitness landscape of the graph bi-

partitioning problem, In Proceedings of the 5th International Conference on Parallel

Problem Solving from Nature - PPSN V, pp. 765-774.

Michaelewicz, Z. and Fogel, D.B. (2000). How to solve it: Modern Heuristics, Springer-

Verlag, Berlin.

Merkle, D., Middendorf, M. and Schmeck, H. (2002). Ant colony optimisation for resource-

constrained project scheduling, IEEE Transactions on Evolutionary Computation, 6(4):

333-346.

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A. and Teller, E. (1953). Equation of

state calculations by fast computing machines, Journal of Chemical Physics, 21, pp. 1087–

1092.

Mills, P., Tsang, E. and Ford, F. (2003). Applying an extended guided local search to the

quadratic assignment problem, Annals of Operations Research, 118, pp.121:135.

Moeini, R. and Afshar, M.H. (2009). Application of an ant colony optimisation algorithm for

optimal operation of algorithm for optimal operation of reservoirs: a comparative study of

three proposed formulations, Transaction A: Civil Engineering, 16(4):273-285.

296

Montgomery, D.C. (1997). Introduction to statistical quality control, third edn, New York,

John Wiley & Sons.

Muller, C. and Sbalzarini, I. (2011). Global characterization of the CEC 2005 fitness

landscapes using fitness-distance analysis, EvoApplications'11 Proceedings of the 2011

international conference on Applications of evolutionary computation-Volume Part I, pp.

294-303.

Nahas, N. and Nourelfath, M. (2005). Ant system for reliability optimisation of a series

system with multiple-choice and budget constraints, Reliability Engineering and System

Safety, 87, pp. 1–12.

Narahari, Y., and Khan, L.M. (1996). Modelling re-entrant manufacturing systems with

inspection stations, Journal of Manufacturing Systems, 15(6): 367–378.

Ning, X., Lam, KC. and Lam, MC. (2010). Dynamic construction site layout planning using

max-min ant system, Automation in Construction, 19, pp. 55–65.

Ochoa, G., Rodriguez, J., Petrovic, S. and Burke, E. (2009). Dispatching rules for production

scheduling: a hyper-heuristic landscape analysis, IEEE, pp. 1873-1880.

Omidvar, M. and Li, X. (2011). A comparative study of CMA-ES on large scale global

optimisation, AI 2010: Advances in Artificial Intelligence, pp. 303–312.

Önüt, S., Tuzkaya, R and Dogac, B. (2008). A particle swarm optimization algorithm for the

multiple-level warehouse layout design problem, Computer Industrial Engineering, 54 pp.

783–799.

Osman, I.H. and Laporte, G. (1996). Metaheuristics: A bibliography, Annals of Operations

Research, 63, pp. 513–628.

Ostwald, P. F. and McLaren, T. S. (2004). Cost Analysis and Estimating for Engineering and

Management, Prentice Hall.

Ozcan, E. and Mohan, C. (1999). Particle swarm optimization: Surfing the waves, in Proc.

IEEE Congress Evol. Comput., 3, pp.1939–1944.

Park, H.Y., Park, H.E. and Ntuen, A.C. (1988). A study for optimal inspection policies in a

flexible manufacturing cell, Computer and Industrial Engineering, 15(1-4): 307-314.

Pellegrini, P. and Moretti, E. (2009). A computational analysis on a hybrid approach: quick-

and-dirty ant colony optimization, Applied Mathematical Sciences, 23(3): 1127–1140.

297

Penn, M. and Raviv, T. (2007). Optimising the quality control station configuration, Naval

Research Logistics, 54, pp. 301-314.

Peters, M.H. and Williams, W.W. (1984). Location of quality inspection stations: an

experimental assessment of five normative heuristics, Decision Sciences, 15(3): 389-408.

Prakash, A. Tiwari, M. K. and Shankar, R. (2008). Optimal job sequence determination and

operation machine allocation in flexible manufacturing systems: an approach using

adaptive hierarchical ant colony algorithm, Journal of Intelligent Manufacturing,

(19), pp.161–173.

Pruzan, P.M. and Jackson, J.T.R. (1967). A dynamic programming application in production

line inspection, Techno-metrics, 9(1): 73-81.

Raghavachari, M. and Tayi, G. (1991). Inspection configuration and reprocessing decisions in

serial production systems, International Journal of Production Research, 29(5): 897-911.

