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Abstract 
 

In multistage manufacturing processes it is common to locate inspection stations after some or 

all of the processing workstations. The purpose of the inspection is to reduce the total 

manufacturing cost, resulted from unidentified defective items being processed unnecessarily 

through subsequent manufacturing operations. This total cost is the sum of the costs of 

production, inspection and failures (during production and after shipment). Introducing 

inspection stations into a serial multistage manufacturing process, although constituting an 

additional cost, is expected to be a profitable course of action. Specifically, at some positions 

the associated inspection costs will be recovered from the benefits realised through the 

detection of defective items, before wasting additional cost by continuing to process them.  

In this research, a novel general cost modelling for allocating a limited number of inspection 

stations in serial multistage manufacturing processes is formulated. In allocation of inspection 

station (AOIS) problem, as the number of workstations increases, the number of inspection 

station allocation possibilities increases exponentially. To identify the appropriate approach 

for the AOIS problem, different optimisation methods are investigated. The MAX-MIN Ant 

System (MMAS) algorithm is proposed as a novel approach to explore AOIS in serial 

multistage manufacturing processes. MMAS is an ant colony optimisation algorithm that was 

designed originally to begin an explorative search phase and, subsequently, to make a slow 

transition to the intensive exploitation of the best solutions found during the search, by 

allowing only one ant to update the pheromone trails. Two novel heuristics information for 
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the MMAS algorithm are created. The heuristic information for the MMAS algorithm is 

exploited as a novel means to guide ants to build reasonably good solutions from the very 

beginning of the search. To improve the performance of the MMAS algorithm, six local 

search methods which are well-known and suitable for the AOIS problem are used. Selecting 

relevant parameter values for the MMAS algorithm can have a great impact on the 

algorithm‟s performance. As a result, a method for tuning the most influential parameter 

values for the MMAS algorithm is developed. 

The contribution of this research is, for the first time, a methodology using MMAS to solve 

the AOIS problem in serial multistage manufacturing processes has been developed. The 

methodology takes into account the constraints on inspection resources, in terms of a limited 

number of inspection stations. As a result, the total manufacturing cost of a product can be 

reduced, while maintaining the quality of the product. Four numerical experiments are 

conducted to assess the MMAS algorithm for the AOIS problem. The performance of the 

MMAS algorithm is compared with a number of other methods this includes the complete 

enumeration method (CEM), rule of thumb, a pure random search algorithm, particle swarm 

optimisation, simulated annealing and genetic algorithm. The experimental results show that 

the effectiveness of the MMAS algorithm lies in its considerably shorter execution time and 

robustness. Further, in certain conditions results obtained by the MMAS algorithm are 

identical to the CEM. In addition, the results show that applying local search to the MMAS 

algorithm has significantly improved the performance of the algorithm. Also the results 

demonstrate that it is essential to use heuristic information with the MMAS algorithm for the 

AOIS problem, in order to obtain a high quality solution. It was found that the main 

parameters of MMAS include the pheromone trail intensity ( ), heuristic information ( ) 

and evaporation of pheromone ( ) are less sensitive within the specified range as the number 

of workstations is significantly increased. 
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F Individual fitnesses, F= {f1, f2,..., fn}.  

F  Standard deviation of F. 

D  Standard deviation of D. 

f  Means of F. 

d  Means of D. 
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Chapter 1 

Introduction 

___________________________________________________________________________ 

The manufacturing cost of a product is one of the major factors under consideration for 

manufacturing companies. Increasing product cost leads to negative effect on the overall 

competitiveness for these companies. The usual requirement is that products are 

manufactured to an acceptable quality level and at minimum cost. The total cost of a product 

is the sum of the costs of production, inspection, internal failures and external failures. In 

multistage manufacturing processes, inspection stations should then be located after some or 

all of the processing workstations, to guarantee that a specific quality level is being 

maintained. The purpose of the inspection stations is to screen out the defective items before 

adding extra costs by continuing to process them. Consequently, the total cost of the product 

can then be minimised.  

This research focused specifically on avoidable costs resulting from unidentified defective 

items being processed unnecessarily during manufacturing operations. Also, studying the 

strategies employed to allocate limited inspection stations into manufacturing processes to 

reduce the total manufacturing cost. These strategies usually propose numerical algorithms 

for the allocation of an economically appropriate number of inspection stations. This can be 

done by finding a balance among different cost components, related to inspection, scrap, 

repair and replacement as a result of quality failure, and/or the warranty penalty in the case 

where a non-conforming product has been shipped to customers.  

The objective of this research is to propose a methodology, using MAX-MIN Ant System 

(MMAS) algorithm to allocate number of inspection stations in a serial multistage 

manufacturing process. As a result, the total manufacturing cost of a product can be reduced 



 

2 
 

without affecting the quality of the product. It should be noted that the methodology may not 

be used as a monitoring tool to detect changes in production performance.  

1.1     Background  

The procedure of making decisions about whether or not to inspect a final or semi-finished 

product at every processing workstation in a serial multistage manufacturing process, 

consisting of n processing workstations is shown schematically in Figure 1.1. The product 

may transfer to the next stage or to the final consumer if there is no need to perform 

inspection, otherwise a product will be inspected, and the inspected products may conform or 

not to the predefined quality requirement. In the case of conforming items, they will be sent 

to the next stage. There are several possibilities in the case of non-conforming items: (i) they 

may be reworked and sent to the next stage; (ii) they may become a downgraded product; or 

(iii) they may be scrapped.  

Placing inspection points in a multistage manufacturing process, although constituting an 

additional cost, at some level of inspection points is expected to be a profitable course of 

action. The associated costs will be recovered from the benefits realised through the detection 

of defective items. In other words, it is assumed that if inspection is performed after every 

processing workstation, then the scrap, replacement, downgrading, and reworking costs 

(internal failure costs) will be minimised, as defective items will be identified before adding 

extra costs to already defective material. At the same time, non-conforming items can be 

screened out before reaching the customer, which may result in additional costs (external 

failure costs). On the other hand, these savings have to be considered against the inspection 

costs, which include equipment, staff, time, shop floor space and create new queues in the 

system that might add extra work in-progress (WIP) and flow. As a result, if these in-process 

inspections are performed unnecessarily or too often greater costs will incur.  
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In a serial multistage manufacturing process, as the problem size increases, so the number of 

inspection stations allocation possibilities increases exponentially in search space size. For 

example, in a serial multistage manufacturing processes consisting of n=24 processing 

workstations, there are 2
24

= 16,777,216 possible combinations for allocating inspection 

points, and the complete enumeration method becomes impractical. This rapid growth in 

problem search space size is illustrated in Figure 1.2. It is possible that not all locations of 

inspection stations are economically equivalent; more likely, given differentials in cost 

structures and process characteristics, some combinations of inspection places may prove to 

be economically preferable to others. 

Figure 1.1: Inspection allocation problem in multistage manufacturing processes 
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Figure 1.2: Growth of allocation of inspection stations problem search space. The 

horizontal axis is the number of workstations in an allocation problem. The vertical axis 

is the number of feasible solutions that have to be considered. The figure shows an 

exponential growth in search space size against problem size. 

 

The problem therefore is where to locate limited number of inspection stations throughout the 

process to strike a balance between minimising the total cost, by capturing defective items 

and maintaining the required quality of the product.  

1.2   Scope and objective of the research 

The overall objective of this research is to develop a methodology for the allocation of 

inspection stations (AOIS) problem in serial multistage manufacturing processes. The 

methodology takes into account the constraints on inspection resources, in terms of a limited 

number of inspection stations. As a result the total manufacturing cost of a product can be 

reduced while maintaining the quality of the product. Given the scope of the research, the 
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 To develop general cost models for the AOIS problem in serial multistage manufacturing 

processes. The developed models will be studied with the assumption of a limited budget, 

and that allocating limited inspection stations reduces the total manufacturing cost. 

 To characterise the features of the AOIS problem. To identify the best possible approach 

method, different optimisation methods were investigated in chapter 4, leading to the ant 

colony optimisation technique. In chapter 5, different ant colony versions were studied, 

leading to the MMAS algorithm being proposed to tackle the AOIS problem. 

 To develop a MMAS algorithm to solve the AOIS problem. Heuristic information for the 

MMAS is created. To improve the performance of the MMAS algorithm, local search 

methods for the MMAS algorithm are developed. Also, the most influential parameter 

values for the MMAS algorithm for the AOIS problem are well tuned. 

 In order to evaluate the developed MMAS algorithm a genetic algorithm, simulated 

annealing method, particle swarm method, a pure random search algorithm and rules of 

thumb, are developed. A complete enumeration method has been carefully designed and 

used as benchmark to evaluate the developed algorithms. 

 To develop a case study of serial multistage manufacturing processes to apply the MMAS 

algorithm. Experiments conducted to examine the results obtained from the MMAS 

algorithm. The results obtained will be discussed and analysed.  

 To select two case studies for serial multistage manufacturing processes from the literature 

review, and apply the MMAS algorithm to these selected case studies. Experiments 

conducted to test the results obtained from the MMAS algorithm in comparison with the 

results of the selected case studies. The results obtained will be discussed and analysed.  

 To select a real world case study for serial multistage manufacturing processes to apply 

the MMAS algorithm. Experiments conducted to examine the results obtained from the 

MMAS algorithm. The results obtained will be discussed and analysed.  
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1.3    Thesis structure  

The thesis is organised as follows: Chapter 2 presents a literature survey and classifies the 

features of the surveyed models in terms of techniques applied, constraints used, type of 

multistage manufacturing system and type of costs considered by these models. In Chapter 3, 

a serial multistage manufacturing process is formulated. The model is developed under 

assumption that there are limited inspection stations available. The relation between quality 

and cost is described as well in this Chapter. Comparing computational time against number 

of workstations when using CEM is discussed. Computational complexity of combinatorial 

optimisation problems is presented. Chapter 4 describes and investigates different 

optimisation methods to identify the appropriate approach method for the AOIS problem. 

Chapter 5 presents ant colony optimisation in order to provide the necessary background on 

how ant colony optimisation algorithms are put together. The background of the field of ant 

algorithms has been described. Fitness landscape for AOIS problem is discussed. The fitness 

distance correlation indicates that the max-min ant system algorithm is well suited to the 

AOIS problem. In Chapter 6, a new approach of max-min ant system is developed to solve 

the AOIS problem. The max-min ant system algorithm will be used in combination with local 

search. Chapter 7 describes different case studies from the literature review. The appropriate 

case studies will be selected to test the proposed max-min ant system algorithm. Chapter 8 

will introduce tuning the most influential parameters that one has to specify to instantiate the 

MMAS algorithm and the other relevant algorithms. In Chapter 9, behaviour of MMAS 

algorithm and sensitivity of control parameters for the AOIS problem are studied. In Chapter 

10, experimental results and discussions are presented. In Chapter 11, the conclusions are 

drawn and possible directions to extend the research are discussed. 
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Chapter 2 

Literature review 

________________________________________________________________________ 

The AOIS in multistage manufacturing systems has received considerable attention from 

various researchers over the past decades. In this chapter, a relevant literature review in the 

area of AOIS in multistage manufacturing processes is conducted and analysed. This review 

covers the existing approaches and provides a classification of the models proposed in terms 

of system configuration, constraints, inspection errors, internal and external failure costs, 

inspection costs, manufacturing costs and the solution techniques applied. These 

characteristics will be described and summarised in tables in the same sequence as they 

appear here. The aim is to identify promising directions of research and to bridge a gap in the 

literature review. 

2.1   Modelling characteristics 

This literature review studies and investigates the different models proposed and solution 

techniques applied to solve the AOIS problem. This survey covered 51 published papers in 

the area of AOIS problems. A summary of each paper is represented by the first author‟s 

name, followed by a two-digit publication year. The order of articles is organised in 

chronological order by the year the paper was published. The summary has been produced 

which includes the main characteristics considered and solution techniques used in the 

current research publications. The solution methods are divided into exact and metaheuristic 

methods. In the following subsections, the main characteristics will be described first, 

followed by a short description for solution techniques which were used in the literature 

review. 
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2.1.1 System configuration 

There are three types of production configuration, such as: (i) serial systems; (ii) assembly 

systems; and (iii) non-serial systems. In a serial production system, the raw materials pass 

through a sequence of processing workstations to produce the final product. Each stage of the 

manufacturing process receives a batch or flow of similar processing items as input, which 

may contain some mix of conforming and non-conforming units. While in an assembly 

system, at a certain stage, the product may be assembled with products from other processing 

lines. A system that is neither serial nor assembly falls into the category of a non-serial 

system (Mandroli et al., 2006).   

2.1.2 Constraints 

Constraints in the AOIS problem are related mostly to the characteristics of the 

manufacturing system, such as the structure of the system, the type of defect, and the type of 

inspection. However, additional constraints may be also imposed when solving the AOIS 

problem. These constraints may include a limited number of inspection stations, average 

outgoing quality limit (AOQL) and the rate of inspection (Raz, 1986).  

2.1.3  Inspection errors 

Two types of error may be generated by the inspection procedure: type-I error and type-II 

error. A type-I error refers to rejection of good items, and is also known as „producer risk‟.    

A type-II error refers to the acceptance of non-conformance item and forwards it for further 

processing, and is also known as „consumer risk‟. A type-II error is usually has great impact 

on the manufacturing process than type-I (Montgomery, 1997). This is because when non-

conforming items reach to the customer unnecessarily greater costs will incur.  
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2.1.4 Internal and external failure cost 

Internal failure costs incur inside the company, such as the cost of reworking, scrapping and 

downgrading. External failure costs incur after the products are shipped to customers for 

example, repairing, quality loss and replacement. Usually external failure cost items are 

represented as aggregated (penalty cost), and is usually associated with the final production 

of undetected non-conforming items that reach the customer (Montgomery, 1997). 

2.1.5 Inspection cost 

The inspection cost is a sum of the fixed cost and the variable cost. The fixed cost is a sum of 

the costs connected with test-equipment, installation and set-up. The variable cost is the total 

number of conforming parts and the number of defective parts produced at an inspection 

station, multiplied by the unit inspection cost (Mandroli et al., 2006).  

2.1.6 Manufacturing cost 

The manufacturing cost is the sum of the costs of all resources consumed in the process of 

making a product. The manufacturing cost is classified into three categories: direct material 

cost; direct labour cost; and overhead cost. Direct material cost results from adding a value to 

raw materials by applying a chain of operations to a product. Direct labour cost is the cost of 

workers that can be easily identified with the unit of production. Overhead cost includes all 

charges that provide support to manufacturing (Ostwald and McLaren, 2004). 

In summary, the main characteristics of the AOIS problem were described. These 

characteristics were used by the developed models in the relevant literature. As will be shown 

in next subsections not all the surveyed papers were addressing all these characteristics. This 

is to allow a tractable formulation model and solution. 
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2.2 Exact methods 

The concept of exact algorithms is based simply on enumerating the full solution space. 

Exact methods are guaranteed to find an optimal solution for discrete problems in bounded 

time such as is the case for many combinatorial problems (Ridge, 2007). However, in the 

worst case, as the problem becomes more complex, the time needed to solve it may grow 

exponentially. The following subsections describe exact methods which were used by the 

literature review, followed by a summary of each paper.  

2.2.1 Integer programming (IP) 

An integer program is a linear program in which all variables must be integers. The aim of 

integer programming is to find optimal decisions for problems where the decisions may only 

take a certain number of finite values (Hillier and Lieberman, 2010).   

Park et al. (1988) used an integer programming technique to determine the location of 

inspection points in a flexible manufacturing cell. The objective was to minimise the 

expected total manufacturing costs. A numerical example was solved using the integer 

programming technique, which showed that inspection points depend on the reliability of the 

processing machine and the processing time of the following machine.  Table 2.1 presents a 

summary of the classifications and characteristics of the studied model using IP method for 

the previously surveyed paper. It should be noted that (Yes) means that the characteristic is 

considered by the paper and (-) means that this characteristic is not considered.   

Table 2.1: Classification the main characteristics for the studied model used IP method 

 

Article 

Characteristics 

System 

configu-

reation 

Constraints 

 

Number 

of WS 
IE 

Cost components 
Solution  

technique IFC EFC IC MC 

Park (88) Serial Limited 

inspection 

stations 

4 Free of 

error 

Yes – Yes Yes IP 

WS: workstation, IE: inspection error, IFC: internal failure cost, EFC: external failure cost, IC: inspection cost 

and MC: manufacturing cost. 
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Summary 

For a real manufacturing system, the computations required by IP will rise significantly as the 

number of workstations increases, and its capability in terms of solving complex problems is 

limited (Liang and Smith, 2004).  

2.2.2    Linear programming (LP) 

Linear programming is a technique for the optimisation models in which the objective and 

constraints functions are strictly linear (Hamdy, 2003). Yum and McDowell (1987) 

developed a model using LP for solving inspection allocation problems for serial systems. 

They noted that none of the previous models in their literature review included a combination 

of reworking, replacement, repair and scrapping. They developed a model able to include any 

of these combinations. The objective of their work was to minimise the expected total cost. It 

was found that the optimal inspection policy is dependent on whether a production or a 

material requirement is used. Table 2.2 presents a summary of the classifications and 

characteristics of the model using LP for the previously surveyed paper. 

Table 2.2: Classification the main characteristics for the studied model used LP method 

 

Article 

Characteristics 

System 

configu-

reation 

Constraints 

 

Number 

of WS 
IE 

Cost components 
Solution  

technique IFC EFC IC MC 

Yum (87) Serial – 10 I and II Yes – Yes Yes LP 

I and II: false rejection of good units and false acceptance of defectives, respectively. 

Summary 

Mandroli et al. (2006) introduced a survey on the AOIS problem, and pointed out that the 

processing time required by LP will rise significantly as the number of workstations 

increases. 

2.2.3    Non-linear programming (NLP)    

Non-linear programming is the process of solving a system of equalities and inequalities, 

collectively termed „constraints‟, over a set of unknown real variables. The objective function 
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is maximised or minimised, where some of the constraints or the objective function are non-

linear (Hillier and Lieberman, 2010).   

Numerous models in the existing literature review have been formulated the inspection 

allocation problem using the NLP technique. Ballou and Pazer (1982) developed a computer 

program to perform a „what-if‟ simulation analysis of the serial systems with inspection 

errors. In a series of experiments, the authors found that inspection error rates have a major 

impact on cost. Type I errors (rejection of conforming units) were found to have a greater 

impact than type II errors (acceptance of non-conforming units). This contradicts the 

description in section 2.1.3. They interpreted that many real world systems continue to put 

pressure on the inspector to avoid type II errors which may be detected further down the line 

while failing to properly audit type I errors which may exist among the items discarded at the 

inspection station.  

The original model of Ballou and Pazer (1982) was extended by the same authors in (1985), 

to analyse the relative merits of enhanced inspection and process improvement. The 

framework for their work assumes a multistage serial production system, with the possibility 

of end point and intermediate inspection. The inspection configuration chosen is one which 

minimises cost per good unit delivered to the customer and, accordingly, incorporates various 

cost trade-offs. 

Tayi and Ballou (1988) noted that the traditional inspection procedures which incur costs are 

only used to identify and remove defective units. They proposed a model that considered both 

inspection and reprocessing activities. However, they assumed that the inspection 

configuration is given and fixed, and obtained a simple formula for determining the optimal 

initial lot size and the reprocessing batch size, which minimised the total system costs.  



 

13 
 

Barad (1990) described a break-even approach for performing inspection in a multistage 

production process. This paper was assumed that when inspection does take place, 100% of 

the processed product at that stage is inspected. One of the variables used to decide whether 

to inspect is the quality level at some points in the manufacturing process. Barad suggested 

allocating most of the inspecting resources to stages with a relatively high proportion of non-

conforming product.  

Jewkes (1995) noted that previous models of optimal inspection allocation in their review did 

not consider the case when a repair was carried out on-line. This paper was modelled 

inspection policies for a single stage manufacturing system as queues with two phases of 

service (processing and inspection), in which items can be inspected or repaired as necessary. 

Several examples were given to illustrate the process of finding the optimal effort. 

Narahari and Khan (1996) proposed an approximate analytical technique based on mean 

value analysis for a non-serial manufacturing system. The aim was to predict the mean cycle 

time and throughput rate of such models under different inspection strategies. The proposed 

method has been validated using a simulation technique.  

Lee and Unnikrishnan (1998) combined the inspection allocation problem with multiple 

inspection stations, in a scenario controlled by the inspection time constraint. Owing to the 

complexity of the problem, they developed three heuristic methods. The optimal solution was 

determined by the inspection plan that minimises the total cost per conforming item which 

exits the system. They found that the results of the heuristic methods were close to the 

optimised solution.  

Shiau (2002) noted that the inspection error still needs to be considered for solving the 

allocation problem in a multistage manufacturing system. This paper has introduced an 

inspection error model and as a result of the complexity of the problem, two heuristic 
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methods were developed. The results show that solutions obtained by the heuristic methods 

were close to the optimal solution. 

Kogan and Raz (2002) applied optimal control theory to determine the best AOIS in a serial 

system, to minimise the sum of the inspection cost. They assumed that the defect detection 

rate and the cost are linearly proportional with inspection. They obtained the optimal 

sequencing of inspection activities at a point in time, as well as optimal timing of switching 

between inspection points. 

Emmons and Rabinowitz (2002) dealt with an inspection system for detecting malfunctioning 

operations in a multistage production system. The authors proposed a heuristic procedure for 

inspection assignment and scheduling that enables the prediction of the system performance 

under any inspection capacity. The main contribution of their paper was a theoretical 

foundation for the further development of models and solution procedures for more realistic 

problems. They demonstrated that the solutions obtained by the heuristic method are close to 

the optimal solution.  

Shiau (2003a) noted that the inspection error needs to be considered even when applying the 

same inspection station to monitor various workstations that have different manufacturing 

capabilities. Based on the limited inspection resource constraint, Shiau developed a unit cost 

model and introduced two heuristic solution methods. It was found that the heuristic methods 

produce solutions near to the optimal solution, with less processing time comparing with 

CEM. Shiau (2003b) extended his previous model to include external costs, and proposed a 

heuristic method to solve the allocation problem. The results obtained were very similar to 

the original work. 

Hadjinicola and Soteriou (2003) developed a mathematical model for a multistage production 

system. The authors noted that previous literature did not adequately examine the impact of 
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changes in the yield of each production stage on the total cost, from defects observed at each 

production stage. They developed a generalised model concerned with allocating a limited 

inspection budget to the different production stages. The aim was to improve the yield of the 

production stages and to minimise the cost. They concluded that the optimal budget 

allocation, leading to reduce in the annual expected cost, resulted from defects observed at all 

production stages. 

Work on allocating inspection stations has been done by Rau and Chu (2005), which 

considered non-serial production systems. Owing to their complexity, a heuristic solution 

method was developed and proved to have much less calculation time, even when the number 

of workstations increases. The results of work Rau and Chu (2005) were used by Rau et al. 

(2005) to develop a mathematical model to find an optimal solution for allocating inspection 

stations in non-serial production systems. They used similar assumptions and considerations 

for the treatment of detected non-conforming items, as in the original model. To approach the 

complexity of the problem, a heuristic method was developed and the results obtained were 

very similar to the previous work.  

Summary 

The non-linear programming technique is the most popular method in the literature review, 

and was used by 15 papers, or 29% of the total. This is because of the nature of the inspection 

allocation problem in which some of the decision variables can only have integer values; for 

example, whether or not to inspect at the workstation. Moeini and Afshar (2009) explained 

that, for an actual manufacturing system, the computations required by NLP will escalate 

considerably as the number of workstations increases. However, its capability is limited in 

terms of solving a large-scale problem. In addition, they described that, within the past 

decade, many researchers have shifted their focus on optimisation problems from traditional 

optimisation techniques, based on linear and non-linear programming, to the implementation 
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of metaheuristic methods. Table 2.3 presents a summary of the classifications and 

characteristics of the studied models using NLP for the previously surveyed papers.  

Table 2.3: Classification the main characteristics for the studied models used NLP method 

 

Article 

Characteristics 

System 

configu-

reation 

Constraints 

 

Number 

of WS 
IE 

Cost components 
Solution  

technique IFC EFC IC MC 

Ballou (82) Serial – 3 I and II Yes Yes Yes – NLP 

Ballou (85) Serial _ 3 I and II – Yes Yes Yes NLP 

Tayi (88) Serial – 5 Free of 

error 

– Yes Yes Yes NLP 

Barad (90) Serial – 8 Free of 

error 

Yes – Yes Yes NLP 

Jewkes (95) Serial – _ Free of 

error 

Yes Yes Yes – NLP 

Narahari (96) Non-

serial 

– 4 Free of 

error 

Yes – _ – NLP 

Lee (98) Serial Inspection 

time 

_ I and II Yes _ Yes Yes NLP 

Shiau (02) Serial Limited 

inspection 

stations 

7 I and II Yes Yes Yes Yes NLP 

Kogan (02) Serial – 6 Free of 

error 

Yes Yes Yes – NLP 

Emmons(02) Non-

serial 

– 9 Free of 

error 

– – Yes Yes NLP 

Shiau (03a) Serial Limited 

inspection 

stations 

7 I and II Yes _ Yes Yes NLP 

Shiau (03b) Serial Limited 

inspection 

stations 

5 I and II Yes Yes Yes Yes NLP 

Hadjinicola 

(03) 

Assembly – 3 Free of 

error 

Yes – Yes Yes NLP 

Rau (05) Serial – 16 I and II Yes Yes Yes – NLP 

Rau et al.(05) Non-

serial 

Limited 

inspection 

stations 

16 I and II Yes Yes Yes – NLP 

2.2.4   Branch and Bound (B&B) 

The first Branch & Bound algorithm was developed in 1960 by A. Land and G. Doig for         

a general mixed and pure integer linear programming (ILP) problem (Hamdy, 2003). B&B is 

a general algorithm for finding optimal solutions to various optimisation problems, especially 

in discrete and combinatorial optimisation. Dorigo and Stutzle (2004) defined combinatorial 

optimisation problems as: involve finding values for discrete variables such that the optimal 
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solution with respect to a given objective function is found. The basic concept underlying the 

B&B technique is to divide and conquer. Since the original problem is too difficult to be 

solved directly, it is divided into smaller and smaller sub-problems until these sub-problems 

can be conquered. The division (branching) is done by partitioning the entire set of feasible 

solutions into smaller and smaller subsets. The conquering is done partially by bounding how 

good the best solution in the subset can be, and then discarding the subset if its bound 

indicates that it cannot possibly contain an optimal solution for the original problem (Hillier 

and Lieberman, 2010).  

A few researchers used the B&B technique to solve the AOIS problem. Raz and Bricker 

(1987) used the branch and bound approach to tackle the problem of sequencing imperfect 

inspection operations. The aim was to find the variable inspection policy that minimises the 

total inspection cost. The developed model was subject to constraints type I and type II 

inspection errors. The authors found that the solution obtained by the proposed method was 

very close to the optimal solution.  

Raz and Kaspi (1991) examined the sequencing and location issues for multiple inspection 

operations in serial production workstations. A single product type flowing in a fixed linear 

sequence was considered. The objective was to minimise the total expected manufacturing 

cost. They found that the solution obtained by the proposed method was close to the optimal 

solution.  Table 2.4 shows an abstract of the classifications and characteristics of the models 

using B&B for the previously surveyed papers. 

Table 2.4: Classification the main characteristics for the studied models used B&B method 

 

Article 

Characteristics 

System 

configu-

reation 

Constraints 

 

Number 

of WS 
IE 

Cost components 
Solution  

technique IFC EFC IC MC 

Raz (87) Assembly I and II  5 I and II Yes – Yes – B&B 

Raz (91) Serial – 10 I and II Yes Yes Yes – B&B 
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Summary 

One of the drawbacks of the branch and bound method is that it requires a good initial upper 

bound, and an efficient way to calculate lower bounds for the various partitions (Raz, 1986). 

In addition, it is not always easy to find effective lower bounds (McCallum, 2005).  

2.2.5   Dynamic programming (DP)  

Dynamic programming was formalised in the early 1950s by mathematician Richard 

Bellman. DP is a recursive method that determines the optimum solution to an n-variable 

problem by decomposing it into n stages, with each stage constituting a single variable sub-

problem. The computational advantages are that DP optimises single variable sub-problems 

(Hamdy, 2003). 

A number of mathematical models have been developed to determine the optimal location of 

inspection stations in multistage production systems, using the dynamic programming 

technique. Lindsay and Bishop (1964) were the first to develop a model for determining an 

optimal inspection policy with the lowest total cost for serial production. The inspection is 

assumed to be perfect (no inspection error) and the inspection at one stage is independent of 

the next. It was found that DP allows the determination of a minimum cost under the added 

assumptions of maintaining a specified quality level, or when the cost associated with 

outgoing defective material is linear. 

White (1965) also researched this area and showed that, with replacement of defectives, the 

optimal plan would be characterised by 0 or 100% inspection, and could be solved by a 

dynamic program. The results of the work of Lindsay and Bishop (1964) are used by Pruzan 

and Jackson (1967) to develop an adaptive model in which the optimal inspection policy at a 

location depended on the previous inspection history.  
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White (1969) presented two shortest route models for determining where to allocate 

inspection points on a serial production line. In this paper, both repairable and non-repairable 

defectives are considered. Hurst (1973) was the first to propose a model that considered two 

types of inspection errors: acceptance of non-conforming units (type I); and rejection of 

conforming units (type II). The production system was assumed to be serial with only one 

inspection operation possible after each processing stage, and units perceived to be non-

conforming removed from the production flow.  

In addition, Enrick (1975) and Hsu (1984) have applied dynamic programming to find the 

optimal location of inspection stations in serial systems. They concluded that dynamic 

programming was an effective technique for determining the inspection policies sequencing 

for a limited number of production stages. 

Peters and Williams (1984) investigated the performance of five heuristics rules of thumb in a 

serial production system. The results indicated that a variety of economic and operating 

factors influenced the applicability of each of the five inspection location heuristics 

examined. 

An inspection planning model was developed by Gunter (1985), for an assembly process free 

of error. The results shown that if defective items are removed from the line, then the 

production volume in the model will shrink as a result of inspection, in order to meet the 

demand the inspections decisions should be considered the production rates.  

Raghavachari and Tayi (1991) developed a model as a shortest path algorithm in serial 

production systems to minimise the total cost. In their model, the determination of optimal 

initial lot size, inspection configuration and reprocessing decisions are considered 

simultaneously. They concluded that the developed model is flexible and versatile enough to 

be applied to the manufacturing environment with different characteristics. 
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Chengalur et al. (1992) extended the model of Ballou and Pazer (1985) by using a dynamic 

model with uncertainty in the quality of incoming raw material. They assumed 100% 

screening if inspection was performed at any stage. Also any defective item delivered to the 

customer was assigned as penalty cost. Their conclusion was that using a dynamic procedure 

led to cost-saving, even when unsure about the quality of the raw materials.  

Bai and Yun (1996) investigated the problem in which a product consists of many identical 

components. In their model, only a limited number of (automatic) inspection machines are 

available, and the rate of production was constrained by the rate of inspection. The inspection 

level was defined as the percentage of components to be inspected. An inspection cost model 

was developed to obtain the best location for inspection points and the optimal inspection 

level. They found that the proposed heuristic algorithm combined with DP provides the 

optimal solution when the problem is small. However, as the problem increases, the heuristic 

algorithm provides a solution close to the optimal solution in less time comparing to the 

CEM.  

An unreliable serial production system with known failure probabilities at each workstation 

was studied by Penn and Raviv (2007). The dynamic programming technique and a branch 

and bound method were used, to solve the problem of determining optimal quality control 

station configuration within the assembly line. The contribution of the model was 

incorporation of holding costs. Optimal quality control stations were found to reduce the load 

on the bottleneck stations, as well as the work in-process on the stations that followed them.  

Table 2.5 presents a summary of the classifications and characteristics of the models using 

DP for the previously surveyed papers.  

Summary 

Dynamic programming technique is used in 13 papers, accounting for 25% of the papers 

surveyed. It is the second most common technique used, mostly used in the period from 1964 
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to 1985. In fact, the use of recursion in the DP algorithm has both advantages and 

disadvantages: the main advantage is usually simplicity; the major disadvantage is the rapid 

rise in computational requirements, as the number of decision variables to be optimised is 

increased. This has led to various algorithms being developed that limit the number of stages, 

states and decision variables combinations to be evaluated.  In addition, Shiau (2002, 2007), 

Lee and Unnikrishnan (1998) and Rau and Chu (2005) have pointed out that the DP approach 

becomes impractical as the set of possible combinations grows exponentially. That is why 

many kinds of metaheuristic methods, such as simulated annealing, Tabu search and genetic 

algorithm are often used to reach a satisfactory solution, even though it may not be the 

optimal one. 

Table 2.5: Classification the main characteristics for the studied models used DP method 

 

Article 

Characteristics 

System 

configu-

reation 

Constraints 

 

Number 

of WS 
IE 

Cost components 
Solution  

technique IFC EFC IC MC 

Lindsay (64) Serial AOQL 9 Free of 

error 

Yes – Yes – DP 

White (65) Serial – 6 Free of 

error 

Yes – Yes – DP 

Pruzan (67) Serial – 5 Free of 

error 

Yes Yes Yes Yes DP 

White (69) Serial _ 5 Free of 

error 

Yes Yes Yes Yes DP 

Hurst(73) Serial _ 9 I and II Yes _ Yes _ DP 

Enrick (75) Serial – _ I and II Yes – Yes Yes DP 

Hsu (84) Serial – 4 Free of 

error 

Yes – Yes Yes DP 

Peters (84) Serial – 13 Free of 

error 

Yes Yes Yes Yes DP 

Gunter (85) Assembly _ 9 Free of 

error 

Yes – Yes – DP 

Raghavach-

ari   (91) 

Serial – 5 Free of 

error 

Yes Yes Yes Yes DP 

Chengalur   

(92) 

Serial 

 

Limited 

inspection 

stations 

3 I and II Yes Yes Yes Yes DP 

Bai (96) Serial Limited 

inspection 

stations& 

rate of 

inspection 

10 I and II Yes Yes Yes _ DP 

Penn (07) Assembly _ 8 Free of 

error 

– Yes Yes Yes DP 

AOQL: average of outgoing quality level. 
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In summary, many models in the area of the AOIS problem have been reviewed. These 

models used traditional techniques to tackle the AOIS problem. However, the capability of 

these techniques, in terms of computational time required to obtain good solutions increases 

as the number of workstations increased significantly (Van Volsem and Neirynck, 2009). 

2.3 Metaheuristic methods 

A metaheuristic is defined to be a general heuristic method which is used to guide an 

underlying local search algorithm toward promising regions of the search space containing 

high quality solutions (Osman and Laporte, 1996). The following subsections describe 

metaheuristic methods, which were employed in the literature review, followed by a 

summary of each paper. 

2.3.1   Simulated annealing (SA)    

Simulated annealing simulates the thermodynamic behaviour of atoms suspended in a hot 

metallic liquid which is being cooled down over a period of time. This process is known as 

„annealing‟. SA is an intelligent approach designed to tackle complex problems within a 

reasonable computation time. The idea in SA, similar to iterative improvement, is to create 

some random perturbation, such as moving a molecule to a new location, and then the 

resulting change in energy, E is evaluated. If the energy is decreased, E<0, the new 

configuration has less energy and is accepted as the initial point for the next move. However, 

if the energy is increased, E >0, the new, higher energy configuration is possibly acceptable 

with some probability (Eglese, 1990). A more detailed description of the mathematical model 

will follow in section 4.2.1. 

A few models in the existing literature review were developed using SA, to determine the 

optimal location of inspection stations in multistage production systems. Chen and Thornton 

(1999) described how to allocate inspection location quantitatively, in a complex assembly 
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system, by using a combination of modelling, simulation and simulated annealing. The aim 

was to remove the greatest variation of a product at the lowest cost. They demonstrated that 

an optimal inspection plan can be selected quantitatively using their model. 

Kakade et al. (2004) extended the model of Bai and Yun (1996) to account for the different 

quality characteristics after each processing station and the different inspection times required 

to inspect each component at each stage, along a serial multistage manufacturing system. 

They assumed that the rate of production was constrained by the rate of inspection. It was 

found that for small problems SA generates solution close to optimal solutions. 

Table 2.6 presents a summary of the classifications and characteristics of the models using 

SA method for the previously surveyed papers.  

Table 2.6: Classification the main characteristics for the studied models used SA method 

 

Article 

Characteristics 

System 

configu-

reation 

Constraints 

 

Number 

of WS 
IE 

Cost components 
Solution  

technique IFC EFC IC MC 

Chen (99) Assembly – _ Free of 

error 

Yes – Yes Yes SA 

Kakade (04) Serial Rate of 

inspection 

2 Free of 

error 

Yes Yes Yes – SA 

Summary 

The simulated annealing method has been highly successful in many applications and a 

number of variant algorithms. However, a major disadvantage of the technique is determining 

the „cooling schedule‟. For example, deciding what is a sufficient amount of iterations at each 

temperature is difficult. In addition, determining the initial temperature is also difficult. 

Starting too high will waste computation time; starting too low will decrease the probability 

of finding a good quality solution given a hard enough optimisation problem (Ram et al., 

1996). 
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2.3.2    Tabu search (TS)  

Tabu search was proposed originally by Glover (1986) and has been subject to extensive 

studies, as well as applied to several optimisation problems with great success. Tabu search is 

equipped with a special mechanism to avoid being trapped in local optima. It uses a short- 

term memory to escape from local minima. TS typically uses a local search that, in each step, 

tries to make the best possible move from current solution s, to a neighbouring solution       

s , even if that move worsens the objective function value.  In TS, to prevent the local search 

returning immediately to a previously visited solution and to avoid cycling, moves to recently 

visited solutions are forbidden (Glover, 1986). It uses a mechanism to forbid a return to a 

recently visited solution called „Tabu list‟ (tl). TS uses some stopping criterion, such as a 

fixed number of iterations, a fixed amount of CPU time, or a fixed number of consecutive 

iterations without an improvement in the best objective function value. TS will be described 

in more detail in chapter 4. 

Valenzuela et al. (2004) formulated an optimisation model for the allocation of paste-printing 

inspection efforts in Surface Mount Technology in a serial line. The aim was to maximise the 

expected total gain. To reduce the complexity, only one stage in the solder-paste printing 

process was considered. Their contribution was based on providing an optimisation model 

that considered explicitly the economic trade-off between product yield and inspection 

accuracy. They concluded that the heuristic approach provides a solution that can reduce the 

total expected cost by 15% when it is started from a random solution. Table 2.7 presents 

summary of the classifications and characteristics of the studied model using TS for the 

previously surveyed paper.   

Summary 

One of the drawbacks of using Tabu search is that it brings with it a number of parameters 

and design decisions, most of which are not simple to set, such as neighbourhood size and 
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Tabu list size (tl). This, therefore, extends the amount of experimentation required to optimise 

the hybrid algorithm. For example if tl is chosen too small, cycling may occur; if it is too 

large, the search path is too restricted, and high quality solutions may be missed. A good 

parameter setting for tl can only be found empirically and requires considerable fine tuning 

(Stützle, 1998b).  

Table 2.7: Classification the main characteristics for the studied model used TS method 

 

Article 

Characteristics 

System 

configu-

reation 

Constraints 

 

Number 

of WS 
IE 

Cost components 
Solution  

technique IFC EFC IC MC 

Valenzuela 

(04) 
Assembly – 2 

Free of 

error 
Yes Yes Yes  Yes Tabu search 

2.3.3   Genetic algorithm (GA)    

Genetic algorithm is inspired by the observation of natural processes in the real world. John 

Holland invented the first genetic algorithm in the 1960s. He mimicked the insight he got by 

studying Darwin's theory of evolution, which can be summarised as: 

 The traits found in the parents are passed on to their offspring during reproduction. 

 New traits are produced by variations or mutations that are naturally present in all 

species. 

 A process termed „natural selection‟ chooses those individuals that are best adapted to 

the environment. 

 Variations can accumulate and produce new species over long periods of time. 

According to Darwin, natural selection can be reproduced as survival of the fittest. The 

characteristics of the fittest individuals, encoded in their genes, are passed on to their 

offspring and keep propagating into new generations (Gaertner, 2004). GA will be described 

in more detail in chapter 4. 
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A number of mathematical models have been developed to determine the optimal location of 

inspection stations in serial production systems using the Genetic Algorithm technique. 

Taneja and Viswanadham (1994) designed a genetic algorithm to determine the location of 

inspection stations for serial and non-serial multistage manufacturing systems. The aim was 

to minimise the expected total cost per unit produced. In their model, two constraints were 

considered: an accepted outgoing quality level; and limited number of inspection places. It 

was found that the GA algorithm reaches good solution as the number of workstation 

increases with a reasonable computational time. 

Viswanadham et al. (1996) formulated inspection allocation models for a serial and a special 

non-serial multistage manufacturing system, with the aim of determining the number and 

location of inspection stations. As a result, the expected total cost per unit produced is 

minimised. The problem was approached using GA and SA. The conclusion using these 

techniques reduced computation time dramatically, compared to the exhaustive search, and 

yielded a good approximation to the optimal solution. 

Langner et al. (2002) developed a genetic algorithm subject to inspection errors, for solving 

the multistage inspection problem under the assumption that all stages must receive partial 

rectifying inspection. They noted that previous models assumed that some manufacturing 

stages received full inspection, and the rest none. The objective of their work was to 

minimise the total cost. Examples of the optimisation of a multistage inspection problem 

were solved, and they concluded that the solution technique could handle multiple objectives 

and quality constraints effectively and linear and non-linear constraints trivially.  

Shiau et al. (2007) developed a cost model to solve the manufacturing resource allocation 

problem by performing process planning and inspection planning concurrently, in a serial 

system. They concluded that GA saved time when compared with a complete enumeration 

method.  
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Van Volsem et al. (2007) suggested a fusion between an evolutionary algorithm (Genetic) 

and discrete event simulation, to optimise the inspection strategies for a multistage 

production system (MSPS). Their contribution was based on jointly optimising the number 

and location of inspection stations and inspection limits (specification interval). Their model 

was developed under the added assumptions that a limited number of inspection machines 

were available, and the rate of production was constrained by the rate of inspection. The 

objective of the work was to reduce the process variance of the final product at minimum 

cost. Their results confirmed the potential of the hybrid method for optimising quality 

inspection. 

The work introduced by Galante and Passannanti (2007) focused on a job-shop system, 

equipped with inspection stations, in order to optimise both inspection allocation and 

operation scheduling. The authors noted that the interaction between the two problems has 

not been treated in a job-shop environment. They concluded that interactions between 

inspection point location and operation scheduling, led to solutions with considerably lower 

cost. 

Sadegheih (2007) researched the area of the AOIS problem by developing two artificial 

intelligence techniques: genetic algorithm and simulated annealing. The aim was to find the 

optimal location of inspection stations to reduce the total cost in serial manufacturing 

systems. Sadegheih found that the performance of the GA is much better than the simulated 

annealing in terms of solution quality.  Table 2.8 presents a summary of the classifications 

and characteristics of the studied models using GA for the previously surveyed papers.  

Summary 

A genetic algorithm is an established field and a great deal of work has been done in trying to 

apply it to a range of applications. The performance of the GAs depends on the rates of the 

parameters, such as the population size, crossover rate and mutation rate. Determining the 
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size of the population is a crucial factor. Choosing a population size that is too small 

increases the risk of converging prematurely to local minima, since the population does not 

have enough genetic material to cover the problem space sufficiently. On the other hand, a 

larger population has a greater chance of finding the global optimum at the expense of more 

CPU time.  

Table 2.8: Classification the main characteristics for the studied models used GA  

 

Article 

Characteristics 

System 

configu-

reation 

Constraints 

 

Number 

of WS 
IE 

Cost components 
Solution  

technique IFC EFC IC MC 

Taneja (94) 

 

 

Non-

serial 

AOQL and 

Limited 

inspection 

stations 

5 I and II Yes Yes Yes Yes GA 

Viswanadh-

am et al. (96) 

Non-

serial 
_ 

5-25 
I and II Yes Yes Yes _ GA 

Langner (02) Serial AOQL 6 I and II Yes – Yes Yes GA 

Shiau (07) Serial Limited 

inspection 

stations 

5 I and II Yes Yes Yes Yes GA 

Van Volsem 

(07) 

Serial – 6 Free of 

error 

Yes Yes Yes – GA 

Galante (07) Serial – 10 I and II Yes Yes Yes Yes GA 

Sadegheih 

(07) 

Serial – 10 Free of 

error 

Yes – Yes – GA  

In summary, different techniques based on metaheuristics in the area of the AOIS problem 

have been reviewed. These techniques are capable of finding, good and sometimes optimal, 

solutions to large size problems, in a generally shorter computation time. However, the main 

drawback of these techniques is that they bring with a number of parameters, most of which 

are not simple to set. Abramson and Abela (1992) explained that another drawback of genetic 

algorithms require large number of response (fitness) function evaluations depending on the 

number of individuals and the number of generations. Therefore, genetic algorithms may take 

long time to evaluate the individuals. This agrees with what found in the studies introduced 

by Espinoza et al., (2005) and Kim (2010). 
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2.4 Markov decision process (MDP)  

A Markov decision process is a controlled stochastic process that: (i) assumes that every 

process state depends only on the previous process state and not on the history of previous 

states (Markov assumption); and (ii) assigns costs (or rewards) to state transitions (Di Caro, 

2004). In general, an MDP is a restricted state with a state-transition feedback function 

described by (X, U, T, J) where: 

X: is a finite set of problem states, representing the environment; 

U: is a finite set of actions; 

T: defines the transition probability distribution P (xi|xj, uk) that describes the effect of actions 

on the world state; and 

J: defines a cost model that describes costs associated with a state transition under some 

action. 

In the existing literature review, a few models used the MDP technique to solve the allocation 

problem. Deliman and Feldman (1996) extended the model of Ballou and Pazer (1985) in 

order to consider modelling rework directly, as reprocessing activities in serial manufacturing 

systems. The objective was to determine the positions of inspection stations so that the 

expected per unit total cost of production was minimised. Their results showed that an 

optimal combination of inspection and process improvement can be identified and saves cost.  

Jang and Shanthikumar (2002) presented stochastic models, by using the Markov decision 

process to solve the inspection allocation problem under the stationary allocation assumption. 

Optimal allocation and limited inspection capacity for multiple production processes were 

considered. The main purpose was to minimise the expected total discounted cost over a 

finite time prospect. They concluded that the model could be used as a simple tool to evaluate 

the relative importance of individual processes. Table 2.9 gives a summary of the 
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classifications and characteristics of the studied models using a MDP for the previously 

surveyed papers. 

Table 2.9: Classification the main characteristics for the studied models used MDP method 

 

Article 

Characteristics 

System 

configu-

reation 

Constraints 

 

Number 

of WS 
IE 

Cost components 
Solution  

technique IFC EFC IC MC 

Deliman (96) Serial – 5 II Yes Yes Yes Yes MDP 

Jang (02) Serial 

Limited 

inspection 

stations 

6 
Free of 

error 
Yes – Yes Yes MDP 

 

Summary 

The Markov decision process can be very effective in practice, but when the state set is too 

large, or the states are not accessible, they are virtually ruled out (Di Caro, 2004). Hauskrecht 

(2000) pointed out that a significant drawback of the MDP is that it is only applicable for 

solving relatively simple problems. 