Rajab, S.R. (2012). Some applications of continuous variable neighbourhood search

metaheuristic (mathematical modelling), PhD thesis, Brunel University, UK.

Ram, J., Sreenivas, H. and Subramaniam, G. (1996). Parallel simulated annealing algorithms.

Journal of Parallel and Distributed Computing, 37, pp. 207-212.

Rau, H. and Chu, YH. (2005). Inspection allocation planning with two types of workstations

WVD and WAD, International Journal of Advanced Manufacturing Technology, 25(9):

947-953.

Rau, H., Chu, YH. and Cho, KH. (2005). Layer modelling for the inspection allocation

problem in re-entrant production systems, International Journal of Production Research,

43(17): 3633-3655.

Raz, T. (1986). A survey of models for allocating inspection effort in multistage production

system, Journal of Quality Technology, 18(4): 239-247.

Raz, T. and Bricker, D. (1987). Sequencing of imperfect inspection operation subject to

constraints on the quality of accepted and rejected units, International Journal of

Production Research, 25(6): 809-821.

Raz, T. and Kaspi, M. (1991). Location and sequencing of imperfect inspection in serial

multistage production systems, International Journal of Production Research, 29(8):

1645-1659.

298

Rechenberg, I. (1964). Kybernetische Losungsansteuerungeiner experimentellen

Forschungsaufgabe, presented at the Annual Conference of the WGLR at Berlin

inSeptember.

Reeves, C.R., (1993). Modern Heuristic Techniques for Combinatorial Problems, Blackwell

Scientific Publications.

Reeves, C. R. (1998). Landscapes, operators and heuristic search, Annals of Operations

Research, 86(0): 473-490.

Reyes, M. and Coello, C. (2006). Multi-objective particle swarm optimizers: A survey of the

state-of-the-art, International Journal of Computational Intelligence Research, 3(2):287-

308.

Rezazadeh, H., Ghazanfari, M. and Mehrabad, M. (2009). An extended discrete particle

swarm optimization algorithm for the dynamic facility layout problem, Journal of

Zhejiang University SCIENCE A, 10(4): 520-529.

Ridge, E. (2007). Design of experiments for the tuning of optimisation algorithms, PhD

thesis, department of computer science, The University of York.

Ridley, A. (2008). Allocation of inspection effort for Rolls Royce Trent 700 turbine blade

manufacture, MSc. Dissertation thesis, Durham University, UK.

Ritchie, G. (2003). Static multi-processor scheduling with ant colony optimisation & local

search, Master dissertation, School of Informatics, University of Edinburgh.

Rodchua, S. (2006). Factors, measures, and problems of quality costs program

implementation in the manufacturing environment, Journal of Industrial Technology,

22(4): 1-6.

Rossi, A. and Dini, G. (2007). Flexible job-shop scheduling with routing flexibility and

separable setup times using ant colony optimisation method, Robotics and Computer-

Integrated Manufacturing, 23(5): 503-516.

Sadegheih, A. (2007). Sequence optimisation and design of allocation using GA and SA,

Applied Mathematics and Computation, 186(2): 1723-1730.

Saxena, S., Chang, C.M., Chow, H.B. and Lee, J. (1990). Evaluation of heuristics for

inspection station allocation in serial production systems, Proceedings of the 1990 Winter

Simulation Conference, pp. 919-922.

299

Schwefel, H. (1965). Kybernetische Evolution als Strategie der experimentellen Forschung in

der Str¨omungstechnik, PhD thesis, Technical University of Berlin, Hermann F¨ottinger–

Institute for Hydrodynamics.

Selvi, V. and Umarani, R. (2010). Comparative analysis of ant colony and particle swarm

optimization techniques, International Journal of Computer Applications, 5(4), pp: 1-6

Siemiatkowski, M. and Przybylski, W. (2006). Simulation studies of process flow with in-

line part inspection in machining cells, Journal of Materials Processing Technology,

171(1): 27–34.

Silva, C. A., Runkler, T. A., Sousa, J. M. and Palm, R. (2002). Ant colonies as logistic

process optimizers, In: Dorigo M, Di Caro G, Samples M, editors. Ant algorithms

Proceedings of ANTS 2002, Third international workshop. Lecture Notes in Computer

Science, 2463. Berlin: Springer, pp. 76–87.

Silver, E. (2004). An overview of heuristic solution methods, Journal of the Operational

Research Society 55, pp. 936–956.