2.5  Simulation 

A simulation of a system is the operation of a model of the system (Maria, 1997). A 

simulation model is used to observe a real system with cases; usually, this is impossible, too 

expensive or impractical to do in the system it represents (Carson and Maria, 1997). The aim 

of simulation is to collect pertinent information about the behaviour of the system with the 

passage of time. Simulation is not an optimisation technique, and is used to estimate the 

measures of performance of a modelled system. It is a statistical experiment, and hence its 

output must be interpreted by appropriate statistical tests. Two broad categories of 

simulations are discrete-event and continuous simulations (Hillier and Lieberman, 2010). A 

discrete-event simulation is one where changes in the state of the system occur 

instantaneously, at random points in time, as a result of the occurrence of discrete events. A 

continuous simulation is one where changes in the state of the system occur continuously 
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over time. Most applications of simulation in practice are discrete-event simulation (Hillier 

and Lieberman, 2010).   

There are many studies in the literature review that solved AOIS problems by using the 

simulation technique. Saxena et al. (1990) evaluated four inspection heuristics on the basis of 

job completion under different operating conditions in serial production systems. The four 

heuristics considered were: (i) locate one inspection station before the station with the longest 

processing time and locate another at the end of the total process; (ii) locate one inspection 

station after the operation which is likely to generate a high proportion of defective items and 

locate another at the end of the whole process; (iii) locate one inspection station after each 

machine; and (iv) locate one inspection station at the end of the whole process. They found 

that inspection time was the most influential factor for the selection of a particular heuristic.  

Gardner et al. (1995) demonstrated the impact of defective rates, inspection and defective 

removal strategies on the profitability of a manufacturing system in an assembly line. A 

number of specific manufacturing situations have been simulated, to study particular aspects 

of performance or costs. They confirmed that the maximum profit at a zero defect rate 

occurred when inspection and defective removal were minimised.  

Shin et al. (1995) investigated strategic AOIS for a flow assembly line. The problem was 

formulated as a constrained bottleneck, shortest path model. They investigated the variations 

of four parameters (defect ratio, inspection time, repair time, and inspection error) on the 

strategic allocation. Their contribution introduced a hybrid method by combining constrained 

bottleneck shortest path algorithm and discrete-event simulation. The results show that the 

strategic allocation yielded the maximum throughput, by balancing the segment time at each 

workstation. 

Lee and Chen (1996) also researched this area by investigating five heuristics rules to study 

the effects of inspection sequencing rules and part scheduling policies, in a flexible 
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manufacturing system (FMS). The conclusion was the selection of inspection plans that were 

found to have a significant impact on the FMS performance. 

Siemiatkowski and Przybylski (2006) also investigated the inspection heuristics of process 

flow planning within a machining cell, with a coordinate measuring machine. They used 

similar assumptions and considerations of the previous model presented by Lee and Chen 

(1996). The results show that job-sequencing strategies relied heavily on the inspection plan 

introduced in the cell. Table 2.10 presents outline of the classifications and characteristics of 

the studied models using a simulation method for the previously surveyed papers.  

Table 2.10: Classification the main characteristics for the studied models used simulation  

 

Article 

Characteristics 

System 

configu-

reation 

Constraints 
Number 

of WS 
IE 

Cost components 
Solution  

technique IFC EFC IC MC 

Saxena (90) Serial – 5 Free of 

error 

Yes – Yes Yes Simulation 

Gardner (95) Assembly – 7 I and II Yes – Yes Yes Simulation 

Shin (95) Serial Throughput 7 II Yes – Yes – Simulation 

Lee (96) Serial – 9 Free of 

error 

– – Yes Yes Simulation 

Siemiatkow-

ski (06) 

Serial 

 

– 2 Free of 

error 

Yes – Yes Yes Simulation 

Summary 

Simulation usually only provides statistical estimates rather than exact results, and often 

compares different solutions rather than creating an optimal one. However, creating optimal 

solutions using simulation needs a special software package (Hillier and Lieberman, 2010). 

2.6   Cost models for serial multistage manufacturing processes 

This research (AOIS problem) focuses on serial multistage manufacturing processes. The 

main characteristics included in each cost model reviewed are broken down in more detail as 

follows: constraints, number of workstations, inspection errors (type I and type II), internal 

failure cost (rework and scrap), external failure cost (repair and replacement), inspection cost 

(fixed and variable), manufacturing cost and objective function. It should be noted that these 
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characteristics are presented in more details than in the previous tables. The main 

characteristics of each cost model are summarised in Table 2.11 in the sequence in which 

they are published.   

It can be seen from Table 2.11 that the models developed by Lindsay and Bishop (1964) and 

White (1965) only included scrap and inspection costs. However, Lindsay and Bishop (1964) 

added the assumption of AOQL in their developed cost model. The model developed by 

Pruzan and Jackson (1967) included scrap, inspection (fixed and variable) and manufacturing 

costs. The same cost components were considered in the model developed by White (1969), 

with the addition of a repair cost. 

Hurst (1973) developed a cost model which only included the scrap cost and the variable 

inspection cost. The main contribution of the paper was the incorporation of inspection 

errors. Enrick (1975) introduced a cost model to consider the rework, manufacturing and 

variable inspection costs under the added assumption of inspection errors. However, Enrick 

did not test the developed cost model. 

Ballou and Pazer (1982) limited their cost model to include inspection errors, and scrap, 

penalty and variable inspection costs. The contribution was based on analysing the impact of 

inspection errors on the inspection policy. Hsu (1984) presented a cost model to consider 

scrap, variable inspection and manufacturing cost components. The main contribution of the 

work was the introduction of a hybrid inspection system.  

Peters and Williams (1984) developed a cost model to include all characteristics except 

inspection errors. The model was developed without any constraints. The main contribution 

was the identification of the relations between various costs and/or process characteristics, 

and a designated „operative condition‟ that motivated the apparent rationale of five of these 

rules-of-thumb. 
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         Table 2.11: Cost model characteristics for serial multistage manufacturing processes 

Article 

Characteristics  

Constraints Number 

of WS 

IE Cost components Objective 

function 
IFC 

 
EFC 

 
IC MC 

Rework 

 

Scrap Repair 

 

Repl. Fixed Variable 

Lindsay and Bishop (1964) AOQL 9 – _ Yes _ _ _ Yes – Cost/input unit 

White (1965) – 6 – _ Yes _ _ _ Yes – Cost/input unit 

Pruzan and Jackson (1967) – 5 – _ Yes _ _ Yes Yes Yes Cost/input unit 

White (1969) _ 5 – _ Yes Yes _ Yes Yes Yes Cost/input unit 

Eppen and Hurst (1974) – 9 I and II _ Yes _ _ _ Yes – Cost/input unit 

Enrick (1975) – _ I and II Yes _ _ _ _ Yes Yes Cost/input unit 

Ballou  and Pazer (1982) – 3 I and II _ Yes Penalty 

 

_ Yes _ Cost/input unit 

Hsu (1984) – 4 – _ Yes _ _ _ Yes Yes Cost/input unit 

Peters and Williams (1984) – 13 – Yes Yes Penalty Yes Yes Yes Cost/input unit 

Ballou  and Pazer (1985) _ 3 I and II _ _ Penalty _ Yes Yes Cost/input unit 

Yum  and McDowell (1987) Limited 

inspection 

stations 

10 I and II Yes Yes  _ _ – Yes Yes Cost/input unit 

Tayi  and Ballou (1988) _ 5 – Yes Yes Penalty – Yes Yes Cost/input unit 

Park et al. (1988) – 4 – Yes Yes _ _ Yes _ Yes Cost/input unit 

Barad (1990) – 8 – Yes _ _ _ _ Yes Yes Cost/input unit 

Raghavachari  and Tayi (1991) – 5 – Yes _ Penalty Yes Yes Yes Cost/input unit 

Raz  and  Kaspi (1991) _ 10 I and II Yes _ Penalty _ Yes _ Cost/output unit 

  Repl.: replacement 
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      Table 2.11: Cost model characteristics for serial multistage manufacturing processes (continued) 

Article 

Characteristics  

Constraints Number 

of WS 

IE Cost components Objective 

function 
IFC 

 
EFC 

 
IC MC 

Rework 

 

Scrap Repair 

 

Repl. Fixed Variable 

Chengalur et al.  (1992) Limited 

inspection 

stations 

3 I and II _ Yes Penalty Yes _ _ Cost/input unit 

Jewkes (1995) – _ – Yes _ _ _ _ Yes _ Cost/input unit 

Bai  and Yun (1996) 

 

Limited 

inspection 

stations 

inspection 

10 I and II Yes _ Penalty _ Yes Yes Cost/input unit 

Deliman  and Feldman(1996) – 5 II Yes Yes Penalty – Yes Yes Cost/input unit 

Lee  and Unnikrishnan (1998) Inspection 

time 

_ I and II Yes Yes Yes _ Yes _ _ Cost/input unit 

Jang and Shanthikumar  (2002) Limited 

inspection 

stations 

6 – Yes _ _ _ Yes _ _ Cost/input unit 

Langner  et al. (2002) AOQL 6 I and II Yes _ _ _ _ Yes _ Cost/input unit 

Shiau (2003a) Limited 

inspection 

stations 

7 I and II Yes Yes _ _ _ Yes Yes Cost/input unit 

Shiau (2003b) Limited 

inspection 

stations 

5 I and II Yes Yes _ Yes _ Yes _ Cost/input unit 

Rau and Chu (2005) – 16 I and II Yes Yes Penalty _ Yes Yes Throughput 

Shiau (2007) Limited 

inspection 

stations 

10 I and II Yes Yes _ Yes _ Yes _ Cost/input unit 

Sadegheih (2007) _ 10 _ _ Yes _ _ _ Yes _ Cost/input unit 
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Ballou and Pazer (1985) extended their original model (Ballou and Pazer, 1982) in order to 

analyse the cost quality implication of process improvement against inspection enhancement. 

The model was developed to include only inspection errors, and penalty, variable inspection 

and manufacturing costs. However, the cost model did not include any items of internal 

failure cost. 

Yum and McDowell (1987) developed a cost model that was constrained by adding 

assumptions for a limited number of inspection stations. The developed model did not include 

external failure costs (repair and replacement) or fixed inspection costs. The main 

contribution of the work was the introduction of a model that could include any combination 

of internal failure costs. Tayi and Ballou (1988) presented a model that produced several 

potential features of production systems: production processes, quality control procedures, in-

process inventory and reprocessing. The model was developed to include all cost 

components, except fixed inspection costs, under the added assumption of perfect inspection 

(no inspection errors). 

Park et al. (1988) developed a cost model to consider internal failure, fixed inspection and 

manufacturing costs. The main contribution was the incorporation of machine operation 

reliability. Barad (1990) introduced a concept of a break-even quality level for a multistage 

production process, in which screening was only allocated within some stages, depending on 

the economic criteria. When screening did take place, 100% of the product processed in that 

stage was inspected. One of the variables used to decide whether or not to inspect was the 

quality level at some point in the manufacturing process. The developed model was limited to 

only including rework, variable inspection and manufacturing costs. 

Raghavachari and Tayi (1991) extended the cost model of Tayi and Ballou (1988) to provide 

an integrated framework for simultaneously considering manufacturing, inspection and 

reprocessing activities. The model excluded inspection errors and scrap costs. Raz and Kaspi 
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(1991) examined the sequencing and location of inspection stations in serial production 

workstations. Their main contribution was in performing multiple inspection operations after 

each production stage. The model was developed to include rework, penalty, and variable 

inspection costs, with the added assumption of inspection errors. However, scrap, fixed 

inspection and manufacturing costs were excluded in the cost model developed. 

Chengalur et al. (1992) extended the cost model of Ballou and Pazer (1985) to consider the 

quality of the incoming raw material, and consequently the optimal inspection strategy. The 

developed model was constrained by a limited number of inspection stations. The developed 

cost did not include rework, variable inspection or manufacturing costs. Jewkes (1995) 

examined a system with a stationary probability of producing defective items and focused on 

an optimal fraction of items to be inspected. The developed model was limited to only 

include rework and variable inspection costs. 

Bai and Yun (1996) investigated the AOIS problem in which a product consists of many 

identical components. In their model, only a limited number of inspection machines were 

available, and the rate of production was constrained by the rate of inspection. The cost 

model was developed to include all cost components, except for scrap and variable inspection 

costs. Deliman and Feldman (1996) expanded the model of Ballou and Pazer (1985) to 

consider internal failure costs (rework and scrap) in serial manufacturing systems. However, 

the developed model did not include a fixed inspection cost or type I inspection error. 

Lee and Unnikrishnan (1998) developed a cost model with multiple inspection stations, in a 

scenario controlled by the inspection time constraint. The time constraint was used to 

simplify the problem and to speed up the process of finding a good solution. However, the 

model excluded the variable inspection cost. Jang and Shanthikumar (2002) presented 

stochastic models to solve the inspection allocation problem. The main contributions of the 

paper were the characterisation of a threshold type optimal inspection control policy for a 
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constrained single process problem and the introduction of a dynamic disaggregate approach 

that efficiently solves a multiple process problem. The cost models were developed to only 

include rework, fixed inspection and manufacturing costs. The cost developed models were 

constrained by the limited number of inspection stations. 

Langner et al. (2002) developed a cost model to find the number of defective items in each 

manufacturing stage as a result of this the total cost can be reduced. The cost model was 

developed to only include inspection errors, and rework, variable inspection and 

manufacturing costs. The cost model did not consider scrap cost and external failure cost. 

Shiau (2003a) developed a unit cost model based on a limited inspection resource constraint. 

The unit cost model did not consider external failure or fixed inspection costs. Shiau (2003b) 

extended his previous model to include external costs. However, the cost model did not 

consider manufacturing or fixed inspection costs.  

Rau and Chu (2005) developed a cost model for optimally allocating inspection stations in 

serial production systems. The main contribution was the incorporation of two types of 

workstation: a workstation of attribute data and a workstation of variable data, in serial 

production systems. The cost model was developed to consider all cost components, except 

for the fixed inspection cost and inspection errors which were excluded.  

Shiau (2007) developed a unit cost model to solve the allocation problem in an advanced 

manufacturing system (AMS). The main contribution was in finding solutions by 

concurrently performing process planning and inspection planning. Except for fixed 

inspection and manufacturing costs, all other cost components were included in the 

developed cost model. 

Sadegheih (2007) researched the area of the AOIS problem by developing a cost model. The 

developed cost model was limited to only include scrap and variable inspection costs. The 
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contribution of the paper was in the presentation of an optimal design for a manufacturing 

system inspection station using genetic algorithms and simulated annealing techniques. 

Furthermore, a novel general effect of the mutation rate on the minimised objective value was 

presented. 

2.7 Conclusion 

This literature review surveyed research in the area of AOIS in multistage manufacturing 

processes. A number of techniques have been presented in the literature for the AOIS 

problem. The aim of almost all the reviewed inspection models was to determine whether 

inspection operations should be performed at some or in all processing workstations to 

minimise the total cost. In some cases, there were many possible locations for inspection 

activity; while in other situations it was concluded that an effective inspection should 

performed after certain workstation processes had been completed. It was found that most of 

the surveyed papers used a complete enumeration method (CEM) to measure the performance 

of the models developed. The advantage of the CEM is that it checks all possible 

combinations of inspection stations in the search space. As a result the optimal solution can 

then be identified. The most common approaches used by researchers were the NLP and DP 

techniques. However, the computation time required by these traditional techniques to obtain 

good solutions increases when the number of workstations significantly increases. Of all the 

metaheuristic methods used in the literature review, none of them used local search to 

improve the performance of their models. For example Shiau (2007), Galante (2007) and 

Kakade (2004) all used approximation methods, but did not use a local search method to 

improve the performance of their optimisation methods. In addition, it has been proven that in 

another area (not an AOIS problem) hybrid metaheuristics perform better than metaheuristics 

without local search (Duda, 2006). It was found that a vast majority of the papers surveyed do 

not consider sensitivity analysis, which only appeared in some papers, for example the 
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models developed by Yum and McDowell (1987) and Parak et al. (1988).This is probably 

because their models were developed using Integer Linear Programming, and hence it is 

easily included. The complexity of cost models and the fact that no two such cost models are 

alike, led researchers to the use simulation techniques when examining such systems. 

Despite the product and the process in multistage manufacturing processes being discrete as 

in Petri nets, none of the surveyed models mentioned about this similarity. Petri nets are 

based on analyses of system behaviour. These analyses will lead to important insights into the 

behaviour of the modelled system. For complex Petri net models, discrete-event simulation is 

used to check the system properties. Petri nets are particularly useful for modelling systems 

with concurrent and asynchronous processing (Wang, 2007).  

Any realistic model of the impact of inspection on a multistage manufacturing system should 

include the possibility of inspection errors. Other papers pointed out that as the production 

processes at each stage are generally stochastic in nature, deviations from product 

specifications occur, which, without intervention, will accumulate during the course of the 

production process. Only performing an inspection at the last stage would therefore result in a 

large number of faulty products and high rework and scrap costs. Regarding the rules of 

thumb which were used by some papers, it was concluded that its effective application 

depends on the consideration of a variety of cost and/or process factors unique to each 

heuristic. Therefore, the specific results obtained are dependent on the unique set of 

experimental conditions.  

Regarding assembly and non-serial models, undetected defects are more difficult to 

determine in these systems than in serial lines. The difficulty arises due to assembly stages in 

which multiple serial lines join to form a single serial line. At such assembly stages, the 

number of detected defective output flow items of the assembly stage entering the assembly 

line stage depends on the proportion of defective items leaving all series lines to that 
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assembly stage. Optimal solutions to the problems can be found when the full enumeration of 

the search space is generated in reasonable time. The specific optimal solutions obtained are 

dependent on the unique set of experimental conditions for each problem. The vast majority 

of case studies in the literature review presented the best solutions determined by the methods 

developed in terms of average deviation from the optimal solution. 

It is evident from the preceding review, particularly in section 2.6, that none of the cost 

models reviewed address all the characteristics of the general inspection allocation problem. 

Simplified assumptions were introduced at several points in those studies, in order to allow a 

tractable formulation model and solution. This is also because many studies were interested 

in developing new heuristic methods to approach the complexity of the AOIS problem (e.g. 

Barad, 1990, Lee and Unnikrishnan, 1998, Peters and Williams, 1984, Rau and Chu, 2005, 

Shiau, 2003a, b).The categories of linear and nonlinear variable inspection costs are largely 

exclusive. As a result they are the categories of the objective functions and the optimisation 

methods. The linear and nonlinear variable inspection costs cover all papers studied, with the 

four exceptions of Park et al. (1988), Chengalur et al. (1992), Lee and Unnikrishnan (1998) 

and Jang and Shanthikumar (2002) who only considered a fixed inspection cost and no 

variable inspection cost. All the cost models surveyed assumed that when an inspection is 

performed after the processing workstation, 100% inspection occurs. This assumption 

increases the cost of inspection and inspection time. Also, all the cost models surveyed used 

the total cost per input unit and the total cost per output unit as the objective functions. The 

difference between them is that in the first case the objective function is computed as the total 

cost divided by the number of input units, whereas in the second case the objective function 

is determined as the total cost divided by the number of output units. However, the customer 

is often determines the quality of an item with 100% accuracy. This review has demonstrated 
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the need to develop a general cost model that can handle the increased complexity of the 

problem.  

In this thesis, the AOIS problem is expanded to include all the characteristics described in 

section 2.6. The cost model is developed under assumptions of inspection errors and the 

limited availability of inspection stations. In addition, the developed cost model determines 

the locations of inspection stations using sampling inspection strategy. Furthermore, the 

optimality is defined in terms of minimising costs per conforming output unit accepted by the 

customer. To do so, the general cost model is developed such that the number of conforming 

parts can be computed at each processing workstation.  Introducing all these issues into the 

developed cost model significantly increases the level of complexity and gives an advantage 

to be very different from those in previous literature. The novel general cost model for the 

AOIS problem will be developed in the next chapter.  
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Chapter 3 

General cost model formulation 

___________________________________________________________________________ 

It is evident that from the previous review that the various cost models did not address all the 

complexities possible characteristics of the general inspection allocation problem. Also, all 

the studied cost models in the previous literature were used full inspection plan if an 

inspection station is located after a workstation. In addition, all the surveyed cost models used 

the total cost per input unit and the total cost per output unit as the objective function. 

Furthermore, all previous cost models were represented external failure cost items as 

aggregate or only include one of them. In this chapter, a novel general cost model (GCM) in 

serial multistage manufacturing processes to include all the characteristics of the AOIS 

problem is developed. The GCM is also contributes to knowledge by determining the 

locations of inspection stations using sampling inspection strategy. Furthermore, the external 

failure costs are represented to be more complex to include all of its items (repair and 

replacement costs). Also, the optimality is defined in terms of minimising cost per 

conforming output unit accepted by the customer. This can be done by developing the general 

cost model such that the number of conforming parts can be computed at each processing 

workstation. Introducing all these issues into the GCM significantly increases the level of 

complexity and gives an advantage to the general cost model to be very different from those 

in previous literature. This general cost model provides management with information on the 

optimal number and placement of inspection stations for specific planned or existing serial 

manufacturing systems. It can also be used by management to explore various policy options, 

such as the cost implications of increasing the quality vs. the quantity of inspection stations. 
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The relation between quality and cost, computational complexity and computational time 

against number of workstations will also be described in this chapter. 

3.1   A serial multistage manufacturing process 

In a serial production system, the raw materials pass through a sequence of processing 

workstations to the final product. Each stage of the manufacturing process receives a batch or 

flow of similar processed items as input, which may contain a mix of conforming and non-

conforming units. As an example of a serial multistage manufacturing process, consider the 

manufacturing of cylinder heads for engine blocks. The cylinder head sits above the cylinder 

block, as shown in Figure 3.1, and consists of a platform containing part of the combustion 

chamber that locates the valves and spark plugs. In this serial line process, the work-piece 

moves from one machine to another, to enable various operations to be performed on the part. 

The system consists of 15 processing workstations in a serial line for producing cylinder 

heads for engine blocks. This system is capable of producing 100 cylinder heads per hour. 

The various operations performed by the machines are: milling, drilling, reaming, boring, 

tapping, honing, washing, and gauging (Kalpakjian and Schmid, 2006). Another example of a 

serial multistage manufacturing process, which is considered to be a large-scale problem, is 

manufacturing engine valves, as shown in Figure 3.2. The engine valves are processed in 36 

different processing operations on different machines, such as cutting, turning, press, 

                                                                          

Figure 3.1: Cylinder head for engine block                   Figure 3.2: Engine valves           
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welding, grinding, heat treatment and plating. These different machines are equipped with 

computer numerical controls (Engin, 2008).  In addition, in real world problems there are 

more complex manufacturing processes such as manufacturing Trent 700 turbine blade 

(Ridley, 2008). This process is highly complex and can be broken down into 88 workstations, 

with each operation having around 12 steps. Due to the complexity of the process, Ridley 

(2008) summarised these operations into 12 discrete steps as follows: (1) diffusion bonding, 

(2) water jet cut profile and C scan, (3) hot process (twist), (4) hot process (creep forming), 

(5) hot process (super-plastic forming), (6) X-Ray, (7) Ghyll brow operations (chemical and 

out gassing), (8) CNC machining, (9) polishing, (10) coordinate measuring machine 

inspection, (11) finish processing (shot peening and super polishing) and (12) frequency and 

moment weight. Despite the processes using high precision machines, these operations still 

generate defective items, as shown in Table 3.1. 

      Table 3.1: Defective rates for Trent 700 turbine blade (Ridley, 2008) 

Workstations Number of defective items  

1 70 
2 0 
3 2 

4 1 

5 293 
6 0 

7 4 
8 24 

9 49 
10 0 

11 8 

12 0 

3.2   Manufacturing system characteristics 

The most common way used by Shiau (2003a, b), Mandroli et al. (2006) and Shiau (2007) to 

characterise a serial multistage manufacturing process are: (i) non-conforming products; (ii) 

repair of defects (iii) inspection type; (iv) inspection errors; (v) inspection time; and (vi) cost 

components.  
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3.2.1    Non-conforming products 

Products may not conform because of the improper performance of a processing operation. 

The chance that a unit will become non-conforming at a given stage is referred to as the non-

conforming processing rate for the stage, which may be constant or variable, and may 

alternate between an acceptable level and an out-of-control level (Raz, 1986). A given 

processing stage may cause a single type of non-conformity or multiple types. For an 

allocation problem, it may be assumed that each workstation has a specific probability of 

producing defective parts. Products considered to not conform are, subsequently, removed 

from the production flow and they may have some or no salvage value at all (Kakade, 2004 

and Galante and Passannati, 2007). The salvage value represents the revenue generated by 

selling the rejected items as scrap or lower grade products. 

3.2.2    Repair of defects 

During the inspection, once an item does not conform to the specifications certain actions 

will be taken to repair, or simply scrap it. However, defective products, when allowed to pass 

through the production line, become costly to repair at a later stage of operation. The repair 

occurs only when the non-conformance of a product is greater than the specification limit, 

which is determined by a predefined quality requirement. In the absence of repair, the 

production volume in the production line will shrink as a result of inspection (Gunter, 1985). 

In real life, without repair larger lot sizes have to be introduced, in order to meet production 

plans and to avoid delivery delays. 

3.2.3    Inspection type 

If an inspection is performed after a particular workstation, it may belong to one of four 

categories: (i) a simple inspection by inspecting one single item once; (ii) a batch inspection; 

(iii) a repeated inspection by inspecting the same batch or a unit more than once; and (iv) a 

dynamic inspection to inspect units in a batch sequentially, and a decision of whether to reject 
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or accept the batch is made dynamically instead of at a fixed fraction (Mandroli et al., 2006). 

Repeated inspection is similar to dynamic inspection because they both inspect another 

inspection before reaching a decision. The difference between them is that the repeated 

inspection examines the same item or the same batch of units, whereas the dynamic 

inspection inspects a different item. It is also worth noting that this study on inspection 

strategies does not differentiate between inspections conducted by automated devices, human 

inspectors, or a mix of both (e.g., human inspection followed by an automatic inspection). 

This is because the actual inspection actions are usually modelled using a set of parameters 

that are independent of the actual inspection methods (such as type-I and type-II errors 

defined in section 3.2.4 and the number of repetitions). In reality, inspection may be 

performed due to legislation and regulations. This is a typical issue in industry what causes a 

lot of costs that could be reduced by optimising inspection stations through the processing 

workstations. 

3.2.4    Inspection errors 

During the inspection operation two types of error may be generated by the inspection 

procedure: type-I error and type-II error (Montgomery, 1997). Type-I and type-II errors can 

be summarised in following confusion matrix (Visa et al., 2011, Gluga et al., 2011). 

        
Item 

Decision based on inspection 

Accept Reject 

Conforming Correct decision Wrong decision 

Type-I error 

Non-conforming Wrong decision 

Type-II error 

Correct decision 

3.2.5    Inspection time  

In manufacturing processes the inspection time plays a major role in the total manufacturing 

costs. Longer inspection times constrain the inspection capacity, which may cause increased 

inspection errors and create new queues in the system that might increase work in-progress 
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(WIP) and flow. The inspection time for each inspection station can be represented by the 

inspection cost (Shiau, 2002, Shiau et al., 2007).  

3.2.6   Cost components 

Producing high-quality products at low cost is always one concern for a multistage 

manufacturing system. If products are manufactured to an acceptable quality level, then all 

manufacturing costs will be recovered and the manufacturer will be rewarded with a net 

profit. For that reason, most of the studies chose to focus on specific cost components related 

to quality failures (both internal and external failures) and inspection (Raz, 1986 and 

Mandroli et al., 2006). Internal failure costs are associated with failures and defects of 

processes, equipment, products, and product materials that fail to meet quality standards or 

requirements. External failure costs are generated by defective products, and processes during 

customer use. They include warranties, complaints, replacements or recalls, repairs, poor 

packaging, handling, and customer returns. Other costs included are inspection cost and 

manufacturing cost. Inspection cost only occurs when an inspection station is located after the 

workstation; otherwise the manufacturing cost will take place. The inspection cost is a sum of 

the fixed cost and the variable cost, and was described in chapter 2.  

In summary, characteristics of the AOIS problem were described. All of these characteristics 

will be considered in the developed GCM, such as costs of inspection, manufacturing, 

internal and external failure. Also, the GCM takes into account the constraints in terms of 

limited inspection stations. 

3.3   General cost model formulation 

The multistage manufacturing process to be considered is such that a product is produced 

through the processing workstations, and manufactured by specialised production operations 

to create the final product. The processing workstations are considered to be specialised 

operations or points and, thus, each processing workstation performs a unique function. The 
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first processing workstation receives the raw materials and the last involves shipment of the 

final product. Inspection is possible at all points. The purpose of any inspection is to screen 

out defective items from non-defective ones, in order to avoid processing items if they are 

already defective. The aim is to locate inspection stations in such a way that the total cost of a 

product can be reduced. The total cost is defined as the sum of the costs of production, 

inspection and failures (during production and after shipment). Since each processing 

workstation is unique, the quality characteristics of that processing workstation will be 

unique, and therefore the inspection at that stage will be different from that at another stage. 

At each inspection point, it is possible to perform either no inspection or multiple inspections 

of each item or batch of input. Once an item is identified by an inspection station as being 

defective, it is assigned to a repair facility on the same processing workstation. The item is 

either inspected again to determine that it is not defective or it is repaired in the event that is 

defective. In either case it is assumed that this repair facility is perfect. 

After the repair, the quantity classified as non-defective from the inspection join the repaired 

items from the repair facility and this total, which is the same as the input entering the 

inspection point, is input into the next processing workstation stage. This is done in order to 

avoid any delivery delay, and to ensure that production can meet the required demand. The 

cycle of production, inspection and repair, for items classified as defective, then repeats itself 

through all of the processing workstation stages. At the end of the manufacturing system, the 

external failure cost representing repair and replacement is incurred for each non-conforming 

unit that exits the system. It is assumed that the developed model works at quasi static 

equilibrium situations that in reality may last for a business relevant period in time. 

Therefore, the developed model uses static variables for calculating the costs. Figure 3.3 

illustrates the characteristics of the type of multistage system under consideration consisting 

of n processing workstations as follows: 
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1. The system is considered to be made up of workstations arranged serially, and parts enter 

the system in batches. 

 
2. Each processing workstation has a specific probability of producing defective parts.  

3. Sampling inspection is performed if an inspection station is located after a workstation in 

the sequence. 

 
4. Only one final product is considered in the system. 

5. The product and the process are discrete. 

 

 6. The system has a limited number of inspection stations. Each inspection station can be 

assigned to perform an inspection operation for one or more workstations. 

 

 

 

 

 

 

 

7. Non-conforming items can either be scrapped or repaired on the same processing 

workstation. At each inspection station there is a specific probability of selecting non-

conforming items for rework. 

 8. Inspection time for each inspection station can be represented by the inspected cost. 

9. Two types of inspection errors are considered in the system: probability that the k-th 

inspection operation classifies a conforming unit (CU) erroneously as a non-conforming 

unit (NCU) ( m ); and probability that the k-th inspection station classifies an NCU as a 

CU erroneously ( m ). 

 

 

 

 

 

 

 

 

Figure 3.3:  A serial multistage manufacturing processes 
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The significance of the contribution in this chapter is that the general cost model is developed 

to be very different from those in the literature review. The main differences are:  

1. Previous cost models were used full inspection if an inspection station is located after a 

workstation. The GCM uses sampling inspection plan to perform inspection. This leads to 

the development of total inspection cost and number of parts for reworking models which 

are very different from those in the previous literature.  

2. Previous cost models were represented external failure cost items as aggregate or only 

include one of them. The GCM considers all items of external failure cost. This leads to 

the development of external failure cost model which is very different from those in the 

previous literature.   

3.  Previous cost models used the total cost per input unit and the total cost per output unit as 

the objective function. The GCM is developed such that the number of conforming parts 

can be computed at each processing workstation and the optimality is defined in terms of 

minimising cost per item accepted by the customer. This optimality is very different from 

those cost models in the previous literature.  

4. Simplified assumptions which were introduced in those cost models in the literature review 

have led to the lack of generality. However, the GCM is developed to include all 

characteristics of the AOIS problem which is very different from those in the previous 

literature and to maintain the generality. 

3.3.1   Inspection stations 

For the multistage manufacturing system being considered, the model is developed based on 

assumption that there is a limited number of inspection stations available (e.g. limited budget) 

and an inspection policy at each workstation can be described as given by equation (3.1).  
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3.3.2 Workflow analysis  

Consider the number of conforming parts departure a workstation or inspection location, and 

the number of defective parts entering the following processing workstation or inspection 

station. These flow constraints can be classified into three classes: good parts; defective parts; 

and reworked parts. The number of good parts produced at processing workstation k, is equal 

to the number of parts flowing out of the immediately preceding inspection station, or, 

processing workstation (k-1). Equation (3.2) represents the first workstation.   

)1( 11 ZBNG      (3.2)     

For all other stations the equation is defined recursively by equation (3.3).     

   
m m

kkmkkkkkkkmk NGVZRNDNGVNG 111111 )1()1]()1([    (3.3)                    
 
 

The number of defective parts produced at first workstation is given by equation (3.4).  

11 ZBND                              (3.4)                                          

For all other stations, is given recursively by equation (3.5).  

111111 )1(])1([    k
m

kmkkkkkk
m

kmk NDVZRNDNGVND      (3.5) 

The number of reworking parts is computed as follows: (i) if Vkm=1 and the number of bad 

items (bk) in the sample at workstation k is greater than the acceptance number (ak) (in this 

case, the sample size is rejected and a full inspection of the rejected batch is performed 

consecutively in the same workstation); (ii) if Vkm=0 or number of bad items in the sample 

(bk) is less than or equal ak, in this case the number of reworking parts is zero. The number of 

parts as non-conforming but repairable is given by equation (3.6).  
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(3.6)
 

It should be noted that the abbreviations used in the developed cost model (e.g. m , m ) are 

commonly used by many studies in the literature review (Lee and Unnikrishnan, 1998, Rau 

and Chu, 2005, Shiau, 2007). 

3.3.3    General cost model analysis 

Manufacturing cost: the manufacturing cost of the part in workstation k is a product of the 

manufacturing cost per part (Uk) at workstation k multiplied by the number of parts processed 

at a particular workstation. This cost is assumed to be a sum of the material cost, overhead 

cost, and setup cost. The number of parts processed at workstation k is the sum of the number 

of parts correctly classified as conformed parts following into process workstation k from the 

previous process workstation and the number of non-conformed parts incorrectly classified as 

conformed parts following into workstation k from the previous process workstation. The 

number of conformed parts (CPk) is given by equation (3.7). 

 

)()1()]1([ 1111    kk
m

kmkk
m

kmk NDNGVNGVCP            (3.7) 

The number of non-conformed units erroneously considered as conformed units following 

into workstation k from the previous workstation is NDk-1 multiplied by the probability that 

the inspection station after workstation k -1 incorrectly classifies a non-conforming unit as a 

conforming unit. Hence, the number of non-conformed parts (NCPk) is given by equation 

(3.8).  

              ][ 11    kk
m

kmk NDVNCP   (3.8)           

Hence, the total manufacturing cost (TMCk) is defined by equation (3.9). 

              kkkk UNCPCPTMC  ][
  

(3.9) 
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In the case where no inspection station is allocated 0kmV , then the total manufacturing cost 

is computed by equation (3.10).   

              kkkk UNDNGTMC   ][ 11   
(3.10) 

Inspection cost: inspection cost is a sum of the fixed cost and the variable cost. The fixed 

cost (FCm) is a sum of the costs connected with test-equipment installation and setup. The 

variable cost is computed as follows: (i) if Vkm=1 and the number of bad items (bk) in the 

sample at workstation k is greater than the acceptance number (ak) (in this case, a full 

inspection of the rejected batch is performed consecutively in the same stage), the variable 

cost is the total number of conforming parts and the number of defective parts produced at 

inspection station multiplied by the unit inspection cost. (ii) In case of Vkm=1 and number of 

bad items (bk) in the sample at workstation k is less than or equal ak, then the variable cost is 

computed as the number of items in the sample size multiplied by the unit inspection cost. In 

case of Vkm=0, no inspection is performed, the inspection cost is zero. The total inspection 

cost (TICm) is given by equation (3.11).         
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Internal failure cost: the internal failure cost is the sum of reworking cost and scrap cost. At 

each inspection station the non-conforming parts can be scrapped, repaired or incorrectly 

classified as conformed parts. The number of parts as non-conforming but repairable was 

given by equation (3.6).
  
The rework cost is given by equation (3.12).  

kkk gRRC                          (3.12) 
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In the model under consideration the allocation of an inspection station means an inspection 

screen with all the parts being subjected to inspection. Absence of an inspection station is 

indicated by setting 0kmV .This expression represents the number of non-repairable items 

produced at workstation k on detection subsequent m inspection station multiplied by the unit 

scraping cost at workstation k, in case of an inspection station is assigned 1kmV , otherwise 

SCk =0. The scrap cost is given by is given by equation (3.13).
 
  

 kmkmk
m

kmk uNDNGVSC  )]1([          (3.13) 

and the internal failure cost is given by equation (3.14).   

 kkk RCSCIFC      (3.14) 

External failure cost: this is the cost incurred after the products have been sold to customers. 

Examples include the cost of replacement and repair. External failure cost (EFC), is the sum 

of the product of the number of defective parts replaced at the customer‟s end (W× NDk), the 

sale price (P) of the part and the sum of the product of the number of defective parts repaired 

at the customer‟s end (1- W) and the direct cost of materials to repair a defective unit (Y).  

Therefore, external failure cost is given by equation (3.15).                

                        )1(])1([ 
m

kmkkk VYNDWPNDWEFC          (3.15)           

Total cost: The total cost (TC) of processing and inspection of B parts in an n-stage 

manufacturing system is given by equation (3.16). 

               Minimise
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)(         (3.16) 

A customer totally sophisticated in quality determination is hypothesised, that is, one who 

can determine the quality of an item with 100% accuracy. Consequently, in this research, the 

optimality is defined in terms of minimising cost per item accepted by the customer. The 

general cost model is developed such that the number of conforming parts can be computed 
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at each processing workstation. Therefore, the cost for each conforming unit produced is 

given by equation (3.17): 

Cost per conforming unit= FNGTC /    (3.17) 

where: 

)1( n
nF NGNG 

 
 

3.4 Relation between quality and cost   

Companies can lose money because they fail to take opportunities to reduce their quality 

costs. Understanding and improving quality is a key factor in business success, growth, and 

an enhanced competitive position. Quality costing provides the financial information 

required, to understand the cost effectiveness of different inspection locations. Rodchua 

(2006) explains that quality costs have been studied by a number of organisations and it was 

found that quality commonly costs between 5% and 25% of total sales turnover. The cost of 

quality adds a significant proportion to the total cost of a part although they add little intrinsic 

value. Optimisation of the inspection process aims to reduce any unnecessary and avoidable 

costs, such as the cost of additional manufacturing operations on a defective part. It can also 

identify quirks and anomalies in cost allocation.  

The most generally accepted typology breaks down quality costs into prevention, appraisal, 

internal failure, and external failure costs. This typology is often referred to as the PAF 

(prevention, appraisal, and failure). Campanella (1990) defines these costs as follows: 

  Prevention costs are „the costs of all activities specifically designed to prevent poor 

quality in products and services‟. 

 Appraisal costs are „the costs associated with measuring, evaluating, or auditing products 

or services to assure conformance to quality standards and performance requirements‟. 
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 Internal failure costs are „the costs resulting from products or services not conforming to 

requirements or customer/user needs (which) occur prior to delivery or shipment to the 

customer‟. 

 External failure costs are „the costs resulting from products or services not conforming to 

requirements or customer/user needs (which) occur after delivery or shipment of the 

product, and during or after furnishing of a service to the customer‟. 

In real life, almost all manufacturing processing workstations in multistage manufacturing 

systems are unable to deliver products with perfect quality. Hence, introducing quality 

assurance by planning and managing resources, devoted to the inspection and the testing of 

the critical quality of product features, is a very important issue. Human inspectors, 

automated inspection, or a combination of both are often used for quality-assurance purposes. 

These inspection operations may be designed to detect non-conforming items, introduced 

only at the immediately preceding processing workstation. Otherwise, these inspection 

stations may be involved in more diagnosis that traces an underlying anomaly that has existed 

at some previous point, or at all of the preceding processing workstations. The purpose of the 

inspection is to reduce the total manufacturing cost, resulting from the identification of 

defective items processed unnecessarily during manufacturing operations. Wild (1989) 

explains that it would be simply be too expensive to formally inspect items after every 

process. 

Therefore, where to locate inspection stations throughout the process is an important and 

challenging decision in quality control; that is, striking a balance between minimising the 

total cost by capturing defective items at the earliest point, and maintaining the required 

quality of the product.  
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3.5  Computational time against number of workstations 

In AOIS problems, it is clear that a process comprising n serial stages offers 
n2 possible 

inspection combinations. In serial multistage manufacturing processes, as the size of the 

problem grows, so the number of inspection station allocation possibilities increases 

exponentially. As a result, complete enumeration (CEM) of all combinations becomes 

prohibitive. Rau et al. (2005) explained that complete enumeration suffers because of the 

long computation time, especially as the number of workstations increases. Azadeh et al 

(2012) arrived at the same result that complete enumeration of all combinations becomes 

prohibitive as the number of stages increases. The CEM approach is based on the premise 

that all the possible solution combinations are enumerated in the search space, and each one 

is evaluated individually. The solution combination which has the best objective function 

value is selected as the solution for implementation. Usually, the complete enumeration 

method is used as a benchmark for evaluating other optimisation methods. This can only be 

done when the full enumeration of the search space can be generated in a reasonable time. As 

shown in Figure 3.4 that the processing time for solving the AOIS problem grows with an 

increasing number of workstations. The experimental data was approximated using an 

exponential regression model, and we showed a correlation r = 0.723 and coefficient of 

determination r
2 =

 0.967; see equation (3.18): 

)571.0(003.0Time WSe       (3.18) 

where WS: workstation 

This exponential regression equation is the model of the growth of computation time per 

workstation. The exponential function is used to model the relationship between the number 

of workstations and the computational time, where a constant change in the independent 

variable (number of workstations) gives the same proportional change in the dependent 
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variable (time). Consider a serial multistage manufacturing process producing engine valves. 

The engine valves are processed in 36 processing workstations using different machines to 

carry out processes such as cutting, turning, pressing, welding, grinding, heat treatment and 

plating (Engin, 2008). The firm produces valves that vary in price between $1 and $5, 

depending on the type of engine.  

 

Figure 3.4: Schematic showing the duration of computational time against  

the number of workstations. 

Using equation (3.18), the computation time for the engine valve process consisting of 36 

workstations is expected to be 42,299 hours (59 months) on 2.2 GHz CPU and 4GB RAM. 

With the 88 workstations for the turbine blades described in section 3.1, the time is increased 

significantly to 3.322×10
17

hours (4.6139×10
14 

months, about 10
13

 years). This is to be 

compared to the heuristic algorithm which typically requires an average time about 2 minutes 

to find a near to optimal solution for the engine valves problem and about 12 minutes for the 

turbine blade problem on a comparable machine.  

Therefore, from an economic aspect it is impractical that the engine valve or turbine blade 

firms could wait for so long to allocate inspection places by using the CEM. This 

impracticality of the CEM has led to the use of the heuristic algorithm that sacrifices the 
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guarantee of finding an optimal solution in order to find a satisfactory solution in a 

reasonable time. Clearly, the CEM can only be used in problems where the full enumeration 

of the search space can be generated in a reasonable time. In an industry environment, waste 

of time means waste of money. In financial terms, using a heuristic algorithm leads to saving 

money by minimising the total cost of the product, so keeps the company in a good 

competitive position.  

3.6  Computational complexity 

Many problems such as the AOIS are combinatorial optimisation problems. Combinatorial 

optimisation problems involve finding values for discrete variables such that the optimal 

solution with respect to a given objective function is found. A combinatorial optimisation 

problem is either a maximisation or a minimisation problem which has associated with it a set 

of problem instances. The term problem refers to the general question to be answered, which 

usually has several parameters or variables with unspecified values. The term instance refers 

to a problem with specified values for all the parameters (Ridge, 2007). 

More formally, an instance of a combinatorial optimisation problem  is a triple ( ,, fS ), 

where S is the set of candidate solutions, f is the objective function which assigns an objective 

function value f (s) to each candidate solution Ss , and  is a set of constraints (Dorigo and 

Stützle, 2004). The solutions belonging to the set SS 
~

of candidate solutions that satisfy the 

constraints  are called feasible solutions. The goal is to find a globally optimal feasible 

solution *s . For minimisation problems this consists in finding a solution Ss
~

* with 

minimum cost, that is, a solution such that )(*)( sfsf  for all Ss
~

 . 

A simple approach to the solution of a combinatorial optimisation problem would be an 

exhaustive search, that is, the enumeration of all possible solutions and the choice of the best 

one. However, as described above, in most cases this approach rapidly becomes infeasible 
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because the number of possible solutions grows exponentially with the instance size n 

(n=number of workstations). For some combinatorial optimisation problems, understanding 

the problem structure, and the exploitation of problem-specific characteristics, allows the 

definition of algorithms that find an optimal solution much more quickly than an exhaustive 

search does. 

When attacking a combinatorial optimisation problem it is useful to know how difficult it is 

to find an optimal solution. A method of measuring this difficulty is given by the notion of 

worst-case complexity. Worst-case complexity O (g (n)) can be explained as follows: a 

combinatorial optimisation problem  is said to have worst-case complexity if the best 

algorithm known for solving  finds an optimal solution to any instance of  having size n 

in a computation time bounded from above by const g (n) (Dorigo and Stützle, 2004). In 

particular,  is solvable in polynomial time if the maximum amount of computing time 

necessary to solve any instance of size n of  is bounded from above by a polynomial in n.  

If k is the largest exponent of such a polynomial, then the combinatorial optimisation problem 

is said to be solvable in )( knO time. 

An important theory that characterises the difficulty of combinatorial problems is that of NP-

completeness. This theory classifies combinatorial problems into two main classes: those that 

are known to be solvable in polynomial time, and those that are not. Problems in the first 

class are said to be tractable and problems in the latter intractable. The theory of NP-

completeness distinguishes between two classes of problems of particular interest: the class P 

for which an algorithm exists that outputs in polynomial time the correct answer („„yes‟‟ or 

„„no‟‟), and the class NP for which an algorithm exists that verifies for every instance, 

independently of the way it was generated, in polynomial time whether the answer „„yes‟‟ is 

correct (Dorigo and Stützle, 2004). Clearly, P is a subclass of NP. A problem is said to be 

NP-hard if every other problem in NP can be transformed to it by a polynomial time 
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reduction. Intuitively, a polynomial time reduction is a procedure that transforms a problem 

into another one by a polynomial time algorithm. Therefore, an NP-hard problem is at least as 

hard as any of the other problems in NP. However, NP-hard problems do not necessarily 

belong to NP. An NP-hard problem that is in NP is said to be NP-complete. Therefore, the 

NP-complete problems are the hardest problems in NP: if a polynomial time algorithm can be 

found for an NP-complete problem, then all problems in the NP-complete class can be solved 

in polynomial time (Congram, 2000).  

3.7   Conclusion 

A novel general cost model for solving allocation of inspection stations in serial multistage 

manufacturing processes was developed. The cost of AOIS problem involves many 

characteristics, including inspection errors (type I and type II), internal failure cost (rework 

and scrap), external failure cost (repair and replacement), inspection cost (fixed and variable) 

and manufacturing cost. The developed general cost model considers all these characteristics 

together. CEM is guaranteed to find the optimal solution, and prove its optimality for every 

instance of a combinatorial optimisation problem. In AOIS problem as the size of the 

problem grows, the number of inspection station allocation possibilities increases 

exponentially. As a result, CEM of all combinations becomes impractical. This impracticality 

of CEM has led to the use heuristic algorithm that sacrifices the guarantee of finding optimal 

solutions for the sake of obtaining good solutions in polynomial-time. In terms of economic 

aspect, using such heuristic algorithm leads to save money by minimising the computation 

time. To solve AOIS problem, various metaheuristic methods will be studied and 

investigated, to select the appropriate method for tackling the AOIS problem. This will be 

described in the next chapter.  
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Chapter 4 

Optimisation methods  

characteristics and selection 

__________________________________________________________________________ 

It is well known that in serial multistage manufacturing processes, as the size of the problem 

grows, so the number of inspection station allocation possibilities increases exponentially 

(Valenzuela et al., 2004, Rau and Chu, 2005, Mandroli et al., 2006, Shiau, 2007). To identify 

the appropriate approach to the AOIS problem, different optimisation methods were 

investigated and studied. These optimisation methods can be classified as either exact or 

metaheuristic methods. The optimisation methods will be studied in terms of their 

characteristics. The aim is to select the appropriate method for tackling the AOIS problem. 

The following sections give a description of combinatorial optimisation problems and the 

optimisation methods followed by discussions of their characteristics.  

4.1  Combinatorial optimisation problems 

Combinatorial optimisation problems involve finding values for discrete variables such that 

the optimal solution with respect to a given objective function is found. Many optimisation 

problems of practical and theoretical importance are of combinatorial nature. Combinatorial 

optimisation problem is either a maximisation problem or a minimisation problem with an 

associated set of instances. Examples are Travelling Salesperson Problem (TSP), the 

Quadratic Assignment Problem (QAP) and the Job Shop Scheduling Problem (JSP) (Ridge, 

2007). Combinatorial optimisation problems are very hard to solve, which means that very 

often these problems are classified in the Non-Deterministic Polynomial (NP) class. NP 

problems are those problems that can only be verified but not be solved in deterministic 

polynomial time (McCallum, 2005). Within this set there are two related sets, NP-Complete 
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and NP-Hard. NP-Hard problems are those problems for which all decision problems in NP 

can be reduced to by a polynomial reduction (McCallum, 2005). If a problem is in the class 

NP and is NP-Hard then it is called NP Complete.  

4.2    Exact methods 

The concept of exact methods is based simply on enumerating the full solution space. Some 

of the most popular exact methods are the Complete Enumeration Method (CEM), Integer 

Programming (IP), Linear Programming (LP), Non-linear Programming (NLP), Branch and 

Bound (B&B) and Dynamic Programming (DP). Exact algorithms are guaranteed to find the 

optimal solution, and prove its optimality for every instance of a combinatorial optimisation 

problem. However, owing to the inherent complexity of combinatorial optimisation 

problems, many of them are NP-hard, exact methods that need an exponential run-time in the 

worst case.  

As described in the literature review that complex problems such as the AOIS problem may 

require exponential time in the worst case. Liang and Smith (2004), Ridge (2007), Volsem 

and Neirynck (2009) and Azadeh et al (2012) described that using exact methods is infeasible 

as a result of the exponential size of the solution space with increasing problem complexity. 

Therefore, one has to resort to using different algorithms and, typically, to sacrifice the 

guarantee of finding optimal solutions for the sake of obtaining good solutions in polynomial-

time. The exact methods are excluded in this chapter and described in Appendix A.  

4.3   Metaheuristic methods  

A metaheuristic is formally defined as: „an iterative generation process, which guides a 

subordinate heuristic by combining intelligently different concepts for exploring and 

exploiting the search space, learning strategies are used to structure information in order to 

find efficiently near-optimal solutions‟ (Osman and Laporte, 1996). 
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Meatheuristics are a more recent attempt to combine basic heuristics into a flexible higher-

level framework, in order to better solve complex problems (Ridge, 2007). Some of the most 

popular metaheuristics for combinatorial optimisation are Simulated Annealing (SA), Tabu 

Search (TS), Genetic Algorithm (GA), Particle Swarm Optimisation (PSO), Evolution 

Strategy (ES), Estimation of Distribution Algorithms (EDAs), Differential Evaluation (DE), 

Covariance Matrix Adaptation Evolution Strategy (CMA-ES) and Ant Colony Optimisation 

(ACO). Many of these metaheuristics have achieved notable successes in solving difficult 

problems.  

4.3.1    Simulated annealing      

Simulated annealing is a stochastic search method, emulative of the physical annealing 

process, where an alloy is cooled gradually so that a minimal energy state is achieved. 

Kirkpatrick et al. (1983) were the first to propose and demonstrate the application of 

simulated annealing techniques for combinatorial optimisation problems. SA attempts to 

solve combinatorial optimisation problems by a process analogous to physical annealing. The 

analogy associates the set of solutions to the problem with the states of the physical system; 

the objective function corresponds to the physical energy of the solid, and the ground state 

corresponds to a globally optimal solution. 

While applying SA, a tentative solution s is generated in each step, which is accepted if the 

objective function is improved. If the tentative solution s is worse than the current solution, 

then it is accepted based on probability, which depends on the objective function difference 

of the current solution s , new solution s and parameter T, called temperature (Stützle, 

1998b). This parameter T is lowered (as is also done in the physical annealing process) during 

the run of the algorithm, reducing the probability of accepting worsening moves. The 

probability paccept to accept worse solutions is often defined according to the Metropolis 

distribution, as shown in equation (4.1).   
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One of the key properties of the algorithm is that, the method sometimes accepts worse 

solutions than its current best. This gives it a greater probability of getting itself out of local 

optima (McCallum, 2005). The probability of such a move gradually decreases during the 

search, until a point is reached whereby only moves that result in high quality solutions are 

accepted.  Because of this, the SA technique has been widely applied for a variety of complex 

problems. However, El Gamal et al. (1987) and Ram et al. (1996) pointed out that a major 

disadvantage of the technique, is the need for a great deal of computer time for many runs 

and also determining the „cooling schedule‟ is difficult; for example, what is a sufficient 

amount of iterations at each temperature? In addition, determining the initial temperature is 

also difficult. Starting too high will waste computation time, while starting too low will 

decrease the quality of the search.  

4.3.2    Tabu search  

Tabu search is an iterative procedure for solving discrete combinatorial optimisation 

problems. It was first suggested by Glover (1977), has become very popular and been applied 

to many difficult combinatorial optimisation problems, in a number of different areas. 

Thiesen (1998) stated that the TS approach has four main elements: 

   a local search strategy. 

   a mechanism to discourage a return to a recently visited solution, the „Tabu list‟. 

   a „Tabu tenure‟ policy, used to determine how long a solution will remain in the Tabu list. 

   a mechanism to alter the search path when no improvement has been made for some time. 

The local search is, usually, a simple, greedy strategy, which finds an improved solution in 

the immediate neighbourhood of a current solution. Tabu search is equipped with a special 
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mechanism to avoid being trapped in local optima. It uses a short-term memory to escape 

from local optima. To prevent the local search returning immediately to a previously visited 

solution and to avoid cycling, in TS moves to recently visited solutions are forbidden 

(Glover, 1986). In TS recently visited solutions are added to the Tabu list, and if a solution 

found by the local search already exists in the Tabu list it is forbidden, and an alternative, 

non-Tabu, solution will be used. To ensure the search does not quickly exclude all 

neighbours, solutions are only held in the Tabu list for some period of time. This policy is 

usually called Tabu tenure. The mechanism used to adjust the search path differs from 

problem to problem, but a common approach is simply to choose a random solution in the 

neighbourhood of the current solution. Consequently, Tabu search sometimes allows non-

improving solutions to be used for the sake of avoiding local optima. 

The Tabu search algorithm, like most of the computational intelligence methods, provides a 

simple method for solving complex problems. However, the method requires advanced 

parameter tuning, particularly for Tabu list size (tl) and Tabu tenure. Good parameter setting 

can only be found empirically and requires considerable fine-tuning (Stützle, 1998b).  

4.3.3    Genetic algorithm     

A genetic algorithm is a metaheuristic strategy inspired by Darwin‟s principle of natural 

selection. GA employs random choice to guide a highly exploitative search, striking a 

balance between the exploration of the feasible domain and the exploitation of good 

solutions. Genetic algorithms are a specific type of evolutionary algorithms, which are 

population-based, adaptive search algorithms designed to tackle optimisation problems. They 

are inspired by models of the natural evolution of species, and use the principle of natural 

selection for further evolution. Each individual in an evolutionary algorithm represents a 

solution with an associated fitness value. 
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The three key functions used in GA are selection, mutation, and recombination. Selection 

prefers fitter individuals to be chosen for the next generation, and for the application of the 

mutation and recombination operator. Mutation is a unary operator, aimed at introducing 

random modifications to an individual. Recombination combines the genetic material of two 

selected individuals, also called „parents‟, by means of a crossover operator to generate new 

individuals, called „offspring‟. The crossover operator is usually understood as the main 

operator driving the search in genetic algorithms. The idea of crossover is to exchange useful 

information between two individuals and, in this way, to generate hopefully better offspring 

(Langner et al., 2002).  

Elitism may be incorporated as a feature where the fittest member of the current generation 

survives into the next generation. Elitism strategy preserves the best individuals in one 

generation and translates them to the next generation without any change (Weise, 2009). 

Kumar and Rockett (2002) described that in a single-objective optimisation, elitism may have 

the disadvantage of premature convergence, but in the case of multi-objective optimisation 

the elitism improves the performance. Mutation is understood as a background operator, 

which introduces small, random modifications to an individual. To keep the population at a 

constant size the selection operator is used, choosing individuals with preferably higher 

fitness (survival of the fittest). Finally, the complete cycle of recombination, mutation and 

selection is called „generation‟.  

Genetic algorithms model the natural processes of the inheritance of coded knowledge and 

survival, by fitness or degree of adaptation to the environment. New application of GA 

requires only a coding of the problem to this artificial space. However, the quality of such 

coding is crucial to the genetic algorithms performance. Operating in this space means using 

problem blind operators that often ignore some important information that could be utilised to 

guide the search (Janikow, 1993). In addition, determining the size of the population in GA is 



 

69 
 

a crucial factor. Choosing too small a population size increases the risk of converging 

prematurely to local minima, since the population does not have enough genetic material to 

cover the problem space sufficiently. On the other hand, a larger population has a greater 

chance of finding the global optimum at the expense of more CPU time (Viswanadham et al., 

1996). 

4.3.4 Evolution strategy  

Evolution strategies (ES) were introduced by Rechenberg (1964) and Schwefel (1965). The 

first version of the algorithm was a so-called (1+1)-ES, in which one parent created one 

offspring by mutation. The offspring replaced the parent if it had a better fitness. After that, 

ES has been extended by many studies with a population of parents creating   offspring 

using both mutation and recombination. The main difference between ES and the 

generational EAs is the selection procedure. Evolution strategies use deterministic selection 

whereas selection in generational EAs is probabilistic. Two main selection strategies exist in 

ES; the )(  -ES and the ( , )-ES. In )(  -ES, the   parents create  offspring. The 

next population is then formed by deterministically selecting the best individuals among the 

available   individuals. The number of offspring   is usually less than the total 

population size, which gives an algorithm with overlapping populations (Dianati et al. 2002). 

For this reason, )(  -ES is sometimes referred to as a Steady-state EA (Ursem, 2003). The 

other strategy, ( , )-ES, also generates   individuals from the  parents. However, in 

),(  -ES the parent population is not included in the source population in the selection 

procedure. The population in ( , )-ES is therefore non-overlapping. Hence,   must be 

larger than , because individuals are not cloned in ES. Most ES algorithms use self-

adaptation to adjust the search process to the problem (Ursem, 2003). The idea in self-

adaptation is to encode algorithmic parameters in the genome and use these parameters to 
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modify the individual. The hypothesis is that good solutions carry good parameters; hence, 

evolution discovers good parameters while solving the problem. 

4.3.5  Estimation of distribution algorithms  

Estimation of distribution algorithms (EDAs) are also known as probabilistic model-building 

genetic algorithms (PMBGA) or iterated density estimation evolutionary algorithms (IDEA) 

(Shan al., 2006). EDAs explicitly encode the knowledge accumulated in the course of the 

search into well-structured models, typically probabilistic models, and thus it becomes 

possible explicitly to exploit that knowledge to improve the efficiency of the search 

adaptively. More specifically, these models are inductively learnt from good individuals 

(training examples), and are sampled to create the new individuals of the next generation. A 

population is not usually maintained between generations, and genetic operators are omitted 

from EDAs, either partially or completely. Teytaud (2011) stated that the principle of the 

EDA is to use a probability distribution to represent the potential solutions. Teytaud 

described how the EDA iteratively estimates the parameters of the distribution by: 

 Sampling the domain with the current parameterised distribution. 

 Evaluating the sampled points. 

 Selecting the best points. 

 Rebuilding the probability distribution described by these points. 

EDAs are designed to capture the interactions among genes, which represent the internal 

structure of problem solutions, and in this way they estimate the distribution of good 

solutions directly, rather than by employing genetic operators.  

In practice, EDAs are often combined with other heuristics such as local search, guided local 

search and genetic algorithms to solve hard optimisation problems (see, for example, Zhang 

et. al. (2003a, b, 2004)). Hauschild and Pelikan (2011) stated that building explicit 
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probabilistic models is often more time-consuming than using implicit models defined with 

simple search operators, such as tournament selection and two-point crossover. That is why it 

may sometimes be advantageous to use implicit models from conventional evolutionary 

algorithms instead of explicit models from EDAs. 

4.3.6  Differential evaluation  

Differential evolution (DE) is one of the recent population-based stochastic evolutionary 

optimisation techniques. Storn and Price (1995) first proposed DE as a heuristic method for 

minimising non-linear and non-differentiable continuous space functions. Differential 

evolution is a population-based search algorithm, which is an improved version of the genetic 

algorithm. The main reason why better solutions are constructed is that genetic algorithms 

rely on crossover while DE relies on mutation operation. This main operation is based on the 

differences of randomly sampled pairs of solutions in the population (Karaboga and Okdem, 

2004). In DE, all solutions have the same chance of being selected as parents without 

reference to their fitness value. The DE algorithm also uses a non-uniform crossover that can 

take child vector parameters from one parent more often than it does from others. By using 

the components of the existing population members to construct trial vectors, the 

recombination (crossover) operator efficiently shuffles information about successful 

combinations, enabling there to be a search for a better solution space. 

Like other evolutionary algorithms, the first generation is initialised randomly, and further 

generations evolve through the application of a certain evolutionary operator until a stopping 

criterion is reached. The optimisation process in DE is carried out with four basic operations, 

namely initialisation, mutation, crossover and selection (Vanitha and Thanushkodi, 2011). 

4.3.7 Covariance matrix adaptation evolution strategy 

The covariance matrix adaptation evolution strategy (CMA-ES) adapts a variance covariance 

mutation matrix used by multivariate normal distributions from which mutations are drawn 
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(Hansen and Ostermeier, 2001, Hansen et al., 2003). This enables the algorithm to generate 

correlated mutations, speeding up evolution significantly for many real-world fitness 

landscapes. Self-adaptation of this mutation matrix is then achieved by integrating 

information on successful mutations on its recent evolution path, by making similar 

mutations more likely. Compared to many other evolutionary algorithms, an important 

property of the CMA-ES is its invariance against linear transformations of the search space. 

In practice the linear transformation is learned by the CMA algorithm. This is a powerful 

optimisation procedure and performs especially well in rugged search-landscapes with 

discontinuities, noise and local optima. The CMA-ES efficiently minimises unimodal 

objective functions and is, in particular, superior for ill-conditioned and non-separable 

problems (Auger and Hansen, 2005). Hansen and Kern (2004) showed that increasing the 

population size improves the performance of the CMA-ES on multimodal functions.  

One of the problems with the CMA algorithm, however, is its adhoc and relatively complex 

nature. Another problem pertains to its sensitivity to local optima (Wierstra et al., 2008). In 

addition, Omidvar and Li (2011) stated that a disadvantage of the CMA-ES is its relatively 

high time complexity. This is mainly due to the self-adaptation of the covariance matrix, and 

Eigen-decomposition. It has been shown that the time complexity of calculating and updating 

the covariance matrix is of order O (n
3
). This makes the CMA-ES more computationally 

expensive than other EAs. 

4.3.8 Particle swarm optimisation  

The particle swarm optimisation (PSO) algorithm was first described by Kennedy and 

Eberhart (1995). It is inspired by the social behaviours of bird flocking and fish schooling. 

The PSO has recently been applied in many fields because of its simple structure with a small 

number of parameters, which simplifies the coding of the algorithm. Scientists found that the 

synchrony of flocking behaviour was achieved through maintaining optimal distances 
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between individual members and their neighbours. Thus, velocity plays an important role in 

adjusting for the optimal distance. Furthermore, scientists simulated the scenario in which 

birds search for food and observed their social behaviour. 

Suppose a flock of birds is searching for food in a space where there is only one piece of food 

available. Each particle‟s location in the multi-dimensional problem space is a feasible 

solution to the problem, which is evaluated with a fitness function. A particle in the swarm 

flies through the space near to its own best flying experience and the flock‟s flying 

experience (Azadeh et al., 2012). In other words, the strategy of the bird for finding the food 

is to change its velocity to fly near the best place that it has already experienced. PSO 

actually uses both aspects of cooperation and competition among the individuals in the 

population, which means that it combines a local and a global search to reach the global 

optima. The distance of the particles to the food is measured by the pre-determined fitness 

function in all iterations. The particles in a local neighbourhood share their information about 

their „„best‟‟ positions, and then use the information to adapt their own velocities, and thus 

update their positions. 

In fact, each particle in this swarm has two kinds of intelligence, namely self-intelligence and 

social-intelligence (Azadeh et al., 2012). The PSO algorithm is similar to other evolutionary 

algorithms. In PSO, the population is the number of particles in a problem space. Each 

particle will have a fitness value, which will be evaluated by a fitness function to be 

optimised in each generation. Each particle knows its best position and the best position so 

far among the entire group of particles. The local best (lbest) of a particle is the best result 

(fitness value) so far reached by the particle, whereas the global best (gbest) is the best result 

in terms of fitness over the entire population. The particle will have velocity, which directs 

the flying of the particle. In each generation the position and the velocity of the particles will 

be updated as given by equations (4.2) and (4.3): 
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The PSO has gained increasing popularity among researchers and practitioners as a robust 

and efficient technique for solving difficult population-based stochastic optimisation 

problems. It has been applied successfully to flow-shop scheduling problems (Liao et al., 

2007), multiple-level warehouse layout design problems (Önüt et al., 2008) and optimum 

controller design for automatic voltage regulator (AVR) power systems (Aghababa et al., 

2010). PSO is a modern evolutionary algorithm comparable with the genetic algorithm (GA). 

It is similar to the GA in some aspects, since it starts with a randomly generated population 

(solution), has a fitness function to evaluate the solutions, and uses random techniques to 

update the population in all iterations. However in the PSO, unlike the GA, updating the 

particles depends on their memory and so does not have special operators. It is also important 

to note that: „„it has a more global searching ability at the beginning of the run and a local 

search near the end of the run. Therefore, while solving problems with more local optima, 

there are more possibilities for PSO to explore local optima at the end of the run‟‟ (Önüt et 

al., 2008). 

4.3.9  Ant colony optimisation 

The ant colony optimisation (ACO) algorithm was first proposed in 1991 by Marco Dorigo, 

in his PhD thesis, „Optimisation, Learning, and Natural Algorithms‟, and, since then has 

become very popular after its further publication, for solving the travelling salesman problem 

(TSP) (Dorigo et al., 1996). ACO algorithms are inspired by the foraging behaviour of real-

life ant colonies, in which individual ants drop a chemical substance called a pheromone on 

the path, while moving from the nest to the food source and back. They communicate 

information about the food source using pheromones along the ground. In the same way, 

artificial ants use a memory mechanism to store some numeric information about the states 
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they visit, achieving the same indirect communication. When an ant finds a food source it 

returns to the nest. Since ants on a short path will return to the nest more quickly, more 

pheromones will be dropped on the shorter paths. As a result, paths that are more regularly 

travelled become more attractive and, by means of that self-strengthening behaviour, will be 

used more frequently. Owing to this interesting ant behaviour, it was observed that, after 

some time, a colony of ants would select the shortest path from the nest to the food source 

(Dorigo et al., 1996). The ant colony optimisation algorithm is based on ant foraging 

behaviour, as explained above.  

Ant Colony Optimisation is a relatively recently developed technique for solving NP- hard 

optimisation problems (Dorigo and Stützle, 2004). ACO has the advantage of using an 

adaptive memory, which involves keeping track of recent decisions made and solutions 

found, or generating synthetic parameters to describe the search. More specifically, it is based 

on the foraging activity of ants, and can be viewed as both a successful application of swarm 

intelligence and a metaheuristic. 

4.3.10  Conclusion 

In summary, owing to the practical importance of optimisation problems, many algorithms 

have been devised for their solution. These are classified as either exact or metaheuristic 

algorithms. In general, one is interested in solving the AOIS problem as efficiently as 

possible, where „efficient‟ usually means as fast as possible. In fact, as a result of the high 

complexity and difficulty of optimisation problems, often exact approaches (that guarantee to 

find the optimal solution) are only feasible for small size problems, and can require a lot of 

computational effort. In contrast, different approaches based on metaheuristics are described, 

which are capable of finding, good and sometimes optimal, solutions to complex problems, in 

a generally shorter computation time (Bianchi, 2006). In addition, metaheuristics are 

designed to be general purpose algorithms that can be applied without major modifications to 
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many problems. The characteristics for exact and metaheuristic optimisation methods will be 

discussed in the next sections. The aim is to find the suitable approach to solve the AOIS 

problem.  

4.4    Classification of metaheuristics  

Metaheuristics are typically high-level strategies which guide an underlying, more problem 

specific heuristic, to increase their performance. Many of the metaheuristic approaches rely 

on probabilistic decisions made during the search. But, the main difference to pure random 

search is that in metaheuristic algorithms randomness is not used blindly but in an intelligent 

and biased form (Birattari et al., 2001). There are different ways to classify and describe 

metaheuristic algorithms. The most common way of classifying metaheuristics used by 

Birattari et al. (2001), Blum and Roli (2003), Mills et al. (2003), Ridge (2007) and (Rajab , 

2012) are summarised as follows: 

 Memory usage versus memory-less methods. One of the possible characteristic of 

metaheuristics is the use of the adaptive memory to influence the future search direction. 

Memory is explicitly used in tabu search. Short term memory is used to forbid revisiting 

recently found solutions and to avoid cycling, while long term memory is used for 

diversification and intensification features. Metaheuristics without adaptive memory 

determine their next action solely on the current state of their search process. This means that 

they do not have the ability to memorise traces that they used a few cycles before (Ridge, 

2007, Mills et al 2003). In ant colony optimisation an indirect kind of adaptive memory of 

previously visited solutions is kept via the pheromone trail matrix which is used to influence 

the construction of new solutions. Also, the population of the genetic algorithm could be 

interpreted as a kind of memory of the recent search experience. On the contrary, simulated 

annealing does not use memory functions to influence the future search direction and 

therefore is memory-less algorithm. 
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 Population-based versus single-point search. Some (metaheuristic) methods use a 

single-point search to create a solution, while other methods use a population. If the 

algorithm is working in a population solution, it is a population based algorithm. Otherwise, 

it is single point search algorithm, where sometimes it is called a trajectory algorithm like 

Tabu search (Blum and Roli 2003, Rajab, 2012).The advantage of using a population is to 

increase the exploration of the search space. However, the performance of the method 

depends strongly on the procedure of the population manipulated. Population-based methods 

evolve a set of points in the search space. In the single-point search, only one single solution 

is manipulated at each iteration of the algorithm. Tabu search and simulated annealing are 

such single-point search methods. On the contrary, in ACO algorithms, PSO, and GA, a 

population of ants, particles or individuals, respectively are used. 

 Dynamic versus static objective function. Metaheuristics can also be classified 

according to the way they make use of the objective function. Dynamic metaheuristics 

modify the fitness landscape, as defined by the objective function, during search to escape 

from local minima (Birattari et al., 2001). Tabu search may be interpreted as using a dynamic 

objective function, as some points in the search space are forbidden, corresponding to 

infinitely high objective function values. Yet, all the other algorithms introduced so far use a 

static objective function. 

 One versus various neighbourhood structures. Most local search algorithms are based 

on one single neighbourhood structure which defines the type of allowed moves. In other 

words, the fitness landscape topology does not change in the course of the algorithm. This is 

the case for simulated annealing and tabu search. Some metaheuristics allow swapping 

between different fitness landscapes to help diversify search. Others operate on one 

neighbourhood only. The mutation operator in genetic algorithms may also be interpreted as a 

change in the neighbourhood during the local search. Applications of the crossover operator 
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have been interpreted as moves in hyper-neighbourhoods (Birattari et al., 200, Rajab, 2012), 

in which a cluster of solutions in genetic algorithms these clusters are of size two is used to 

generate new solutions. On the other side, the solution construction process in ant colony 

optimisation is not based on a specific neighbourhood structure. Nevertheless, one could 

interpret the construction process used in ACO as a kind of local search, but this 

interpretation does not reflect the basic algorithmic idea of these approaches. 

 Nature-inspired versus non nature-inspired. A minor point for the classification of 

metaheuristics is to take into account their original source of inspiration. The algorithmic 

approaches try to take advantage of these phenomena for the efficient solution of 

combinatorial optimisation problems (Ridge, 2007). There are nature-inspired algorithms, 

like genetic algorithms, simulated annealing, particle swarm and ant algorithms, and non 

nature inspired ones such as tabu search. This dimension is of little use as most modern 

metaheuristics are hybrids that fit in both classes. 

Table 4.1 presents the characteristics of the studied optimisation methods. The following 

notations are used: (   ) means that the characteristic is present, (   ) that this characteristic is 

partially present, and (   ) that the characteristic does not appear. It should be noted that may 

not all implementations of these algorithms correspond to this classification, but it rather 

gives an indication of the particular characteristics of these methods in their “standard” use. 

Metaheuristic methods guarantee of finding optimal solutions is sacrificed for the sake of 

getting good solutions in a significantly reduced amount of time. Providing a balance 

between the exploitation and the exploration of a given optimisation problem is the most 

important characteristic for any metaheuristic technique. The exploitation is the accumulated 

search experience. The exploration is to identify regions of the search space, with high 

quality solutions in a problem. The core difference between the metaheuristics concerns the 

particular way in which they try to reach this balance (Birattari et al., 2001). For example, 
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PSO algorithms combine the local search methods (via self experience) with the global 

search method (via neighbouring experience), attempting to balance exploration and 

exploitation (Cruz et al., 2004). In ACO the searching behaviour of ant algorithms can be 

characterised by two main features, exploration and exploitation. Exploration is the ability of 

the algorithm to broadly search through the solution space, whereas exploitation is the ability 

of the algorithm to search thoroughly in the local neighbourhood, where good solutions have 

previously been found. Higher exploitation is reflected in rapid convergence of the algorithm 

to a suboptimal solution, whereas higher exploration results in better solutions at higher 

computational cost due to the slow convergence of the method (Moeini and Afshar, 2009). 

Every metaheuristic approach should be designed with the aim of effectively and efficiently 

exploring a search space. The search performed by a metaheuristic approach should be 

intelligent enough to both intensively explore areas of the search space with high quality 

solutions, and to move to unexplored areas of the search space when necessary. 

The concepts for reaching these goals are nowadays called intensification and diversification 

(Blum and Roli, 2003). The main difference between intensification and diversification is that 

during an intensification stage the search focuses on examining neighbours of elite solutions. 

The diversification stage on the other hand encourages the search process to examine 

unvisited regions and to generate solutions that differ in various significant ways from those 

seen before. In ACO algorithms, diversification is achieved through the application of 

pheromone re-initialisation. Intensification is achieved by letting the restart-best solution or 

some ant of the elitist list deposit pheromone. In TS algorithm intensification strategies are 

based on modifying choice rules to encourage move combinations and solution features 

historically found good. They may also initiate a return to attractive regions to search them 

more thoroughly.  
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                               Table 4.1: Characteristics of meatheuristic methods 
 

Methods 

Characteristics 

Memory 

usage 

Population Dynamic 

f(x) 

Multiple 

neighbourhoods 

Nature-inspired 

Simulated annealing   

   

Tabu search  
 

 
 

 

Genetic algorithm  
 

 

  

Particle swarm  
 

 
  

Evolution strategy 

 

 
 

 

  

Evolution of distribution algorithms  
 

 

  

Differential evaluation  

 

 
 

   

Covariance matrix adaption 

evolution strategy 
 

 

 

  

Ant colony  
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Since elite solutions must be recorded in order to examine their immediate neighbourhoods, 

explicit memory is closely related to the implementation of intensification strategies. 

It can be seen from Table 4.1, that some of these (metaheuristic) methods have additional 

characteristics when compared to the other techniques. These characteristics are memory 

usage and population, and may lead to enhancing the performance of the method. As a result, 

a high quality solution can then be obtained. For example, Tabu search uses a short-term 

memory to escape from local minima, whereas in ant colony methods, the ants keep in their 

memory the partial solution built by leaving pheromones on the path they have traversed on 

the construction graph. From one generation to the next, a global memory is updated that 

guides the construction of solutions in the successive population. The best solutions found so 

far by the ants are used for the memory update. In evolutionary methods, the population of a 

genetic algorithm could be interpreted as a kind of memory of the recent search experience. 

This characteristic (memory) will guide these methods to identify regions of the search space 

with high quality solutions. In PSO, the particles of the swarm fly through hyperspace and 

have two essential reasoning capabilities: their memory of their own best position local best 

(lbest) and knowledge of the global or their neighbourhood‟s best global best (gbest). In 

CMA-ES, selection and recombination are the leading operations.  

Some meatheuristic methods are considered as trajectory methods and others are defined as 

discontinuous walk methods. The difference between them is the use of a population of 

search points, or the use of one single search point. In the latter, only one single solution is 

manipulated at each iteration of the algorithm. For example, Tabu search and simulated 

annealing are single-point search methods; in every cycle, one single solution is created. On 

the other hand, a population of ants is used for ant colony algorithms, particles are used in 

PSO and individuals are used in genetic algorithms. However, the performance of a particular 

method depends strongly on the way the population is manipulated (Birattari et al. 2001).  
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In terms of representation of the problem ant algorithms have the advantage of being easier to 

set to problems where there exists an explicit graph representation (McCallum, 2005). In 

ACO algorithms artificial ants are a stochastic constructive procedure that incrementally 

builds a solution by adding opportunely defined solution components to a partial solution 

under construction. Therefore, the ACO metaheuristic can be applied to any combinatorial 

optimisation problem for which a constructive heuristic can be defined (Dorigo and Stützle, 

2004). In addition, Selvi and Umarani (2010) stated that the main advantage of the ACO is 

the Positive Feedback accounts for rapid discovery of good solutions. Also, it can be used in 

dynamic applications. On the other hand, the same authors stated that the PSO method easily 

suffers from the partial optimism, which causes the less exact at the regulation of its speed 

and the direction.  

4.5   Conclusion 

It can be seen from Table 4.1, that the characteristics of the optimisation methods were 

classified and described. Ant colony optimisation and particle swarm are the two methods 

which have the most desirable characteristics of all the methods. To select one of the two 

methods it should be tested that whether it is suitable or not for the AOIS problem. Therefore, 

it is important to understand the difficulty of the problem using fitness landscape. It should be 

noted that to date none of the surveyed studies in chapter 2 investigated fitness landscape for 

the AOIS problem. Understanding the geometry of the landscape for the AOIS problem helps 

for selecting the appropriate algorithm. The experimental results in section 5.5.2 show that 

the ACO is well suited for the AOIS problem than the PSO algorithm. In ACO, the search 

process can be used to identify promising regions of the search space, with high quality 

solutions. This can be done by using the pheromone trails as an adaptive memory of solution 

components, which have been part of the best local minima found so far. The ACO approach 

was rather unexplored for the AOIS problem, at the time this research started. The ACO 
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algorithm will be joined to a local search method to improve the performance of the 

algorithm. The biological inspiration of ant colony optimisation and how it is transferred into 

the algorithms will be described in detail in the next chapter. 
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Chapter 5 

Ant colony optimisation 

___________________________________________________________________________ 

This chapter introduces the biological inspiration of ant colony optimisation along with how 

it is transferred into algorithms. This chapter also explains how biological ants find short 

paths under controlled experimental conditions, and illustrates how the observation of this 

behaviour has been translated into working optimisation algorithms. The general construction 

of the ant system algorithm and its extensions also will be explained. The application of ant 

colony optimisation (ACO) to solve a variety of combinatorial optimisation problems is 

presented. The importance of heuristic information and the local search method for ACO is 

described in this chapter.  

5.1    The biological inspiration 

The ant colony optimisation algorithm was first proposed in 1991 by Marco Dorigo with his 

PhD thesis “Optimisation, Learning, and Natural Algorithms” and has since become very 

popular after its publication for solving the well-known travelling sales-man problem (TSP) 

(Dorigo et al., 1996). Many researchers have since developed ACO variants for tackling well-

known NP-hard problems, and have applied them to a range of different problems such as 

telecommunication networks (Di Caro and Dorigo, 1998), quadratic assignment problems 

(QAP) (Stützle and Dorigo, 1999), scheduling problems (Kumar et al., 2003), vehicle routing 

problems (VRP) (Bell and McMullen, 2004), flexible manufacturing scheduling (Rossi and 

Dini, 2007), graph colouring (Bui et al., 2008), assembly line balancing (Baykasoğlu and 

Dereli, 2009) and layout planning (Ning et al., 2010). A more exhaustive list of the variety of 

applications can be found in Blum (2005). 
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Ants can smell pheromones and they tend to choose, stochastically, paths marked by strong 

pheromone concentrations. Ants release these chemical substances on the path while moving 

from the nest to food sources and back. The pheromone trail-laying and following behaviour 

of some ant species to find the shortest paths has been investigated in controlled experiments 

by several researchers. These experiments employed in what have come to be known as the 

single and double bridge experiments. The single bridge experiment was designed and run by 

Deneubourg et al. (1990), which was cited as the origin of Dorigo‟s work. Goss et al. (1989) 

used a double bridge experiment connecting a nest of ants of the Argentine ant species 

(Iridomyrmex humilis) and a food source. 

Figure 5.1(a) shows the experimental setup for the single bridge experiment. In the 

experiment, the nest of a colony of ants and a food source are separated by a binary bridge in 

which each branch has the same length. Ants are then free to move between the nest and the 

food source. The percentage of ants which choose one or the other of the two branches is 

observed over time. In the experiment, there is initially no pheromone on the two branches. 

Therefore, the ants do not have a preference and they select the branches with the same 

probability. Due to random fluctuations, a few more ants will select one branch over the 

other. As ants release pheromones while walking, a greater number of ants on one branch 

results in a larger amount of pheromone on that branch. This larger amount of pheromone in 

turn encourages more ants to select that branch. Finally, the ants converge on one single path, 

as shown in Figure 5.1(b) (Dorigo and Stützle, 2004). 

The experiment above can be modified so that the branches of the bridge are of different 

lengths (Goss et al., 1989). In this case, the first ants to arrive at the food source are those that 

take the shortest branch. Consequently, when they start on the return leg, more pheromone is 

present on the short branch than on the long branch, stimulating successive ants to choose the 

short branch. In this case, the importance of initial random fluctuations is much reduced, and 
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the stochastic pheromone trail following the behaviour of the ants coupled to differential 

branch length is the main mechanism at work.  

 

 

 

 

 

 

 

Figure 5.2 shows the experimental setup and the results of an experiment with a double 

bridge having branches of different lengths. In Figure 5.2 (a), the ants are shown as they start 

exploring the double bridge. Figure 5.2 (b) shows the distribution of the ants further into the 

experiment. Here, most of the ants have converged on the shortest path. Figure 5.2 (c) shows 

the distribution of the percentage of ants that selected the shorter path.  
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Figure 5.1: Single bridge experiment (Deneubourg et al., 1990). In this case, the ants 
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When the two experiments are compared, the influence of initial random fluctuations in the 

second experiment is much reduced. The results of the two experiments were used to 

construct a probabilistic model of ant foraging behaviour which forms the core of the ant 

colony optimisation metaheuristic. Interestingly, it was found that even when the long path is 

twice as long as the short one, not all ants use the short path, but a small proportion may take 

the longer one. This may be interpreted as a type of „„path exploration‟‟. 

5.2    Ant colony optimisation metaheuristic  

Ant colony optimisation is a metaheuristic in which a colony of artificial ants cooperates in 

finding good solutions to difficult discrete optimisation problems. The term metaheuristic 

was first coined by Glover in 1986 in the first publication of Tabu Search. The term refers to 
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Figure 5.2: Double bridge experiment (Goss et al., 1989); in all trials, 

the vast majority of ants chose the short branch. 
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„„a master strategy that guides and modifies other heuristics to produce solutions beyond 

those that are normally generated in a quest for local optimality‟‟ (Glover and Laguna, 1997). 

Cooperation is a key design component of ACO algorithms. The choice is to allocate the 

computational resources to a set of relatively simple agents (artificial ants) that communicate 

indirectly by stigmergy, that is, by indirect communication mediated by the environment. 

ACO algorithms can be used to solve combinatorial optimisation problems.  

5.2.1 Problem representation 

Ant colony optimisation algorithms are based on a parameterised probabilistic model that is 

used to model the pheromone trails. Artificial ants build their solutions incrementally by 

performing random walks on a connected graph G=(C, L) where C is the set of nodes and L 

is the set of connecting arcs, as shown in Figure 5.3. Each routing through the graph G 

defines a unique vector of solution components. When a constrained version of the problem 

is considered, the problem constraints are built into the ant‟s constructive procedure in such a 

way that in every step of the construction process only feasible solution components can be 

added to the current partial solution. The ants use pheromone values attached to the arcs 

connecting the nodes of the construction graph to make stochastic decisions on how to 

traverse it. The value of this probability parameter for the arc connecting any two nodes i and 

j is denoted by 𝜏𝑖𝑗 .  
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Figure 5.3: Ants construct solutions by building a path from 

a source to a destination node (Dorigo and Stützle, 2004) 
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5.2.2  The metaheuristic 

Many ACO algorithms follow a standard form and can be viewed as three procedures, 

generally referred to as ConstructAntsSolutions, UpdatePheromones and DaemonActions 

(Dorigo and Stützle, 2004). Depending on the application and the designer of an algorithm, 

these procedures can be scheduled and synchronised in any number of ways. The ACO 

framework is outlined in the following procedure: 

Procedure Ant Colony Optimisation 

    Initialise pheromone trails, calculate heuristic information 

     WHILE termination conditions not met DO 

ConstructAntsSolutions 

UpdatePheromones  

DaemonActions {optional} 

       ENDWHILE 

End Ant Colony Optimisation 

ConstructAntsSolutions: An ant builds a solution incrementally by moving through the 

nodes of the graph G as shown in Figure 5.3. Ants travel by applying a stochastic local 

decision strategy that makes use of pheromone trails ( ij ) and heuristic information ( ij ) on 

connections of the graph. While moving, the ant keeps in memory the partial solution it has 

built in terms of the path it has traversed on the graph. Previously visited nodes are 

considered off-limits in future construction steps. Subsequently, starting from the current 

node, an ant moves to still unvisited nodes according to the probability distribution as shown 

in equation (5.1) until a tour is completed. 
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Where k
iN  is the neighbourhood of ant k when in node i. The pheromone trails and heuristic 

information are weighted via two parameters,   and . They determine the relationship 

between the heuristic information and the pheromone and are always positive. The 

neighbourhood of node i contains all the nodes directly connected to node i in the graph 

G=(C, L), except for the predecessor of node i. In this way, the ants avoid returning to the 

same node they visited immediately before node i.  An ant repeatedly hops from node to node 

using this decision policy until it eventually reaches the destination node. Due to differences 

among the ants‟ paths, ants travelling on shorter paths will reach their destinations faster. 

In ACO algorithms, artificial ants are stochastic solution construction procedures, which are 

biased by artificial pheromones and heuristic information. In fact, in the initial stages of the 

search, the pheromones, being set to initial random values, do not guide the artificial ants in a 

useful way. This leads to creating tours of very poor solution quality. The main role of 

heuristic information is to avoid this, by initially biasing ants so that they can build 

reasonably good tours from the very beginning search of the algorithm. Heuristic information 

can be derived from a problem instance to guide ants in the solution construction process. 

The heuristic information is defined in accordance with the characteristics of the problem that 

is yet to be solved, on a case-by-case basis. In many cases, the heuristic information is the 

cost, or an estimate of the cost, of adding the component or connection to the solution under 

construction (Dorigo and Stützle, 2004). 

 Heuristic information review 

Several types of heuristic information are applied in various algorithms. For example, in the 

TSP, the distance between cities is an obvious and computationally inexpensive heuristic to 

use; in other problems, it may be much more difficult to find, or too expensive to compute, 
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meaningful heuristic information which helps to improve performance (Dorigo and Stützle, 

2004). 

Stützle and Hoos (2000) described that the ant system and all other ACO algorithms for the 

TSP use heuristic information ijij d/1 ; that is, the heuristic desirability of going from city i 

directly to city j is inversely proportional to the distance between the two cities. 

Liang and Smith (2004) used an ACO method to solve the redundancy allocation problem 

(RAP). The RAP is a series system of s independent-out-of-n subsystems as shown in Figure 

5.4. A subsystem i is functioning properly if at least ki of its ni components are operational. A 

series-parallel system is where ki=1 for all subsystems. In the formulation of a series-parallel 

system problem, for each subsystem, multiple component choices are used in parallel.  

 

 

 

 

 

 

The aim is to select the optimal combination of the components and redundancy levels to 

meet system level constraints while maximising system reliability. Heuristic information is 

used as follows: 
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Figure 5.4: Series-parallel system configuration (Liang and Smith, 2004) 
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where rij, cij and wij represent the associated reliability, cost and weight of the component for 

the subsystem. Components with higher reliability, and lower cost and weight have a greater 

probability of selection. 

Spiliopoulos and Sofianopoulou (2008) applied ACO for the manufacturing cell design 

problem. The aim was to decentralise and create manufacturing cells by grouping the 

machines into clusters and the various parts into part families. After that, the processing of 

each part family was allocated to a single machine cluster. As a result, the processing times, 

transport and queuing can be reduced and the need for frequent set-up can be eliminated. 

They proposed heuristic information which is used to calculate the attractiveness of assigning 

machine i to every candidate cell k that is not already occupied in full as follows: 

tabukKk

c
n

kj
j

ij

ik 










,...1

1

1

1

   

The tabu set contains the cells that are saturated. Also, kj  denotes that machine j is not 

allocated to cell k. Therefore, the sum in the denominator is the “external” total cost between 

machine i and machines already allocated to cells other than k. The smaller this value, the 

more attractive is the allocation of machine i to cell k. 

Ning et al. (2010) applied the max-min ant system to solve the construction site layout 

planning (CSLP) problem. The max-min ant system will be described in more detail in 

section 5.3.4. CSLP is a dynamic multi-objective optimisation problem as there are different 

facilities employed in the different phases of a construction project. The CSLP problem was 

modelled as a QAP under two objective functions of minimising the representative score of 

safety/environment concerns and the total handling cost of interaction flows between the 

facilities associated with the construction site layout. They used heuristic information to 

assign facility i to location j as follows: 
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where the two vectors fi and dj represent the flow potential of facility i and the distance 

potential of location j, respectively. They are calculated by the sum of the flows (closeness 

relationship) from facility i to all other facilities and the sum of the distances from location j 

to all other locations, respectively. The lower the value of dj, the more central the location is 

considered to be, and the higher the value of fi, the more important the facility is considered 

to be. 

It is concluded that heuristic information is important for ACO and helps to improve the 

performance of ACO. It can be seen from the preceding review that each type of problem 

should have a specific type of heuristic information. According to the literature review, this 

heuristic information has not yet been constructed for the allocation of inspection station 

(AOIS) problem, because this is the first time that the ACO method has been applied to the 

AOIS problem. There is a need to create appropriate heuristic information for the AOIS 

problem. In this research, a novel heuristic information method for ACO will be constructed 

for the AOIS problem and presented in chapter 6. 

UpdatePheromones: Pheromone values are subject to update and change dynamically in the 

course of programme execution, while heuristic values usually remain static throughout the 

search. The set of pheromone values represents the memory of the algorithm; the set of 

heuristic values indicates the desirability of going from node i to node j. This kind of 

pheromone update is called an online step-by-step pheromone update. Once an ant has built a 

solution, it can (by using its memory) retrace the same path backward and update the 

pheromone trails of the used connections according to the quality of the solution it has built. 

This is called an online delayed pheromone update. The solution quality is gauged by 

evaluating the objective function for the given solution components (input variable values). 
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The better the solution quality, the higher the amount of pheromone will be deposited on the 

arcs connecting the nodes visited in the construction of the solution.  

A further essential concept in ant colony optimisation is pheromone evaporation. Pheromone 

evaporation is the process through which the strength of the pheromone trail on the 

components decreases over time. Pheromone evaporation is very important to avoid a very 

quick convergence of the algorithm toward the near-optimal region. It implements a useful 

form of forgetting, favouring the exploration of new areas in the search space. 

DaemonActions: Daemon actions can be used to implement centralised actions which cannot 

be performed by a single ant. In other words, it represents the situation where some extra 

commands need to be processed on a global scale. A good example of a daemon action is 

adding a local search to the ACO algorithm (Dorigo et al., 1996). The importance of adding a 

local search to the ACO algorithm will be described in section 5.4. 

This framework is implemented by many ant colony algorithms and it is important to view 

each algorithm with its motivating domain to gain an understanding of the differences that 

define them as separate algorithms. 

5.3     Ant system (AS) 

This algorithm explains a number of characteristics, positive feedback, a distributed 

architecture and a solution construction procedure. It is based on three initial attempts at 

defining the algorithm: Ant-Density, Ant-Quantity (Dorigo et al., 1991a) and Ant-Cycle 

(Colorni et al., 1992). The three original algorithms were applied to the TSP and differed in 

the amount of pheromone laid and the timing of the trail update. Ant-Density used a constant 

update after every step an ant took. Ant-Quantity used an amount proportional to the distance 

between cities i and j ( ,
ijc

Q
where Q was an arbitrary parameter and cij was the cost of 
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moving from city i to city j). Ant-Cycle was the first to perform the trail update at the end of 

the construction process and was updated with a value proportional to the length of the tour, 

,
kL

Q
where Lk was the length of the k-th tour. Ant system implements the Ant-Cycle method 

of updating at the end of the ant generation and activity function in the Procedure ACO 

Metaheuristic. The main components of the algorithm are the ants‟ solution construction and 

the pheromone update. An ant chooses to move from the current node to the next adjacent 

node based on a rational combination of two factors, namely the heuristic information ( ij ) 

of that move and the quantity of pheromone on the edge ( ij ) which is to be traversed. The 

pheromone matrix (τ) is the memory of the algorithm, allowing indirect communication 

between ants. The next node is selected based on the probability transition rule as described 

in equation (5.1). Equation (5.1) is an equation defining how new solutions are integrated into 

the pheromone matrix. After all the ants have constructed their tours, the pheromone trails are 

updated using equations (5.2) and (5.3). 

           
m
k

k
ijijij ttt 1 )()()1()1(          (5.2)        

where m is the number of ants and ρ is a parameter that reduces the pheromone on unused 

edges, sometimes referred to as the learning rate or pheromone decay.         
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where Q is the total quantity of pheromone per unit length of the trail laid on the edge (i, j) by 

the k-th tour at time t and f (sk) is the length of the k-th ant‟s tour. 

Initial experiments conducted on a set of benchmark problems applied by Dorigo et al. 

(1991b) found that the performance of Ant-Cycle was much better than the other two 
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algorithms. As a result, research on AS focused on improving the characteristics of Ant-

Cycle, which is now known as the Ant System, while the other two algorithms were ignored.   