Shan, Y. McKay, R. I. Essam, D. and Abbass, H. A. (2006). A survey of probabilistic model

building genetic programming. In M. Pelikan, K. Sastry, and E. Cantu-Paz, editors,

Scalable Optimization via Probabilistic Modeling: From Algorithms to Applications,

Springer, 2006.

Shetwan, A., Vitanov, V. and Tjahjono, B. (2011). Allocation of quality control stations in

multistage manufacturing systems, Computers and Industrial Engineering, 60(4), 473-

484.

Shi, Y. and Eberhart, R. (1998). Parameter selection in particle swarm optimization, in Proc.

7th Int. Conf. Evol. Program. (EP), pp. 591–600.

Shi, Y. and Eberhart, R. (1999). Empirical study of particle swarm optimization, in Proc.

IEEE Congr. Evol. Comput., 3, pp.1945–1950

Shiau, YR. (2002). Inspection resource assignment in a multistage manufacturing system

with an inspection error model, International Journal of Production Research, 40(8):

1787-1806.

Shiau, YR. (2003a). Inspection allocation planning for a multiple quality characteristics

advanced manufacturing technology, International Journal of Advanced Manufacturing

Technology, 21(7): 494-500.

300

Shiau, YR. (2003b). Quick decision-making support for inspection allocation planning with

rapidly changing customer requirements, International Journal of Advanced

Manufacturing Technology, 22(9-10): 633-640.

Shiau, YR., Lin, MH. and Chung, WC. (2007). Concurrent process inspection planning for a

customized manufacturing system based on genetic algorithm, International Journal

Advanced manufacturing Technology, 33(7-8): 746-755.

Shin, W.S., Hart, S.M. and Lee, H.F. (1995). Strategic allocation of inspection stations for a

flow assembly line: a hybrid procedure, IIE Transactions, 27, pp. 707–715.

Shuang, B., Chenand, J. and Li, Z. (2011). Study on hybrid PS-ACO algorithm, Applied

Intelligence, 34(1): 64-73.

Sim, E., Koh, S.P., Chen, C.P., Tiong, S.K. and Fong, A. (2011). Optimisation of dispensing

parameter fine tuning program using genetic algorithm, International Conference on

Computer Engineering and Applications IPCSIT vol.,2 IACSIT Press, Singapore, 163-168.

Smit, S. and Eiben, A. (2011). Parameter tuning of evolutionary algorithms: generalist vs.

specialist, Applications of Evolutionary Computation, pp. 542–551.

Socha, K., Knowles, J. D. and Sampels, M. (2002). A max-min ant system for the university

course timetabling problem, Proceedings of the 3rd International Workshop on Ant

Algorithms, ANTS 2002, Lecture Notes in Computer Science, 2463, Springer, pp.1–13.

Socha, K., Sampels, M. and Manfrin, M. (2003). Ant Algorithms for the University Course

Timetabling Problem with Regard to the State-of-the-Art. Proceedings of EvoCOP 2003–

3rd European Workshop on Evolutionary Computation in Combinatorial Optimisation,

volume 2611 of LNCS, pp. 334-345, Springer-Verlag.

Solimanpur, M., Vrat, P. and Shankar, R. (2004). Ant colony optimisation algorithm to the

inter-cell layout problem in cellular manufacturing, European Journal of Operational

Research, 157, pp. 592–606.

Solimanpur, M., Vrat, P. and Shankar, R. (2005). An ant algorithm for the single row layout

problem in Flexible manufacturing systems, Computers & Operations Research, 32, pp.

583–598.

Spiliopoulos, K. and Sofianopoulou, S. (2008). An efficient ant colony optimisation system

for the manufacturing cells formation problem, International Journal Advanced

manufacturing Technology, 36, pp.589–597.

301

Stadler, F.P. (1996). Landscapes and their correlation functions, Journal of Mathematical

Chemistry, 20, pp.1–45.

Storn, R. and Price, K. (1995). Differential Evolution- a Simple and Efficient Adaptive

Scheme for Global Optimization over Continuous Spaces, Technical Report TR-95-012,

International Computer Science Institute, Berkley.

Stützle, T. (1997). Max-min ant system for quadratic assignment problems, Technical Report,

AIDA.97.4, FG Intellektik, TU Darmstadt, Germany.

Stützle, T. (1998a). An ant approach to the flow shop problem. In Proceedings of EUFIT’98,

pp. 1560.1564, Aachen.