The Ant System was applied to the QAP by Maniezzo and Colorni (1999). The Ant System 

algorithm joined with local search obtained solutions of comparable quality to the Greedy 

Randomised Adaptive Search Procedure (GRASP) with improved processing time 

(McCallum, 2005).  

A number of algorithmic improvements have been proposed to improve Ant System 

performance. All these improvements have in common that they introduce a form of elitism 

which is able to direct the search more strongly towards the best tours. In addition, because 

the major concern in AS was the treatment of pheromone trail intensities on arcs which may 

leads to early stagnation. The following sections are a description of the main extensions of 

the AS algorithm.  

5.3.1 Ant-Q   

The first main extension to the Ant System was found in Gambardella and Dorigo (1995), 

with an adaptation in Taillard and Gambardella (1997). It was a mixture of the Ant System 

and Reinforcement Learning. Let AQ(r, s), read Ant-Q-value, be a positive real value 

connected to the arc (r, s). It is the Ant-Q equivalent of Q-learning Q-values, and is aimed to 

indicate how useful it is to make move from city r to city s. Let HE(r, s) be a heuristic value 

connected to node (r, s) which allows a heuristic evaluation of which moves are better (in the 

TSP, the inverse of the distance is usually chosen).   

Assume that k is an agent whose task is to construct a tour in the TSP: visit all the cities and 

return to the starting city. Connected to k, there is a list )(rJk  of cities not visited, where r is 

the current city. This list uses a kind of memory to prevent transitions to previously visited 
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cities and to force the ant to build legal tours. An ant k placed in city r moves to city s using 

the equation (5.4), called the action choice rule (or state transition rule):                                                                                                    
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                           (5.4) 

where δ and β are parameters which bias the relative importance of the learned AQ-values 

and the heuristic values, q is a value chosen randomly with uniform probability in [0, 1], 0q  

)10( 0  q is a parameter such that the higher 0q , the smaller the probability of making a 

random choice (good values of 0q  tend to be close to 1(Stützle et al., 2010)) and S is a 

random variable selected according to a probability distribution given by a function of the 

AQ(r, u) and HE(r, u) values, with ).(rJu k  These AQ-values were updated by equation 

(5.5). 

         )),(max),((),()1(),( zsAQsrAQsrAQsrAQ
kJz           (5.5) 

where Jk is the list of cities still not visited by ant k and
 


 
is the discount rate (horizon) which 

is a value in the range [0, 1]. Gambardella and Dorigo (1995) suggested  = 0.3. The idea of 

local trail updates and global trail updates was introduced in their work. The purpose of the 

former was to try and diversify the pheromone matrix, as using global trail updates alone was 

found to converge the matrix too early. The other rules were all very similar to those of the 

Ant System.  

The most interesting contribution of the work of Gambardella and Dorigo (1995) was the 

definition of the λ-branching factor. The λ -branching factor calculates an estimate of the size 

of the search space being focused on by the algorithm at any point in time. Its definition is 

based on the following concept: if for a given node i the concentration of the pheromone trail 

on approximately all the arcs exiting from it becomes very limited, the freedom of choice for 
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expanding partial solutions from that node is very small. As a result, if this condition occurs 

concurrently for all nodes of the graph, the part of the search space that is effectively 

searched by the ants becomes very small. The branching factor for node i is defined as 

follows: if 
max
i is the maximum and 

min
i is the minimum trail intensity on arcs exiting from 

node i, the  λ-branching factor is given by the number of arcs exiting from i which have trail 

intensity as given in equation (5.6). The average-branching factor is the average of the 

branching factors of all nodes and gives an indication of the size of the search space explored 

by the ants. For example, if the average-branching factor is very close to 3, it means that, on 

average, three arcs incident to each node are likely to be chosen. The parameter λ acts as a 

threshold level, which is set to a value in the range 0 < λ <1. To eliminate the influence of 

different settings for λ, Ridge (2007) suggested that a fixed value (λ= 0.05) may be used.  

)( minmaxmin
iiiij                                                                 (5.6)  

where 
max
i and 

min
i  are the extreme pheromone intensity values in the pheromone matrix 

(τ), i is a node and j is the arc connects between two nodes. 

In Gambardella and Dorigo (1995), Ant-Q was compared to the Ant System using the TSP 

and was generally found to be better in terms of the mean solution found, but the best results 

obtained in number of iterations for each algorithm were the same. Mariano and Morales 

(1999) used Ant-Q in the design of water distribution irrigation networks, a complex real-

world problem. Gambardella and Dorigo (1995) used Ant-Q to successfully solve TSP 

(Oliver 30) that has been solved by genetic algorithm. They found that the mean (424.44) and 

the standard deviation (0.46) achieved by the Ant-Q were better than the mean (425.44) and 

the standard deviation (0.51) achieved by GA. 
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5.3.2 Ant colony system (ACS) 

The ACS was introduced by Dorigo and Gambardella (1996 and 1997) to improve the 

performance of the AS. A number of aspects of the Ant-Q and Ant System were fused to 

create an improved version denoted as the ACS algorithm. The concept of the algorithm is 

based on a number of changes made to the original ant system. The aim was to find a balance 

between exploration and exploitation to avoid early convergence. There are three main 

differences between the ACS and AS: tour construction, local pheromone trail updates and 

global pheromone trail updates. The three main differences are: 

Tour construction: in the ACS, ants use a different decision rule, called the pseudo-random-

proportional rule, in which an ant k on node i chooses the node k
iNj  to move to as shown 

in equation (5.7): 
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where q is a random number uniformly distributed over [0, 1], and ]0,1[
0
q

 
is a tuneable 

parameter to modulate the degree of exploration. Thus, the best possible move, as indicated 

by the pheromone trail and the heuristic information, is made with probability 0 < q0 < 1 

(exploitation); with probability 01 q  a move is made based on the random variable J with 

distribution given by equation 5.1 (biased exploration). Dorigo and Gambardella (1996 and 

1997) explained that the decision rule has a two-fold purpose: when 0qq  , the decision rule 

exploits the information available on the problem, while when 0qq  , it performs a biased 

exploration.  

Global pheromone trail update: in the ACS, only the global best ant is allowed to add 

pheromone after each iteration. Thus, the update is implemented as given by equation (5.8):  
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where gb is the global-best ant. 
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where Lbest is the best solution so far. 

Local pheromone update: in addition to the global pheromone trail updating rule, ants use 

the local update rule that they apply immediately after having crossed an arc (i, j) during tour 

construction, as shown in equations (5.9). 

                    0Δ)1(  ijij           (5.9) 

where   (0, 1] is a parameter governing pheromone decay and o is the parameter 

specifying the initial value of the pheromone matrix.                                                                  

The ACS has been used to solve the Assembly Line Balancing problem joined with local 

search to improve solutions (McCallum, 2005). The algorithm outperformed many 

metaheuristics. Silva et al. (2002) applied the ACS algorithm to Logistic Process Optimising. 

They used a simulator to investigate how the parameters influenced the quality of the 

schedules produced. These experiments were based on real-world data. The results achieved 

by the ACS proved to be better than the previously used method. 

5.3.3 Rank-based ant system (ASrank) 

The rank-based Ant System is a further improvement on the Ant System (Bullnheimer et al., 

1997). In this algorithm, the global-best tour is used to update the pheromone trails. 

Furthermore, a number of the best ants of the current iteration are allowed to update the 

pheromone trail. For this aim, the ants are sorted by tour length (f (s1) ≤ f (s2) ≤ ….. ≤ f (sm)), 

and the quantity of pheromone an ant may deposit is weighted according to the rank r of the 

ant. In each iteration, only the (w-1) best ranked ants and the ant that produced the best-so-far 
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tour are allowed to lay some quantity of pheromone. The global best solution gives the 

strongest feedback of weight w. The rth best ant of the current iteration is allowed to drop 

maximum amount of pheromone {0, w-r}. The notation is given below and is followed by the 

altered ASrank pheromone update rule as given by equation (5.10): 

 r is the rank of an ant by fitness, for instance r=1 points to the ant with rank of 1. 

 wbest is the fitness of the best ant found so far. 

 ω is the number of ants to rank (w-1). 

 r
ijΔ is the increase of trail intensity on an edge (i ,j) caused by the r-th best ant. 

 Lr is the tour length of the r-th best ant. 

 
r
ijΔ

 
is the increase of the trail intensity on an edge (i ,j) caused by the elitist ants.  

  w is the number of elitist ants. Elitist ants are those that are allowed to imprint on the 

pheromone matrix. 

 L
gb

 is the tour length of best solution found.  

 Q measures the influence of the new information relative to the influence of the initial 

trail level.  
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Empirical results in Bullnheimer et al. (1997) suggest that ASrank performs better than AS. 

The average deviation from the optimal solution obtained by the ASrank was 1.81%, whereas 

the average deviation from the optimal solution obtained by the AS was 2.57%. In 

Bullnheimer et al. (1999) ASrank was compared to AS, to a genetic algorithm and to simulated 

annealing. It was found that for the larger TSP cases (the largest case with 132 cities); the 

performance of the ASrank was found to be superior to the genetic algorithm and the simulated 

annealing procedure. 

5.3.4 Max-min ant system (MMAS) 

The max-min ant system was introduced by Stützle and Hoos (1997, 1998 and 2000). Its 

concept is based on using elitism to introduce exploitation to the original ant system and to 

avoid early stagnation of the search. Stagnation will be described in this section. The MMAS 

was initially applied to the TSP and QAP and enjoyed greater success than the original Ant 

System algorithm (Stützle, 1997, Stützle and Hoos, 1998). The MMAS differs in three key 

aspects from the AS: 

(i) Only one single ant is allowed to reinforce pheromone trails after each iteration. This 

ant may be the one which found the best solution in the current iteration (iteration-best 

ant) or the one which found the best solution from the beginning of the trail (global-

best ant). 

(ii) Values for pheromone trails are limited to an interval [τmin, τmax] in order to avoid early 

stagnation of the search, hence the name max-min.  

(iii) Deliberately initialising the pheromone trails 0  to max  in this way achieves a higher 

exploration of solutions at the start of the algorithm. 

(iv)  Pheromone trails are reinitialized when the system approaches are stagnated or when 

no improved tour has been generated for a certain number of consecutive iterations. 
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In MMAS, only one ant is permitted to update the pheromone matrix after every iteration. 

This ant provides either the global best ant (gb) or the local best ant (lb) solution. The 

modified pheromone trail update rule is given by equation (5.11).  

           )()()1( ttt best
ijij                        (5.11)    
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ij

sf
t   and bests  may be either the ant with the iteration-best tour or the one 

with the global-best tour and  is the pheromone evaporation rate in order to avoid unlimited 

accumulation of the trail; the value of   should be (0 <  ≤1). 

The use of only one solution, either the global best (gb) or local best ant (lb), for the 

pheromone update is the most important means of search exploration in the MMAS. With 

this choice, solution elements which frequently occur in the best found solutions receive a 

large reinforcement. In the MMAS, when using only the global-best ant, the search may 

concentrate too quickly around this early global-best solution and the exploration of possibly 

better tours is limited. Consequently, the danger of getting trapped in poor quality solutions is 

higher. On the other hand, using the local best ant favours the exploration of possibly better 

tours since, especially in the starting phase of the algorithm, the local best ant will differ 

considerably and early mistakes are more easily avoided. The local and global search is also 

used in PSO algorithm. The PSO actually uses both aspects of cooperation and competition 

among the individuals in the population, which means it combines local and global search to 

reach the global optima, see section 4.3.8. In addition, intermediate approaches can be 

applied, such as choosing by default the local best ant to update the pheromone trails and 

using the global best tour only every fixed number of iterations. This mixed strategy which is 

based on local-best ant and global-best ant for updating pheromone trails will be used in the 

AOIS problem. The aim of this strategy is to obtain stronger exploration of the search space 

early in the search and stronger exploitation of the overall best solution later in the run. 
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The MMAS and ACS both exploit the best solutions by using only a single ant in the 

pheromone trail update. However, an important difference between them is the different 

interpretation of exploitation and exploration. Exploitation in the ACS is mainly interpreted 

as choosing a high parameter value for
0

q , see equation (5.7). In this way, the accumulated 

knowledge on the problem is exploited by constructing a solution that can be interpreted as a 

slight modification of the best solution found so far. Exploration in the ACS is obtained using 

a biased random move according to equation (5.1) with a probability of ( 01 q ) (Stützle, 

1998b).  

On the other hand, in MMAS, exploitation is mainly interpreted as choosing one single ant, 

either the local-best ant or the global-best ant, for the pheromone update. Jointly, with a 

rather high parameter value for ρ, this will slowly shift the probability distribution given by 

equation (5.1) towards solution components (arcs) which have been shown to be contained in 

the best solutions. Exploration in the MMAS is derived from explicit pheromone trail limits 

which aim to increase the solution exploration of the algorithm.  

One of the major important features in the MMAS is avoiding of stagnation. Stagnation is          

the situation in which all ants follow the same path and construct the same tour, which in 

general is highly suboptimal (Dorigo et al., 1996). In other words, stagnation of the search 

occurs, for example, in the following situation. If the amount of pheromone on only one arc 

incident from a node is very high compared to the other arcs, this arc has a high probability of 

always being selected using equation (5.1). If such a situation occurs at all nodes, the tour 

corresponding to the best one found so far will be constructed by most ants and the search for 

better solutions stagnates. To avoid this situation, one possibility is to limit the pheromone 

trail. This goal can be achieved by limiting the values for pheromone trails to an interval   
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[τmin, τmax]. After updating pheromone at the end of each iteration, the pheromone trails ij on 

all arcs are reinforced to be within these limits, as shown in equation (5.12).  

                        maxmin )(   tij                            (5.12)
 

The maximum limit of the trail intensity for the MMAS is calculated as shown in equation 

(5.13) (Stützle and Hoos, 2000). 
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where max
 
is the maximal pheromone trail and )( optsf  is the optimal solution value for the 

problem. Clearly, the optimal solution value is not known before the run, and f (sopt) is used 

as an estimate of that value and then is adapted during the running of the algorithm.

       

 

The lower limit of the trail intensity shown in equation (5.14) is calculated with consideration 

of a number of assumptions. First, it was assumed that the best tours would be found just 

before stagnation and that, more importantly, better tours were to be found near to the best 

tours. In such a case, the probability that the best tour found is constructed in one iteration is 

significantly higher than zero. Through experimentation this property has been shown to be 

reasonable for TSP benchmark problems (Stützle and Hoos, 2000, Stützle, 1998b). The other 

assumption was that the main influence on tour construction was the relationship between the 

upper and lower trail limits. 

                              1max
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
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p             (5.14)            

where min represents the lower limit for the pheromone trail strength and avg is the average 

number of available options the ant has to choose from at any decision point. The best 

solution found is constructed with a probability pbest which is significantly higher than 0. The 

optimal value for probability pbest is 0.05 (Stützle and Hoos, 2000, Ridge, 2007). Other 
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authors, such as Ridge (2007), calculated the lower trail limit
n2

max
min


  , where n is the 

problem size (e.g. number of cities). Stützle (1998a) set the lower pheromone trail limit to 

5

max
min


  for the Flow Shop Problem.     

 

Search progress in the MMAS implies a specific interpretation, by the particular way in 

which the pheromone trails are initialised. The pheromone trail reduces due to evaporation to 

)()1( tt ijij  after each iteration of the algorithm. Only the pheromone trails of arcs 

participating in the best tours increase their pheromone trail or keep them at the upper trail 

limit, because only the best ant is allowed to update the pheromone trail. Arcs which do not 

obtain regular reinforcement to their pheromone trail will be maintained lower and be chosen 

more rarely by the ants. In this sense, errors made in the past are avoided in the MMAS. An 

error is associated with choosing arcs that lead to fairly bad tours; these are denoted as poor 

arcs. Thus, the pheromone trail on poor arcs decreases gradually and only good arcs keep a 

higher level of pheromone. These good arcs are then combined by the probabilistic tour 

creation to generate improved tours (Stützle and Hoos, 2000).  

Stützle and Dorigo (1999) applied the MMAS to the TSP and their results compared to 

Iterated Local Search. The MMAS found a better solution than the other algorithms used for 

77% of the problems on an average run. The MMAS was used in Stützle (1998b) to attack the 

Flow Shop Problem. The algorithm outperformed a number of other methods such as 

Simulated Annealing and Multiple Descent. The experimental results in Stützle and Hoos 

(2000) demonstrate that the MMAS achieves strongly improved performance compared to 

the AS and to other improved versions of the AS for the TSP; moreover, the MMAS is 

among the best available algorithms for the QAP. The MMAS was applied to the University 

Timetabling Problem by Socha et al. (2002 and 2003). The paper showed that the algorithm 

performed better at a set of problem instances than an algorithm using the local search with 
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random starting solutions. Ning et al. (2010) applied the MMAS to the construction site 

layout planning (CSLP) problem. CSLP problem is a dynamic multi-objective optimisation 

problem as there are different facilities employed in the different phases of a construction 

project. The CSLP problem was modelled as a QAP under two objective functions of 

minimising the representative score of safety/environmental concerns and the total handling 

cost of interaction flows between the facilities associated with the construction site layout. 

The experimental results show that the safety level is improved and the construction cost is 

reduced. 

 Features of MMAS algorithm 

The following are the important features for the MMAS algorithm:  

1. One of the major important features in the MMAS algorithm is avoiding too early 

stagnation. 

2.  By using only one single ant in the MMAS algorithm the pheromone trail update, the 

best solutions can be better exploited.  

3. By using the adaptive memory allows the previously visited workstations to be kept by 

means of the pheromone trail matrix, which is used to influence the construction of new 

better solutions. 

4. The heuristic information helps to find acceptable solution in the early stages of the 

search process. 

5. The collective interaction of a population of ants leads to increase the exploration of the 

search space. 

6. MMAS algorithm starts with initial high pheromone trial which is leads to increase 

exploration of the search space. 
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5.4  Local search mechanisms 

Research in ant colony optimisation has shown that for applications on combinatorial 

optimisation problems, the best results are obtained if the ants are enhanced by additional 

capabilities. The local search is part of the DaemonActions of the ACO algorithm as shown in 

the ACO framework in section 5.2.2. In many of the most efficient implementations of ACO 

algorithms, ants may apply local search to improve the solutions they have constructed 

(Dorigo and Gambardella, 1997, Stützle and Hoos, 2000). Therefore, many researchers have 

developed local search for ACO and have applied these methods to a range of different 

problems such as the redundancy allocation problem (Liang and Smith, 2004), the inter-cell 

layout problem in cellular manufacturing (Solimanpur et al., 2004), single row layout in 

flexible manufacturing systems (Solimanpur et al., 2005), image pre-processing (Laptik and 

Navakauskas, 2009) and construction site layout planning (Ning et al., 2010). The reason for 

adding local search algorithms to ACO is to enhance performance and to yield high quality 

solutions, such that near-optimal solutions can be found. Advantages and disadvantages of 

using local search can be explained as following: 

 Advantages of local search 

1. Cost of generating neighbouring solutions: typically, for generating a neighbouring 

solution the computational complexity is much lower than generating a new solution 

from scratch. In addition, for evaluating a neighbouring solution, it often does not need 

to generate it explicitly at all. 

2. Cost of evaluating neighbouring solutions: typically∆-evaluation can be done in a 

computational cost that is much less than computing solution cost from scratch (Stützle, 

2003). 
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 Disadvantages of local search 

1. Iterative improvement may take exponential time in the worst case but usually this 

occurs only rarely and for few problems. 

2. Problem of local optimality. 

The particular local search used is almost completely problem-dependent, but the important 

idea is that a solution to the problem in hand has an identifiable solution neighbourhood. 

Usually, the neighbourhood of a solution can be defined as all those solutions which may be 

different from the original solution by a single „„step‟‟. The most well-known local search 

algorithm, called iterative improvement, first builds an initial solution by some means 

(possibly creating one at random). The algorithm then checks through some or all of the 

neighbours of the initial solution looking for better solution. If an improved solution is 

obtained, then the current solution is replaced with it and the process repeats until no further 

improvement can be found. A drawback of this algorithm is that it may stop at poor quality 

local optima. As a result, possibilities have to be devised to improve its performance. One 

would be to increase the size of the neighbourhood used in the local search algorithm. 

Clearly, there is a higher possibility to obtain an improved solution, but it also takes longer 

time to assess the neighbouring solutions. This leads to this approach being impractical as the 

neighbourhoods increase. Another possibility is to allow the local algorithm to generate a 

new random solution. However, the search space normally contains a massive number of 

local optima. As a result, this approach becomes increasingly ineffective as the problem 

becomes complex.  

Several applicable improvements of local search methods have been suggested. The aim is to 

avoid these drawbacks of iterative improvement methods. The improvement of the local 

search methods is based on either by accepting worse solutions, hence allowing the local 

search to escape from local optima, or by creating good starting solutions for local search 
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algorithms in a more intelligent way (such as ACO) than just providing random initial 

solutions (Solimanpur et al., 2004). Moreover, since the improvement algorithms start from 

bad solutions, the computation time required by improvement algorithms would be more. 

Besides, ant algorithms are population-based adaptive metaheuristics that are able to 

construct relatively good solutions and therefore their integration with a local search 

mechanism may result in optimum or near optimum solutions. Owing to the fact that the 

quality of initial solutions created by ant algorithms is good, the integrated local search 

mechanism needs only a few iterations to enrich these solutions to their local optimum 

resulting in reasonable computation time. In addition, to yield a further reduction in run-time 

and to focus the local search around the part where potentially improve can be found don’t 

look bits is used (Ferreira et al., 2012). This prevents cycling, and also helps to promote a 

diversified coverage of the search space. 

To apply iterative improvement algorithms, two commonly recognised approaches are first 

ascent and best ascent. In the first method, the first neighbour which is an improvement is 

selected, whereas the second method searches through all potential neighbouring solutions 

and then selects the one which offers the greatest improvement. In TSP, the 2-opt 

neighbourhood is defined as a neighbour if it differs by at most two arcs. This can be 

generalised to deal with k arcs. An example of a solution and an improved neighbour is given 

in Figure 5.5.  

The idea of using a mechanism to generate initial solutions which are improved by a 

subsequent local search is also applied in other nature-inspired algorithms such as simulated 

annealing and genetic algorithms. The most recent of these nature-inspired algorithms is ant 

colony optimisation. In the ACO algorithm, the search process can be used to identify 

promising regions of the search space with high quality solutions. This can be done by using 
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pheromone trails as an adaptive memory of solution components which have been part of the 

best local minima found so far. 

 

 

 

 

Figure 5.5: Illustration of a 2-opt neighbour in the TSP. ( s  is an improved neighbour of s  

because it varies by two arcs, and its tour length is 4-four less than s) (Ritchie, 2003). 

These solution components are combined in subsequent iterations by a stochastic 

construction mechanism, which is biased by the pheromone trails and local heuristic 

information. A further advantage of using a constructive algorithm such as the MMAS is that 

by creating good initial solutions, the subsequent local search requires fewer steps to arrive at 

a local optimum. However, based on the previous literature review in chapter 2, none of the 

surveyed methods in the AOIS problem used local search to improve their performance. 

Local search methods for the AOIS problem will be developed to improve the performance of 

the MMAS algorithm and will be introduced in the next chapter.  

5.5 Fitness Landscape  

It should be noted that none of the studies surveyed in chapter 2 investigated the fitness 

landscape for the AOIS problem. As a result, this section will provide further information 

about understanding the fitness landscape of the AOIS problem. In the AOIS problem, it is 

clear that a process including n serial stages offers 
n2 possible inspection combinations. As 

the number of stages increases, complete enumeration of all combinations becomes 
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prohibitive. Therefore, the application of metaheuristic methods is essential for developing a 

tractable solution algorithm, as these methods need limited computational effort while 

yielding a nearly optimal solution. The objective of this research is to allocate limited 

inspection stations in a serial multistage manufacturing process. If this is done, the total 

manufacturing cost of a product can be reduced without affecting the quality of the product. 

The total cost is defined as the sum of the costs of production and inspection, and internal and 

external failure costs. In the AOIS problem, it is possible that not all locations of the 

inspection stations are economically equivalent. Because of the difference in cost structure in 

inspection places and process characteristics, some combinations of inspection plans may 

prove to be economically preferable to others. This is because the product is processed 

through different operations by different machines. These machines are different from each 

other in terms of their characteristics such as operation cost, scrap cost, rework cost, 

inspection cost and defective rate. The differences in process characteristics lead to 

differences in the cost structure of inspection plans. Understanding the geometry of the 

landscape for the AOIS problem may help in choosing the appropriate algorithm to solve the 

AOIS problem. 

Fitness landscape was first introduced by Wright (1932) in a study of evolutionary theory. 

Intuitively, the fitness landscape can be imagined as a mountainous region with hills, craters, 

and valleys. The local search algorithm can be pictured as a wanderer performing a biased 

walk in this landscape. His goal is to find the lowest point (in the case of minimisation 

problems such as the AOIS problem) in this landscape. It is obvious that the task for the 

wanderer strongly depends on the ruggedness of the landscape, the distribution of the valleys 

and craters and the local minima in the search space, and the overall number of local minima 

(Yamada, 2003). It is widely agreed that the performance of metaheuristics depends strongly 

on the characteristics of the underlying search space. The difficulty of searching in a given 
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problem search space is related to the structure of the fitness landscape (Smith et al., 

2002).The fitness landscape of a combinatorial optimisation problem is defined by a triplet 

),,( fN where  is the set of solutions called the search space, N is a neighbourhood 

function and f is an evaluation function (Marmion et al., 2012). With this definition, the 

notion of the neighbourhood between solutions takes a significant place in the resolution of 

combinatorial problems. This notion is used in local searches as the application of a defined 

operator. Thus, an analysis of such a fitness landscape will be helpful in order to understand 

the structure of a problem from a local search point of view. 

The fitness landscape determines the shape of the search space as encountered by a local 

search algorithm. Marmion et al. (2012) stated that a fitness landscape could be seen in 2D or 

3D, as a topographic representation of the problem where the relief is given by the difference 

of the fitness between neighbouring solutions. The link between landscape and search 

algorithm is given by the neighbourhood search (NS) operators used in the algorithm. 

Because these operators generate new points in the search space relative to a given point, the 

distance between two solutions is equal to the minimum number of required applications of 

the operator to move from the first one to the second one (Yamada, 2003;Marmion et al., 

2012). 

Consider local search algorithms like the ACO: if the average cost difference between 

neighbouring solutions is, on average, small, the landscape will be well suited to a local 

search algorithm; if the average cost difference between neighbouring solutions is high, the 

landscape is rather rugged and may contain many local minima and be badly suited to a local 

search algorithm (Angel and Zissimopoulos, 2000).The distribution of local minima and their 

relative location with respect to global optima is an important criterion for the effectiveness 

of adaptive algorithms like ACO algorithms. For analysing this aspect of the fitness 
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landscape, the correlation between solution fitness and the distance to optimal solutions has 

been studied by Weinberger (1990), Stadler (1996) and Merz and Freisleben (2000). 

5.5.1  A distance measure 

The fitness landscape analysis relays on a distance metric for AOIS solutions. To measure the 

difference between two permutation inspection plans s and s , an appropriately defined 

distance is required. The distance between two points (solutions) can be defined as the 

minimum number of elementary move operators which have to be applied to transform one 

permutation into the other permutation. In the case of the AOIS problem, the swap operator is 

used. The swap operator is widely used for permutation problems (Marmion et al., 2012).The 

swap distance is based on the swap move which exchanges a pair of inspection stations i and

j with ji  . The calculation of the exact swap distance between two permutations is 

nontrivial (Czogallaand Fink, 2012). In order to reduce computational complexity, a path in 

the swap neighbourhood may be calculated by position-wise comparison of the two parent 

permutationsand . If an inspection station in   is not in the same position as in it is 

swapped to the correct position and the move is stored.  

5.5.2 Fitness distance correlation 

Fitness distance correlation (FDC) was first proposed by Jones and Forrest (1995) as a 

measure of problem difficulty for evolutionary methods. It was first used to analyse the 

hardness of a problem for a genetic algorithm, but it also gives very useful hints on the 

effectiveness of adaptive algorithms which use discontinuous trajectories, such as the ACO 

algorithm (Stützle, 2000). An FDC analysis has been conducted for various combinatorial 

optimisation problems, including travelling salesman problems (Boese, 1995), flow-shop 

scheduling problems (Reeves, 1998), graph partitioning problems (Merz and Freisleben, 

1998) and timetabling problems (Ochoa et al., 2009).The FDC is important for the 
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interpretation of search performance of discontinuous metaheuristics. This is because the 

notion of search space region is tightly coupled with the notion of distance between solutions. 

The task of adaptive restart algorithms like the ant colony optimisation is to guide the search 

towards regions of the search space containing high quality solutions and, possibly, the 

optimum. Recall that the most important guiding mechanism of these metaheuristics is the 

objective function value of solutions. This guidance mechanism relies on the intuition that the 

better a solution is, the more likely it is that even better solutions will be found close to it. In 

particular, the fitness distance correlation describes the relationship between the fitness (cost) 

of solutions and their distance to best-known solutions or optimum solutions. 

In other words the FDC is the correlation between the quality of a solution and its distance to 

an optimal solution. The FDC states how closely fitness and distance to an optimal solution 

are related. Hence, if a problem shows a high FDC, algorithms combining adaptive solution 

generation and local search may be expected to perform well. For ACO algorithms this is the 

case because the most important guidance mechanism of ACO algorithms is the solution 

quality of the solutions constructed by the ants; the better a solution, the more its solution 

components will be reinforced. Yet if no such correlation exists, or, even worse, if cost and 

distance are negatively correlated, the fitness gives only little or no guidance towards better 

solutions and the ACO algorithm may perform poorly on such problems. 

In a problem instance with high FDC, good solutions tend to be tightly clustered or, 

equivalently, to share many solutions attributes. Consequently, an adaptive search algorithm 

should be able to exploit these similarities during a search. The easiest way to measure the 

extent to which the fitness function values are correlated with distance to the optimum is to 

examine a problem with known optima, take a sample of individuals and compute the FDC, 

given the set of (fitness, distance) pairs. Formally, given a set F={f1,f2,...,fn} of individual 
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fitnesses and a corresponding set D={d1,d2,...,dn} of the n distances to an optimal solution or 

to the nearest global optimum, the FDC is defined by Jones and Forrest (1995)as: 

DF

FDC
FDC


         (5.16) 

where F and D  are the standard deviations of F and D, respectively and are defined by 

equation (5.17). 
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CFD is the covariance of F and D.  The covariance CFD is defined by equation (5.18): 
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where f  and d are the means of F and D respectively. 

High FDC values indicate that fitness and distance to the optimum are related, and that the 

search promises to be relatively easy for the technique being used, since there is a path to the 

optimum via solutions with increasing fitness. For minimisation problems, the ideal fitness 

function will have FDC=1 (Jones and Forrest, 1995). Similarly, in the AOIS problem, a high 

positive correlation between the solution cost and the distance to the optimum indicates that 

the better the solution, the closer the algorithm gets, on average, to the optimum. If no such 

correlation exists or it is very weak, the fitness gives only little guidance towards better 

solutions. As discussed by Jones and Forrest (1995), Jaszkiewicz and Kominek (2003) and 

Muller and Sbalzarini (2011), the coefficient FDC is expected to be near 1 for a globally 

convex single-funnel or a big valley structure and around 0 for needle-in-a-haystack problems 

and problems without any global structure. A negative value of FDC indicates a “deceiving” 

and misleading landscape. 
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An FDC analysis for the AOIS problem search space using the PSO and MMAS algorithms 

being studied, which examine all possible allocations of the inspection stations problem, is 

plotted. Each algorithm is combined with a local search method (swap). These two 

algorithms are used here because they have the most desirable characteristics of all the 

methods described in chapter 4. The aim is to find an algorithm suitable for tackling the 

AOIS problem. Often, a fitness distance plot is made to gain insight into the structure of the 

landscape, in addition to calculating the correlation coefficient (Ochoa et al., 2009). The 

fitness distance plot is done by plotting the fitness of points in the search space against their 

distance to the optimum or best-known solution. This type of analysis, often called fitness 

distance analysis, can be used to investigate not only the correlation between arbitrary points 

in the search space, but also the distribution of local optima within the search space. 

Figure 5.6 shows scatter plots of percentage deviation from the optimum versus the distance 

from the optimal solution for 15 workstations for the AOIS problem. The number of feasible 

solutions for this number of workstations is 2
15

=32,768. For this number of workstations the 

optimal solution is known. Each point gives the distance to the optimum (x-axis) and the 

solution quality as the percentage deviation from the optimum (y-axis). The plots show a 

strong correlation between the solution quality and the distance to the optimum, which can be 

seen be by the fact that better local optima tend to be closer to the optimal solution. 

                    

Figure 5.6: Fitness distance scatter plots for 15 workstations for the AOIS problem 
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It can be seen that for the ACO algorithm that there are local optima which are much closer to 

the optimum solution than there are for the PSO algorithm. The results for the FDC analysis 

are given in Table 5.1, which shows the average percentage deviation from the optimum, the 

average distance to the optimum, the respective ratios to the maximum possible distance, and 

the correlation coefficients. It can be concluded that, on average, the better the solution 

quality, the closer a solution is to an optimal solution in the AOIS problem. Comparing the 

results of the FDC analysis indicates the potential usefulness of the ACO approach to the 

AOIS problem. The FDC for the ACO algorithm is 0.831, which indicates a strong 

correlation between the solution quality and the distance to the optimum. Similarly, the FDC 

obtained by the PSO is 0.57, which also shows there is a good correlation between the 

solution quality and the distance to the global optimum. The studies introduced by 

Jaszkiewicz and Kominek (2003), Grahl et al. (2007) and Muller and Sbalzarini (2011) 

showed that high FDC coefficients are an indicator for the presence of a big valley structure. 

A big valley structure means that local optima tend to be relatively close to each other and to 

the global optimum. In a big valley structure, the local search can potentially drive the search 

towards the neighbourhood of an optimal solution (Grahl et al., 2007).The results indicate 

that the landscape produced by the ACO has deeper valleys. Thus it seems that the ACO 

should move to a local optimum with a better quality more easily than the PSO does.  

Table 5.1: Results of the FDC analysis for 15 workstations for the AOIS problem 
Method 

 

Average % avgd-opt avgd-opt/n FDC 

PSO 1.72 8 0.53 0.57 

ACO 0.166 4 0.26 0.831 

Average %: the average percentage deviation from the optimum, avgd-opt: the average distance to the optimum, 
avgd-opt/n: the ratio between average distance to the optimum (avgd-opt/n) and the problem size (n: is the number 

of workstations), FDC: fitness distance correlation coefficient. 

Further analysis on different AOIS problems using the ACO algorithm is presented in Table 

5.2. The solutions are interconnected differently in the search space according to the 
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neighbourhood function. Pair-wise distances of a population of solutions are meaningful for 

characterising the search space. The usual statistics of all these distances are computed. Thus, 

the comparison of distances between solutions of the local optima helps to characterise 

whether the solutions are identically distributed and dispersed, according to whether or not 

they are local optima. The distribution of solutions should help us to understand if they are 

close or not, and if local optima are in the same part of the search space (Marmion et al., 

2012). The indicators standing for mean, standard deviation, minimum, maximum and 

quartile values are then computed to estimate the width of the search space. Table 5.2 

presents the average distance to the optimum, the respective ratios to the maximum possible 

distance, the minimum, the median (Med), the first quartile value (Q1), the third quartile 

value (Q3), the maximum and the FDC. It is concluded that, on average, the better the 

solution quality the closer a solution is to an optimal solution in the AOIS problem. The 

quartiles (Q1 and Q3) and median show that the good solutions are very concentrated, and 

that the distances between the solutions are homogenous and small. As a result the algorithm 

stays in a limited region of the search space. The FDC for the ACO algorithm indicates a 

strong correlation between the solution quality and the distance to the optimum for each 

problem considered. 

Table 5.2: Results of the FDC analysis for different AOIS problems using the ACO 
Problem 

size 

Avgd-opt Avgd-opt/n Min Med Q1 Q3 Max FDC 

15 4 0.26 3 5 4 6 10 0.831 

16 6 0.375 4 6 
5 7 12 0.78 

18 8 0.44 7 9 
8 10 14 0.79 

20 11 0.55 9 11 
9 12 16 0.76 

avgd-opt: the average distance to the optimum, avgd-opt/n: the ratio between average distance to the optimum 

(avgd-opt/n) and the problem size, Min :minimum distance, Med: median, Q1:first quartile, Q3: third quartile, Max: 

maximum distance and FDC: fitness distance correlation coefficient. 
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5.6  Conclusion 

Ant colony optimisation has been described followed by the Ant System and its extension 

versions. Different ant colony versions were studied, leading to the MMAS algorithm being 

proposed to tackle the AOIS problem. The MMAS has been shown to perform significantly 

better than many optimisation methods, especially with complex problems. It was found that, 

in the AOIS problem, there is a need to construct heuristic information which aids the 

performance of the MMAS. Research has shown that when the MMAS is applied to 

combinatorial optimisation problems, the performance of ant algorithms is best when joined 

with local search methods. The local search in the MMAS algorithm aims to improve the 

solutions constructed by the ants. In the AOIS problem, a complete solution (inspection plan) 

is achieved when an ant visits workstations in the serial multistage manufacturing process. As 

there are a limited number of inspection stations available. Therefore, the number of 

workstation to be visited by an ant is restricted by the number of inspection stations available. 

The advantage of using the MMAS is the adaptive memory that allows the previously visited 

workstations to be kept by means of the pheromone trail matrix, which is used to influence 

the construction of new solutions. In particular, this matrix will include the paths (inspection 

positions) that ants have visited. Subsequently, the path which has the lowest cost will be 

used more frequently by subsequent ants. In addition, the MMAS has the ability to avoid 

early stagnation using pheromone trail bounds. Also, by using only one single ant in the 

pheromone trail update, the best solutions can be better exploited. The fitness distance 

correlation (FDC) for the AOIS problem using the MMAS algorithm indicates strong 

correlation between the solution quality and the distance to the optimum. This indicates that 

the MMAS algorithm is well suited to the AOIS problem. The application of the MMAS 

algorithm on the AOIS problem will be described in the next chapter. 
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Chapter 6 

Max-min ant system for the allocation                       

of inspection stations 

________________________________________________________________________________ 

In this chapter, the MMAS algorithm is evaluated against a new type of problems known as 

the allocation of inspection stations (AOIS) in serial multistage manufacturing processes. The 

MMAS is an improved version of the Ant System, which was proposed by Stützle and Hoos 

for combinatorial optimisation problems. It was designed to have a relatively long initial 

exploration phase with a subsequent transition to an intensive exploitation phase. To improve 

the performance of the MMAS algorithm, the max-min ant system needs to be enhanced with 

local search. Six local search methods which are well-known and suitable for the AOIS 

problem are used. The aim of the methods is to create improved inspection plans. Also, two 

novel heuristics information for the MMAS algorithm have been created. The heuristic 

information for the MMAS algorithm is exploited as a novel means to guide ants to build 

reasonably good solutions from the early stages of search of the algorithm.  

6.1 Allocation of the inspection stations problem 

Figure 6.1 schematically represents the concept of serial processing workstations in a serial 

multistage manufacturing process. Actual production strategies, similar to this representation, 

are typical of batch manufactured products. In the general case, there are n discrete 

processing stages through which the work in-progress is routed in a fixed sequence. The first 

processing workstation receives the raw materials in batches of a certain size, and the last 

workstation is involved in shipment of the final product. As the items within a batch move 

through the processing workstations, they may incur defects. The purpose of inspection is to 

separate conforming product units from non-conforming ones to avoid further processing of 
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items that are already defective. Each inspection station is characterised by its inspection 

cost. The objective is to allocate limited inspection stations in a serial multistage 

manufacturing process. As a result, the total manufacturing cost of a product can be reduced 

without affecting the quality of the product. The total cost is defined as the sum of the costs 

of production, inspection, internal and external failure costs. Every processing workstation 

entails a constant unit processing cost. Each processing workstation has a known probability 

of resulting in a production error. At each inspection operation, two types of inspection errors 

may occur with known probabilities: classification and subsequent disposal of a conforming 

unit as non-conforming, and classification of a non-conforming unit as conforming, allowing 

it to proceed to the next operation in the system. Units classified as non-conforming are 

removed from the mainstream flow and are scrapped or reworked. Once an item is identified 

by an inspection station as being defective, it is assigned to a repair facility at the same 

processing workstation. 
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Figure 6.1: Structure of a serial multistage production system with inspection stations 
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The rework option consists of the execution of a repair operation on the units classified as 

non-conforming. The repair operation entails the addition of a constant unit repair cost to 

each unit. After its completion, the repaired units are merged with the units classified as 

conforming, so that no distinction between the repaired units and the others remains. At the 

end of the process, the external failure cost represents repair and replacement that is incurred 

for each non-conforming unit that exits the system.  

6.2    Max-min ant system for the inspection allocation problem 

The standard MMAS presented by Stützle and Hoos (2000) was derived from the standard 

ACO. The MMAS algorithm was described in more detail in section 5.3.4 for the interested 

reader. The following are the elements of MMAS algorithm for solving the allocation of 

inspection stations problem:  

(1) Pheromone trail initialisation. 

(2) Heuristic information. 

(3) Construction of solutions. 

(4) Selection probability. 

(5) Pheromone updating. 

(6) Pheromone trail limits. 

(7) Termination condition. 

These elements are described in the following subsections.  

6.2.1   Pheromone trail initialisation  

In the AOIS problem, the pheromone trail strength (pheromone trail matrix) is initialised as 

the maximum max possible trail strength for all edges. This type of trail initialisation is 

chosen to increase the exploration of solutions during the first iterations of the algorithm. The 

trail strength then will reduce due to evaporation. After the first iteration of MMAS, the trails 
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will be bounded to take values within the specified limits as will be described in section 

(6.2.6). As only the best ant is allowed to update its tour, and only the trails of arcs 

participating in the best tours are strengthened or maintained at the upper trail level max . 

Hence, arcs that do not receive any reinforcement will continuously lose their trail strength 

and be selected more rarely by the ants. 

6.2.2 Heuristic information  

In this section, the importance, inspiration and method of computation of heuristic 

information are described. Heuristic information is defined in accordance with the 

characteristics of the problem that is yet to be solved. The aim is to find appropriate heuristic 

information for the MMAS algorithm to tackle the AOIS problem, as a result of which a near 

optimal solution can be obtained. 

 Importance of heuristic information 

In the MMAS algorithm artificial ants are the stochastic solution construction procedures, 

which are biased by artificial pheromones )( ij and heuristic information )( ij , as will be 

described in section 6.2.4. In the initial stages of the search, the pheromones, initially being 

set to random values, do not guide the artificial ants in a useful way. This leads to the creation 

of trails of very poor solution quality. The major task of heuristic information is to avoid this 

by initially biasing ants so they can build rationally good trails from the very first search of 

the algorithm. As described in chapter 5, the ACO approach was rather unexplored for the 

AOIS problem at the time that this research started. There is no heuristic information created 

for the AOIS problem. In addition, heuristic information is apart from the ACO algorithm, as 

will be shown in equation (6.3). Thus there is a need to create heuristic information for the 

AOIS problem. The significance of the contribution in this section is that the heuristic 

information makes ACO algorithms (AS, ACS, Ant-Q and MMAS) more efficient in solving 

real-world problems in a number of different areas of the AOIS problem. Examples are the 
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rigor of the inspections (acceptance limits) for each inspection station, the number of 

inspections executed (sample size-sampling frequency) for each inspection station and these 

issues are able to include different production configuration such as assembly and non-serial. 

In addition, heuristic information increases ability of the ACO to find high-quality solutions 

to AOIS problems in a reasonable time. Angus (2008) indicated that the use of a heuristic 

value, whenever possible, considerably improves ACO performance. Furthermore, by 

introducing heuristic information the probable search space (the search space most likely to 

be explored) becomes much smaller than the original search space. 

 Inspiration of the heuristic 

As described in the literature review in chapter 5, in many cases the heuristic information is 

the cost, or an estimate of the cost, of adding the component or connection to the solution 

under construction. Different problems required different heuristic information. In the AOIS 

problem there are many costs incurred by inspection operations or by processing operations 

resulting from passing the raw materials through a sequence of processing workstations. 

These costs are the inspection cost, replacement cost, reworking cost, manufacturing cost, 

penalty cost and scrap cost. The problem is which of these costs to use and how to link them 

with the heuristic value. Therefore, attention should be given during the selection of these 

costs. In an AOIS problem, the defect rate generated at each processing workstation has a 

great impact on the characteristics of the AOIS problem. This is because the defective items 

lead to an increase in the total manufacturing cost. This cost is increased considerably if these 

defects are allowed to pass through subsequent processing workstations. It should be noted 

that the aim of heuristic information is to guide the ants when assigning inspection stations to 

workstations, as a result of this the total cost is minimised. Placing inspection stations after 

workstations that generate highly defective items lead to minimising the total manufacturing 

costs. 
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On the other hand, it is impractical to select external failure costs (replacement and repair) as 

a guide to the heuristic information. This is because the external failure cost only occurs 

when defective items reach the customer. In addition, external failure cost usually occurs 

only at the last workstation. In the case of reworking cost, it cannot be taken as a guide to 

heuristic information toward promising regions of the search space. This is because the 

reworking cost is usually less than other costs, such as operation or scrap costs. As a result, 

using the rework cost as heuristic information leads to ineffective inspection positions. In the 

case of scrap cost, it is dependent on the complexity and value of the product. Also it is 

ineffective to use scrapping cost as a guide to the heuristic information. On the other hand, 

operation cost is an important characteristic for the AOIS problem. This is because the 

operation cost is calculated for all items processed at every processing workstation, 

regardless of whether or not an inspection is performed at any of the processing workstations. 

Therefore, placing inspection stations before these workstations will minimise the total cost 

through the detection of defective items, before wasting additional costs by continuing to 

process them. Inspection cost is also an important characteristic for the AOIS problem.  It is 

clear that the minimum inspection cost leads to the minimum total cost of a product.  

It is evident that operation cost, defect rate and inspection cost are the most appropriate 

factors to be considered as guides to heuristic information for the best inspection plans of the 

search space. Heuristic information can be described as a rule of thumb which serves as a 

guideline for generating a solution for the AOIS problem. Figure 6.2 shows the inspiration of 

the heuristic information for the AOIS problem. Two novel heuristic methods are created to 

guide the ant to locate an inspection station to a workstation based on the concerns of 

operation cost (Uk), inspection cost (ICk) and defect rate (Zk), respectively. These methods are 

the operation cost and defect rate method (OCDM), and the Scores Method (SM).  
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The originality of the contribution in this section is that these methods have never been 

applied to this type of AOIS problem or in different areas. In particular, the SM was first used 

by Shetwan et al. (2011) as a new heuristic method to solve the AOIS problem as a part of 

this research. Previous heuristic information methods were based on a simple idea such as in 

TSP. However, the concept of the two heuristic methods is more complex and very different 

from those in the previous literature. Further to investigation of the characteristics for the 

AOIS problem which were described above, a number of steps are required to reach to the 

development of these two heuristic information methods as will be described in next 

subsections.  

There are several methods to compute the heuristic information of each move. Since the 

heuristic information is calculated for all moves in all ants it may significantly reduce the 
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Figure 6.2: Inspiration of heuristic information for AOIS problem 
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efficiency of the algorithm, and thus should be computed in an efficient manner. In the earlier 

implementations of ant algorithms, heuristic information was calculated either a priori or a 

posteriori (Chaharsooghi, 2008). In the first category of implementations, the static heuristic 

information is first calculated at the start and remains unchanged during the running of the 

algorithm. In the second category, the dynamic heuristic information depends upon the 

current state of the ant. Two contradictory aspects are to be considered in the calculation of 

heuristic information. These are: (1) the efficiency of calculation, and (2) the quality of 

information. The implementations with a priori heuristic information are efficient but do not 

thoroughly indicate the desirability of moves. On the other hand, one advantage of using a 

dynamic heuristic method is that the precise estimation of the desirability of each move is 

obtained, although the efficiency of computation is not satisfactory. In this research, a novel 

method has been developed for calculating heuristic information for the AOIS problem by 

considering these aspects. 

The heuristic information should, intuitively, prefer workstations which have a high operation 

cost, high defect rate and low inspection cost. This avoids processing items that are already 

defective by continuing to process them, otherwise unnecessarily greater costs will incur. In 

the AOIS problem, moving the ant from the current node to the next adjacent node does not 

influence the values of the operation cost, inspection cost or defect rate. Hence the proposed 

heuristic information is assumed to be a static heuristic value and can be pre-computed before 

applying the algorithm. 

 OCDM 

The OCDM is based on the operation cost (Uk), inspection cost (ICk) and defect rate (Zk). To 

use these costs and the defect rate in the developed algorithm there is a need to link them via 

mathematical formula. Clearly, by multiplying the operation cost (Uk+1) with the defect rate 

(Zk) at each workstation results in different cost components throughout the serial line. For 
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example if a workstation k has a higher defect rate compared to the other workstations, and 

workstation k+1 has a higher operation cost compared to the other workstations, this leads to 

a higher desirability for allocating an inspection station at workstation k. In contrast, the 

minimum inspection cost at workstation k leads to a higher desirability for allocating an 

inspection station at workstation k. Therefore, the heuristic information is calculated by 

considering these characteristics (operation cost, defect rate and inspection cost). The 

heuristic information pertaining to move v = (i, k) is denoted by ik . This move indicates the 

desirability of locating inspection station i to workstation k as shown in equation (6.1). 

k

kk
ki

IC

ZU )]1([ 1
,


    (6.1) 

If a workstation k has a higher defect rate, low inspection cost and workstation (k+1) has a 

higher operation cost, this workstation k has a greater probability of being selected.1 is added 

to equation (6.1) for avoiding the result of 0, in cases where the defect rate is zero. 

To apply the OCDM, a multistage manufacturing process is considered, consisting of five 

workstations arranged in a serial manner using real data and involving manufacturing of 

pistons. This case study introduced by Kaya and Engin (2007) to define the sample size at 

attributes control the chart in multistage processes. The piston is one of the most important 

moving components in the engine. Pistons whose casting stages are completed are processed 

on machines which are equipped with CNC machines on five different workstations. These 

operations, such as processing, turning and drilling, are shown in Figure 6.3. The defect rate, 

unit inspection cost and unit operation cost at each workstation are given in Table 6.1. It 

should be noted that the drilling machine does not produce any defect.  

It is assumed that there are three inspection stations to be located in the serial line. It is also 

assumed that during the search of the algorithm an ant is randomly placed on the third 
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workstation (WS3), this ant then has many choices to move to locate the second inspection 

station, as shown in Figure 6.4. 

        

 

 

 

 

         

 

 

 

 

       

 Table 6.1: Unit operation cost, unit inspection cost and defective rate for piston production 

 Workstation (WS) 

1 2 3 4 5 

Unit operation cost (Uk) 25 100 150 50 60 

Unit inspection cost (IC,k) 30 20 25 35 50 

Defect rate (Zk) 0.01 0.014 0.0 0.028 0.071 
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Figure 6.3: Flow of piston production (Kaya and Engin, 2007) 

Figure 6.4: The choices for an ant at WS3 to locate the next inspection station 
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The heuristic information will guide that ant to move to the next workstation that has a higher 

defect rate, operation cost and low inspection cost. Using equation (6.1) the following results 

show all possible moves for that ant: 

366.3
30

)]01.01(100[
1,3 




   
605.7

20

)]014.01(150[
2,3 
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762.1
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4,3 


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In the MMAS algorithm the heuristic information is superscript to beta  ][ ij and 0  as 

will be shown in equation (6.3). Based on these calculations the sequence of workstations that 

have a higher probability of being selected by the ant placed on WS3 is: WS2 and then WS1. 

These workstations have a higher desirability ( 60.72,3  , 36.31,3  ) for the ant. The 

pseudo-code of the developed OCDM heuristic information is outlined in the following 

procedure: 

Procedure of heuristic information 

           Initialise: Uk+1, and Zk and number of workstations 

 For j=1: number of workstations  

Calculate heuristic information using equation (6.1)
  

   End 

End Procedure 

Return heuristic information 

 Scores method (SM) 

The SM is based on the operation cost (Uk) and defect rate (Zk). The importance of using 

these rules is respectively to avoid processing defective items in subsequent operations and to 

avoid the high processing costs for items that are already defective. The question is how to 

combine these two rules together to guide the ants to locate inspection stations. Consider the 

same multistage manufacturing process consisting of five workstations arranged in a serial 
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manner using real data involving the manufacturing of pistons. The unit operation cost (Uk) 

and defect rates (Zk) at each workstation are given in Figure 6.5. Assuming that during the 

algorithm search an ant was placed on the fourth workstation (WS4), based on these two rules 

the ant has two choices of movement to locate the next inspection station, as shown in Figure 

6.5. These choices are whether to allocate an inspection station after WS5, which has a high 

defect rate (Z5=0.071), or before WS3, which has a high operation cost (U3=150). The ant 

must only move to one workstation to assign an inspection station. This leads to the use of a 

SM which is a combination of the two choices in one.  

 

 

 

 

 

The SM is created to allow the heuristic information to guide the ant and locate an inspection 

station based on the concerns of operation cost (Uk) and defect rate (Zk). The scores to locate 

an inspection station before or after workstation k are determined as SU,k and SZ, k. Those two 

kinds of score represent how important it is to allocate an inspection station for detecting 

workstation k by individually considering the operation cost and defect rate. The two upper 

limits of the scores are assumed to be equal to n (n=number of workstations). After that, these 

values are decreased gradually by 1 in each assigned score to the workstations based on the 

higher values of Uk and Zk. As shown in Figure 6.1, there are n workstations in a serial 

multistage manufacturing system, and either SU,k or SZ,k are determined to be n, n-1,. . . ,1.         
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In the case of operation cost, the higher the Uk, the greater the priority to allocate (higher 

score) an inspection station at the previous workstation k-1. The larger the SU,k, the higher the 

priority to locate an inspection station at workstation k. An earlier workstation will have a 

higher priority if two or more workstations have equal operation costs. Considerations should 

be given that SU,k is always set at the earliest workstation. This avoids the processing of 

already defective items, otherwise unnecessarily greater costs will incur. Wild (1989) pointed 

out that the accumulation cost resulting from processing items that are already defective 

increases as the number of processing workstations increases. 

In the case of the defect rate, the higher the Zk, the larger priority to allocate (higher score) an 

inspection station at workstation k. The larger the SZ,k, the higher priority to locate an 

inspection station after workstation k. If two or more workstations have the same defect rate, 

the higher priority to locate an inspection station is given to the last workstation. This will 

guarantee the best quality of product sold to the customer. On the other hand, if two or more 

workstations have the same defect rate and none of them is the last workstation, an earlier 

workstation will have a higher SZ,k, priority to locate an inspection station after workstation k. 

This avoids further work on scrapped units. After that, the total score (Sa.k) of locating an 

inspection station for each workstation will be: Sa,k= SU,k+ SZ,k. The higher the total score Sa,k 

is for the workstation, the higher the priority for placing an inspection station at it.  

Table 6.2 shows an example for determining these scores. As can be seen from Table 6.2 that 

workstation 3 has a higher operating cost (U3=150) than the other workstations. This gives 

priority to assign high score (SU, 2 =n, SU, 2 =5) at the previous workstation k-1 (workstation 

2). Also workstation 2 has a higher operating cost (U2=100) than the other workstations. This 

also gives priority to assign high score (SU, 1 =n-1, SU, 1 =4) at the previous workstation k-1 

(workstation 1). The same procedure is applied to the rest of workstations. In case of defect 

rate Zk, workstation 5 has a characteristically high defect rate (Z5=0.071) than the other 
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workstations. This gives priority to assign high score (SZ, 5 =n, SZ, 5 =5) after workstation 5. 

Also workstation 4 has a characteristically high defect rate (Z4=0.028) than the other 

workstations. This also gives priority to assign high score (SZ, 4 =n-1, SZ, 4= 4) after 

workstation 4. The same procedure is applied to the rest of workstations. The total scores at 

each workstation (Sa,k) will be: Sa,1=SU,1+ SZ,1=4+2=6, Sa,2= SU,2+SZ,2=5+3=8. The same 

procedure is applied to the rest of workstations. The final step is to determine the priority (Pk) 

to the total scores for each workstation. Clearly, the total scores at workstation 2 (Sa, 2=8) is 

higher than the others. This gives the higher priority to the workstation 2 (P2=1) to allocate an 

inspection station (the first inspection station) at it. Also the total scores at workstation 4     

(Sa, 4=7) is higher than the others. This also gives the higher priority to the workstation 4 

(P4=2) to allocate an inspection station (the second inspection station) at it. The same 

procedure is applied to the rest of workstations.  

        Table 6.2: Example of determining scores for the heuristic information 

                  

        k
ij

P


1

1

          

                              (6.2)      

Considering the same example of multistage manufacturing process described above for 

piston production that used real data. The defect rates and unit operation cost at each 

workstation are given in Table 6.2. The sequence of workstations based on the SM (higher 

priority) is: WS2, WS4, WS5, WS1, and WS3. In the MMAS algorithm the heuristic 

information is superscript to beta  ][ ij and 0 , as will be shown in equation (6.3). In this 

 Workstation (WS) 

1 2 3 4 5 

Operation cost (Uk) 25 100 150 50 60 

Scores of operation cost (SU,k) 4 5 2 3 1 

Defect rate (Zk) 0.01 0.014 0.0 0.028 0.071 

Scores of defect rate (SZ,k) 2 3 1 4 5 

Total score Sa,k=SU,k+SZ,k 6 8 3 7 6 

Priority (Pk) 4 1 5 2 3 
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case, if kij P  the highest desirability for allocating an inspection station goes to 

workstation 3, which has priority (Pk=5) (the lowest priority), then workstation 1 which has 

priority (Pk=4), and so on. To ensure that the heuristic information will guide the ant to the 

right workstation with the higher priority (Pk=1, 2,..., n) as determined in Table 6.2, the 

heuristic information is calculated by taking the inverse of Pk as shown in equation (6.2). 

In this case, the workstations with higher priority have a greater probability of selection. 1 is 

added to avoid dividing by 0. To apply the developed heuristic information on the serial 

multistage manufacturing process which produces pistons and is based on real data, as shown 

in Figure 6.6, it is assumed that an ant placed randomly on WS4. Subsequently that ant has 

many choices to assign the next inspection station. Based on the data in Table 6.2 and by 

using equation (6.2) all possible moves for that ant are computed as follows: 
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It is assumed that there are three inspection stations available to be distributed along the line. 

Then the workstations with highest priority are WS2 ( 2,4 ) and WS5 ( 5,4 ). Therefore, the 

first and the second inspection stations will be placed after WS2 and WS5 respectively, and 

the third inspection station is already placed randomly after WS4. 
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Figure 6.6: All possible moves from WS4 to locate inspection stations based on Pk 
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The pseudo-code of the developed SM heuristic information is outlined in the following 

procedure: 

Procedure of heuristic information 

           Initialise: Uk, Zk and number of workstations 

 For i=1: number of workstations  

    Assign scores for Uk-1, and Zk %Higher Uk-1 or Zk is the higher priority to assign 

scores% 

End 

   For k=1: number of workstations      

   Calculate Sa, k = SU, k + SZ, k 

   End 

  Determine priority Pk  

End Procedure 

Heuristic information =1/1+Pk 

6.2.3  Construction of the solution 

A feasible and complete solution of the formulated AOIS problem is considered as a static 

connected graph G=(C, L) where C is the set of nodes or workstations where [C=1,...n 

(n=number of workstations)] and L is the set of undirected arcs connecting them as shown in 

Figure 6.2. Each arc is weighted by a pair of numbers { ijij  , }, where ij is the pheromone 

trail level and ij  is the heuristic information as described in the previous section. For the 

tour construction, initially each ant k is placed on a randomly chosen workstation (WS). For 

example, when an ant is placed on workstation i as shown in Figure 6.7, then, starting from 

that workstation, an ant moves to a still unvisited workstation according to the probability 

distribution as will be described in the next section until a tour is completed. An ant 

stochastically prefers to move to workstations which are high heuristic ( ij ) values and 

which are connected by an arc with a high pheromone value.  The move of that ant is not 

affected by the feed-forward of the manufacturing process but it is affected by the arcs 
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between (workstations or nodes) which have high strength of pheromone trails and high 

desirability based on heuristic information.  

 

 

 

 

 

 

Figure 6.7: Graph representation of the AOIS problem 

Consider that three inspection stations have to be placed along a serial multistage 

manufacturing process consisting of eight processing workstations. Assume that an ant has 

visited WS3, WS4 and WS6 in any sequence (forward or backward or combination). It means 

that the inspection stations are located after WS3, WS4 and WS6. In the MMAS, the 

algorithm, each ant uses is a list to keep track of the workstations it has visited and the partial 

tour constructed so far is recorded as well. This list is also used to avoid moves to already 

visited workstations and for the ant to build legal tours. The list is denoted by Tabuk. Solution 

construction by artificial ants can then be imagined as a walk over a weighted, fully 

connected graph where the nodes represent the workstations and the arcs are connections 

between the workstations. In the AOIS problem, the objective is to find the inspection plan 

that has the lowest total cost. In the proposed algorithm, it is assumed that each ant initially 

assigns a limited number of inspection stations to corresponding workstations in serial 

multistage manufacturing processes.  
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6.2.4   Selection probability 

In all the implementations of ant algorithms, an ant chooses a move to go from its current 

state (workstation), to the next adjacent state (workstation), based on a rational combination 

of two factors, namely the desirability (heuristic information ij ) of that move and the 

quantity of pheromone on the edge which is to be traversed ij . In the AOIS problem, ants 

prefer workstations connected by arcs with a high pheromone trail. In the AOIS problem, 

when located at workstation i, ant k moves to workstation j chosen according to the 

probability distribution given by equation (6.3):  
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where  and  are the parameters that determine the relative dependence on pheromone 

trail intensity and local information, respectively, and 
k
iN  is the feasible neighbourhood of 

ant k, that is, the set of workstations which ant k has not yet visited. 

6.2.5    Pheromone updating rule 

In the MMAS, only one single ant is used to update the pheromone trails after each iteration. 

Consequently, the modified pheromone trail update rule is given by equation (6.4):  

                  )(Δ)()1()1( ttt best
ijijij                                     (6.4) 

)(Δ best tij  is defined by equation (6.5). 
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where )( bestsf denotes the solution cost (inspection plan cost) of either the iteration-best (s
ib

) 

or the global best solution (s
gb

) and Q is the total amount of pheromone deposited by an ant 
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on the edges of the path. However, the particular value of Q does not have a significant 

influence on the final performance of the algorithm (Dorigo et al., 1996; Zhi-He, 2008).  Is 

the pheromone evaporation rate; in order to avoid unlimited accumulation of the trail, the 

value of   should be (0 <  ≤ 1).  

In the AOIS problem, a mixed strategy between gbS and ibS  is used to update the pheromone 

trail. This is done to obtain gradually shifting emphasis from the iteration-best to the global-

best solution for the pheromone trail update. A transition between a stronger exploration of 

the search space early in the search to a stronger exploitation of the overall best solution later 

in the run can then be achieved (Stützle and Hoos, 2000; Wong and See, 2009). 

6.2.6  Pheromone trail limits 

Stützle and Hoos (2000) proposed the provision of dynamically evolving bounds on 

pheromone trail intensities such that the pheromone intensity on all paths is always within a 

specified range. As a result, all paths will have a reasonably good probability of being 

selected and, thus, a wider exploration of the search space is encouraged. The MMAS uses 

upper max and lower min bounds to ensure that pheromone intensities are set within a given 

range. By limiting the range of values for the pheromone trail, this influences the pheromone 

trails such that one can easily avoid large relative differences between the pheromone trails 

during the employment of the algorithm. In the AOIS problem, after updating the pheromone 

trail at the end of an iteration, the following operation will be applied to the pheromone trail 

on both edges and points as shown in equation (6.6): 
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The upper and lower pheromone bounds are calculated as shown in equations (6.7 and 6.8).   

 
)(

1

1

1
max

optsf



    (6.7) 

where max is the maximal pheromone trail and opts  is the estimated optimal inspection plan 

that has the lowest cost.
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where min is the minimal pheromone trail and pbest is the probability; the best values for pbest 

are  0.05 (Ridge, 2007 and Stützle and Hoos, 2000). avg is the average number of options 

available the ant has to choose from at any decision point (an ant has to choose among 
2

n

workstations (n= number of workstations)). The best solution found is constructed with a 

probability pbest which is significantly higher than 0.  

                                         

 

6.2.7 Termination condition 

Algorithms require a termination condition to control the computational time, similar to other 

metaheuristics such as genetic algorithms, Tabu search, simulated annealing. This can be 

done in a number of ways, e.g. repeating the algorithm for a maximum number of iterations, 

running for a stipulated time and the maximum CPU time has been spent. In this research, it 

was decided to run the algorithm until the maximum number of algorithm iterations had been 

reached. This type of termination was used by many of studies (e.g. Liang and Smith, 2004, 

Ning, 2010, Thepsonthi and Özel, 2012). 

 6.3  Improving constructed solutions through local search  

As described in chapter 5 that none of the previous metaheuristics methods in the literature 

review used local search to improve their performance. It has been shown that in other area 
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metaheuristics with local search perform better than metaheuristics without local search 

optimisation (Duda, 2006). Particularly, in ACO, it has been shown that local search applied 

to the solutions that the ants have constructed can improve the performance of an ACO 

algorithm, and to yield high quality solutions (Merkle et al., 2002).  In addition, the local 

search is part of the DaemonActions of the ACO algorithm as described in chapter 5. 

The local search mechanism known as iterative improvement is used to improve the 

performance of the MMAS algorithm. It replaces the current solution with a better one and 

stops as soon as no improved neighbouring solutions can be found.  In the AOIS problem, 

while running the MMAS algorithm when all inspection stations have been allocated to 

workstations, a complete solution has been constructed by an ant. The constructed solution is 

represented in the inspection plan with its total cost. Because of the metaheuristics methods 

which were used to solve the AOIS problem none of them used local search. Therefore, many 

local search methods in other problems such as vehicle routing problems, quadratic 

assignment problems, travelling sales man problems and job scheduling problems are 

investigated. In this research, six neighbourhood structures which are well-known in these 

problems are used to improve the performance of the MMAS algorithm (Goksal et al., 2012; 

Deroussi et al., 2006). Consider a serial multistage manufacturing process consisting of six 

workstations. Figures 6.3-6.8 show the inspection plan which is constructed by an ant (old 

inspection plan) for the six workstations where 0: no inspection and 1: an inspection is 

located after a workstation k. The constructed inspection plan is improved by applying six 

neighbourhood structures. These neighbourhood structures are explained as follows: 

Crossover: a two-point crossover sets two crossover points at random, and takes a section 

between the points from the inspection plan. In the following example, the two crossover 

points are set after the second and fourth inspection stations respectively. The symbol | 

indicates a crossover point. The resulting two-point crossover has the effect of dividing the 
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inspection plan into three parts. Recombining the three parts result in the creation of a new 

inspection plan, as shown in Figure 6.8. 

 

 

 

 

 

 

Interchange: randomly interchange two inspection stations that may not be adjacent in the 

created inspection plan, as shown in Figure 6.9. 

 

 

 

 

 

 

Swap: two neighbourhood inspection stations are swapped randomly in the created 

inspection plan, as shown in Figure 6.10. 

 

 

 

 

0 1 0 

0 1 0 0 1 1 old inspection plan 

new inspection plan 1 

 

1 0 

Figure 6.8: Two-point crossover  

0 0 0 

0 0 1 0 1 1 old inspection plan 

new inspection plan 1 

 

1 1 

Figure 6.9: Interchange two inspection stations 

0 0 1 

1 0 0 0 1 1 old inspection plan 

new inspection plan 1 

 

0 1 

Figure 6.10: Swap two neighbourhood inspection stations 
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Single insertion: one inspection station is picked randomly and then inserted into all the 

positions of the created inspection plan, as shown in Figure 6.11. 

Delete and add: delete one inspection station randomly in the created inspection plan, and 

then add it randomly in a new position in the inspection plan, as shown in Figure 6.12. 

 

 

 

 

 

 

 

 

 

Block insertion: two inspection stations are picked randomly and then inserted into all the 

positions of the created inspection plan, as shown in Figure 6.13. 

 

 

 

 

 

Figure 6.12: Delete and add one inspection station 

0 1 0 0 1 1 old inspection plan 

0 0 1 0 1 1 

 

new inspection plan  

old inspection plan with 

deleted inspection station 
0 1 0 1 1 

0 1 0 0 1 1 

0 1 0 0 1 1 old inspection plan 

new inspection plan  

Figure 6.13: Insert two inspection stations through the inspection plan 

1 1 0 0 1 0 

0 1 0 0 1 1 old inspection plan 

new inspection plan  

Figure 6.11: Insert one inspection station through the inspection plan 
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To yield a further reduction in run-time and to focus the local search around the part where 

potentially improvement can be found don’t look bits are used. Don‟t look bits were first used 

in the context of local search for the TSP in Bentley (1992). More recently, it was used by 

Ferreira et al. (2012). This technique is extended in a straightforward way to the AOIS 

problem. For the AOIS problem, every inspection station is associated with a don‟t look bit. 

When first applying local search, all the don‟t look bits are turned off (set to 0). If for an 

inspection station no improving move is found, the don‟t look bit is turned on (set to 1) and 

the inspection station is not considered as a starting inspection station in the next local search 

iteration. If an inspection station is involved in a move and changes its location, the don‟t 

look bit is turned off. It should be noted that by applying the local search method to the 

created inspection plan (old inspection plan), the total cost of the new inspection plan is 

changed. This research focuses on minimising the total manufacturing cost of a product. The 

objective function (total cost) is calculated for each new inspection plan created by applying 

local search. Whenever an improvement of the objective function is detected, the new 

solution replaces the old one, and the process continues until no further improvement is seen. 

The improved solutions are then used to update the pheromone trails. All these 

neighbourhood structures are applied to the MMAS algorithm and then compared in terms of 

the solution quality and processing time needed by each of these local searches.  

There exist a large number of possible choices when combining local search with ACO 

algorithms. Some of these possibilities relate to the fundamental question of how effective 

and how efficient the local search should be. In fact, in most local search procedures, the 

better the solution quality returned, the higher the computation time required. This translates 

into the question whether for a given computation time it is better to frequently apply a quick 

local search algorithm that only slightly improves the solution quality of the initial solutions, 
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or whether a slow but more effective local search should be used less frequently. These issues 

will be considered in the conducted experiments in chapter 8. 

6.4  Pseudo-code of the max-min ant system 

In this section, the elements discussed above are synthesised to evolve the proposed MMAS 

algorithm. The pseudo-code of the developed max-min ant system for the AOIS problem is 

outlined in the following procedure: 

Initialise  

   Set values of parameters number of ants, max-iterations, α, ß and ρ 

    Initialise pheromone trails matrix  

    Calculate the heuristic information  

      While (termination condition not met) do 

      Randomly place each ant in one node 

         For k = 1 to A (number of ants) 

     For i =1 to number of inspection stations 

  Choose the next workstation to visit according to the stochastic          

decision rule using equation (6.3) 

               Assign inspection station 

   End for 

          End for 

                    Calculate the objective function (total cost) S 

                     Apply local search S   

                             If )(Sf  < )(Sf   

                                 S = S  

                             End 

                  Update pheromone trails 

          Check upper and lower pheromone trails  

Check stopping criterion  

      End While; 

      Return the best solution found 
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6.5    Conclusion 

The MMAS algorithm was developed for tackling the AOIS problem in serial multistage 

manufacturing processes. The algorithm assumes that there are limited inspection stations 

available and allocating inspection stations reduces the total manufacturing cost. The MMAS 

uses a mixed strategy between the best global ant and best local ant to update the pheromone 

trails in order to obtain the best performance. The advantage of using a constructive 

algorithm such as the developed MMAS algorithm is that by generating reasonably good 

initial solutions, the following local search needs fewer iterations to reach a local optimum. 

Tow heuristic information methods have been created for the AOIS problem. These heuristic 

information methods are inspired by the characteristics of the AOIS problem, in particular 

operation cost, defects rate and inspection cost. Six local search methods for the AOIS 

problem have also been constructed. The MMAS algorithm is combined with local search in 

order to enhance the performance and to yield a high quality solution. Well tuned parameters 

are needed to efficiently initiate the MMAS algorithm and a method to find optimal 

parameter settings has been investigated in the course of this research. 
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Chapter 7 

Case studies selection 

___________________________________________________________________________ 

The max-min ant system algorithm was developed to tackle the AOIS problem in the 

previous chapter. To test the effectiveness of the MMAS algorithm, it must be compared 

against other search methods. An important issue for the comparison of algorithms is the 

identification of appropriate case studies. In this chapter, different case studies were 

investigated. The aim was to select appropriate case studies to assess the performance of the 

MMAS algorithm. A total of 44 cases were taken from the literature and studied in terms of 

their characteristics. This led to dividing the cases into two groups. The first group includes 

cases which relatively match with the developed general cost model (GCM) in terms of the 

assumptions of the developed GCM. As a result, the cases which are more appropriate to the 

GCM will be selected. The second group includes rejected cases which do not match with the 

GCM developed, in terms of the assumptions of the developed GCM. The following section 

describes the characteristics of these case studies followed by the assumptions of the 

developed GCM. 

7.1  Characteristics of the case studies 

The aim was to find case studies with characteristics considered appropriate for the GCM. 

The GCM was developed under the assumption of a limited number of inspection stations 

available. Similarly, the objective of almost all the case studies reviewed was to determine 

inspection points in a serial multistage manufacturing process in order to minimise the total 

cost. The characteristics of the case studies include production configuration, number of 

workstations, number of inspection stations, manufacturing cost, inspection errors, inspection 
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cost, internal failure cost, external failure cost, constraints and solution approach. All these 

characteristics were described in details in chapters 2 and 3. 

Most of the characteristics which were included in these case studies are described above. 

The aim was to find suitable case studies to assess the developed MMAS algorithm. The 

assessment of the case studies will be based on the assumptions of the GCM.  

7.2  Assumptions of the general cost model 

The developed GCM is focused on a serial multistage manufacturing process. It takes into 

account the constraints on inspection resources. As a result, the total manufacturing cost of a 

product can be reduced without affecting the quality of the product. The GCM for a serial 

multistage manufacturing process is based on the following assumptions which should be 

taken into consideration during the assessment of the case studies: 

 Production configuration is assumed to be a serial multistage manufacturing process. 

 There is a limited number of inspection stations (e.g. a limited budget) to be 

distributed in the production line. 

 The aim of the objective function is to minimise the total manufacturing cost while 

maintaining the quality of the product. The total system cost is the sum of the total 

cost of processing and inspecting the parts produced in the system. 

 Sample inspection is used if an inspection station is located after a workstation in the 

sequence.  

 No more than one inspection station can be assigned after each workstation. 

Table 7.1 shows the case studies which are relatively closely well-matched to the GCM. Each 

case study is represented by the first author‟s name followed by a two-digit publication year. 

The order of case studies is organised in chronological order by the year in which the paper is 

published. It should be noted that (Yes) means that this characteristic was included in the case 
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study and (-) means that this characteristic was not included in the case study. To simplify the 

selection procedure, the following criteria were used to select the appropriate case studies: 

 Data availability 

As can be seen from Table 7.1, there are some data which were not considered in the 

developed models used by the authors, such as replacement cost and external cost in case 

study (1). This might have occurred for the sake of simplicity in order to allow a tractable 

formulation model and solution. On the other hand, some data in the case studies are missing. 

For example, in case study (3), some data were not given, such as the quantity of items 

entering the system, the number of inspection stations and the penalty cost. In case study (5), 

the authors included the external failure cost in their model (replacement and repair costs), 

but values were not given for the experiment parameters or the scrap cost in the internal 

failure cost. In case (6), the unit inspection cost was not provided by the authors. In case 

study (12), the case included only inspection and scrap costs but did not provide the input 

material (number of items entering the system), unit scrap cost or unit inspection cost.  

 Matching to the general cost model 

In this section, the purpose is to look for cases that considered similar assumptions as the 

developed GCM. In addition, how these assumptions were treated through the case study was 

evaluated, taking into consideration that some assumptions might be adapted or reconsidered. 

For example, some case studies assumed that inspection was error free. In the GCM in 

chapter 3, both types of errors were incorporated into the GCM. This assumption was adopted 

in the developed GCM simply by setting parameters of inspection errors α=0 and β=1. In case 

study (1), the authors were interested in the reliability of each machine and the inspection 

time. These issues were not included in the developed GCM. In case study (2), although the 

case considered a limited number of inspection stations, they assumed that multiple 

inspection stations might be located after a workstation. 
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  Table 7.1: Characteristics of case studies relatively closely match with the GCM 

Case 

study 

number 

Author 
Production 

Configuration 

Number 

of WS 

Number 

of IS 

Man 

cost 

Inspection 

error 

Inspection cost Internal failure cost 
External failure 

cost 
Constraints 

Solution 

approach Fixed 

 

Variable 

 

Repair/ 
Rework 

cost 

Scrap cost 
Repair 

cost 

Repl. 

cost 

1 Park (88) Serial 4 _ Yes Free of 

error 

Yes Yes Yes Yes _ _ _ IP 

2 Raz (91) Serial 10 Multiple  Yes I and II _ Yes Yes _ Penalty cost _ B&B 

3 Viswanad-

ham (96) 

Serial and 

assembly 

5-25 _ Yes I and II _ Yes Yes Yes Penalty cost 

 

_ GA and SA 

4 Bai (96) Serial 4-10 1-3 _ I and II _ Yes Yes _ Penalty cost 

 

Limited 

inspection 

stations& 

rate of 

inspection 

DP 

5 Lee  (98) Serial _ _ Yes I and II Yes Yes Yes Yes Yes Yes Limited 

inspection 

stations & 

inspection 

time 

Heuristics 

6 Shiau (02) Serial 7 2,3,5 Yes I and II _ Yes Yes Yes Yes Yes Limited 

inspection 

stations 

Heuristics 

7 Langner 

(02) 

Serial 6 _ Yes I and II _ Yes Yes _ _ _ AOQL GA 

8 Shiau (03a) Serial 7 3 Yes I and II _ Yes Yes Yes _ _ Limited 

inspection 

stations 

Heuristics 

9 Shiau (03b) Serial 5 3 Yes I and II _ Yes Yes _ Yes Yes Limited 

inspection 

stations 

Heuristic 

10 Rau (05) Serial 6-16 _ Yes I and II Yes Yes Yes Yes Penalty cost 

 

_ Heuristic 

11 Shiau (07) Serial 5 3 Yes I and II _ Yes Yes Yes Yes Yes Limited 

inspection 

stations 

GA 

12 Sadegheih 

(07) 

Serial 10 3 – Free of 

error 

_ Yes _ Yes _ _ – GA 

13 Van Volsem 

(07) 

Serial 6 _ _ Free of 

error 

_ Yes Yes _ Penalty cost 

 

_ GA 

Man.: manufacturing, Repl.: replacement, I and II: Type I and type II inspection errors, AOQL: average of outgoing quality level. 
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On the other hand, in the GCM, it is assumed that no more than one inspection station can be 

assigned after each workstation. In case study (4), the case included assumptions such as the 

rate of processing, the rate of production and the rate of inspection. All these assumptions are 

not incorporated in the GCM. In case study (7), the objective function was constrained by the 

average outgoing quality level which is not included in the GCM. In addition, the number of 

items to be inspected was randomly based on a sample size selected at each workstation. 

However, in the GCM, when inspection is performed, 100% of items are inspected. In case 

study (13) the case was interested in determining the rigor of the inspections (acceptance 

limits) for each inspection station. These issues are not included in the GCM.     

The case studies used various optimisation methods to solve the AOIS problem. These 

optimisation methods included exact and approximate methods. It should be noted that most 

of these case studies used the total manufacturing cost and processing time to test the 

performance of their optimisation methods against the optimal solution. The optimal solution 

was obtained using the complete enumeration method (CEM). The CEM checks for all 

possible combinations of inspection plans in the search space. As a result, the quality of the 

solution obtained by a method can be measured by its closeness to the optimal solution. The 

running time is the processing time required to execute the computer programmes for 

problem-solving in a computer system. It was found that case studies (8) and (9) were nearly 

identical in terms of the experiment parameters used, and both of them used the heuristic 

method to approach the AOIS problem. Because case study (9) is more appropriate for the 

GCM, and also because case study (8) did not consider the external cost, case study (8) was 

therefore excluded from consideration.  

7.3   Cases not matching the general cost model 

Table 7.2 shows the cases which were reviewed and investigated but rejected because their 

characteristics, constraints and assumptions did not match with the developed GCM. 
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   Table7.2: Characteristics of case studies not match with the GCM 

Case 

study 

number 

Author 
Production 

Configuration 

Number 

of WS 

Number 

of IS 

Man 

cost 

Inspection 

error 

Inspection cost Internal failure cost 
External failure 

cost 
Constraints 

Solution 

approach Fixed 

 

Variable 

 

Repair/ 

Rework 
cost 

Scrap cost 
Repair 

cost 

Repl. 

cost 

14 Lindsay 

(64) 

Serial 9 _ _ Free of 

error 

_ Yes _ Yes _ _ AOQL DP 

15 White (65) Serial 6 _ _ Free of 

error 

_ Yes _ Yes _ _ _ DP 

16 Pruzan (67) Serial 5 _ Yes Free of 

error 

Yes Yes _ Yes _ _ _ DP 

17 White (69) Serial 5 _ Yes Free of 

error 

Yes Yes Yes Yes Yes _ _ DP 

18 Eppen (74) Serial 9 _ _ I and II _ Yes _ Yes _ _ DP 

19 Enrick (75) Serial _ _ Yes I and II _ Yes Yes _ _ _ DP 

20 Ballou (82) Serial 3 _ _ I and II _ Yes _ Yes Penalty cost – NLP 

21 Peters (84) Serial 13 _ Yes Free of 

error 

Yes Yes Yes Yes Penalty cost – DP 

22 Hsu (84) Serial 4 _ Yes Free of 

error 

_ Yes _ Yes _  _ DP 

23 Gunter (85) Assembly 9 _ – Free of 

error 

Yes Yes Yes _ _ _ DP 

24 Ballou (85) Serial 3 _ Yes I and II _ Yes _ _ Penalty cost _ NLP 

25 Raz (87) Assembly 5 _ _ I and II _ Yes _ Yes _ _ I and II B&B 

26 Yum (87) Serial 3,10 _ Yes I and II _ Yes Yes Yes _ _ _ LP 

27 Tayi (88) Serial 5 _ Yes Free of 

error 

_ Yes Yes Yes Penalty cost 

 

_ NLP 

28 Barad (90) Serial 8 _ Yes Free of 

error 

_ Yes Yes _ _ _ _ Heuristic 

29 Raghava-

chari   (91) 

Serial 5 _ Yes Free of 

error 

Yes Yes Yes  Penalty cost – DP 

30 Chengalur   

(92) 

Serial 

 

3 _ Yes I and II _ Yes _ 

 

Yes Penalty cost 

 

Limited 

inspection 

stations 

DP 
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    Table7.2: Characteristics of case studies not match with the GCM (continued) 

Case 

study 

number 

Author 
Production 

Configuration 

Number 

of WS 

Number 

of IS 

Man 

cost 

Inspection 

error 

Inspection cost Internal failure cost 
External failure 

cost 
Constraints 

Solution 

approach Fixed 

 

Variable 

 

Repair/ 

Rework 
cost 

Scrap cost 
Repair 

cost 

Repl. 

cost 

31 Taneja (94) 

 

 

Non-

serial/serial 

5 _ Yes I and II _ Yes _ Yes _ _ AOQL and 

Limited 

inspection 

stations 

GA 

32 Jewkes (95) Serial _ _ _ Free of 

error 

_ Yes Yes _ Yes _ _ NLP 

33 Narahari 

(96) 

Non-serial 4 _ _ Free of 

error 

_ _ Yes Yes _ _ NLP 

34 Deliman 

(96) 

Serial 5  Yes II _ Yes Yes Yes Penalty cost 

 

_ MDP 

35 Chen (99) Assembly _ _ Yes Free of 

error 

_ Yes Yes Yes _ _ SA 

36 Jang (02) Serial 6 _ Yes Free of 

error 

Yes _ Yes _ _ _ Limited 

inspection 

stations 

MDP 

37 Kogan (02) Serial 6 5 _ Free of 

error 

_ Yes _ _ Penalty cost 

 

_ NLP 

38 Emmons 

(02) 

Non-serial 9 _ Yes Free of 

error 

_ Yes _ _ _ _ _ Heuristic 

39 Hadjinicola 

(03) 

Assembly 3 _ Yes Free of 

error 

_ Yes Yes Yes _ _ _ NLP 

40 Kakade 

(04) 

Serial 2 _ _ Free of 

error 

_ Yes Yes _ Penalty cost 

 

Rate of 

inspection 

SA 

41 Valenzuela 

(04) 

Serial 2 _ Yes Free of 

error 

_ Yes Yes _ Penalty cost 

 

_ TS 

42 Rau et 

al.(05) 

Non-serial 4,8,16 _ _ I and II Yes Yes Yes Yes Penalty cost Limited 

inspection 

stations 

Heuristic 

43 Penn (06) Assembly 8 _ Yes Free of 

error 

Yes Yes _ Yes Penalty cost 

 

_ DP 

44 Galante 

(07) 

Serial 10 _ Yes I and II _ Yes _ _ Penalty cost 

 

_ GA 
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For example, some of them studied different system structures such as assembly and non-

serial systems, as in case studies (23) and (25). Some others were interested in studying 

different issues in their case studies. For example, in case study (27), the case study was 

interested in quality control procedures, in-process inventory and reprocessing. Furthermore, 

in case study (44), both inspection allocation and operation scheduling were included 

concurrently. These issues are not included in the GCM. 

7.4  Conclusion 

Based on these assessments explained above, cases (10) and (11) were selected to be used as 

testing problems for the developed GCM. Most of the assumptions of the developed GCM 

were matched by the selected cases. It should be noted that some assumptions will need to be 

adapted. For example the selected case study (10) used the average deviation from the optimal 

solution (DFOS) and the standard deviation of DFOS to measure the solution quality of their 

method. However, the case study did not specify the number of cases generated by each size 

of workstation. Therefore, in experiments, each size of workstation should randomly generate 

a number of cases using a uniform random number generator in order to calculate the average 

DFOS and standard deviation of DFOS. Also, in case study (10), items of external failure cost 

were represented as aggregated (penalty cost). This assumption will be adapted in the 

developed GCM. In addition, in case study (10), the number of inspection stations to be 

located is missing. To adopt this assumption, the developed GCM will be tested with various 

numbers of inspection stations. 

In case study (11), the defective rate and the inspection errors were not specified by the 

author; therefore, they will be assumed based on similar values used in the earlier literature 

review in chapter 2. Also, the penalty cost will be assumed to match the complexity of the 

problem. However, the penalty cost usually depends on the kind of the product produced by 

the company and its complexity.  
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All the selected cases tested their optimisation methods by using processing time and total 

cost against the optimal solution obtained by CEM. The aim of all the selected cases was to 

minimise the total manufacturing cost. In addition, all the selected cases used inspection of 

100% of items if inspection was needed after a workstation. The selected cases will be used to 

assess the developed MMAS algorithm as presented in chapter 10. To solve the AOIS 

problem using the developed MMAS algorithm, must first the MMAS parameter values be 

tuned very well. A method has been proposed to find the optimal combination of the most 

influential parameter values of the MMAS algorithm. This method is presented in the next 

chapter. 
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Chapter 8 

Tuning MMAS parameters 

___________________________________________________________________________ 

The AOIS problem has been approached using a number of different techniques reported in 

next chapter that vary in their methods and efficiency. These methods are SA, GA, PSO and 

MMAS algorithm. It is well known that metaheuristic methods are highly dependent on their 

parameters setting. The metaheuristic is instantiated with several parameters which have to be 

set manually. Solving problems with the metaheuristic methods is related to the parameter 

settings concerned in the algorithm, and a good parameter combination will provide the 

algorithm with overall search capability and a fast convergence rate. In contrast, with 

unsuitable parameter values, the algorithm convergence will be too fast or too slow, and may 

prevent the algorithm from finding the best solution. To solve the AOIS problem using the 

developed these algorithms, parameter values for these algorithms must first be tuned very 

well. A method has been developed to find the optimal combination of the most influential 

parameter values of the SA, GA, PSO and MMAS algorithms for tackling the AOIS problem 

in this chapter.  

8.1  Experimental framework 

A multistage manufacturing system model consisting of 12 processing workstations arranged 

in a serial manner was used to allocate five inspection stations. The sample size sk is set at 80 

and the acceptance number (ak) for workstation k is set at 1. This case study will be labelled 

as the „„general cost model case study‟‟. For this number of workstations, the full 

enumeration of the search space can be generated in a reasonable time. It should be noted that 

in the AOIS problem, an inspection station is placed only after the workstation which is in 

need of inspection. For example, assume that the constructed inspection plan for the general 
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cost model case study was (011110000001); this means that inspection is performed only 

after the second, third, fourth, fifth and last workstations. Table 8.1 shows the experimental 

parameters of the developed general cost model and their ranges. 

              Table 8.1: Experimental parameters for the general cost model case study 

 

 

 

 

 

 

 

The experimental parameters were set based on similar experiments in the literature, and the 

results can be easily interpreted using simple mathematics. These experimental parameters 

were used to generate 50 different cases. These cases were randomly generated in order to 

represent the characteristics of different manufacturing systems. In other words, these cases 

represent 50 different problems. The experimental parameters for the general cost model case 

study in Table 8.1 are described below: 

1. Batch size (B). This is the number of units entering the system.  

2. Manufacturing cost (Uk). This is the unit cost of producing one unit at processing 

workstation k. 

3. Inspection cost (ICm). This is the unit cost of inspecting one unit at inspection station m 

located after processing workstation k. 

Parameters Range Brief description 

B 1000 Batch size 

Uk [50, 100] Unit manufacturing cost (£) 

ICm [40, 50] Unit inspection cost (£) 

Zk [0.09, 0.18] Defective rate 

αm [0.01, 0.03] Type-I inspection error 

βm [0.01, 0.03] Type-II inspection error 

uk [30, 120] Unit scrapping cost (£) 

gk [40, 80] Unit  reworking cost (£) 

δk [0.05, 0.09] Repairing  probability  
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4. Probability of non-conforming (Zk). This is the probability of producing a non-

conforming unit at processing workstation k.  

5. Probability of type I error (αm). This is the probability that an inspection station m 

placed after processing workstation k classifies a CU unit as an NCU, and rejects it. 

6. Probability of type II error (βm). This is the probability that an inspection station m 

placed after processing workstation k classifies an NCU as a CU and forwards it for 

further processing. 

7. Unit scrapping cost (uk). This is the unit cost of scrapping one unit at processing    

workstation k. 

8. Unit rework cost (gk). This is the unit cost of reworking one unit at processing 

workstation k. 

9. Probability of repairing a defective unit (δk). This is the probability of repairing a 

defective unit at processing workstation k. 

8.2 Experimental design 

To evaluate the performance of the MMAS algorithm, the results obtained by these methods 

were compared against the optimal results which were obtained by the complete enumeration 

method. The aim is to measure deviation from optimal solution (DFOS) for the results 

obtained by the developed algorithms. In AOIS problem, the total cost (TC) is the sum of 

processing and inspecting the parts produced in the system as described in chapter 3. Solution 

quality can be measured by the closeness of the developed algorithms solution to the optimal 

solution. In other words, the solution quality of a method is indicated by the DFOS. The 

DFOS is calculated as given by equation (8.1):

                                                   

 

          %1
CEMofTC

algorithmofTC
DFOS 








                             (8.1) 
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The complete enumeration method (CEM) is very well-known and has been used as a 

benchmark by many of studies in the literature. This is because the CEM checks for all the 

possible combinations of inspection plans in the search space. An advantage of using the 

complete enumeration method is that the optimal solution is known. It should be noted that in 

the AOIS problem, an inspection station is placed only after the workstation which is in need 

of inspection.  

The following steps describe the complete enumeration method: 

Step1: Generate all possible location combinations of inspection plans for the general cost 

model case study. Store the generated inspection plans in the database. 

Step2: Filter inspection plans by checking all inspection plans as to whether they fit the 

constraint to the required number of inspection stations (a limited number of 

inspection stations). If an inspection plan matches the number of inspection stations 

required, this inspection plan will be considered. If this condition is not met, the 

inspection plan will be rejected, because it is unnecessary to check the inspection 

plans for unsatisfactory assignment location combination. Store the filtered inspection 

plans in database. 

Step3: Evaluate all filtered inspection plans which match the number of inspection stations 

required. Store the evaluated inspection plans in the database. 

Step4: Determine the feasible inspection allocation plan that has the lowest total cost. 

CEM was used as benchmark to test the performance of the developed method under the 

tested parameters. To do so, the MMAS approached the AOIS problem using the specified 

parameters. The experimental parameters in Table 8.1 were used to generate 50 different 

cases. These cases were randomly generated in order to represent the varying characteristics 

of different manufacturing systems. The parameter combination yielded 252 different 

parameter combinations and the MMAS algorithm was then applied on 50 different cases. 
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For each of the 50 test cases, 800 evaluations were performed by the algorithms and repeated 

30 times to generate average deviation from optimal solution (DFOS) for the test cases.  

8.3  Tuning MMAS parameters 

The study of the impact of various parameters on the behaviour of ACO algorithms has been 

an important subject since the first articles by Dorigo et al. (1991a, 1996). Using good 

parameter values for the MMAS algorithm is important both with the respect to efficiency 

and effectiveness. Tuning the parameters for any optimization algorithm is at least as 

important as designing the algorithm itself.  

8.3.1 Summary of MMAS parameters 

This section will introduce a summary of MMAS parameters. 

α : Controls the relative importance of pheromone level ( ij ) of the ant in the process of 

movement when guiding the ant colony search. Its size reflects the strength of random factors 

in the path search of the ant colony, and it should be a positive value. A value of zero would 

turn the algorithm into a standard greedy one, since no pheromone information would be used 

(Gaertner, 2004). On the other hand, higher values cause the ants to perform too little 

exploration. 

β : Reflects the degree of importance of the heuristic information ( ij ) and the importance of 

the location of inspection stations relative to workstations. With higher β values, a lot of 

exploration will occur during the execution of the algorithm.  In other words, the greater the β 

value, the greater the chance that the ant will choose the nearest node, and the convergence 

rate in the search will accelerate, but the algorithm may be easily trapped into a local optima. 

On the other hand, a β value of zero means that the desirability of locating an inspection 

station is completely irrelevant, and only the pheromone trail level is used by the algorithm to 

choose which path to take.  
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ρ : Controls the evaporation of pheromone in the environment. It indicates the pheromone 

volatilisation factor, and its size is directly connected to the global search ability and the rate 

of convergence of the ant colony algorithm. It is intuitively limited by 10    . Pheromone 

evaporation reduces the influence of the pheromones deposited in the early stages of the 

search, when artificial ants can build poor-quality solutions (Dorigo and Stützle, 2004). 1-ρ is 

the pheromone residue factor, reflecting the degree of interaction between individual ants. 