Stützle, G. T. (1998b). Local search algorithms for combinatorial problems: analysis,

improvements, and new applications, 220 of DISKI. Sankt Augestin, Germany, Infix.

Stützle, T. (2003). Iterated local search variable neighbourhood search, MN summer school,

Tenerife.

Stützle, T. and Dorigo, M. (1999). ACO algorithms for the travelling salesman problem. In

Miettinen, K., Makela, M., Neittaanmaki, P., and Periaux, J., editors, Evolutionary

Algorithms in Engineering and Computer Science, pp. 163.183, Wiley.

Stützle, T. and Hoos, H. (1997). The max-min ant system and local search for the travelling

salesman problem, Proceedings of ICEC’97, IEEE fourth edn, International Conference on

Evolutionary Computation, IEEE Press, pp. 308–313.

Stützle, T. and Hoos, H. (1998). Improvements on the ant system: Introducing the max-min

ant system, In Smith, G., Steele, N., and Albrecht, R., editors, Proceedings of Artificial

Neural Nets and Genetic Algorithms 1997, pp. 245.249.Springer Verlag Wien.

Stützle, T. and Hoos, H. (2000). Max-min ant system, Future Generation Computer Systems,

16, pp. 889–914.

Stützle, T., Lopez, M. and Paola, P. (2010). Parameter adaptation in ant colony optimisation,

Technical Report, Series, No.TR/IRIDIA/2010-002.

Suman, B. and Kumar, P. (2006). A survey of simulated annealing as a tool for single and

multi-objective optimization, Journal of the Operational Research Society, 57, 1143–

1160.

Taillard, E. D. and Gambardella, L. (1997). An ant approach for structured quadratic

assignment problems, Technical report, IDSIA-22-97, IDSIA.

302

Taneja, M. and Viswanadham, N. (1994). Inspection allocation in manufacturing systems a

genetic algorithm approach, Proceedings of the IEEE California International Conference

on Robotics and Automation, (San Diego, California, 8-13 May),pp. 3537-3542.

Tayi, G.K. and Ballou, D.P. (1988). An integrated production inventory model with

reprocessing and inspection, International Journal of production Research, 26(8):

1299-1315.

Teytaud, F. (2011). Introduction of Statistics in Optimization, PhD thesis, University Paris-

Sud 11.

Thepsonthi, T. and Özel, T. (2012). Multi-objective process optimization for micro-end

milling of Ti-6Al-4V titanium alloy, International Journal of Advanced Manufacturing

Technology, 63, pp. 903–914.

Thiesen, A. (1998). Design and evaluation of tabu search algorithms for multiprocessor

scheduling, Journal of Heuristics, 4, pp.141–160.

Ursem, R. (2003). Models for evolutionary algorithms and their applications in system

identification and control optimization, PhD thesis, department of computer science,

University of Aarhus, Denmark.

Valenzuela, F.J., Smith, S.J. and Evans, S.J. (2004). Allocating solder-paste printing

inspection in high volume electronics manufacturing, IIE Transactions, 36, pp. 1171–181.

Vanitha, M. and Thanushkodi, K. (2011). Solution to economic dispatch problem by

differential evolution algorithm considering linear equality and inequality constrains,

International Journal of Research and Reviews in Electrical and Computer Engineering,

1(1):21-26.

Van Volsem, S., Dullaert, W. and Van landeghem, H. (2007). An evolutionary algorithm and

discrete event simulation for optimising inspection strategies for multistage processes,

European Journal of Operational Research, 179(3): 621-633.

Van Volsem, S. and Neirynck, S. (2009). Adapting an evolutionary algorithm with embedded

simulation and pseudo-random number generation for the cell broadband engine,

European Simulation and Modelling Conference, October,26-28, Leiceter,UK.

Visa, S., Inoue, A. and Ralescu, A. (2011). Plenary lecture, Proceedings of the twenty second

Midwest artificial intelligence and cognitive science conference, April 16–17, 2011

University of Cincinnati, Ohio.

303

Viswanadham, N., Sharma, M.S. and Taneja, M. (1996). Inspection allocation in

manufacturing systems using stochastic search techniques, IEEE Transactions on systems,

Man and cybernetics, Part A: Systems and human, 26(2): 222–230.

Wang, J. (2007). Petri Nets for dynamic event-driven system modelling, handbook for

dynamic system modelling, Ed: Paul fishwick, CRC Press.