When 1 , the pheromone is wiped after every iteration. A value of 0 would lead to 

continually increasing pheromone levels since the pheromone would never evaporate 

(Gaertner, 2004). 

0 : Specifies the initial pheromone level on all edges. Intuitively, the pheromone trail 

strength (pheromone trail matrix) in the MMAS algorithm is initialised as the maximum max

possible trail strength for all edges. This type of trail initialisation is chosen to increase the 

exploration of solutions during the first iterations of the algorithm. Also, the initial 

pheromone trail 0 could be set to any value, because after the first iteration, the pheromone 

trail will be forced to fall within [ maxmin , ]. 

max : This is the maximum possible pheromone trail or the largest possible amount of 

pheromone added after any iteration. It is calculated by equation (6.7). In the AOIS problem, 

opts  is the optimal inspection plan that has the lowest cost and is used to determine an 

appropriate value for max . Clearly, the optimal solution value is not known before running 

the algorithm and opts
 
is used as an estimate of that value. Consequently, the upper trail 

limit is adapted during the running of the algorithm.

       

 

min :  This is the minimum possible pheromone trail, and is calculated by equation (6.8). 

Many other authors use a different equation to determine min ; for example, Ridge (2007) 
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calculated the lower trail limit
n2

max
min


  , where n is the problem size (e.g. the number of 

workstations), and Stützle (1998b) set the lower pheromone trail limit to
3

max
min


  .

  

pbest: This is the probability that an ant will construct the best solution. The experimental 

results in different areas confirmed that the best value of pbest
 
is 0.05. Examples are Afshar 

(2009) in network optimisation problems, Stützle and Hoos (2010) in QAP and Shuang et al. 

(2011) in TSP.  

numAnts: Represents the number of ants used by the algorithm. Clearly, the more ants used, 

the slower the algorithm will be. On the other hand, using too few ants means that no 

meaningful pheromone matrix is created and the search will take more iterations to find the 

best solution. It should be noted that, when the MMAS was applied to the TSP without 

considering local search, the best results were obtained by increasing the number of ants 

proportionally to the instance size. However, this option may not be the best when local 

search is added to the MMAS algorithm (Stützle, 1998b, Stützle and Hoos 2010). 

Q: This is the total amount of pheromone released on all paths by the ants in one cycle. The 

experimental results conducted by Dorigo et al. (1996) and Zhi-He (2008) showed that the 

pheromone strength Q has no obvious influence on the performance of the ant colony 

algorithm. 

Max-cycles: Controls the number of iterations of the algorithm. Fewer iterations will not be 

enough to produce good solutions, and increased iterations may lead to unsatisfactory 

efficiency of the computation. In the AOIS, the MMAS is terminated when the maximum 

number of algorithm iterations has been reached.  

In summary, using good parameter values for the MMAS algorithm is important both with 

respect to efficiency and effectiveness. With so many parameters, many of which seem to 

interact non-linearly with each other, establishing the optimal values for all parameters is a 
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very time-consuming task. From the description of these parameters, it can be seen that the 

selection of ,  and in the MMAS algorithm has the greatest influence on algorithm 

performance. Further, many researchers in different area pointed out that these parameters are 

the most important parameters and have great influence on the performance of MMAS, Ning 

et al (2010) in layout problems, Fidanova et al. (2011) in Multiple knapsack problems, Wu et 

al (2011) in QAP, and Liang et al. (2012) in scheduling problems. A method to optimise the 

most influential parameters ,  and is presented in this chapter. 

8.3.2  MMAS parameter settings 

The parameter values used in ACO algorithms are often very important in obtaining good 

results. Dorigo and Stützle (2002) suggested that the exact values of the parameters are often 

problem-dependent. Unless indicated otherwise, the following parameter settings were used: 

 - Controls the relative importance of pheromone. The values: low [0.6, 0.8, 0.9], 

medium [1, 2, 3, 4, 5] and high [6, 7, 8, 9, 10] of this parameter were tested for 

tuning the algorithm. 

 -   Controls the ratio between the importance of pheromone and the importance of 

the location of inspection stations. The values [0, 1, 2, 3, 4, 5] of this parameter 

were tested for tuning the algorithm. 

0  -     Specifies the initial pheromone level on all edges. This matrix of initial 

pheromone was set to max . Stützle and Hoos (2000) have explained that this 

should be fairly high to encourage initial exploration during the first iterations. 

  
bestp

 
- 

Probability =0.05 as suggested by Stützle and Hoos (2000) and Ridge (2007). 

 
 - Controls the evaporation of pheromone in the environment, and is always set in 

the range 10   .  was tested with the values [0.01, 0.02, 0.05]. 

Q- Q=n, where n is the number of workstations (Spiliopoulos and Sofianopoulou, 

2008). 
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max- 

cycles 

Controls the number of iterations of the algorithm, the maximum iterations is set 

at 800.  

                                               

 

To explore better solution components and to avoid premature convergence of the MMAS 

algorithm, a mixed strategy was used to update pheromone trails. In the first 300 iterations, 

the iteration best ant 
ib

s is used to update the pheromone trails, and then every tenth iteration, 

the global best ant gbs is used for the pheromone trails update. By gradually shifting the 

emphasis from the iteration best to the global best solution for the pheromone trail update, a 

transition between exploration of the search space in early stages to exploitation of the overall 

best solution in later stages can be achieved.  

In the conducted experiments, two possible settings for the number of ants were investigated. 

In first variant, denoted as MMAS10+ls, 10 ants were used and every ant applied local search 

to its tour. In the second variant, denoted as MMAS+ls+ib, the algorithm started with a fixed 

number of 10 ants and then the number of ants which applied local search was then 

successively increased by one after a certain number of iterations. This variant only allows 

the iteration best ant to apply local search because, in this case, if all ants applied local 

search, the computation times would be too long. 

8.4 Results 

In this section, the computational results in terms of optimal parameters for MMAS, SA, GA 

and PSO algorithms are presented. The DFOS confidence interval (95%) for MMAS is also 

presented. Variations in   and  for the MMAS algorithm are discussed.  

8.4.1  Optimal parameters for MMAS 

Table 8.2 shows the average DFOS obtained by the MMAS10+ls algorithm for the studied 

case. The performance of the MMAS10+ls algorithm was tested against the CEM using 

equation (8.1) under the studied parameters.  
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      Table 8.2: Average 
*
DFOS for the MMAS10+ls algorithm (shading indicates the best result) 

   β                              α 0.6 0.8 0.9 1 2 3 4 5 6 7 8 9 10 

0 ρ=0.01  

 

18.6 18.6 18.6 18.5 18.5 15.5 15.5 14.5 18.6 18.6 18.6 18.6 18.6 

ρ=0.02  18.6 18.6 18.6 18.6 18.6 18.6 18.6 18.6 18.9 18.9 18.9 18.9 18.9 

ρ=0.05 18.6 18.6 18.6 18.6 18.6 18.6 18.6 18.6 18.6 18.9 18.9 18.9 18.9 

1 ρ=0.01   

 

18.6 18.6 3.2 1.9 1.9 1.9 1.9 0.12 0.12 0.9 0.9 0.9 0.9 

ρ=0.02  18.6 18.6 3.2 3.2 3.2 0.9 0.9 0.12 0.12 0.9 0.9 0.9 0.9 

ρ=0.05 18.6 18.6 3.2 0.7 0.7 0.21 0.21 0.12 0.9 0.9 0.9 0.9 0.9 

2 ρ=0.01   18.6 18.6 3.2 3.2 3.2 3.2 3.2 0.7 0.7 0.9 0.9 0.9 0.9 

ρ=0.02   18.6 18.6 3.2 3.2 3.2 0.9 0.9 0.12 0.12 0.9 0.9 0.9 0.9 

ρ=0.05  18.6 18.6 3.2 3.2 3.2 0.7 0.2 0.12 0.12 0.9 0.9 0.9 0.9 

3 ρ=0.01   18.6 18.6 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 18.6 18.6 18.6 

ρ=0.02   18.6 18.6 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 18.6 18.6 

ρ=0.05  18.6 18.6 3.2 3.2 3.2 1.9 1.9 1.9 1.9 1.9 18.6 18.6 18.6 

4 ρ=0.01   18.6 18.6 3.2 3.2 3.2 3.2 3.2 3.2 3.2 18.9 18.9 18.9 18.9 

ρ=0.02   18.6 18.6 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 18.9 18.9 

ρ=0.05  18.6 18.6 3.2 3.2 3.2 3.2 3.2 18.6 18.6 18.6 18.9 18.9 18.9 

5 ρ=0.01   18.6 18.6 3.2 3.2 3.2 3.2 

3.2 

3.2 3.2 3.2 18.6 18.6 18.6 18.6 

ρ=0.02   18.6 18.6 3.2 3.2 3.2 3.2 3.2 3.2 18.9 18.9 18.9 18.9 18.9 

ρ=0.05  18.6 18.6 3.2 3.2 3.2 3.2 3.2 18.6 18.6 18.9 18.9 18.9 18.9 

  *Each DFOS × 0.001 
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In the variant MMAS10+ls, 10 ants were used and all ants were allowed to perform a local 

search. As described above, a mixed strategy between the iteration best ant and the global 

best ant was used to update the pheromone trails. The algorithm was executed per ( ,  , ) 

parameter triplet for the 50 case studies. The best average DFOS obtained by MMAS10+ls are 

shaded in grey. It should be noted that this research was concerned with calculating the 

average DFOS; hence, the results presented in Table 8.2 are the average DFOS, not the 

optimal solution. The best combination of parameters for the MMAS10+lsalgorithm is shown 

in Table 8.3.  

                   Table 8.3: Best combination of parameters for MMAS10+ls 

Parameters 

β ρ α 

1 0.01 5,6 

0.02 5,6 

0.05 5 

2 0.02 5,6 

0.05 5,6 
 

The graphics in Figure 8.1 are box-plots for different combinations of ,  and . The box 

length gives an indication of the sample variability and the line across the box shows where 

the sample is centred. The position of the box in its whiskers and the position of the line in 

the box also tell us whether the sample is symmetric or skewed, either to the right or left. In 

Figure 8.1 (a, b and c) the parameters of MMAS are kept as standard values and the  

parameter is varied within its specified range. It should be noted that when 0  it means that 

no heuristic information is used. The best result DFOS obtained is 0.0145. By increasing 1

, as shown in Figure 8.1 (d, e and f), the range ofvalues that obtained best results are 5 , 

6 and ρ=0.01. By increasing ρ to 0.02, the optimal range ofvalues remained the same. By 

increasing ρ to 0.05, the best average of DFOS is obtained when 5 .  
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Figure 8.1: Influence of parameters α, β and ρ on the performance of MMAS-10+ls 

for the AOIS problem 
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In the case of 2 , as shown in Figure 8.1 (g, h and i), the best results were obtained when 

ρ=0.01 and in the range of values of 5 and 6.This situation was repeated by increasing ρ to 

0.02 and 0.05. Whenwas increased to =3, 4 and 5, as shown in Figures 8.1 (j–r), the 

performance of the MMAS10+ls became ineffective for obtaining good solutions. A big 

variation in the objective function value was observed when parameter  changed from 0.9 to 

5. It can be seen that the performance of the MMAS algorithm is worse than in previous 

cases, except for 2 . However, when  =3, 4 and 5 the variation in performance of MMAS 

is not very significant. 

From the analyses above, one can see that parameters ,  and ρ are significant factors. From 

a sensitivity perspective, the parameters and  are sensitive parameters. This is likely 

because they control the relative importance of the trail versus visibility, which relates to the 

essence of MMAS.  

Table 8.4 shows the average DFOS for the same number of 50 cases conducted with the 

MMAS+ls+ib algorithm. In this variant, the algorithm started with a fixed number of 10 ants, 

and then the number of ants applying local searches was successively increased by one after a 

certain number of iterations (50). The aim was to obtain a good compromise between solution 

quality and computational speed. In this variant, only the best iteration ant was allowed to 

apply the local search. A mixed strategy between the best iteration ant and the best global ant 

was used to update the pheromone trails. As shown in Table 8.4, the best averages of DFOS 

obtained by MMAS+ls+ib are shaded grey. The best results were obtained with β=1, ρ=0.01 

and in the range 7 and 8. By increasing ρ=0.02 and 0.05 the range of values which 

obtained the best results decreased to 5 and 6. In the case of β =2 the best results were 

obtained with 5 and 6 and ρ=0.02. By increasing ρ to 0.05 the best results are obtained 

with 6 . 



 

170 
 

    Table 8.4: Average DFOS for the MMAS+ls+ib algorithm (shading indicates the best result) 

β                               α 0.6 0.8 0.9 1 2 3 4 5 6 7 8 9 10 

0 ρ=0.01   18.6 18.6 18.6 18.5 18.5 15 15 14.5 18.6 18.6 18.6 18.6 18.6 

ρ=0.02   18.6 18.6 18.6 18.6 18.6 18.6 18.6 18.6 18.6 18.9 18.9 18.9 18.9 

ρ=0.05  18.6 18.6 18.6 18.6 18.6 18.6 18.6 18.6 18.6 18.9 18.9 18.9 18.9 

1 ρ=0.01   3.2 3.2 3.2 1.9 1.9 1.9 1.9 1.9 1.9 0.21 0.21 4.2 4.2 

ρ=0.02   3.2 3.2 3.2 3.2 3.2 0.7 0.7 0.12 0.12 0.21 0.21 4.1 4.1 

ρ=0.05  3.2 3.2 3.2 0.72 0.72 0.21 0.21 0.12 0.12 0.19 0.19 4.1 4.1 

2 ρ=0.01   18.9 3.2 3.2 3.2 3.2 3.2 3.2 0.7 0.7 1.2 1.5 2.1 4.1 

ρ=0.02   18.9 3.2 3.2 3.2 3.2 1.3 0.7 0.15 0.15 1.5 1.5 2.4 4.1 

ρ=0.05  18.9 3.2 3.2 3.2 3.2 0.7 0.2 0.21 0.15 1.2 1.5 2.4 4.1 

3 ρ=0.01   5.2 5.2 5.2 5.2 5.2 5.2 5.2 3.2 3.2 3.2 18.6 18.6 18.6 

ρ=0.02   5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 3.2 3.2 3.2 18.6 18.6 

ρ=0.05  5.2 5.2 5.2 5.2 5.2 4.1 4.1 4.1 4.1 4.1 18.6 18.6 18.6 

4 ρ=0.01   5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 18.9 18.9 18.9 18.9 

ρ=0.02   5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 18.9 18.9 

ρ=0.05  5.2 5.2 5.2 5.2 5.2 5.2 5.2 18.6 18.6 18.6 18.9 18.9 18.9 

5 ρ=0.01   5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 18.6 18.6 18.6 18.6 

ρ=0.02   5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 18.9 18.9 18.9 18.9 18.9 

ρ=0.05  5.2 5.2 5.2 5.2 5.2 5.2 5.2 18.6 18.6 18.9 18.9 18.9 18.9 

*Each DFOS × 0.001 



 

171 
 

The best combinations of parameters for the MMAS+ls+ib algorithm are presented in Table 8.5.              

Table 8.5: Best combinations of parameters for MMAS+ls+ib 

Parameters 

β ρ α 

1 0.01 7,8 

0.02 5,6 

0.05 5,6 

2 0.02 5,6 

 0.05 6 

The results for different combinations of ,  and are plotted in Figure 8.2 to determine the 

relationship between these three parameters. Figure 8.2 shows influence of each parameter  

 ,  and when using the variant MMAS+ls+ib algorithm. The performance of MMAS+ls+ib is 

very similar to the previous MMAS10+ls algorithm. However the best results were obtained 

when  =1 and 2 and 5 and 6 as shown in Figure 8.2 (b, c). As  >2 the performance of 

the MMAS algorithm worsens. It can be observed that the parameters ,  and ρ are 

significant factors in the MMAS algorithm. Also, it can be observed that the parameters and 

 are sensitive parameters. This is likely because they control the relative importance of the 

pheromone trails versus heuristic information, which relates to the essence of MMAS 

algorithm.  

8.4.2  Confidence intervals  

The confidence interval (CI) provides a range that is highly likely (95% or 99%) to contain 

the parameter being estimated. The 95% CI is defined as “a range of values for a variable of 

interest constructed so that this range has a 95% probability of including the true value of the 

variable” (Attia, 2005).  Due to sampling, the point estimate is probably not identical to the 

population parameter. Table 8.6 shows the 95% DFOS CIs for the MMAS10+ls algorithm. The 

results are based on the same general cost model case study. As a general rule, the narrower 

the CI the better it is. In this chapter, the aim is to tune the optimal parameters to find the 
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minimum total cost for the AOIS problem. As a result, the best parameters are those that 

produce the lowest DFOS. In Table 8.6 the best results corresponding to the best parameters 

are shaded in grey. These parameters produced the narrowest CI. 
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Figure 8.2: Influence of parameters α, β and ρ on the performance of MMAS+ls+ib for the 

AOIS problem 
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Table 8.6: 95% DFOS confidence intervals for MMAS10+ls 

               α 0.6 0.8 0.9 1 2 3 4 5 6 7 8 9 10 

 
β=0 

ρ=0.01 (18.45,18.74) (18.46,18.73) (18.45,18.74) (18.33,18.66) (18.35,18.64) (15.01,15.98) (15.00,15.99) (14.36,14.63) (18.46,18.73) (18.46,18.73) (18.45,18.74) (18.44, !8.75) (18.51,18.68) 

ρ=0.02 (18.48,18.71) (18.47,18.72) (18.48,18.71) (18.48,18.71) (18.48,18.71) (18.47,18.72) (18.48,18.71) (18.48,18.71) (18.72,19.07) (18.72,19.07) (18.74,19.05) (18.74,19.05) (18.74,19.05) 

ρ=0.05 (18.49,18.70) (18.47,18.72) (18.48,18.71) (18.49,18.70) (18.48,18.71) (18.49,18.70) (18.48,18.71) (18.47,18.72) (18.48,18.71) (18.75,19.04) (18.75,19.04) (18.75,19.04) (18.75,19.04) 

 
β=1 

ρ=0.01 (18.45,18.74) (18.46,18.73) (3.10, 3.28) (1.80, 1.99) (1.81, 1.98) (1.81, 1.98) (1.81, 1.98) (0.095,0.104) (0.095,0.104) (0.891,0.908) (0.891,0.908) (0.891,0.908) (0.891,0.908) 

ρ=0.02 (18.45,18.74) (18.46,18.73) (3.12, 3.27) (3.11, 3.287) (3.12, 3.27) (0.892,0.907) (0.892,0.907) (0.095,0.104) (0.095,0.104) (0.891,0.908) (0.891,0.908) (0.891,0.908) (0.891,0.908) 

ρ=0.05 (18.45,18.74) (18.46,18.73) (3.10, 3.29) (0.69, 0.70) (0.69, 0.70) (0.187,0.212) (0.187,0.212) (0.088,0104) (0.891,0.908) (0.891,0.908) (0.891,0.908) (0.891,0.908) (0.891,0.908) 

 
β=2 

ρ=0.01 (18.45,18.74) (18.46,18.73) (3.11, 3.28) (3.11, 3.28) (3.11, 3.28) (3.10, 3.29) (3.11, 3.28) (0.691,0.708) (0.691,0.708) (0.89,0.907) (0.89,0.907) (0.89,0.908) (0.89,0.908) 

ρ=0.02 (18.45,18.74) (18.46,18.73) (3.11, 3.28) (3.11, 3.28) (3.11, 3.28) (0.89, 0.908) (0.89, 0.907) (0.094,0.105) (0.094,0.105) (0.89,0.907) (0.89,0.907) (0.89,0.908) (0.89,0.908) 

ρ=0.05 (18.45,18.74) (18.46,18.73) (3.11, 3.29) (3.10, 3.29) (3.11, 3.28) (0.69, 0.708) (0.19, 0.206) (0.094,0.105) (0.094,0.105) (0.89,0.906) (0.89,0.908) (0.89,0.908) (0.89,0.908) 

 
β=3 

ρ=0.01 (18.45,18.74) (18.46,18.73) (3.12, 3.29) (3.11, 3.28) (3.12, 3.29) (3.11, 3.28) (3.10, 3.27) (3.11, 3.28) (3.10, 3.27) (3.11, 3.27) (18.45,18.74) (18.44,18.75) (18.51,18.68) 

ρ=0.02 (18.45,18.74) (18.46,18.73) (3.12, 3.29) (3.11, 3.28) (3.12, 3.29) (3.11, 3.28) (3.11, 3.28) (3.10, 3.27) (3.12, 3.29) (3.11, 3.28) (3.12, 3.29) (18.45,18.76) (18.45,18.70) 

ρ=0.05 (18.45,18.74) (18.46,18.73) (3.10, 3.27) (3.11, 3.28) (3.12, 3.29) (1.80, 1.98) (1.81, 1.98) (1.81, 1.98) (1.80, 1.98) (18.0, 19.8) (18.5, 18.6) (18.4, 18.7) (18.4, 18.75) 

 
β=4 

ρ=0.01 (18.45,18.74) (18.46,18.73) (3.12, 3.29) (3.10, 3.27) (3.11, 3.28) (3.10, 3.27) (3.11, 3.28) (3.10, 3.27) (18.7, 19.05) (3.10, 3.27) (18.74,19.05) (18.74,19.05) (18.74,19.05) 

ρ=0.02 (18.45,18.74) (18.46,18.73) (3.11, 3.28) (3.12, 3.29) (3.12, 3.29) (3.11, 3.28) (3.11, 3.28) (3.10, 3.27) (18.7, 19.05) (3.10, 3.27) (18.74,19.05) (18.74,19.05) (18.74,19.05) 

ρ=0.05 (18.45,18.74) (18.46,18.73) (3.11, 3.28) (3.10, 3.29) (3.11, 3.28) (3.10, 3.27) (3.12, 3.29) (18.48,18.71) (18.48,18.71) (18.48,18.71) (18.75,19.05) (18.74,19.05) (18.75,19.05) 

 
β=5 

ρ=0.01 (18.45,18.74) (18.46,18.73) (3.10, 3.27) (3.12, 3.29) (3.11, 3.28) (3.10, 3.29) (3.10, 3.27) (3.12, 3.29) (3.12, 3.29) (18.46,18.73) (18.45,18.74) (18.44,18.75) (18.51,18.68) 

ρ=0.02 (18.45,18.74) (18.46,18.73) (3.11, 3.28) (3.11, 3.28) (3.11, 3.28) (3.12, 3.29) (3.10, 3.27) (3.11, 3.28) (18.74,19.05) (18.75,19.04) (18.76,19.06) (18.75,19.04) (18.75,19.04) 

ρ=0.05 (18.45,18.74) (18.46,18.73) (3.11, 3.28) (3.10, 3.27) (3.12, 3.29) (3.11, 3.28) (3.11, 3.28) (18.48,18.71) (18.48,18.71) (18.72,19.07) (18.74,19.06) (18.74,19.05) (18.74,19.05) 

*Each confidence interval (lower, upper) × 0.001 
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8.4.3 Variations in   and   

Different values were compared for the MMAS parameters and on the same general cost 

model case study. These two parameters determine the mutual influence of the trail strength   

(  ) and the heuristic information ( ) on the choice of the next workstation. As can be seen 

from Figure 8.3 the parameter settings of and have a considerable influence on the 

performance of the MMAS.In the experiments conducted the evaporation rate is set to 0.01, 

0.02 and 0.05, as shown in Figure 8.3 (a, b and c). The results obtained in this experiment are 

consistent with our understanding of the algorithm: a high value ofmeans the trail is very 

important and therefore ants tend to choose workstations chosen by other ants in the past. On 

the other hand, low values of make the algorithm very similar to a stochastic greedy 

algorithm. It can be observed that when  (e.g. 8  and β=1) then the algorithm will 

make decisions based mainly on the information learned, as represented by the pheromone. 

This is true until the value of β becomes very high (e.g. β=4 or 5), in this case even if there is 

a high amount of trail on an edge, an ant always has a high probability of choosing another 

workstation that has a higher desirability. In other words, if β >2 (e.g. β=4) the algorithm will 

act as a greedy heuristic algorithm, mainly selecting workstations that have the maximum 

cost (higher desirability) and disregarding the impact of these decisions on the final solution 

quality. As a result the algorithm does not find very good solutions in the number of cycles 

used in the experiment. However, when 5 the pheromone strength loses its dominant status 

during the searching process and becomes ineffective in guiding the ant towards good 

solutions regions.  

High values of β and/or low values ofmake the algorithm very similar to a stochastic 

greedy algorithm. It should be noted that the parameter ρ is present in the pheromone update 

rule. The evaporation rate is vital in the ability of the algorithm to explore different solutions 

and to avoid becoming trapped in a local optimum. 
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A high value of evaporation rate allows much greater exploration but can lead to early 

convergence, as will be described in more detail the following sections. In this example, 5 

inspection points are chosen out of the 12 available, so over 41 % of the 

processes/inspections receive an increase in pheromone. In the problem under consideration, 

the best result is obtained for parameter combinations β =1, 2 and 5 , 6 as indicated by the 

lowest point in blue colour which represents the lowest total cost as shown in Figure 8.3.  

Table 8.7 shows the 95% DFOS CIs for the MMAS+ls+ib algorithm. The results are also based 

on the same general cost model case study. It can be seen from Table 8.7 the best results 

corresponding to the best parameters are shaded with grey colour. The same general cost 

model case study is applied to the MMAS+ls+ib to study the influence parameters and . In 

the conducted experiments the evaporation rate is set ρ= 0.01, 0.02 and 0.05 as shown in 

Figure 8.4 (a, b and c). It can be seen from Figure 8.4 that the variation between and in the 

MMAS+ls+ib is very similar to the previous MMAS10+ls algorithm which is described above in 

this section. In the problem under consideration, the best result is obtained for parameter 

combinations β =1, 2 and 5 as indicated by the lowest point in blue which represents the 

lowest total cost as shown in Figure 8.4. 

8.5 Tuning of genetic algorithm parameters 

Genetic algorithms (GA) are inspired by models of natural evolution of species and use the 

principle of natural selection, which favours individuals that are more adapted to a specific 

environment for survival and further evolution. Each individual in an evolutionary algorithm 

typically represents a solution with an associated fitness value. Parameter values of GA must 

be tuned in advance in order to fully specify a complete GA. Inappropriate parameter values 

may not be able to solve problems effectively. 
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Table 8.7: 95% DFOS confidence intervals for MMAS+ls+ib  

               α 0.6 0.8 0.9 1 2 3 4 5 6 7 8 9 10 

 
β=0 

ρ=0.01 (18.44,18.75) (18.44,18.75) (18.44,18.75) (18.22,18.66) (18.33,18.66) (15.02,15.97) (15.00,15.99) (14.35,14.62) (18.44,18.75) (18.45,18.74) (18.45,18.74) (18.45,18.75) (18.50,18.66) 

ρ=0.02 (18.47,18.72) (18.47,18.72) (18.48,18.71) (18.48,18.71) (18.48,18.71) (18.47,18.72) (18.48,18.71) (18.48,18.71) (18.72,19.07) (18.72,19.07) (18.74,19.05) (18.74,19.05) (18.74,19.05) 

ρ=0.05 (18.48,18.71) (18.47,18.73) (18.48,18.71) (18.50,18.71) (18.50,18.71) (18.49,18.70) (18.47,18.72) (18.47,18.72) (18.48,18.71) (18.74,19.05) (18.75,19.04) (18.75,19.04) (18.75,19.04) 

 
β=1 

ρ=0.01 (3.24, 3.35) (3.23, 3.34) (3.24, 3.35) (1.80, 1.99) (1.81, 1.98) (1.81, 1.98) (1.81, 1.98) (1.81, 1.98) (1.81, 1.98) (0.188, 0.21) (0.188, 0.21) (3.97, 4.02) (3.97,4.02) 

ρ=0.02 (3.24, 3.35) (3.10, 3.29) (3.12, 3.27) (3.11, 3.28) (3.12, 3.27) (0.893,0.908) (0.892,0.907) (0.096,0.105) (0.096,0.105) (0.188, 0.21) (0.188, 0.21) (3.97, 4.02) (3.97, 4.02) 

ρ=0.05 (3.11, 3.28) (3.10, 3.29) (3.10, 3.29) (0.68, 0.708) (0.69, 0.707) (0.187,0.212) (0.187,0.212) (0.096,0.106) (0.097,0.107) (0.192,0.20) (0.191,0.208) (3.96,4.01) (3.96, 4.01) 

 
β=2 

ρ=0.01 (18.80,18.95) (3.10, 3.29) (3.11, 3.28) (3.11, 3.28) (3.10, 3.29) (3.10, 3.29) (3.11, 3.28) (0.691,0.706) (0.691,0.708) (0.965,1.03) (1.47,1.52) (2.48,2.51) (3.96, 4.01) 

ρ=0.02 (18.8,18.95) (3.10, 3.29) (3.11, 3.28) (3.11, 3.28) (3.11, 3.28) (0.89, 0.908) (0.89, 0.907) (0.094,0.105) (0.094,0.105) (1.47,1.52) (1.47,1.52) (2.48,2.51) (3.97, 4.02) 

ρ=0.05 (18.8,18.95) (3.11, 3.28) (3.10, 3.29) (3.10, 3.29) (3.12, 3.27) (0.69, 0.709) (0.19, 0.206) (0.097,0.106) (0.094,0.105) (0.96,1.03) (1.47,1.52) (2.48,2.51) (3.97, 4.02) 

 
β=3 

ρ=0.01 (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (3.10, 3.29) (3.10, 3.29) (3.11, 3.28) (18.46,18.73) (18.46,18.73) (18.46,18.73) 

ρ=0.02 (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (3.12, 3.29) (3.11, 3.28) (3.12, 3.29) (18.45,18.76) (18.45,18.70) 

ρ=0.05 (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (3.97, 4.02) (3.97, 4.02) (3.97, 4.02) (3.97, 4.02) (3.97, 4.02) (18.55, 18.6) (18.44, 18.7) (18.4, 18.75) 

 
β=4 

ρ=0.01 (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (18.75,19.04) (18.75,19.04) (18.74,19.05) (18.74,19.05) 

ρ=0.02 (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (18.74,19.05) (18.74,19.05) 

ρ=0.05 (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (18.48,18.71) (18.48,18.71) (18.48,18.71) (18.75,19.05) (18.74,19.7) (18.75,19.05) 

 
β=5 

ρ=0.01 (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (18.46,18.73) (18.45,18.74) (18.44,18.75) (18.51,18.68) 

ρ=0.02 (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (18.74,19.05) (18.75,19.04) (18.76,19.06) (18.75,19.04) (18.75,19.04) 

ρ=0.05 (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (5.16, 5.23) (18.48,18.71) (18.48,18.71) (18.72,19.07) (18.74,19.05) (18.74,19.05) (18.74,19.05) 

*Each confidence interval (lower, upper) × 0.001 
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Figure 8.4: Analysis of MMAS+ls+ib algorithm 
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On the other hand, finding the optimal setting will increase the overall search capability and 

better solutions can be found. The parameter settings are based on general recommendations 

found in textbooks on GA/EA‟s (Michaelewicz and Fogel, 2000, Reeves, 1993), on an insight 

into the problem specifics, as suggested by Silver (2004), and on several exploratory test 

runs. 

8.5.1  Summary of GA parameters 

There are three parameters that affect the performance of a GA: population size, crossover 

probability and mutation probability. 

Population size: is the number of individuals used in one generation. GA‟s with a low size 

population are prone to premature convergence. This is because a GA has very few 

possibilities to perform a crossover and only a small part of the search space is explored. On 

the other hand, if the population size is large, it slows down the convergence rate of the 

algorithm and increases the number of objective function evaluations.  

Crossover probability: is the percentage of individuals in the mating pool able to perform 

recombination or exchange. Crossover is a continuous variable within [0, 1]. If there is no 

crossover, the offspring is an exact copy of its parents. If there is crossover, the offspring is 

made from parts of the parents' individuals. If the crossover probability is 100%, then all 

offspring are made by crossover. Crossover introduces new solution strings into the 

population and searches for better strings. However it is good to allow a part of the population 

to survive in the next generation.  

Mutation probability: is a unary operator, aimed at introducing random modifications in an 

individual. Mutation is a continuous variable within [0, 1]. If there is no mutation, the 

offspring carries crossover information or is an exact copy of the parents, however without 

any change in the information. If mutation occurs the chromosome changes, if the mutation 

probability is 100%, the whole chromosome will change. A low mutation rate may result in a 
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loss of some important characteristics in a population. Mutation is used to prevent the falling 

of the GA into local extreme, although it should not occur very often as then the GA will in 

fact change into a random search (Yuan and Gallagher, 2005).  

In summary, different studies pointed out that population size, crossover probability and 

mutation rate are the most influential parameters in the performance of a GA (Smit and 

Eiben, 2011, Van Volsem, 2007). A method to optimise these parameters is presented in this 

chapter. 

8.5.2  GA parameter settings 

The values chosen for the GA parameters are representative of the range of values typically 

seen in the literature (Smit and Eiben, 2011, Sadegheih, 2007, Van Volsem, 2007).The 

application of the GA to the general cost model are repeated here for each of the 

combinations of the following parameter levels: 

Population size: number of individuals (inspection plans) used in one generation. The 

values: low [20, 30, 40], medium [50, 60, 70] and high [80, 90, 100] of this parameter were 

tested for the tuning of the algorithm.  

Crossover rate: the values [0.10, 0.20, 0.60, 0.8 and 0.90] were tested for the tuning of the 

algorithm. 

Mutation rate: the values [0.001, 0.002, 0.003, 0.004, 0.005, 0.01, 0.017 and 0.02] were 

tested for the tuning of the algorithm.  

8.5.3 Results  

The same general cost model case study is used to test the GA, which consists of 50 different 

problems. Different parameter combinations of the GA were then applied for each of these 

combinations in order to calculate the average DFOS. The aim is to tune the parameters of 

the GA. The results obtained by the method are compared against the optimal results obtained 
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by the CEM. The aim is to measure the DFOS for the results obtained by the GA. The 

optimal parameters are those that can obtain the minimum DFOS. Table 8.8 shows the best 

combinations of the GA parameters. The results from different parameter combinations of the 

GA tuning are presented in Appendix D. 

Table 8.8: Optimal GA parameters 

Population Cross over Mutation rate Average 

DFOS 

80 0.8 0.005 0.0012 

8.6    Tuning simulated annealing parameters 

Simulated Annealing (SA) is a stochastic search method, emulative of the physical annealing 

process, in which an alloy is cooled gradually so that a minimal energy state is achieved. Just 

like other optimisation methods, the algorithm of simulated annealing consists of operating 

parameters that should be set appropriately in order to achieve the best performance. The 

most efficient cooling schedule may be found through trial and error, and by observing the 

effect on both the quality of the resulting solution and the rate at which the process converges 

(Demirkol et al., 2001). The parameter settings were based on the general recommendations 

of Guo and Zheng (2005), Sadegheih (2007) and Kolahan and Abachizadeh (2010). 

8.6.1 Summary of SA parameters 

The cooling schedule of a SA algorithm consists of four components.  

Starting temperature: the initial temperature acts as the state of the system at the beginning 

of the optimisation procedure. In general, the initial temperature is set in a way that allows 

the acceptance of most transitions in the neighbourhood moves. In other words, the 

Boltzmann distribution acceptance criterion should be approximately equal to 1 at the starting 

temperature, 1)/Cexp( 0  T where C is the difference between the amount of the objective 

function of the current and candidate solutions (Guo and Zheng, 2005). 
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Temperature decrement: is the most important variable in the entire SA algorithm. The 

method in which the temperature parameter is reduced is an important feature of this 

algorithm. At every iteration k the temperature is decreased according to the formula,

kk TT 1  where the parameter , usually called the cooling rate, is such that (0 <<1) 

(Kolahan and Abachizadeh, 2010). The cooling schedule is the way in which the temperature 

is decremented and is critical to the success of the algorithm.  

Iterations at each temperature: possibly the second most important factor that determines 

the computational effort required to run a particular cooling schedule for simulated annealing 

is the number of transitions in one temperature step. The number of iterations at each 

temperature is chosen so that the system is sufficiently close to the stationary distribution at 

that temperature (Suman and Kumar, 2006). Enough iterations at each temperature should be 

performed if the temperature is to be periodically decreased. If too few iterations are 

performed, all represented states will not be searched and the solution will not be able to 

reach the global optimum. 

Final temperature: it is common to let the temperature decrease until it reaches zero, 

however this can make the algorithm run for a long time, especially when a geometric 

cooling schedule is being used. In practice it is not necessary to let the temperature reach zero 

because as it approaches zero the chances of accepting a worse move are almost the same as 

the temperature being equal to zero. Therefore the stopping criteria can either be a suitably 

low temperature or the moment at which the system is “frozen” at the current temperature 

(i.e. no better or worse moves are accepted) (Kolahan and Abachizadeh, 2010). The 

maximum number of iterations is another approach. The maximum number of subsequent 

iterations allowed without any improvement is also another appropriate criterion. 

In summary, the temperature decrement and number of trials per temperature step have the 

greatest influence on the simulated annealing algorithm‟s performance. The most efficient 
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cooling schedule may be found through trial and error and by observing the effect on both the 

quality of the resulting solution and the rate at which the process converges (Demirkol, 

2001). A method to optimise these parameters is presented in this chapter. 

8.6.2  SA parameter settings 

The values chosen for SA parameters are representative of the range of values typically seen 

in the literature (Kolahan and Abachizadeh, 2010, Sadegheih, 2007). The application of the 

SA to the general cost model is repeated here for each of the combinations of the following 

parameter levels: 

Temperature decrement: the values [0.4, 0.5, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9 and 0.95] 

were used to tune the algorithm. 

Iterations at each temperature: the values [100, 300, 500, 800 and 1200] were used to tune 

the algorithm. 

8.6.3 Results  

The same general cost model case study is used to test the SA algorithm. Different parameter 

combinations of the SA were then applied to the cases for each of these combinations in order 

to calculate the average DFOS. The aim is to tune parameters of the SA. The results obtained 

by the method are then compared against the optimal results obtained by the CEM. The aim 

is to measure the DFOS for the results obtained by the SA. The optimal parameters are those 

that can obtain the minimum DFOS. Table 8.9 shows the best combinations of the SA 

parameters. The results from different parameter combinations of SA tuning are presented in 

Appendix E. 

Table 8.9: Optimal SA parameters 

Temperature  

decrement 

Iterations at each temperature Average 

DFOS 

0.85 300 0.0007 
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8.7  Tuning particle swarm optimisation parameters 

Particle swarm optimisation (PSO) is a population-based stochastic optimisation technique 

inspired by the social behaviour of birds flocking or fish schooling. Particle swarm 

optimisation (PSO) is a population-based stochastic optimisation technique inspired by the 

social behaviour of birds flocking or fish schooling. Selecting the best parameters inertia 

weight, cognitive coefficient, and number of particles (ω, c1, c2, M) for PSO is another model 

selection task. Several empirical and theoretical studies have been performed on the 

parameters of PSO from which useful information can be obtained (Clerc and Kennedy, 

2002, Kennedy and Mendes, 2002, Ozcan and Mohan, 1999, Reyes and Coello, 2006, Shi 

and Eberhart, 1998, 1999). In this section, a simulation of various parameter settings under 

different conditions for defining the best parameter combination for the AOIS problem is 

presented. 

8.7.1 Summary of PSO parameters 

The most influential parameters in the performance of PSO are the cognitive coefficients, c1, 

c2, inertia weight ω and number of particles (Aliabadi et al., 2011, Hsieh et al., 2007, 

Rezazadeh et al., 2009). 

Inertia weight: inertia weight „„ω‟‟ was not mentioned by Eberhart and Kennedy (1995), but 

was introduced by Shi and Eberhart (1998). Its goal is to control the impact of the past 

velocity of a particle over the current one, influencing the local and global exploration 

abilities of the algorithm. Shi and Eberhart found that a PSO with an inertial weight in the 

range of 0.8 to 1.2 has, on average, a better performance; that is it has a greater chance of 

finding the global optimum within a reasonable number of iterations. On the other hand, a 

large value of ω keeps particles at high velocity and prevents them from becoming trapped in 

local optima. A small value of ω maintains particles at a low velocity and encourages them to 

exploit the same search area. 
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Cognitive coefficients: c1 and c2 are cognitive coefficients and are both constants between 

zero and one. Thus the particle flies through potential solutions toward the local best (lbest) 

and the global best (gbest) in a navigated way while still exploring new areas by the 

stochastic mechanism to escape from local optima. The cognitive coefficients c1 and c2 

represent the weightings that pull each particle toward lbest and gbest. Low values let 

particles wander around their local neighbourhood, while high values cause particles to fly 

towards, or past, optimal solutions (Yin et al., 2006).Different problems will have different 

values, and these range from1 to 4 (Hsieh et al., 2007,Shuang et al., 2011,Yin et al., 2006). 

Number of particles: in a PSO the population is the number of particles in a problem space. 

Particles are initialised randomly. Each particle will have a fitness value, which will be 

evaluated by a fitness function to be optimised in each generation. In the population or 

swarm, more particles may increase the success of searching for optima due to more thorough 

sampling of the state space. However, more particles require more evaluation runs, leading to 

a higher optimisation time cost. 

8.7.2 PSO parameters settings 

The values chosen for PSO algorithm parameters are representative of the range of values 

typically seen in the literature (Aliabadi et al., 2011, Hsieh et al., 2007, Liao et al., 2007). The 

application of PSO to the general cost model is repeated here for each of the combinations of 

the following parameter levels: 

Inertia weight (ω): four levels (0.8, 0.9, 1.1 and 1.2) are used to test the PSO algorithm. 

Cognitive coefficients (c1 and c2): six levels for each coefficient are used to test the PSO 

algorithm (1, 1.5, 2, 2.5, 3 and 3.5). In these experiments the parameters c1 and c2 are tested 

by making them equal and unequal, and making c1 larger than c2, and vice versa. 

Number of particles: different sizes of particles are used to test the PSO algorithm (10, 20, 

40, 60, 80 and 100). 
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8.7.3  Results 

The same general cost model case study is used to test the PSO algorithm. Different 

parameter combinations of the PSO algorithm were then applied to the cases for each of these 

combinations in order to calculate the average DFOS. The aim is to tune the parameters of 

the PSO algorithm. The results obtained by the algorithm are then compared against the 

optimal results obtained by the CEM. The aim is to measure the DFOS for the results 

obtained by the PSO algorithm. The optimal parameters are those that can obtain the 

minimum DFOS. Table 8.10 shows the best combinations of the PSO algorithm parameters. 

The results from different parameter combinations of PSO tuning are presented in Appendix 

F. 

Table 8.10: Optimal GA parameters 

Inertia weight Number of 

particles 

c1 c2 Average 

DFOS 

1.1 80 2 2 0.0007 

8.8  Conclusion 

The optimal combinations of the most influential parameters were identified for the MMAS 

algorithm, SA, GA and PSO. These algorithms were applied to the same general cost model 

case study in order to calculate the average DFOS. As a result, the optimal parameters can 

then be obtained to tackle the AOIS problem. It was found that these optimal parameters led 

to a significantly improved performance of the developed algorithms. For a specific problem 

the optimal parameters will be slightly different, but these results suggest that these 

parameters should be suitable for many AOIS problems with a similar structure. Early 

indications show that MMAS algorithm outperforms the other relevant algorithms in terms of 

solution quality. Two different variants of the MMAS algorithm were developed. The two 

variants were MMAS10+ls, and MMAS+ls+ib. The experimental results confirmed that the 

performance of the MMAS, GA, SA and PSO algorithms depends on the appropriate setting 
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of the parameters. Following the tuning of the parameters for the MMAS algorithm, in the 

next chapter the behaviour of the MMAS algorithm will be investigated. Furthermore, the 

best parameters obtained for the SA, GA and PSO algorithms will be used to test 

performance of the MMAS algorithm in chapter 10. 
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Chapter 9 

Behaviour of MMAS and sensitivity analysis 

______________________________________________________________________ 

In this chapter, the behaviour of MMAS and the sensitivity of the control parameters for the 

AOIS problem are studied. Different variants of the MMAS algorithm are tested. The 

convergence of the MMAS algorithm is given through the simulations of the general cost 

model case study. The importance of the local search and heuristic information for the 

MMAS algorithm are discussed. Global and iteration best versus a mixed strategy for 

updating pheromone trials are investigated. A stagnation measure is implemented to indicate 

the degree of diversity of the solutions constructed by the ants. 

9.1 MMAS behaviour  

In order to investigate the capability of the MMAS to solve the AOIS problem, the 

convergence of the algorithm and the impact caused by the parameter settings are 

investigated. To do so, nine sets of parameters [=1, β=1,2,3, ρ=0.01] [=2, β=1,2,3, 

ρ=0.01] [=5, β=1,2,3, ρ=0.01] [=1, β=1,2,3, ρ=0.02] [=2, β=1,2,3,  ρ=0.02] [=5, 

β=1,2,3, ρ=0.02] [=1, β=1,2,3, ρ=0.05] [=2, β=1,2,3, ρ=0.05] [=5, β=1,2,3,  ρ=0.05] 

were tested in the same general cost model case study. In Figures 9.1 to 9.9, the x-axis stands 

for 400 iteration steps and the y-axis is the value of the objective function (total cost). These 

figures illustrate the fact that parameter variations strongly affect the speed of the 

convergence of the objective function. Under the parameter settings of=1, β=1 and ρ=0.01, 

as shown in Figure 9.1, convergence occurred within 270 iteration steps. As β increased to 2, 

the convergence occurred early within 175 iteration steps. However there was no 

convergence within the 400 iteration steps with parameter settings of =1, β=3 and ρ=0.01. 
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Under parameter settings of=2, β=1, 2, 3 and ρ=0.01, as shown in Figure 9.2, convergence 

occurred early within 125 iteration steps with β=1. By increasing β=2 and 3 the convergence 

occurred within 175 iteration steps and within 300 iteration steps respectively. 

.  

 

 

 
 
 

By increasing to 5, as shown in Figure 9.3, convergence occurred earlier, within 50 iteration 

steps when β=1 and in 150 iteration steps when β=2 and 3. It can be observed from Figures 

9.1 to 9.9 that as  and ρ increased and β decreased convergence occurred early. The results 

showed that the ratio between and β was the key deriver to the convergence speed of the 

results. Since and β are the parameters of relative influence of the pheromone strength and 
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the heuristic information respectively, the relative influence of the pheromone strength, 

which dominated the searching process, makes the convergence occur early. 

 
 
 
 

 
 
 
 

With the status of the pheromones on the searching trails dominated, the heavily accumulated 

pheromones would strongly bias the choice of ants. In such a manner, more and more 

subsequent ants would choose the same trail, and consequently convergence would occur. 

Conversely, when the pheromone strength lost its dominant status during the searching 

process, i.e. the ratio between and β became smaller and smaller, the influence of 

pheromone strength would not be used as the indicator of choice. In this circumstance, the 

convergence speed would decrease, and convergence would be delayed. 
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From Figures 9.1 to 9.9, the convergence speeds under parameter settings=5 and β=1, were 

faster than those with parameter settings of=1 and β=3. The larger the ratio between and 

β, the faster the convergence speed under the parameter ρ=0.05. Thus the convergence speed 

under parameters=5 and β=1 occurred earlier than that under parameters=1 and β=3. 

Correspondingly, there was no convergence when  . It can be seen from Figures 9.4 and 

9.7 that when the algorithm converged to the optimal solution, the pheromone trails were 

initialised to the maximum pheromone trails ( max ) after a certain number of iteration steps 
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(300 and 200 iterations respectively). The aim is to increase exploration of the search space. 