Weinberger, E. (1990). Correlated and uncorrelated fitness landscapes and how to tell the

difference, Biological Cybernetics, 63(5):325–336.

Weise, T. (2009). Global optimisation algorithms theory and application, second edn,

Newest Version: http:/www.it-weise.de/.

White, L.S. (1965). The analysis of a simple class of multistage inspection plans,

Management Science, 12, (9): 685-693.

White, L.S. (1969). Shortest route models for the allocation of inspection effort on production

line, Management Science, 15(5): 249-259.

Wierstra, D., Schaul, T., Peters, J. and Schmidhuber, J. (2008). Natural evolution strategies,

accepted at IEEE World Congress on Computational Intelligence (WCCI 2008).

Wild, R. (1989). Production and operations management, fourth edn, 1989.

Wong, Y. K. and See, C. P. (2009). A new minimum pheromone threshold strategy (MPTS)

for max–min ant system, Applied Soft Computing, 9, pp. 882–888.

Wright, S. (1932). The roles of mutation, inbreeding, crossbreeding and selection in

evolution, In: D. Jones (ed.) International Proceedings of the Sixth International Congress

on Genetics, 1, pp. 356–366.

Wu, K., Ting, J. and Gonzalez, L. (2011). An ant colony optimisation algorithm for quadratic

assignment problem, Proceedings of 12th Asia Pacific Industria1Engineering: and

Mana2ement Systems Conference. Beijing. China. October 14-16, pp. 138-144.

Yamada, T. (2003). Studies on Metaheuristics for Job-hop and Flow-shop Scheduling

Problems, PhD thesis, Kyoto University, Kyoto, Japan.

Yin, Y., Yu, S., Wang, P. and Wang, T. (2006). A hybrid particle swarm optimization

algorithm for optimal task assignment in distributed systems, Computer Standards &

Interfaces, 28, 441–450.

304

Yuan, B. and Gallagher. M. (2005). A hybrid approach to parameter tuning in genetic

algorithms. In Proceedings of the IEEE Congress in Evolutionary Computation (CEC‟05),

volume 2, pages1096–1103. IEEE Press, Piscataway, NJ, 2005.

Yum, J.B. and McDowell, D.E. (1987). Optimal inspection policies in serial production

system including scrap rework and repair: An MILP approach, International Journal of

Production Research, 25(10): 1451-1464.

Zhang, Q., Sun, J., Tsang, E. and Ford, J. (2003a). Hybrid estimation of distribution

algorithm for global optimisation, Engineering Computations, 21(1), pp 91-107.

Zhang, Q., Sun, J., Tsang E. and Ford, J. (2003b). Combination of guided local search and

estimation of distribution algorithm for solving quadratic assignment problem, In

Proceedings of the Bird of a Feather Workshops, Genetic and Evolutionary Computation

Conference, pages 42-48.

Zhang, Q., Sun, J. and Tsang, E. (2004). Evolutionary algorithm with guided mutation for the

maximum clique problem, IEEE Transactions on Evolutionary Computation, 9 (2), 192-

200.

Zhi-He, W. (2008). Settings of algorithm parameters in ant colony algorithm, International

Conference on Computer Science and Information Technology, pp. 724-728.

Publications

1. Shetwan, A., Vitanov, V. and Tjahjono, B. (2011). Allocation of quality control stations

in multistage manufacturing systems, Computers and Industrial Engineering, 60(4),

473-484.

2. Shetwan, A., and Vitanov, V. (2009). Optimum allocation of inspection effort in

multistage manufacturing process. European Simulation and Modelling

Conference,October,26-28, Leiceter,United Kingdom.

3. Shetwan, A., and Vitanov,V. (2010). Allocation of inspection effort in multistage

manufacturing process using ant colony optimisation. 21st International Computer-

Aided Production Engineering Conference, April, 13-14, University of Edinburgh, UK.

4. Shetwan, A., and Vitanov, V. (2010). Allocation of inspection effort in multistage

manufacturing process using ant colony with local search. 8
th

 International Conference

in Manufacturing Research, 14-16, September, Durham University, UK.

305

5. Shetwan, A., and Vitanov, V. (2011). Location of inspection stations in multistage

manufacturing processes, Fubutec2011, Future Business Technology, 18-20, April,

British Institute of Technology and Ecommerce, London, UK.