It can be observed from both Figures 9.4 and 9.7 that the ants continue to explore a subset of 

the search space as computation proceeds. In fact this feature is one of the features of the 

MMAS as described in chapter 6. In summary, the ratio between and β is identified as the 

key deriver to convergence speed using MMAS. The results showed that the larger the ratio 

between and β, the faster the speed of convergence. 

Figure 9.10 depicts the evolution curves of MMAS with ρ varying from 0.01 to 0.1,  =5,    

 =1, =0.05 and the other parameters are kept at standard values. The curves are for 

different values of ρ and are averages of 50 independent executions. It can be observed from 

Figure 9.10 that a better convergence speed is obtained when larger values of ρ are used. 

However, with increasing ρ, the best values of different curves will increase and the search 

may stop within less iterations. This is due to the fact that larger pheromone evaporation 

ratios on arcs will accelerate pheromone evaporation and, hence, the search concentrates 

earlier around the best trails seen so far. 

 

Figure 9.10: Evolution curves of MMAS for different values of  
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If ρ is large it is easy to reach marked relative differences between the pheromone trails on 

arcs contained in high quality trails, and those which are not part of the best trails in a few 

iterations, so the algorithm may stagnate and prematurely converge. Otherwise, for a lower ρ 

the pheromone trails on arcs which do not belongs to the high quality trails will not decrease 

faster, and the algorithm will be able to explore a wider search space, although longer 

evolution iterations will be needed. Therefore, if larger total evolution iteration is used, a 

lower ρ can be selected for obtaining a better converging value; otherwise a higher ρ will be 

helpful for a better convergence speed. 

9.2 Sensitivity analysis 

The vast majority of papers reviewed did not consider sensitivity analysis. Sensitivity 

analysis was only performed on models to test the optimal solution in the models developed 

by Yum and McDowell (1987) and Parak et al. (1988).This was most probably because their 

models were developed using Integer Linear Programming, and hence they included it easily. 

As the MMAS algorithm relies on a number of user-defined parameters that control its 

behaviour, sensitivity analysis for the most influential parameters ,  andwas conducted 

to study the importance of each parameter for the AOIS problem considered. The purpose of 

the sensitivity analyses was to obtain a detailed understanding of the impact of each of the 

user-defined MMAS parameters on the algorithms‟ searching behaviour. To achieve this, 

each parameter was varied over a specified range, while all other parameters were maintained 

at their „standard‟ values.  

It is well known that the number of workstations is one of the most important characteristics 

for the AOIS problem. In a serial multistage manufacturing process, as the problem size 

increases the number of inspection stations allocation possibilities increases exponentially in 

the search space size. To study the influence of the studied parameters on increasing the 

number of workstations, experimental studies are implemented on different sizes of AOIS 
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problem. Four different sizes of the AOIS problem are conducted. These sizes are 15, 16, 17 

and 18 workstations. The number of feasible solutions generated from these workstations 

grows from 32,768 to 262,144. The aim is to determine the influence of MMAS parameters 

on the performance of the algorithm, particularly when the number of workstations increases. 

Each parameter was varied over a specified range, while all other parameters were kept at 

their „standard‟ values. 

Figure 9.11 shows the influence of parameteron different sizes of the AOIS problem. Each 

point is the average of 50 runs of the MMAS algorithm. The value ofdetermines the 

relative importance of the pheromone level of the ant in the process of movement when 

guiding the ant colony search. 

 

Figure 9.11: Sensitivity analysis of parameter for different AOIS problems 
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best regions of the solution space. In this case, the influence of the pheromone strength is 

ineffective to guide ants to the good solutions. It is concluded that the parameter is less 

sensitive within the specified range as the number of workstations significantly increases. 

Figure 9.12 shows the influence of parameter   on different sizes of the AOIS problem. The 

value of  determines the relatively important degree of the heuristic information and the 

importance of the location of inspection stations relative to the workstations. It can be seen 

from Figure 9.12 that the best results are obtained with   values 1 and 2. However, the 

variation between these two values is not greatly significant in terms of solution quality. On 

the other hand, when  =0 the algorithm shows a poorer performance. This situation is 

repeated when  > 2.  

 
Figure 9.12: Sensitivity analysis of parameter for AOIS problems 
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the faster the pheromone will evaporate and hence the faster the algorithm converges. On the 

other hand, using a very low value of ρ leads to more exploration of the MMAS algorithm 

and high quality solutions may be missed. Since the figure does not show significant 

differences between the values of 0.01 and 0.1, it can be stated that the model has a consistent 

behaviour for a broad range of values of ρ. At these values the best results can be obtained. 

These results are optimal values or near optima values. It is concluded that the parameter ρ is 

less sensitive to changes in the number of workstations. 

 
Figure 9.13: Sensitivity analysis of parameter for AOIS problems 
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that there was no heuristic information created for the AOIS problem. In this section, the 

performance of the MMAS without using heuristic information (indicated by MMAS-NH) is 

compared to its performance when using it. It should be noted that not using heuristic 

information is simply achieved by setting 0 . The comparison of MMAS variants with and 

without using heuristic information is applied on the case study consisting of 15 workstations. 

The optimal solution for this number of workstations is known and all feasible solutions 

using CEM can be enumerated within a reasonable time. Experimental results are conducted 

for the MMAS algorithm with heuristic information (MMAS-OCDM and MMAS-SM) and no 

heuristic information (MMAS-NH). The results are based on the average of 50 different cases 

randomly generated from the general cost model case study; in other words, these cases 

represent 50 different problems. The experimental results for the MMAS algorithm with 

heuristic information (MMAS-OCDM and MMAS-SM) and with no heuristic information 

(MMAS-NH) in terms of the average number of optimal solutions, best average DFOS, worst 

average DFOS values and average processing time are presented in Table 9.1. The 

experimental results showed that the performance of the MMAS algorithm, in terms of 

solution quality when using heuristic information, was significantly better than without 

heuristic information. In particular, the OCDM heuristic information is better than the SM.  

        Table 9.1: Comparison of MMAS with and without heuristic information 

Algorithm 
Average number 

of optimal 

solutions (%) 

Best  average 

DFOS             

(not optimal) 

Worst average 

DFOS 

Average time 

(seconds) 

MMAS-NH 0 0.0186 0.52 12 

MMAS-OCDM 80 0.00015 0.0125 15 

MMAS-SM 74 0.00033 0.0103 17 

 

 

 

 

 

# 

The reason for this is that the OCDM type is based on three characteristics of the AOIS 

problem, operation cost, defect rate and inspection cost. The main aim of the heuristic 

information is to guide the ants through the assigning of inspection stations to workstations. 
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The workstations that have higher results have a higher probability to be selected by the ant. 

Placing inspection stations based on these characteristics lead to the detection of defective 

items before moving further to subsequent operations. As a result the total cost can then be 

minimised. On the other hand, the SM type of heuristic information is based on scores of 

operation cost and defect rate. This method takes scores of the operation cost and defect rate 

and use a combination of the two choices in one. 

Figure 9.14 shows the convergence of MMAS toward near optimal solutions with and 

without using heuristic information. It is clear that in the case of MMAS-NH the ants are 

moving away from the near optimal solution. However, when using heuristic information in 

the cases of MMAS-OCDM and MMAS-SM the ants gradually attempted to follow the shortest 

path. As a result, the solution gradually moved towards the close-to-optimal solution, as the 

ants found almost similar paths.  

 
 

 

It is clear from the results that the heuristic plays a central role in guiding the algorithm and 

that a good heuristic applied strongly can produce accurate results. This is because using 

heuristic information makes the probable search space (the search space most likely to be 
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explored) becomes much smaller than the original search space. It is concluded that it is 

important to use heuristic information with the MMAS algorithm for tackling the AOIS 

problem. 

9.4 Importance of local search 

It has been proven that a local search applied to the solutions that the ants have constructed 

can improve the performance of an ant colony‟s optimisation algorithm. It should be noted 

that of the metaheuristic methods used in the literature review for tackling the AOIS problem, 

none of them used local search to improve the performance of their models. In this study, as 

described in chapter 6, six well-known neighbourhood structures are used to improve the 

performance of the MMAS algorithm. These are: crossover (CO), interchange(IC), swap 

(SW), single insertion (SI), delete and add (DA), and block insertion (BI). The MMAS 

algorithm is applied on different sizes of workstations with each of these local search 

methods. As described in chapter 6, to yield a further reduction in run-time and to focus the 

local search on promising regions where potential improvements can be found, don‟t look 

bits method is used. The comparison between them is based on the average deviation from 

the optimal solution and average CPU time. The results are based on the average of 50 

different cases randomly generated for each problem size. The aim is to represent the 

different characteristics of the AOIS problem. 

It can be seen from Table 9.2 that the local search methods developed have considerably 

improved the performance of the MMAS algorithm. This improvement can be observed in 

the average deviation from the optimal DFOS solution. In particular, the local search methods 

of crossover, single insertion and block insertion have better performance than the other 

methods in terms of solution quality. The superior results indicate the successful 

incorporation of the local search with the MMAS algorithm to escape local minimum points 

and increase the possibility of finding a better solution. 



 

201 
 

         Table 9.2: Comparison of the local search effectiveness for the AOIS problem 
 

WS 

No local search  CO  IC  SW  SI  DA  BI 

DFOSavg timeavg 

(s) 
DFOSavg timeavg 

(S) 
DFOSavg timeavg 

(s) 
DFOSavg timeavg 

(s) 
DFOSavg timeavg 

(s) 
DFOSavg timeavg 

(s) 
DFOSavg timeavg 

(s) 

12 0.0053 13 0.00012 11 0.0007 12 0.0008 12 0.00012 11 0.0008 12 0.00012 10 

13 0.0043 15 0.00018 12 0.0008 14 0.0008 13 0.00015 12 0.0009 14 0.00014 11 

14 0.0042 16 0.00017 14 0.0008 15 0.0009 14 0.00018 15 0.004 15 0.00016 14 

15 0.0052 18 0.00018 16 0.0009 16 0.0009 18 0.00018 20 0.0009 17 0.00019 17 

Average  16 0.00057 13 0.0008 14 0.00085 14 0.0005 15 0.00165 15 0.00052 13 
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This good performance can even be observed when the number of feasible solutions grows 

from 4,096, in the case of 12 workstations, to 32,768, in the case of 15 workstations. 

Regarding computation times, it is worth noting that in all cases the local search takes less 

time than the sum of the computation times necessary for the MMAS algorithm starting from 

an initial solution. This effect is caused by the good starting solution for the second local 

search and the fewer number of improvement steps necessary to reach a local optimum. 

Applying the ant algorithm to problems of different sizes makes a difference in terms of 

speed. Generally, the bigger the problem the longer it takes to find good, very good or 

optimal solutions. 

Figures 9.15 and 9.16 are box-plots showing the performance of the MMAS algorithm 

without and with local search methods. It can be observed from Figure 9.15 that when no 

local search is used the data is skewed to the left. This is also repeated in the case of using 

SW. The top whisker is much longer than the bottom whisker. In the case of using SI, DA, 

and BI the whiskers are absent. In the case of the IC method the length of the whiskers is 

shorter than the length of the box. As the problem size increased to 15 workstations, as shown 

in Figure 9.16, the results are very similar to the results obtained in Figure 9.15.  

 

Figure 9.15: Box-plot showing the performance of MMAS with and without  

local search for 12 workstations problem 
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The results determined that the performance of the MMAS significantly improved by using 

local search methods. It can be seen that the median of the MMAS algorithm with local 

search is closer to the optimal solution, which is indicated by a dashed line, than the median 

of the MMAS without using local search. This good performance can also be observed when 

the number of feasible solutions is significantly increased. 

9.5 Stagnation measures 

An indication of the performance of MMAS can be given by the development of the average 

branching factor during the algorithm‟s run. During the running of the MMAS algorithm, if 

the distribution of the pheromone on the trails becomes too unbalanced due to pheromone 

depositions the ants will generate very similar solutions, causing the search to stagnate. In 

order to enable the algorithm to detect such situations a branching factor is implemented in 

the AOIS problem to measure stagnation, which can indicate how explorative the search 

behaviour of the ants is. Using the average λ-branching factor as described in chapter 5, it is 

somehow possible to measure the size of the area under analysis at any moment. In general, 

the best solutions are found when the average branching factor is rather low, that is when the 
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Figure 9.16: Performance of MMAS with and without local search for 15  

workstations problem 
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algorithm has an almost converged space (Pellegrini and Moretti, 2009). In fact, the average 

branching factor at which the best trails are found also depends on the problem size, as shown 

in Figure 9.17. To increase the exploration of the MMAS, which is one of its features 

described in chapter 6, the pheromone trails are initialised to their upper trail limit if the 

average branching factor  indicates that the MMAS is near convergence. It can be seen that 

as the number of iterations increases the solution moves closer to better results. 

 
 

Figure 9.17: Plot of average branching factors for the AOIS problem 
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when no new areas of the search space are explored. In the AOIS problem these measures are 

used to increase the exploration of the search space as described in section 9.1. 

9.6 Global and iteration best versus mixed strategy 

As described earlier in this chapter, updating the pheromone trails for the MMAS algorithm 

was done using a mixed strategy
gbib

s


. The aim of this strategy is to obtain stronger 

exploration of the search space early in the search and stronger exploitation of the overall 

best solution later in the run. This mixed strategy specifies that in the first 300 iterations the 

iteration best ant 
ib

s is used to update the pheromone trails, and then every tenth iteration the 

global best ant gbs is used for the pheromone trail update. To test the performance of this 

mixed strategy it was compared with the other two methods for updating pheromone trails, s
ib

 

and s
gb

. The parameter values for the MMAS algorithm were set as follows: 5 , 1 and

02.0 . The rest of the parameters remained the same. The MMAS algorithm was applied 

on all 50 cases for the same case study (the general cost model case study).  

The results are illustrated in Table 9.3. It can be seen that the mixed strategy used to update 

the pheromone trails showed better performance in terms of solution quality than the other 

two strategies. The box-plot in Figure 9.18 shows the performance of MMAS for the MMAS 

variants. The length of the whiskers far exceeds the length of the box. In all methods the top 

whisker is much longer than the bottom whisker. The line of MMAS-S
gb 

is gravitating 

towards the top of the box. In the other methods the line is close to the centre. The results 

confirmed that the performance of the MMAS when using the mixed strategy is much better 

than the other two strategies. It can be seen that the median of the mixed strategy is closer to 

the optimal solution, indicated by a dashed line, than the iteration best ant and the global best 

ant. In general, using the global best ant to update the pheromone trails does not seem to be a 

very good idea for MMAS. Nevertheless, the global best ant may sometimes be used to 
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reinforce the trials to direct the search more strongly. A main advantage of doing so is that a 

faster convergence of the algorithm can be achieved. 

      Table 9.3: Comparison between different strategies for updating pheromone trails 

MMAS variants 
Average number of 

optimal solutions 

(%) 

Best  average 

DFOS 

Worst average 

DFOS 

s
ib
 76 0.00015 0.0186 

s
gb

 74 0.00020 0.0189 

gbib
s


 

79 0.00012 0.0186 

 

 

Figure 9.18: Performance of MMAS for different strategies for updating pheromone trails 

9.7  Comparing variants of MMAS 

Three different variants of the MMAS algorithm were developed and tested. In the first 

variant, denoted MMAS10+ls, 10 ants were used and every ant applied a local search to its 

trail. In the second variant, MMAS+ls+ib, the algorithm started with a fixed number of 10 ants 

and then the number of ants that applied the local search was successively increased by one 

after a certain number of iterations. The third variant used the MMAS algorithm without local 

search, denoted MMAS-nls. Table 9.4 shows the results obtained by the different variants of 

the MMAS algorithm during the setting of the parameters.  
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             Table 9.4: Comparison between different variants of the MMAS algorithm 

MMAS variants 
Best  average 

DFOS 

Worst average 

DFOS 

Average 

processing 

time (seconds) 

MMAS10+ls 0.0001 0.018 16 

MMAS+ls+ib 0.0002 0.026 14 

MMAS-nls 0.005 0.026 13 

The comparison between the three variants of the MMAS algorithm in terms of solution 

quality and processing time was based on the CEM. It can be seen that the MMAS10+ls 

showed better performance than the other two variants in terms of solution quality. It can also 

be seen that the best average DFOS obtained by the three variants were very close to the 

optimal solution. On the other hand, the MMAS+ls+ib algorithm needed less processing time to 

reach a near-optimal solution compared with the other two variants. It was found that by 

adapting the number of ants applying the local search, a good compromise between 

convergence speed and solution quality can be obtained. The computation results presented in 

this section suggest that, especially for larger problems, using the MMAS+ls+ib algorithm may 

be advantageous. In the variant MMAS-nls algorithm, the processing time was slightly higher 

compared with the other two variants. This is because the algorithm needed more iterations to 

arrive at a near-optimal solution.  

9.8 Conclusion 

In summary, the ratio between and β is identified as the key deriver to the convergence 

speed using MMAS, and thus to finding the optimal solution. The results showed that the 

larger the ratio between and β, the faster the convergence speed and thus the faster an 

optimal solution is found. In terms of sensitivity analysis, it was found that the parameters , 

β and ρ are less sensitive within the specified range as the number of workstations is 

significantly increased. It was also found that using a mixed strategy to update the pheromone 

trails showed better performance than the other methods. The results showed that applying 
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the local search to the MMAS algorithm has significantly improved the performance of the 

algorithm. This good performance can even be observed when the number of feasible 

solutions increased significantly. It was observed that the MMAS algorithm, when combined 

with local search methods of crossover, single insertion and block insertion, present better 

performance than when combined with other local search methods. Furthermore, the 

experimental results suggest that it is important to use heuristic information with the MMAS 

algorithm in order to obtain a high quality solution. The computational results with respect to 

solution quality and computation times confirm that the effectiveness of the MMAS 

algorithm lies in its considerably shorter execution time and robustness. After tuning the 

parameters for the MMAS algorithm, the algorithm will be applied to four experiments to 

demonstrate its effectiveness. This is presented in the next chapter. 
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Chapter 10 

Experimental results and discussion 

___________________________________________________________________________ 

The AOIS problem has been approached using a number of different techniques reported in 

this chapter that vary in their methods and efficiency. The complete enumeration method 

(CEM) is used as benchmark to test the MMAS algorithm against the rule of thumb (ROT),   

a pure random search algorithm (PRS), SA, GA and PSO algorithms. In total, four 

experiments were conducted to test performance of the MMAS algorithm against the other 

methods. These experiments utilised different experimental parameters to tackle the AOIS 

problem, such as size of the problem, assumptions, and methods used. The performance of 

the MMAS algorithm was compared to standard methods as well as those in the experimental 

case studies. The developed algorithms have been coded in MATLAB and executed on a 2.2 

GHz CPU with 4 GB RAM in order to remain comparable in terms of the computational 

time. 

10.1  Experiment 1 

Experiment 1 uses the same general cost model case study used in Section 8.1 of chapter 8. 

The general cost model case study consisting of 12 processing workstations arranged in a 

serial manner in order to allocate five inspection stations. With this number of workstations, 

the full enumeration of the search space can be generated in a reasonable amount of time. The 

same experimental parameters for the developed general cost model and their ranges apply, 

as described in Section 8.1. The batch size is assumed to be 1000 and the sample size is set to 

be 80 for each case. These experimental parameters are used to randomly generate 100 

different cases. These 100 cases are stored in database and will be reused in the other 

developed methods in this experiment as shown in Figure 10.1. Two performance measures 
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are used to evaluate the algorithms: deviations from the optimal solution (DFOS) and 

execution saving time. The DFOS is calculated by the following equation (10.1):

                                                   

 

          %1
CEMofcost  Total

atheofcost  Total
DFOS

lgorithm








                             (10.1) 

 

 

 

 

 

 

 

 

 

 

Figure 10.1: General cost model methodology experiment 

Computer Execution Time (ET) is the CPU time it takes to execute the problem-solving 

computer programs. An efficient method should provide significant savings in terms of 

execution time over the CEM. The savings execution time is determined by equation (10.2): 

%
 CEM of ET

algorithm  theof ET
1timeExecution 








               (10.2) 
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The AOIS problem will be tackled using six different algorithms. These are CEM, rule of 

thumb (ROT), SA, GA, PSO and MMAS. For each of the 100 test cases, 800 evaluations 

were performed by the algorithms and repeated 30 times to generate average for the test 

cases. The objective of these experiments is to find the allocation of a limited number of 

inspection stations in a serial multistage manufacturing process, with a reduction in the total 

cost as the end result. These methods will be presented in the next subsections. 

 

10.1.1    Complete enumeration method  

The CEM was applied to the general cost model case study with 100 different randomly 

generated cases. Here, the aim is to find optimum inspection plans that have the lowest total 

cost for each case. Each case study contains many inspection plans that are equivalent to the 

required number of inspection stations (a limited number of inspection stations) in this 

experiment. However, not all inspection stations are economically equivalent. Figure 10.2 

displays the histogram of the optimal total cost for the studied cases produced by the CEM 

for the 100 cases.  

 

 Figure 10.2: Histogram for the optimal cost from CEM 
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These total costs represent the lowest (optimal) costs of the inspection plans in each of the 

studied cases, and will be used as the benchmark for testing the other methods in this chapter. 

The testing will be carried out by measuring DFOS for each case study solved by the other 

methods. An effective method should provide solutions (total cost) very close to this optimal 

solution. The average total cost for the experiment was 550,063.6 with a standard deviation 

of 31,776.  

10.1.2  Rule of thumb-a  

The rule of thumb method (ROT-a) is based on the following two simple rules (Lee and 

Chen, 1996): (1) inspect before costly operations (Uk) in order to avoid the high processing 

costs for items that are already defective, and (2) inspect after operations that generally result 

in a high rate of defectives (Zk) in order to avoid processing defective items in subsequent 

operations. The rule of thumb method was applied to the same 100 different random cases, 

the results which are illustrated in Figure 10.3. The histogram displays the distribution of the 

total cost produced by the   ROT-a method. It can be seen that this histogram is also skewed 

to the right, with a peak between 530,000 and 680,000 and a long tail to 740,000. The 

average total cost for the studied cases with the ROT-a method was 605,222. The average 

similarity of the ROT-a method to the optimal average was 88.59%, indicating that many of 

inspection plans do not conform to the optimal cost. In addition, it was found that the 

standard deviation obtained by the ROT-a method for the studied cases was 45,631.  

Figure 10.4 shows the DFOS percentage histogram for the studied cases achieved by the 

ROT-a method. The average DFOS was 0.0884, with a standard deviation of 0.054. The best 

and worst values of DFOS obtained by the ROT-a method were 0.0012 and 0.227, 

respectively. 
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Figure 10.3: Total cost histogram for the ROT-a method 

            Figure 10.4: Percentage of DFOS histogram for the ROT-a method 
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problems. It starts from an initial solution (possibly randomly generated) and generates a new 

solution in each step, which is either accepted or rejected according to the acceptance 

probability function as described in Section 4.3.1. The simulated annealing procedure and the 

pseudo-code are given in Appendix B. When implementing SA for the AOIS problem, the 

execution was terminated when either the optimal value is reached or if there is no 

improvement in the optimal value for a number of temperature reduction stages. 

The results obtained by the SA method are illustrated in Figure 10.5. The histogram shows 

the distribution of the total cost obtained by the SA method. The average total cost for the 

experiment was 550,347.  

 

Figure 10.5: Histogram of the total cost from the SA method 
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cases achieved by the SA method was 0.0006, with a standard deviation of 0.0012. Generally, 

the results of DFOS that were not optimal were nevertheless close to the optimal solution, 

with the best and the worst results being 0.0007 and 0.0080, respectively. 

 

Figure 10.6: Percentage of DFOS histogram for the SA method 
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in Figure 10.7. The average total cost of inspection plans for the same 100 random cases 
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obtained by the GA was 552,335, being 99.74% similar to the optimal average. In addition, 

the standard deviation was 32,874, with 99.30% agreement with the optimal standard 

deviation.  

 Figure 10.7: Histogram for the total cost from GA 

Figure 10.8 displays the DFOS histogram achieved by GA for the experiment. As can be seen 

from Figure 10.8, GA reaches the optimal solution (identical to the CEM) in 25% of the 

conducted number of experiments. It was found that the average DFOS achieved by the GA 

was 0.0024, with a standard deviation of 0.002. The non-optimal results of the DFOS are as 

follows: a best result of 0.0007 and a worst result of 0.0094. 

10.1.5 Particle swarm optimisation (PSO) 

Particle swarm optimisation is a stochastic optimisation technique and also a population 

based search algorithm, inspired by social behaviour of bird flocking or fish schooling. After 

tuning the parameters for the PSO algorithm in chapter 8, the PSO algorithm is applied to the 

same general cost model case study. As in the preceding sections, the results obtained by the 

PSO algorithm are then tested against the optimal results obtained by the CEM. The results 

0

5

10

15

20

25

30

35

40

47-50 50-53 53-56 56-59 59-62 62-65 65-68 68-71 71-74

F
re

q
u
en

cy

Total cost

×10
4 



 
 
 

217 
 
 

obtained by PSO are illustrated in Figure 10.9. The average total cost achieved by the PSO 

algorithm was 550,350, having a more reliable performance with 99.94% agreement with the 

optimal average. In addition, the standard deviation of the total cost achieved by the PSO was 

31,714.06. 

 

Figure 10.8: Percentage of DFOS histogram for GA 

 Figure 10.9: Histogram for the total cost from PSO 

Figure 10.10 shows the DFOS percentage achieved by the PSO. It was found that the PSO 

algorithm reaches the optimal solution (identical to the CEM) in 65% of the conducted 
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experiments. In addition, it was found that the average DFOS for the studied cases achieved 

by the PSO algorithm was 0.0004, with a standard deviation of 0.00069. In general, the non-

optimal results were close to the optimal solution, the best and worst DFOS being 0.00015 

and 0.0028, respectively. 

 Figure 10.10: Percentage of DFOS histogram for PSO 

10.1.6   Max-min ant system    

After tuning the parameters for the MMAS algorithm in chapter 8, its performance is 

evaluated with the same general cost model case study. As in the previous sections, the 

results obtained by the MMAS algorithm are then evaluated against the optimal results 

obtained by the CEM. The following parameters were used by the MMAS algorithm: β=1, 

α=5 and ρ=0.02. The results obtained by MMAS are illustrated in Figure 10.11. The average 

total cost achieved by the MMAS algorithm was 550,186, having a more reliable 

performance with 99.97% agreement with the optimal average. This high agreement also 

indicates that the vast majority of the total cost of inspection plans is very close to the 

optimum. In addition, the standard deviation of the total cost achieved by the MMAS was 

31,586. Figure 10.12 shows the DFOS percentage achieved by the MMAS. It was found that 

the MMAS algorithm reaches the optimal solution (identical to the CEM) in the vast majority 
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of the conducted experiments 79%. In addition, it was found that the average DFOS for the 

studied cases achieved by the MMAS algorithm was 0.00017, with a standard deviation of 

0.0005. These results are very small, indicating the effectiveness of the MMAS algorithm. In 

general, the non-optimal results were very close to the optimal solution, the best and worst 

DFOS results being 0.0001 and 0.0028, respectively. 

 

Figure 10.11: Histogram for the total cost from MMAS  

 

 Figure 10.12: Percentage of DFOS histogram for MMAS 
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10.1.7  A pure random search (PRS) 

A pure random search algorithm is developed to solve the AOIS problem. This is done to 

ensure that the solutions found by the MMAS algorithm are not just lucky strikes. The PRS 

algorithm is based on generating random solutions (10,000 random solutions) and the best a 

hundred solutions are selected. The results which are obtained by the PRS algorithm are 

illustrated in Figure 10.13. The histogram displays the distribution of the total cost produced 

by the PRS algorithm. The average total cost for the random solutions with the PRS 

algorithm was 628,819. In addition, it was found that the standard deviation obtained by the 

PRS algorithm was 61589.2  

Figure 10.14 shows the DFOS percentage histogram for the studied cases achieved by the 

PRS algorithm. The average DFOS was 0.1244, with a standard deviation of 0.0560. The best 

and worst values of DFOS obtained by the PRS algorithm were 0.0303 and 0.2467, 

respectively. 

 

Figure 10.13: Total cost histogram for the PRS algorithm 
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    Figure 10.14: Percentage of DFOS histogram for the PRS algorithm 

 (is not the same scale as the other methods) 

10.1.8  Comparing performance of the algorithms  

 Descriptive statistics are a quick and concise way to extract the important characteristics of a 

dataset. The main goal of descriptive statistics is to quickly describe the characteristics of the 

underlying distribution of a dataset through a simplified set of values. The most common 

technique for summarising data is the box-plot graph. Figure 10.15 illustrates box-plot for the 

performance of the algorithms approaching the AOIS problem against the CEM. It can be 

observed that the PRS and the ROT-a appear to have larger variability than the other four 

algorithms. 

In addition both of them have long whiskers, which represent a wide ranging population. 

However, all algorithms are reasonably symmetric. Based on the lower and the upper 

whiskers there are no obvious outliers in any of the algorithm‟s data. As can be seen from the 

plot, the centre of the PRS and the ROT algorithm exceed the other algorithms. However, SA 

and GA algorithms appear to have similar centres, and all their centres are above the CEM 
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centre (optimal solution). Except for MMAS algorithm, the centre of the PSO algorithm is 

much better than the other algorithms.  

 Figure 10.15: Performance of the algrithms against CEM for the AOIS problem 

On the other hand, MMAS and CEM have similar centres. This confirmed that the vast 

majority of the inspection plans produced by the MMAS algorithm are identical to the CEM, 

which indicates the effectiveness of the MMAS algorithm. It is concluded that the 

performance of the MMAS algorithm in terms of solution quality is better than the other 

methods. 

10.1.9  Solutions for experiment 1 

The introduction of inspection stations into the production process, although constituting an 

additional cost; however, at some level of inspection points it is expected that such costs will 

be recovered from the benefits realized through the identification of defective items. Hence 

determining the optimal location of inspection stations is a very important decision. Of 

significance in such decisions are the trade-offs between the explicit costs of detection, repair 

and replacement associated with a particular inspection plan, and the implicit costs of 

unnecessary additional investment in a faulty item (and/or the costs of transmitting a 

nonconforming product beyond the boundaries of the process) when no inspection is 
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conducted. It is possible that not all locations of inspection stations are economically 

equivalent; more likely given the differentials in cost structures and process characteristics, 

some combinations of inspection places may prove to be economically preferable to others. 

The cost of AOIS problem involves many characteristics, including inspection errors (type I 

and type II), internal failure cost (rework and scrap), external failure cost (repair and 

replacement), inspection cost (fixed and variable) and manufacturing cost. As described in 

chapter 2, no literature considers all these characteristics together. However, the general cost 

model is developed to consider all these characteristics. As a result, the total manufacturing 

cost of a product can be reduced without affecting the quality of the product. 

There are five inspection stations to be allocated in a serial multistage manufacturing process. 

The algorithms applied to the same general cost model case study. The total solutions 

produced by the algorithms are 600 solution, or inspection plans. It is impractical to discuss 

every individual solution. Therefore, in this section two cases (1.1 and 1.2) are selected in 

order to discuss their solutions, as shown in Tables 10.1 and 10.2. It should be noted that the 

studied cases are randomly generated, and therefore every case study has different 

characteristics for the workstations in terms of inspection cost, operation cost, rework cost 

and defect rates, as shown in Tables 10.2 and10.3. The inspection plans obtained by the SA, 

GA, PSO and MMAS algorithms are the inspection plans that have the lowest total cost.           

Table 10.1: Inspection plans for case study 1.1 

Algorithms 
Workstations 

Total cost 
1 2 3 4 5 6 7 8 9 10 11 12 

CEM 0 1 1 1 0 0 0 0 0 1 0 1 519,370 

PRS 0 0 1 0 1 0 0 1 1 0 1 0 582,160 

ROT-a 0 1 1 0 0 0 0 1 1 0 0 1 570,270 

SA 0 1 1 1 0 0 0 0 0 1 0 1 519,370 

GA 0 1 1 0 0 0 0 1 0 1 0 1 529,020 

PSO 0 1 1 1 0 0 0 0 0 1 0 1 519,370 

MMAS 0 1 1 1 0 0 0 0 0 1 0 1 519,370 
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       Table 10.2: Inspection plans for case study 1.2 

Algorithms 
Workstations 

Total cost 
1 2 3 4 5 6 7 8 9 10 11 12 

CEM 0 1 1 1 0 0 0 0 1 0 0 1 457,760 

PRS 1 0 1 0 1 0 0 0 1 1 0 0 571,510 

ROT-a 1 1 0 0 1 0 0 0 1 0 1 0 561,914 

SA 0 1 0 1 1 0 1 0 0 0 1 0 461,840 

GA 0 1 0 1 0 1 1 0 0 0 0 1 480,497 

PSO 0 1 0 1 0 0 1 0 0 1 0 1 460,170 

MMAS 0 1 1 1 0 0 0 0 1 0 0 1 457,760 

 

In case study 1.1, the MMAS placed the inspection stations after workstations 2, 3, 4, 10 and 

12. As can be seen from Table 10.3 the inspection stations at workstations 2,3 and 4 are 

placed before processing workstations 3, 4 and 5,which characteristically have a higher 

operating cost (U3=99.797, U4=97.723 and U5
=
86.601). As a result, to avoid processing items 

those are already defectives in subsequent processing workstations by continuing processing 

them. In addition, workstations 2, 3 and 4 have a characteristically low inspection cost 

compared to the other workstations (IC2=40.300, IC3=41.491 and IC4=40.655). As there are a 

limited number of inspection stations, the last two inspection stations are placed at 

workstations 10 and 12. For workstation 10 the inspection station is placed before processing 

workstation 11 which has a high operation cost (U11=90.512) to avoid processing defective 

items in subsequent processing workstations, note that workstation 10 has a low inspection 

cost (IC10=40.65) compared to the other workstations.  

For workstation 12 this entails the avoidance of penalty costs. In particular, to guarantee that 

no defective items reach the customer. As can be seen from Table 10.1, many inspection 

plans obtained by SA, PSO and MMAS algorithms are identical to the solution obtained by 

the CEM. On the other hand, the inspection plan obtained by GA is different to the optimal 

solution. The difference lies in the location of the inspection station at workstation 4, which is 

placed at workstation 8.  
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             Table 10.3: Experimental parameters for case study 1.1 
Experimental 

parameters 

 

Workstations 

1 2 3 4 5 6 7 8 9 10 11 12 

Zk 0.1191 0.1323 0.1596     0.1516 0.1144 0.1157 0.0913 0.1675 0.1696     0.1401 0.1691 0.1799 

Uk 73.518    87.129    99.797    97.723 86.601 73.613 74.468 72.594 89.400 86.733 90.512 89.386 

ICm 48.765 40.300    41.491 40.655 47.655 42.160 48.371 44.841 44.773 40.651    43.653    44.567    

αm 0.0286 0.0177 0.0280 0.0210 0.0201 0.0113 0.0271 0.0122 0.0164 0.0138 0.0189 0.0134 

βm 0.0150 0.0188 0.0206 0.0120 0.0273 0.0294 0.0284 0.0294 0.0156 0.0220 0.0164 0.0261 

uk 31.231 109.877 98.251 97.385 30.739 46.572 57.99 46.56 52.043 86.348 60.156 112.931 

gk 76.822 49.7105 77.612 76.981 79.636 76.018 51.326 52.546 60.783 73.476 79.613 71.638 

δk 0.0670 0.0835 0.0560 0.0830 0.0804 0.0724 0.0873 0.0516 0.0556 0.0565 0.0727 0.0762 

   

Table 10.4: Experimental parameters for case study 1.2 
Experimental 

parameters 

 

Workstations 

1 2 3 4 5 6 7 8 9 10 11 12 

Zk 0.1097 0.1766 0.1641 0.1496 0.1531 0.1252 0.0999 0.1310 0.1745 0.1490 0.1790 0.1500 

Uk 61.018 97.766 95.336 62.388 53.555 68.249 65.734 70.165 54.719 89.750 61.323 74.937 

ICm 49.079 40.598 41.714 40.912 46.367 47.040 44.171 48.143 41.760 43.765 42.336 44.401 

αm 0.0172 0.0263 0.0183 0.0225 0.0177 0.0284 0.0114 0.0187 0.0188 0.0122 0.0133 0.0178 

βm 0.0118 0.0170 0.0150 0.0198 0.0149 0.0253 0.0284 0.0189 0.0187 0.0237 0.0226 0.0104 

uk 52.977 85.158 95.232 104.579 32.870 55.745 51.374 74.618 114.360 43.620 32.106 109.837 

gk 46.374 53.665 68.739 78.009 76.893 66.2411 74.972 61.324 66.369 72.864 66.329 68.178 

δk 0.0654 0.0887 0.0805 0.0692 0.0814 0.0740 0.0660 0.0866 0.0852 0.0638 0.0796 0.0614 
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This location aims to avoid additional costs that may result from workstation 9 with a higher 

operation cost (U9=89.400), whilst at the same time detecting defective items from 

workstation 8 with a higher defect rate (Z8=0.1675). It should be noted that despite the 

operation cost at workstation 9 (U9=89.400) being higher than the operation cost at 

workstation 5 (U5=86.601), and the defect rate at workstation 8 (Z8=0.1675) being higher 

than that at workstation 4 (Z4=0.1516), the total cost of the inspection plan obtained by the 

GA of 529, 020 is higher than the total cost achieved by the MMAS algorithm or the optimal 

cost of 519,370. 

The reason for this is that the early inspection station which was placed at workstation 4 in 

the inspection plan of the MMAS detected defective items before wasting additional 

resources by continuing to process them in subsequent workstations. In other words, the 

additional costs resulting from workstation 4 is much greater than the unnecessary costs 

resulting from workstation 8. This shows the effectiveness of the MMAS algorithm, with the 

advantage of using adaptive memory. The memory capability in the MMAS algorithm allows 

the algorithm to keep a record of the lowest cost of the inspection plans.  

Except for the PRS algorithm, inspection plan obtained by the ROT-a method different from 

all other algorithms particularly in comparison with the MMAS algorithm. Inspection points 

are placed before the workstations that have higher operation costs or after workstations that 

have higher rates of defective items. Thus the first and the second inspection stations are 

placed before workstations 3 and 4 which have higher operation costs (U3=99.797 

U4=97.723), as shown in Table 10.3. Consequently the third inspection station at workstation 

8 is placed before workstation 9 with a higher operation cost (U9=89.400). Whereas the 

fourth and the fifth inspection stations are placed after workstations 9 and 12 respectively, 

which generate higher defect rates (Z9=0.1696 and Z12=0.1799).The results of the ROT-a 

method indicate that the operation costs and the defect rate at a particular workstation do not 
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directly influence the inspection decision. On the other hand, it was found to be essentially 

dependent on the processing costs and defect rates at other workstations. Regarding the PRS 

algorithm, the total cost of the inspection plan obtained by the PRS algorithm is 582,160, 

which is higher than that obtained by other algorithms. This is because the PRS algorithm did 

not have any operator to guide the algorithm to good solutions. 

In case study 1.2, the MMAS algorithm placed inspection stations at workstations 2, 3, 4, 9 

and 12. As can be seen from Table 10.4, workstations 2, 3, 4 and 9 have a characteristically 

high defect rate (Z2=0.1766, Z3=0.1641, Z4=0.1496 and Z9=0.1745). In addition, inspection 

costs at these workstations is characteristically relatively low compared to the other 

workstations (IC2=40.598, IC3=41.714, IC4=40.912 and IC9=41.760). Placing these 

inspection stations at those workstations aim to identify defective items before passing them 

to the subsequent processing workstations. As a result, the total cost of the inspection plan 

can be minimised. The last inspection station is placed at workstation 12. This leads to 

avoiding external failure costs and to guarantee no defective items reach the customer. 

Regarding the inspection plan obtained by the PSO algorithm, it is slightly different from the 

optimal solution. The difference is that the inspection station placed in the optimal solution at 

workstation 3 is now placed at workstation 7. Furthermore, the inspection station at 

workstation 9 in the optimal solution is now placed at workstation 10. This combination of 

inspection stations led to a greater total cost compared with the inspection plan produced by 

the MMAS algorithm. 

As can be seen from Table 10.4, the inspection plan achieved by the GA is different from the 

optimal solution. The difference is found in the placement of the inspection station at 

workstation 3 in the optimal solution, which is now placed at workstation 6. Also the 

inspection station at workstation 10 in the optimal solution is now placed at workstation 7. 
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The total cost obtained by this inspection plan is greater than the cost obtained of the MMAS 

algorithm. 

Concerning the inspection strategy obtained by the SA algorithm, it is also different from the 

optimal solution. The difference lies in that the inspection station which in the optimal 

solutions placed at workstation 3, in this case is placed at workstation 5.  A further difference 

is in the inspection station at workstation 9 in the optimal solution, which is placed at 

workstation 7 and in the inspection station at workstation 12 in the optimal solution which on 

this occasion is placed at workstation 11. As a result, the total cost obtained by SA algorithm 

is much greater than the total cost achieved by the MMAS algorithm. 

Regarding the solutions obtained by ROT-a, the inspection plan is different from all other 

algorithms. Inspection points are placed before those workstations that have higher operation 

cost or after workstations that have a higher number of defectives items. The first, the second 

and the third inspection stations are placed before workstations 2, 3 and 10 which have 

characteristically higher operation costs (U2=97.766, U3=95.336 and U10=89.750 ), as shown 

in Table 10.3. The fourth and the fifth inspection stations are placed after workstations 5 and 

11 which have characteristically higher defect rates (Z5=0.1531 and Z11=0.1790). Concerning 

the inspection strategy obtained by the PRS algorithm, it was found that the total cost of the 

inspection plan obtained by the PRS is much greater than the total cost obtained by the other 

algorithms.  

 Summary 

The optimal inspection policy in a serial multistage manufacturing process has been studied. 

It has been proven that the solution approach using the MMAS algorithm gives better quality 

results in comparison with the other relevant algorithms when considering total inspection 

cost as the performance measure. The interpretation is that the MMAS algorithm outperforms 

the other algorithms because is enhanced with heuristic information. By using the heuristic 
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information the probable search space (the search space most likely to be explored) a much 

smaller space than the original search space will be explored. The purpose of the heuristic 

information in the MMAS algorithm is to guide the ants toward identifying promising regions 

of the search space. The search space in the general cost model case study for the AOIS 

problem is 2
12

=4096 possible combinations for allocating inspection points. The heuristic 

information reduces this search space by guiding ants when assigning inspection stations to 

workstations with a high operation cost, defect rate and low inspection cost. Placing 

inspection stations at these workstations leads to reducing any unnecessary and avoidable 

costs, such as the cost of additional processing operations on a defective part in subsequent 

processing workstations. As a result, the total cost of the inspection plan can be minimised. In 

addition, the memory capability in the MMAS allows the algorithm to keep a record of 

previous search paths using the pheromone matrix. This matrix includes the paths (inspection 

positions) that the ants have visited. Thus, the path with the lowest cost will be used more 

frequently by subsequent ants. Furthermore, by applying a local search to the solutions that 

the ants have found the total cost can be further reduced. The local search works exchange 

inspection points, as a result of which the cost structure of the inspection plan is changed. 

This leads to improving the performance of the algorithm.  

10.1.10 Discussion 

The results of the MMAS algorithm and the other developed methods in Experiment 1 are 

summarised in Table 10.5. This experiment used a general cost model case study consisting 

of 12 processing workstations arranged in a serial manner in order to allocate five inspection 

stations. With this number of workstations, the full enumeration of the search space can be 

generated in a reasonable amount of time. This led to the use of CEM as a benchmark to 

compare the algorithms. The experimental parameters of the general cost model were used to 

generate 100 different cases, which represent the characteristics of different manufacturing 
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systems. For each of the 100 test cases, 800 evaluations were performed which are repeated 

30 times to generate average for the test cases. 

Table 10.5: Performance of developed methods for Experiment 1 

Methods % of 

optimal 

solution 

Average 

total 

cost(£) 

 Total 

cost 

Average 

DFOS 


DFOS 

Best* 

result 

(DFOS) 

Worst 

result 

(DFOS) 

CEM 100 550,063 31,776 (Datum)    

SA 65 550,347 32,689 0.0006 0.0012 0.0007 0.0080 

GA 25 552,335 32,874 0.0024 0.002 0.0007 0.0094 

PSO 70 550,350 31,714.06 0.0004 0.0006 0.00017 0.0028 

MMAS 79 550,186 31,586 0.0001 0.0005 0.00012 0.0028 

ROT-a 0.0 606,221 45,630.6 0.0994 0.0510 0.0011 0.2147 

PRS 0.0 628,819 61,589.2 0.1244 0.0560 0.0303 0.2467 

*Best result (DFOS): excluding the solutions that coincide with CEM optimal.  

The results show that the MMAS algorithm clearly outperformed the other methods in all 

performance measures. It was found that the MMAS algorithm could find the optimal 

solution (identical to the CEM) in vast majority 79% of case studies. In addtion, MMAS was 

able to identify high-quality solutions with an average DFOS of 0.0001, which is clearly 

superior to the other methods. Likewise, it was found that the standard deviation obtained by 

the MMAS algorithm was much better than the other methods, also indicating the strength of 

the MMAS algorithm. In addition, the best and the worst results achieved by the MMAS 

algorithm are significantly better than the other methods, demonstrating the effectiveness of 

the MMAS algorithm. On the other hand, the average DFOS for the PSO method was better 

than the SA, and GA methods. In addition, the best and the worst results achieved by the PSO 

method is much better than the SA and GA methods. SA is based on only dealing with a 

single best solution, that having the best cost for one of the objectives, and not with a set of 

non-dominated solutions. Accepting worst solution enables the search to escape from the 

local optima, but this may also cause revisiting of previously evaluated points in the search 
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space and which also means the search is not adequately diversified. It was found that the 

average DFOS for the SA method was better than that for the GA method. In addition, the 

worst DFOS value 0.008 for SA was better than that of the GA method 0.0094; however, the 

best DFOS values for these two methods ended up being the same. Except for the PRS 

algorithm, the solution quality obtained by the ROT-a method was less than all the other 

methods in the comparison. Table 10.5 also shows that the solution quality obtained by the 

PRS algorithm was worse than all the other methods in the comparison. This was expected, 

because the PRS algorithm was based on placing inspection stations purely randomly and did 

not have any operator to guide the algorithm to good solutions. 

Regarding running times, Table 10.6 shows the average execution time of the applied 

methods and the percentage of time saved in comparison with the CEM, by using Equation 

(10.2). With the exception of the ROT-a method, the MMAS algorithm shows a faster 

execution time than the other three methods. On the other hand, the percentage of time saved 

for the ROT-a method is the greatest among all the methods. The reason for this is due to the 

simplicity of the ROT-a computational process; it is completed in just one iteration. 

However, the solution quality produced by the ROT method is rather far from the optimal 

solution.  

Table 10.6: Time performance of Experiment 1 methods compared to CEM 

Method Average execution 

time( seconds) 

Time saved ( %) 

CEM 90 0.0 

PRS 3 96 

ROT-a 2 97 

SA 45 50 

GA 55 38 

PSO 40 55 

MMAS 35 61 
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10.2  Experiment 2 

The data used in Experiment 2 are based on case study by Engin et al. (2008), which used 

real data that involved the manufacturing of an engine valve. Engin et al. (2008) proposed a 

fuzzy model solved with genetic algorithms for attribute control charts in multistage 

processes. The aim in the study by Engin et al. (2008) was to find acceptance numbers (e.g. 

determine whether to accept or reject a production lot of material) at each stage of the 

multistage process, resulting in the minimisation of cost at each stage. They applied their 

model to an engine valve manufacturing firm. The valves went through 24 or 36 different 

processing operations. Figure 10.16 is shown the operations of 24 processing workstations. 

These operations consist of different machines that are equipped with computer-controlled 

machinery. It should be noted that this case study was not originally an AOIS problem.  

This case study was selected because it is considered a large problem comparing to the 

previous case study (general cost model) from which the performance of the MMAS 

algorithm against the SA, GA, PSO, PRS and ROT-a methods could be evaluated. In 

addition, this case study is based on real data and most of the required data for the MMAS 

algorithm are available. The number of feasible solutions in this experiment is 2
24 

=16,777,216.  

It AOIS problem, as the size of the problem grows, so the number of inspection station 

allocation possibilities increases exponentially, CEM has computational times that are too 

long for practical purposes. Therefore, an optimal solution for this experiment cannot be 

obtained with CEM in a reasonable time. For this reason, the comparison between the 

algorithms will be based on absolute values rather than DFOS. Table 10.7 shows the 

experimental parameters and their ranges for Experiment 2. Because the case study of Engin 

et al. (2008) did not consider inspection errors which might occur at inspection points, the 
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developed general cost model for the AOIS problem in this experiment thus assumes that the 

inspection is performed free of error. This assumption is simply adapted by setting the 

inspection error parameters in the general cost model to: α=0 and β=1. 
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Figure 10.16: Operations of engine valve (Engin et al., 2008) 
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Table 10.7: Experimental parameters for Experiment 2 

 

Because both the unit inspection and unit reworking costs are unavailable, they are assumed 

to be reasonable values. In reality, inspection cost is significantly less than manufacturing 

cost. Therefore, the inspection and reworking costs are assumed to be 10% and 25% of the 

manufacturing cost, respectively.  Some previous studies used this assumption (e.g. Lee and 

Unnikrishnan, 1998). Penalty cost is the cost associated with the final production of 

undetected non-conforming items that reach the customer. Penalty cost is assumed in these 

ranges based on the price of the cost valves. The firm generally produces the valve at a cost 

of $1–$5 (Engin et al., 2008). This range of the penalty cost is expected to cover issues such 

as replacement, repairs, return products, and other services. 

All developed methods (i.e., ROT-a, PRS, SA, GA, PSO and MMAS) were applied to 100 

different randomly generated cases for solving the AOIS problem. These cases, generated by 

a uniform random number generator, represent the characteristics of different manufacturing 

systems. It is assumed that there are a limited number of inspection stations 8 available to be 

allocated to the different processing workstations; this number was chosen to match the value 

used by Engin et al., (2008). In terms of solution quality, it is important to report the average 

solution quality created by the applied methods, because for increasing problem sizes, this is 

the most important discriminating factor. Therefore, the evaluation of the performance of the 

Parameters Range Brief description 

B 1000 Batch size 

Uk [0.075, 0.085] Unit manufacturing cost ($) 

ICm [0.0075, 0.0085] Unit inspection cost  ($)       (assumed) 

Zk [0.004, 0.01] Defective rate 

uk [0.25, 0.270] Unit scrap cost ($) 

gk [0.018, 0.022]  Unit  reworking cost   ($)     (assumed) 

δk [0.03, 0.09] Repairing  probability  

Penalty cost [2, 10] Each defective item that reaches the customers ($) (assumed) 
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developed methods will be based on the average of the total cost and the average execution 

time. The results obtained by the methods in Experiment 2 are presented in Table 10.8. It can 

be seen that the MMAS algorithm performs considerably better than the other methods in 

terms of solution quality (average total cost). In addition, the standard deviation of the total 

cost obtained by the MMAS algorithm is less than the other developed methods, indicating a 

more reliable performance for the MMAS algorithm. These experimental results confirm that 

the MMAS algorithm outperforms the other methods even when the AOIS problem is 

significantly increased. Table 10.8 also shows that the solution quality produced by the PRS 

algorithm is much less than the other methods.  

                Table 10.8: Performance of the studied methods for Experiment 2 

Methods Average total 

cost ($) 
 Total cost Average 

execution time 

(seconds) 

PRS 2571.68 8.25 4 

ROT-a 2556.65 10.08 3 

SA 2505.56 4.09 90 

GA 2508.44 4.95 110 

PSO 2503.63 4.23 89 

MMAS 2492.76 1.56 86 

Regarding processing time, the MMAS has the least average processing time as compared to 

the other methods, except for the ROT-a method. Indeed, the average processing time 

provided by the ROT-a method is the smallest among all methods, due to its simplicity and 

the fact that it does not need more than one pass to arrive close to the optimal solution. In 

reality, the production management of firms are more interested in solution quality rather 

than processing time, as long as the execution time of the method is reasonable. The GA 

method has the highest average processing time because its steps to reach the solution are 

longer than the other methods, and it also incorporates a local search method. It should be 

noted that genetic algorithms require large number of response (fitness) function evaluations 
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depending on the number of individuals and the number of generations. Therefore, genetic 

algorithms may take long time to evaluate the individuals. 

As described in section 5.5.2, the fitness distance correlation (FDC) for the AOIS problem 

indicates a strong correlation between the solution quality and the distance to the optimum. 

The high fitness distance correlation indicates that the search space of the AOIS problem is a 

globally convex, single-funnel landscape or big valley structure. A big valley structure means 

that local optima tend to be relatively close to each other and to the global optimum. In a big 

valley structure the MMAS can potentially drive the search towards an optimal solution or 

near optimal solution. In other words, this high correlation suggests that the local optima are 

radially distributed in the problem space, with the global optima as the centre, and the more 

distant the local optima are from the centre the worse their objective function values. Hence, 

by tracing local optima step by step, moving from one optimum to nearby slightly better 

ones, one can eventually reach a near global optimal solution.  

10.2.1 Solutions for experiment 2 

As in the previous section, the solutions obtained by the relevant algorithms for the engine 

valve case study are presented. Since it is impractical to discuss every individual solution 

obtained by the relevant algorithms, two cases (2.1 and 2.2) are selected in order to discuss 

their solutions. Tables 10.9 and 10.10 show the results and the experimental parameters 

respectively for case study 2.1. Tables 10.11 and 10.12 show the results and the experimental 

parameters respectively for case study 2.2. The inspection plans obtained by SA, GA, PSO 

and MMAS algorithms are the inspection plans that have the lowest total cost. In case study 

2.1, no inspection is selected for the first workstation (cut off head material) for the 

inspection plan obtained by the MMAS method. This means that the cost avoidance of 

detecting defective products in workstation 1 does not outweigh the cost of performing an 

inspection at this workstation. 
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        Table 10.9: Inspection plans Case study 2.1 
 

Algorithms 
Workstations   

Total 

cost 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

PRS 0 1 0 1 0 1 1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 2670.8 

ROT-a 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 1 1 2605.3 

SA 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 0 0 1 2510.3 

GA 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 1 0 1 0 2515.6 

PSO 0 1 1 1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 1 2493.8 

MMAS 0 1 1 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 0 0 0 1 2488.7 

 
      Table 10.10: Experimental parameters for case study 2.1 

Experimental 

parameters 

 

Workstations 

1 2 3 4 5 6 7 8 9 10 11 12 

Zk 0.0056     0.0091     0.0097     0.0083     0.0056     0.005   0.0073 0.0073 0.0093 0.0097 0.0065     0.0083     

Uk 0.0740     0.0817     0.0854     0.0796     0.0838   0.0821     0.0765     0.0770     0.0769     0.0846     0.0804     0.0824 

ICm 0.0082 0.0081     0.0080     0.0079     0.0084     0.0079     0.0082     0.0078     0.0080     0.0081     0.0075     0.0082 

uk 0.2075     0.2537     0.2065     0.2010     0.2132     0.2635     0.2607     0.2570     0.2193     0.2477     0.2067     0.248 

gk 0.0180 0.0216     0.0192     0.0203     0.0212     0.0207     0.0204     0.0198     0.0202     0.0216     0.0210     0.0199 

δk 0.0832   0.0399     0.0499     0.0470     0.0863     0.0300     0.0465     0.0420     0.0797     0.0442     0.0738     0.0389 

 

Table 10.10: Experimental parameters for case study 2.1 (continued) 
Experimental 

parameters 

 

Workstations 

13 14 15 16 17 18 19 20 21 22 23 24 

Zk 0.005 0.0095     0.0089     0.0082     0.0043     0.0080     0.0097     0.0098     0.0047     0.0049     0.0078     0.0095 

Uk 0.0810 0.0757     0.0834     0.0826     0.0752     0.0840     0.084     0.0792     0.0782     0.0780     0.0834     0.0802 

ICm 0.0078     0.0075     0.0084     0.0076     0.0081     0.0077     0.0078     0.0078     0.0079     0.0084     0.0085     0.0077 

uk 0.2615     0.2540     0.2241     0.2166     0.2023     0.2423     0.2618     0.2473     0.2504     0.2549     0.2023     0.2050 

gk 0.0192     0.0196     0.0215     0.0181     0.0206     0.0201     0.0191     0.0212     0.0211     0.0193     0.0203     0.0193 

δk 0.0498     0.0492     0.0465     0.0696     0.0537     0.0498     0.0890     0.0365     0.0489     0.0823     0.0721     0.0684 
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        Table 10.11: Inspection plans for Case study 2.2 
 

Algorithms 
Workstations   

Total cost 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

PRS 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 0 0 2660.7 

ROT-a 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 1 0 0 1 2595.3 

SA 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 1 0 0 1 2508.4 

GA 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 1 0 0 1 2513.3 

PSO 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 1 0 1 0 2503.33 

MMAS 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 1 0 1 0 0 1 2490.5 

Table 10.12: Experimental parameters for case study 2.2 
Experimental 

parameters 

 

Workstations 

1 2 3 4 5 6 7 8 9 10 11 12 

Zk   0.0057     0.0044     0.0076     0.0071     0.0058     0.0068     0.0084     0.0050     0.0046     0.0057     0.00920     0.0082 

Uk 0.0788     0.0791     0.0843     0.0781     0.0753     0.0796     0.0752     0.0826     0.0794     0.0775     0.0797     0.0785 

ICm 0.0076     0.0082     0.0083     0.0080     0.0078     0.0077     0.0076     0.0077     0.0080     0.0081     0.0075     0.0078 

uk 0.2662     0.2699     0.2536     0.2511     0.2679     0.2599     0.2648     0.2546     0.2565     0.2586     0.2689     0.2614 

gk   0.0181     0.0187     0.0213     0.0190     0.0208     0.0196     0.0212     0.0210     0.0184     0.0209     0.0219     0.0190 

δk 0.0410     0.0336     0.0771     0.0890     0.0570     0.0340     0.0733     0.0344     0.0501     0.0678     0.0327     0.0468 

 

Table 10.12: Experimental parameters for case study 2.2 (continued) 
Experimental 

parameters 

 

Workstations 

13 14 15 16 17 18 19 20 21 22 23 24 

Zk 0.0092     0.0094     0.0062     0.0094     0.0058     0.0082     0.0096     0.0090     0.0074     0.0075     0.0089     0.0097 

Uk 0.0780     0.0761     0.0766     0.0843     0.0807     0.0844     0.0845     0.0797     0.0796     0.0844     0.0791     0.0772 

ICm 0.0079     0.0079     0.0078     0.0076     0.0080     0.0078     0.0078     0.0083     0.0077     0.0080     0.0077     0.0083 

uk 0.2660     0.2553     0.2601     0.2685     0.2699     0.2602     0.2555     0.2502     0.2543     0.2636     0.2689     0.2635 

gk 0.0220     0.0180     0.0203     0.0213     0.0193     0.0183     0.0210     0.0196     0.0203     0.0210     0.0202     0.0187 

δk 0.0331     0.0424     0.0730     0.0851     0.0894     0.0481     0.0540     0.0511     0.0337     0.0678     0.0689     0.0433 
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In addition, as can be seen in Table 10.10, the operation cost and defect rate at the first 

workstation are lower than in the other workstations. The first inspection station in the 

inspection plan created by the MMAS is placed before processing workstation 3 (inflation 

process) with a high operation cost (U3=0.0854), and after workstation 2 (cut off stem 

material), which generates a relatively high defect rate (Z2=0.0091) compared to the other 

workstations. This leads to avoiding processing items that are already defective in subsequent 

processing workstations. The second inspection station is placed after workstation 3, which 

has a high defect rate (Z3=0.0097). This inspection station aims to detect defective items 

before allowing them to pass to successive workstations. The third, fourth and fifth inspection 

stations are placed before workstations 12 (first grinding of stem), 16 (machining of groove) 

and 18 (finishing grinding of tip) with high operation costs (U12=0.0824, U16=0.0826 and 

U18=0.0840). These inspection stations aim to avoid unnecessary processing costs in 

subsequent processing workstations. The sixth, seventh and eighth inspection stations are 

placed at workstations 14 (head turning), 19 (finish grinding of angle) and 24 (packaging) 

which generate high defect rates (Z14=0.0095, Z19=0.0095 and Z24=0.0097). 

In contrast, these workstations have characteristically low inspection costs (IC14= 0.0075, 

IC19=0.0078 and IC24=0.0077).The inspection station at workstation 24 aims to detect any 

defective items before reaching the customer. The inspection plan obtained by the PSO is 

different from the inspection plan obtained by the MMAS algorithm. The difference is in the 

location of the inspection station at workstation 14 (head turning) in the MMAS inspection 

plan which is placed at workstation 4 (press) in the PSO inspection plan. This cost structure 

of the PSO inspection plan led to a total cost higher than the total cost from the MMAS 

algorithm. The inspection plans obtained by GA, SA, ROT and PRS algorithms are also 

different from the inspection plan achieved by the MMAS algorithm. As a result, these 
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inspection plans led to higher total costs compared to the total cost obtained by the MMAS 

algorithm. 

In case study 2.2, as can be observed in Table 10.11, the inspection plans obtained by the 

algorithms are different from the one in case study 2.1. This is because the characteristics of 

case study 2.2 in terms of operation cost, defect rate, rework cost and inspection cost are 

different from those in case study 2.1. The MMAS algorithm distributed the eight inspection 

stations through the serial line as can be seen in Table 10.12. Note that workstations 3, 8, 19 

and 22 have characteristically high operation costs (U3=0.0843, U8=0.0826, U19=0.0845 and 

U22=0.0844). The first four inspection stations are placed at workstations 2 (cut off stem 

material), 7 (flex), 18 (finish grinding of tip) and 21 (chrome plating). This leads to avoiding 

unnecessary operation costs in subsequent processing workstations. Also from Table 10.12 it 

can be observed that workstations 11 (first cut off length) and 16 (machining of groove) have 

characteristically low inspection costs and high defect rate (IC11= 0.0075, IC16= 0.0076, 

Z11=0.00920 and Z16=0.0094). Therefore, the fifth and the sixth inspection stations are placed 

at these workstations. These inspection stations aim to detect the defective items and to avoid 

additional costs. Workstations 19 (finish of grinding angle) and 24 (packaging) feature high 

defect rates (Z19= 0.0096 and Z24=0.0097) compared with the other workstations, thus the 

seventh and the eighth inspection stations are located at these workstations.  

In contrast these workstations characteristic with low inspection cost (IC14= 0.0075, 

IC19=0.0078 and IC24=0.0077).The inspection station at workstation 24 aims to detect any 

defective items before reach to the customer. The inspection plan obtained by the PSO is 

different from the inspection plan obtained by the MMAS algorithm. The difference was in 

location of the inspection station at workstation 14 (head turning) in MMAS inspection plan 

is placed at workstation 4 (press) in PSO inspection plan. This cost structure of PSO 

inspection plan led to total cost higher than the total cost in the MMAS algorithm. The 
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inspection plans obtained by GA, SA and ROT-a algorithms are also different from the 

inspection plan achieved by the MMAS algorithm. As a result, these inspection plans led to 

high total cost comparing with the total cost obtained by the MMAS algorithm. 

10.2.2  The trade-off between the MMAS and CEM 

In this section, the trade-off between the CEM and MMAS algorithms is applied to the engine 

valves case study. As described in section 10.3, the average total cost of the inspection plan 

for the engine valves case study consisting of 24 workstations obtained by the MMAS was 

$2492.76. It is impractical to solve the problem using CEM in reasonable time due to 

computational complexity. Assuming that the average DFOS for the MMAS is 0.0029, this is 

the worst DFOS for the general cost model case study. The estimated optimal solution (CEM) 

for the 24 workstations is: 

 (average total cost of MMAS) – (DFOS ×average total cost of MMAS) 

($2492.76) – (0.0029×$2492.76) =$2485.53.  

The difference in average total cost between the MMAS and the estimated optimal solution 

per batch is: 

(average total cost of MMAS) – (the estimated optimal solution):  ($2492.76) – ($2485.53) 

=$7.23. 

This is the cost of using MMAS per batch. As described in chapter 3, the duration of the 

computation time for the 24 workstations using CEM is about 2 days. The firm uses a batch 

of 1000 units and the average valve price is $3. Assuming that the company works one shift 

per day, the total production sold in one day is therefore: 1000×$3=$3000. 

The waiting time for the optimal solution using CEM is about 2 days and will cost the 

company $6000. On the other hand, the additional cost of using the MMAS to obtain a near 

optimal solution for 365 days: $7.23×365=$2638.95. 
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It can be seen that the additional cost of using the MMAS algorithm of $2638.95 is much less 

than the waiting time cost of $6000. This additional cost of using the MMAS algorithm is 

compared with other additional costs of using GA. The GA is selected because is a very 

common algorithm in the literature. The average total cost obtained by the GA was $2508.44. 

The difference in average total cost between the GA and the CEM per batch is: (average total 

cost of GA) – (average total cost of CEM) 

($2508.44) – ($2485.53) =$22.91. The difference in additional cost per batch between the 

MMAS and GA is: ($22.91) – ($7.23) =$15.68. The saving in cost of using MMAS over GA 

for 365 days: $15.68×365=$5723. 

It can be seen that the MMAS algorithm saves $5723 annually over GA for the engine valves 

case study consisting of 24 workstations. It is interesting to know the difference between the 

best and the worst solutions obtained by the MMAS and PRS algorithm respectively for the 

engine valves case study consisting of 24 workstations. The difference in additional cost per 

batch between the MMAS and PRS is:  

(average total cost of PRS) - (average total cost of MMAS) 

($2571.68) – ($2492.76) =$78.92 

$78.92×365=$28,805 

The MMAS algorithm saving $28,805 annually over the PRS algorithm for the engine valves 

case study consisting of 24 workstations. The saving in cost of using the MMAS algorithm is 

also compared for the engine valve system consists of 36 workstations. Due to computational 

complexity CEM cannot be applied to this number of workstations. As a result, the saving in 

cost of using the MMAS algorithm is compared against GA for this number of workstations. 

The average total cost resulting from the MMAS algorithm and GA are $5276.6 and GA 

$5293.7, respectively. The difference in average total cost between MMAS and GA is:  

(average total cost of MMAS) – (average total cost of GA) 
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($5293.7) – ($5276.6) =$17. The saving in cost of using the MMAS algorithm over GA for 

365 days is: $17×365=$6205 

It can be seen that the MMAS algorithm saves $6205 annually over GA for the engine valves 

case study consisting of 36 workstations. In reality, the production management of firms is in 

the search for any potential cost savings that can keep the company in a good competitive 

position. It is evident that despite the CEM producing the optimal solution, in terms of the 

economic aspect is impractical to allocate inspection places using CEM as the number of 

workstations (WS) increases (e.g. WS ≥ 24). This impracticality in CEM has led to the use of 

the MMAS algorithm that sacrifices the guarantee of finding the optimal solution in order to 

find a satisfactory solution in a reasonable time. This agrees with what the vast majority of 

case studies in the literature review pointed out, that CEM is an impractical way of finding 

the optimal solution as the number of workstations increases significantly. It is concluded that 

using MMAS leads to a saving in money by minimising the computation time, the total cost 

of the product and keeps the company in a good competitive position.  

10.3 Experiment 3 

Experiment 3 is based on the case study of Rau and Chu (2005), which considered some 

experimental heuristic rules-of-thumb in a serial production system. This experiment is 

different from the previous experiments and it is selected for the following reasons: (i) it uses 

different experimental parameters from the previous experiments; (ii) it uses 100% inspection 

of items when an inspection station is located after a workstation; and (iii) it uses heuristic 

method, so the MMAS algorithm can be tested with different method from the previous 

methods. 

Rau and Chu (2005) developed a heuristic method (HM) that allocates inspection stations 

based on the manufacturing cost and the probability of non-conformity at each processing 
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workstation. The procedure of the HM works iteratively until the total profit of the objective 

function cannot be further improved. In Rau and Chu (2005), the HM was implemented on a 

serial production system with various sizes of workstations, with an aim to find the optimal 

location of the inspection stations. Table 10.13 presents the parameters that were used in the 

case study. Rau and Chu (2005) used the average and standard deviation of DFOS to measure 

the solution quality of their HM. However, Rau and Chu (2005) did not specify the number of 

cases generated for each workstation size. 

Table 10.13: Experimental parameters for Experiment 3 

Parameters Range Description 

B 1000 Batch size 

Uk [80,150] Unit manufacturing cost (£) 

ICm [2, 4] Unit inspection cost  (£)        

Zk [0.01, 0.03] Defective rate   

αm [0.001, 0.002] Type-I error  

βm [0.001, 0.002] Type-II error  

uk [10, 15] Unit  scrapping cost   (£)        

gk [10, 15] Unit  reworking cost   (£)      

δk [0.2, 0.3] Repairing  probability (assumed) 

Therefore, it was decided that 50 cases should be randomly generated using a uniform 

random number generator for each workstation size in order to calculate the DFOS average 

and standard deviation. Rau and Chu (2005) assumed 100 % inspection to items processed in 

a workstation if an inspection station is scheduled after it in the sequence. This assumption is 

simply adapted in the MMAS by considering full inspection at each inspection station. 

MMAS is applied to these cases for each workstation size, and the results obtained by the 

MMAS algorithm are presented in Table 10.14. It should be noted that the HM results were 

obtained by Rau and Chu (2005), in which a complete enumeration method was used as a 

benchmark to test their HM. It can be seen that the MMAS algorithm outperforms the HM in 

terms of DFOS average and standard deviation. 
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 Table 10.14: Performance of the methods in Experiment 3 

Number of 

workstations 

HM 

 

MMAS 

Average  

DFOS  

Average  

  DFOS 

Average 

DFOS 

Average

 DFOS 

6 0.000 0.000 0.000 0.000 

8 0.002 0.001 0.000 0.000 

10 0.003 0.005 0.000 0.000 

12 0.0001 0.001 0.000 0.000 

14 0.003 0.002 0.000 0.000 

16 0.006 0.007 0.0002 0.0007 

As can be seen from Table 10.14, MMAS achieves the optimal solution in all test cases when 

the number of workstations is less than 16. When the number of workstations is equal to 16, 

the MMAS algorithm produces a solution very close to the optimal solution (i.e., a DFOS 

average of only 0.00024). As the problem size increases, the solution quality obtained by the 

HM becomes much less than that of the MMAS algorithm. It is concluded that the MMAS 

algorithm performs significantly better than the HM in terms of solution quality.  

10.3.1 Solutions of experiment 3 

As described above in the previous sections it is impractical to discuss every individual 

solution obtained by the MMAS algorithm (50 cases), thus one case study (3.1) is selected in 

order to discuss their solution. This solution is represented the case study for 16 workstations. 

Tables 10.15 and 10.16 show the solutions and experimental parameters respectively for case 

study 3.1. It should be noted that Rau and Chu (2005) did not describe the solutions obtained 

by the HM. Table 10.16 presents only the solutions obtained by the MMAS algorithm and 

CEM for case study 3.1. In case study 3.1, the MMAS placed the five inspection stations after 

workstations 1, 3, 7 10 and 16.   

As can be seen from Table 10.16 inspection stations at workstations 1,3 and 7 are placed 

before processing workstations 2, 4 and 8 which characteristically have a higher operating 

cost (U2=144.10, U4=147.16 and U8=145.37). 
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                         Table 10.15: Inspection plans for case study 3.1 

Algorithms 
Workstations 

 

Total cost 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
 

CEM 1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 161,780 

MMAS 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 161,742 

             0: no inspection and 1: full inspection 

 

  Table 10.16: Experimental parameters for case study 3.1 

Experimental 

parameters 
 

Workstations 

1 2 3 4 5 6 7 8 9 10 11 12 3 14 15 16 

Uk 109.52 144.10 135.45   147.16 125.90 82.49 139.43 145.37 127.51 133.04 132.01 107.45 125.88 91.983 129.42 82.22 

ICm 2.05 2.22 2.19 2.16 3.38 2.63 2.23 2.06 2.87 2.76 3.53 3.59 2.37 2.97 2.89 3.29 

Zk 0.025     0.022     0.015     0.023     0.023     0.013     0.012     0.020     0.029     0.016     0.021 0.014 0.025 0.015 0.021 0.024 

αm 0.0019 0.002 0.0015 0.0011 0.0011 0.0013 0.0018 0.0013 0.0018 0.0012 0.0019 0.0013 0.0012 0.0013 0.0016 0.0015 

βm 0.0015 0.0011 0.0011 0.0012 0.0019 0.0013 0.0013 0.0018 0.0013 0.0018 0.0012 0.0015 0.0011 0.0011 0.0013 0.0015 

uk 11.75    14.15    12.92    12.74    14.58    11.42    11.42    13.78    13.76    13.76    11.90    12.81    12.92    12.74    14.58    12.92    

gk 14.15    12.92    12.74    14.58    11.42    11.98   12.81    12.92    12.74    11.90    14.15    12.92    12.74    14.58    11.42    14.65    

δk 0.259     0.246     0.201 0.233     0.216   0.279 0.231 0.252     0.216     0.260     0.226     0.265 0.268    0.274     0.245     0.279 
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As a result, to avoid processing items those are already defectives in subsequent processing 

workstations by continuing processing them. In addition, workstations 1, 3 and 7 which 

characteristically have a lower inspection cost comparing to the other workstations (IC1=2.05, 

IC3=2.19 and IC7=2.23). Because there is limited number of inspection stations, the last two 

inspection stations are placed after workstations 9 and 16. Workstation 9 which 

characteristically has a higher defective rate (Z9=0.029) to avoid processing defective items 

in subsequent processing workstations. For workstation 16 this entails avoidance of penalty 

costs. 

10.4 Experiment 4 

Experiment 4 is based on the case study of Shiau (2007), which considered a serial multistage 

manufacturing system. Shiau (2007) developed a unit cost model to represent the overall 

performance of an advanced manufacturing system. Since the problem gets more complex as 

the problem size increases, Shiau (2007) therefore developed a genetic algorithm to allocate a 

limited number of inspection stations in a serial multistage manufacturing system, with the 

aim of reducing the total manufacturing cost. The experimental parameters used in the 

experiment are presented in Table 10.17. Fifty cases were randomly generated by Shiau 

(2007) to represent the characteristics of different manufacturing systems. Shiau (2007) 

applied a GA method to these 50 cases, and its performance was measured in comparison to 

the CEM optimal solution. Because the defective rate, repairing probability, and inspection 

errors were not specified by Shiau (2007), these have been based on ranges from similar 

values in previous literature (Lee and Unnikrishnan, 1998). In addition, some external failure 

cost items are missing; thus, external failure cost items are represented as an aggregated 

penalty cost based on similar values from previous literature (Raz and Kaspi, 1991). 

However, it should be noted that the penalty cost usually depends on the type and complexity 

of the product produced by the company. 
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  Table 10.17: Experimental parameters for Experiment 4 

Parameters Range Description 

B 1000 Batch size 

Uk [100, 250] Unit manufacturing cost(£) 

Zk [0.01, 0.06] Defective rate (assumed) 

ICm [1, 10] Unit inspection cost (£) 

αm [0.01, 0.03] Type-I error  (assumed) 

βm [0.01,0.03] Type-II          (assumed) 

uk [50, 150] Unit scrapping cost (£) 

gk [50, 100]  Unit reworking cost (£) 

δk [0.2, 0.3] Repairing  probability (assumed) 

Penalty cost [500, 1600] Each defective item that reaches the customers 

(£)(assumed) 
The MMAS algorithm is applied to the 50 cases for each workstation size, which were 

randomly generated using the same experimental parameters. Table 10.18 shows the results 

from Shiau (2007), in which the case study was tested for a range of feasible solutions. This 

number of feasible solutions is equivalent to 5–13 workstations. However, it was not clear 

how many workstations were used in the calculation of the average DFOS for the GA in 

Shiau (2007), because he was interested in investigating the computational execution time for 

these numbers of workstations. Therefore, the MMAS algorithm tested for the largest number 

of workstations, 13. Table 10.18 shows the results obtained by the MMAS algorithm 

compared to those in Shiau (2007). It was found that MMAS achieved the optimal solution in 

all test cases, allowing us to conclude that the MMAS algorithm outperforms the GA method 

in terms of solution quality. 

                          Table 10.18: Performance of the methods in Experiment 4 

Number of workstations  Average DFOS 

GA MMAS 

13 0.0041 0.000 
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10.5  Rule of thumb-b 

After conducting the four experiments, it is interesting to analyse the behaviour of the 

MMAS algorithm for allocating inspection stations. Therefore, the results (inspection plans) 

obtained by the MMAS algorithm for 100 case studies are extensively investigated. These 

results represent the lowest total cost of inspection plans obtained by the MMAS algorithm. 

This leads us to develop a good new rule of thumb. The developed rule of thumb will be very 

useful for industry, as no tuning parameters are needed. As discussed in section 10.1, these 

cases were randomly generated in order to represent the varying characteristics of different 

manufacturing systems. These characteristics including inspection errors (type I and type II), 

internal failure cost (rework and scrap), external failure cost (repair and replacement), 

inspection cost (fixed and variable), defective rates and manufacturing cost. As described in 

section 6.2.2, some of these characteristics have a greater effect on the total cost of the 

product than others. The detailed investigation of the results is presented in Appendix G. The 

analysis of the solutions leads to the following observations: 

1. The MMAS algorithm always locates an inspection station at the last workstation to 

guarantee that no defective items reach the customer. 

2. The MMAS algorithm locates an inspection station after the machining operation with 

the highest probability of generating nonconforming parts, in order to avoid further work 

on units that should be scrapped. If two or more workstations have the same 

nonconforming parts, the MMAS algorithm locates an inspection station for the earlier 

workstation. 

3. The MMAS algorithm locates an inspection station before the most costly machining 

operation, in order to avoid the high cost of the machining operations on parts that are 

already nonconforming. If two or more workstations have the same operation cost, the 

MMAS algorithm locates an inspection station for the earlier workstation.  
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4. The MMAS algorithm is biased towards locating inspection stations before costly 

machining operations rather than after workstations with the highest probability of 

generating nonconforming parts. Specifically, it was found that about 57-60% of 

inspection stations for inspection plans are placed before the most costly machining 

operation.  

These observations are used to develop a new rule of thumb which is denoted by ROT-b. 

ROT-b is applied to the same engine valves case study consisting of 24 workstations (Engin 

et al., 2008) to solve the AOIS problem. The case study assumed that there are a limited 

number of eight inspection stations to be allocated to the different processing workstations. 

Based on these rules, the inspection stations are distributed through the processing 

workstations as follows: 

1. An inspection station is placed at last workstation in order to avoid a penalty cost. 

2. Four inspection stations (four inspection stations out of seven = 60 %) are placed before 

the most costly machining operations in order to avoid the high cost of the machining 

operation on parts that are already nonconforming. If two or more workstations have the 

same operation cost, the priority is to locate an inspection station before the earlier 

workstation. 

3. The rest of the inspection stations (three inspection stations) are placed after the 

machining operations with the highest probability of generating nonconforming parts, in 

order to avoid further work on units that should be scrapped. If two or more workstations 

have the same nonconforming units, the priority is to locate an inspection station for the 

earlier workstation. 

The performance of ROT-b is compared against ROT-a and the MMAS algorithm. To do so, 

ROT-b is applied to the same 100 cases. The aim is to calculate the average total cost and 

standard deviation. Table 10.19 shows performance of the applied methods. It can be seen 
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that the performance of ROT-b is much better than that of ROT-a, but is worse than the 

MMAS algorithm. Table 10.20 presents the solutions obtained by ROT-a and ROT-b for one 

case study selected from the 100 cases. The inspection stations in Table 10.20 are located 

based on the rules described by each of ROT-a and ROT-b. Table 10.21 shows the 

characteristics of each workstation in the selected case study, in terms of unit operation cost 

and defective rates.  

   Table 10.19: Comparing performance of ROT-a, ROT-b and the MMAS 

Methods Average total cost ($)  Total cost 

ROT-a 2556.65 35.08 

ROT-b 2526.51 32.26 

MMAS 2492.76 1.56 

It can be seen from Tables 10.20 and 10.21 that there is a strong link between the places of 

inspection stations and their characteristics. As an example, an inspection station is located at 

the last workstation. This is done to guarantee that no defective items reach the customer. 

Also, four inspection stations, which represent 60% of the remaining seven inspection 

stations, are placed before workstations 12, 15, 16 and 20 which have higher operation costs 

(U12=.0.0832, U15=00845,U16=0.0845 and U20=0.0827). The rest of the inspection stations are 

placed after workstations 6, 18 and 22 which are characterised by a high defective rate 

(Z6=0.0083, Z18=0.0084 and Z22=0.0085). Although workstation 20 has the same defective 

rate (Z20=0.0083) as workstation 6, according to ROT-b the priority is given to the earlier 

workstation which is workstation 6. 

It is concluded that the analysis of behaviour of the MMAS algorithm for allocating 

inspection stations has led to develop a new a rule of thumb. The ROT-b performed much 

better than ROT-a. The advantage of the rule of thumb is its simplicity of method: no tuning 

parameters are needed, so it is preferred by industry. 



 
 
 

252 
 

Table 10.20: Inspection plans for the selected Case Study  
 

Algorithms 
Workstations   

Total cost 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

ROT-a 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 0 2595.3 

ROT-b 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 0 1 2503.33 

MMAS 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 1 0 1 0 0 1 2490.5 

 
 

Table 10.21: Unit operation cost and defective rates for the selected Case Study 

Experimental 

parameters 

 

Workstations 

1 2 3 4 5 6 7 8 9 10 11 12 

Zk    0.0081     0.0080     0.0075     0.0078     0.0077     0.0083     0.0078     0.0080     0.0077     0.0081     0.0078     0.0082   

Uk 0.0818     0.0826     0.0824     0.0789     0.0816     0.0767     0.0821     0.0753     0.0778     0.0755     0.0760     0.0832 

                      
 

Workstations 

13 14 15 16 17 18 19 20 21 22 23 24 

Zk 0.0082     0.0082     0.0080     0.0076     0.0077     0.0084     0.0077     0.0083     0.0080     0.0085     0.0076     0.0079 

Uk 0 .0819     0.0782     0.0845     0.0845     0.0753     0.0794     0.0788     0.0827     0.0769     0.0799     0.0795     0.0815 
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10.6   Discussions 

The four above experiments applied the research methodologies of the MMAS algorithm to 

the AOIS problem. In this section, all of the experiments are compared and discussed. The 

four experiments considered different experimental parameters in terms of problem size, 

assumptions, and optimisation methods. The aim in all of the experiments was to find the 

optimal inspection allocation such that the total manufacturing cost could be reduced. Table 

10.22 shows the performance of the MMAS algorithm in Experiments 1 and 2 against the 

other methods. In these two experiments, the AOIS problem was solved with the CEM,   

ROT-a, b, PRS, SA, GA, PSO and MMAS methods. Table 10.23 shows the performance of 

the MMAS algorithm for Experiments 3 and 4 in comparison with methods in selected case 

studies from previous literature.  It can be seen that there are more performance measures in 

Experiments 1 and 2 as opposed to the remaining experiments. This is because the data for 

the first two experiments were created for this research, thus enabling the measurement of 

performance measures.  In particular, the optimal solution could be obtained by the CEM in 

Experiment 1, thus, many performance measures, such as DFOS and number of optimal 

solutions, were used. 

The average solution quality from the applied methods is shown, as well as the standard 

deviation of the solution quality and the worst DFOS result. The aim of most of the 

experiments was to determine where the inspection operations should be located in order to 

minimise the total cost. The total cost is the sum of the costs of production, inspection, and 

failures (during production and after shipment). All of the experiments, except Experiment 2, 

used CEM as benchmark to test the methods. It can be seen that each experiment generated 

30–100 cases to represent the features of different manufacturing systems, to a total of 580. It 

was assumed in all experiments that there were a limited number of inspection stations 

available to be allocated among the different processing workstations, ranging from 3 to 8.
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Table 10.22: Performance of MMAS for Experiments1and 2  
Experiment 

 

Number 

of cases 

generated 

Number 

of 

inspection 

stations 

Number 

of WS 

Used 

method 

% number 

of optimal 

solution 

Average 

total cost 

Average 

 Total 

cost 

Average 

(DFOS) 

Average 

 DFOS 

Worst 

result 

(DFOS) 

Average 

processing 

time (s) 

Savings 

time % 

Experiment 1 

 

100 5 12 ROT-a 0.0 605,222 45,631 0.0884 0.054 0.277 2 97 

PRS 0.0 628,819 61,589 0.1244 0.0560 0.246 3 96 

SA 65 550,347 32,678 0.0006 0.0012 0.008 45 50 

GA 25 552,335 32,874 0.0024 0.0021 0.009 55 38 

PSO 70 550,350 31,699 0.0004 0.00069 0.0028 40 55 

MMAS 79 550,186 31,586 0.0001 0.00050 0.0029 35 61 

Experiment 2 100 8 24 ROT-a n/a 2556.65 35.08 n/a n/a n/a 3 n/a 

ROT-b n/a 2526.51 32.26 n/a n/a n/a 4 n/a 

PRS n/a 2571.68 8.25 n/a n/a n/a 4 n/a 

SA n/a 2505.561 4.09 n/a n/a n/a 90 n/a 

GA n/a 2521.44 29.95 n/a n/a n/a 110 n/a 

PSO n/a 2503.63 4.23 n/a n/a n/a 89 n/a 

MMAS n/a 2492.76 1.56 n/a n/a n/a 86 n/a 

n/a: not applicable because not possible to perform CEM, WS: Workstation 
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Table 10.23: Performance of MMAS for Experiments 3 and 4 
Experiment Number of 

cases 

generated 

Number of 

inspection 

stations 

Number 

of WS 

Solution 

technique 

Average 

(DFOS) 

 


DFOS 

 

Experiment 3  

 

50 3 6 HM 0.000 0.000 

 
  MMAS 0.000 0.000 

 
8 HM 0.002 0.001 

  MMAS 0.000 0.000 

4 10 HM 0.003 0.005 

  MMAS 0.000 0.000 

12 HM 0.0001 0.001 

 MMAS 0.000 0.000 

5 14 HM 0.003 0.002 

 MMAS 0.000 0.000 

16 HM 0.006 0.007 

  MMAS 0.0002 0.0007 

Experiment 4 

 

50 5 13 GA 0.0041 

 

n/a 
 

MMAS 0.000 n/a 
 

 

 In addition, each experiment tested a different number of workstations, ranging from 6 to 24. 

This range of workstations generated a range of feasible solutions from 64 to 16,777,216. It is 

well known that as the number of workstations increases, the number of feasible solutions 

increases significantly. Consequently, as the problem increased in size, the comparison 

between the MMAS algorithm and the other developed methods became based on the 

absolute value instead of the CEM benchmark. For these large cases, the optimal solution 

could not be obtained in a reasonable amount of time. In the AOIS problem, it is possible that 

not all inspection station plans are equivalent in terms of total cost, since some combinations 

of inspection stations may be economically preferable to others, most likely due to the 

difference in cost structures of the inspection plans and the process characteristics. The best 
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method is one that is able to produce the best combination of inspection stations, leading to 

the optimal solution, or close to the optimal solution. In other words, the main concern of 

these experiments is how close the solutions are to the optimal solution. 

In Tables 10.22 and 10.23, some performance measures appear as (n/a), since not all 

performance measures were considered in all of the experiments. Most of the case studies in 

the experiments were interested in solution quality, particularly in terms of DFOS. It can be 

seen from Tables 10.22 and 10.23 that the average DFOS solution quality obtained by the 

MMAS algorithm is considerably better than the solutions obtained by the other methods in 

all the experiments except for Experiment 2. In all the experiments, the standard deviation of 

the total cost of inspection plans obtained by the MMAS algorithm is also significantly 

smaller than the other methods, indicating that the MMAS algorithm is the most reliable and 

effective. It was found that the MMAS algorithm reaches the optimal solution in the vast 

majority of the experiments. The MMAS algorithm reached the optimal solution 79% of the 

time in Experiment 1 and in all other experiments when the number of workstations was less 

than 16. However, when the number of workstations equalled 16 (i.e., in Experiment 3), the 

MMAS produced a solution not at, but very close to the optimal solution 0.00024.This 

optimal solution was obtained with CEM when the full enumeration of the search space could 

be generated in a reasonable time. It was also found that the worst DFOS result obtained by 

the MMAS algorithm was much better than the other methods. The reason for the good 

performance of the MMAS algorithm is due to its heuristic information, local search method 

and the advantage of memory. Regarding the PSO algorithm, the algorithm reached the 

optimal solution 70% of the time in Experiment 1. This indicates the effectiveness of the 

algorithm as the fitness distance correlation (FDC) obtained by the PSO was 0.57, which 

shows there is a good correlation between the solution quality and the distance to the 

optimum.    
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However, the SA and GA methods, in fact, use the same local search methods as the MMAS 

algorithm; nevertheless, these methods did not perform as well as MMAS. It was found that 

the average DFOS obtained by the heuristic methods in Experiments 3 was not as good as 

that in the MMAS algorithm. On the other hand, the average DFOS obtained from 

Experiment 1using GA method was much better than that in Experiment 4. The results show 

that the average DFOS obtained by a pure random search (PRS) algorithm was rather far 

from the optimal solution as compared with all the other methods. The PRS algorithm was 

based on placing inspection stations purely randomly and did not have any operator to guide 

the algorithm to good solutions. This confirms that the solutions found by the MMAS 

algorithm were not just lucky strikes. Also the results show that the average DFOS obtained 

by the ROT-a method was rather far from the optimal solution as compared with all the other 

methods. Yet, the ROT-a method was unable to approach the optimal solution, which was 

found by the MMAS, SA, GA and PSO methods in Experiment 1. The results obtained by the 

MMAS algorithm for 100 case studies are investigated and leading to develop new rule of 

thumb (ROT-b) to tackle the AOIS problem. The performance of the ROT-b is tested against 

the MMAS and ROT-a. It was found that the performance of ROT-b is much better than that 

of ROT-a, but is worse than the MMAS algorithm. 

In terms of saving money on long term, it was found that the additional cost of using the 

MMAS algorithm to obtain near optimal solution is much less than the waiting time cost 

resulting of using the CEM. Also, it was found that the MMAS algorithm saving $6205 

annually over the very well known method GA for engine valves case study consisting of 36 

workstations. In addition, the MMAS algorithm saving $28,805 annually over the worst 

solution obtained by the PRS algorithm for the engine valves case study consisting of 24 

workstations. 
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The MMAS algorithm requires less processing time to reach near optimal solutions as 

compared with the other studied methods. The reduction of the processing time becomes very 

obvious when the problem increases in size. For example, the time saved over the CEM 

optimisation method was found to be up to 61% when the number of feasible solutions in 

Experiment 1 was greater than 4,000. In the MMAS algorithm, by adapting the number of 

ants that apply the local search, a good compromise between convergence speed and solution 

quality can be obtained. On the other hand, the PSO method requires less time to reach close 

to the optimal solution as compared to SA and GA. It can be seen that PSO is a competitive 

technique to the MMAS algorithm in terms of processing time. In contrast, the execution time 

provided by the ROT-a method is significantly less than all the other methods. This is 

because the ROT-a method is based on a simple algorithm and it can reach the optimal 

solution in one pass. In reality, however, solution quality is of more concern to companies as 

opposed to the processing time, provided that the execution time is reasonable. It is 

concluded that the MMAS algorithm is the best approach for the AOIS problem, particularly 

when the number of workstations increases considerably. 
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Chapter 11 

Conclusions and future work 

___________________________________________________________________________ 

This research was focused on determining the optimal allocation of inspection stations 

(AOIS) in serial multistage manufacturing processes. This research contributes to knowledge 

by developing a general cost model including all the main characteristics that are described in 

section 2.6 for solving the AOIS problem. In addition, the optimality was defined in terms of 

minimising the cost per conforming output unit accepted by the customer. The general cost 

model was developed under the assumption that only a limited number of inspection stations 

(e.g. owing to a limited budget) were available. In this chapter, the main results presented in 

the thesis are outlined and some directions and perspectives for future research are discussed.  

The ant colony optimisation (ACO) algorithm was proposed to tackle the AOIS problem. It 

should be noted that the ACO approach was rather unexplored for the AOIS problem, at the 

time this research started. The ACO was proposed after different optimisation methods were 

investigated. It was found that the ACO technique has the most characteristics among the 

other studied methods. Different ant colony versions were studied, leading to the MMAS 

algorithm being proposed as a novel approach to tackle the AOIS problem. The fitness 

distance correlation (FDC) for the AOIS problem using the MMAS algorithm indicates 

strong correlation between the solution quality and the distance to the optimum. This 

indicates that the MMAS algorithm is well suited to the AOIS problem (see section 5.5.2). It 

should be noted that none of the studies surveyed in chapter 2 investigated the fitness 

landscape for the AOIS problem. This research provides further information about 

understanding the fitness landscape of the AOIS problem. MMAS is an ant colony 

optimisation algorithm that was designed originally to begin with a very explorative search 
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phase and, subsequently, to make a slow transition to an intensive exploitation of the best 

solutions found during the early search. Three different variants of the MMAS algorithm 

were developed to tackle the AOIS problem. The performance of the MMAS algorithm was 

compared to the complete enumeration method (CEM), genetic algorithm (GA), simulated 

annealing (SA), particle swarm optimisation (PSO), a pure random search algorithm (PRS) 

and rule of thumb (ROT-a, b), supported by the methods used by the case studies in the 

experiments conducted. The following subsections illustrate the types of experiments used, 

and the main conclusions obtained in this research. 

11.1  Experimental review 

Four experiments were conducted to test the performance of the MMAS algorithm. These 

experiments considered different experimental parameters, in terms of the size of the 

problem, assumptions and methods, which were used to solve the problem. The data for 

Experiments 1 and 2 were generated randomly, based on a uniform random distribution. 

However, the first experiment‟s experimental parameters were based on assumed values, and 

considered a relatively small-scale problem with 12 workstations. Within this number of 

workstations, the full enumeration of the search space can be generated in a reasonable time. 

This allows the performance of the MMAS algorithm to be tested in comparison with the 

optimal solution. Therefore, the comparison between the MMAS algorithm and the other 

developed methods, GA, SA, PSO, PRS and ROT-a, was based on deviation from the optimal 

solution (DFOS). In the second experiment, the experimental parameters were based on real 

data, and it was a larger-scale problem than Experiment 1, with 24 workstations. Hence, the 

comparison between the MMAS algorithm and the other developed methods was based on 

absolute value. The aim of the second experiment was to test the performance of the MMAS 

algorithm when the AOIS problem grows significantly. Both Experiments 1 and 2 used a 
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random sample of 100 cases to represent the characteristics of different manufacturing 

systems. 

Experiments 3 and 4 were also used to test the performance of the developed MMAS 

algorithm. These experiments were based on data of case studies, which were selected from 

the earlier literature review. In addition, Experiments 3 and 4 are different from the previous 

experiments in terms of their experimental parameters, assumptions, methods and inspection 

strategy (100% inspection of items). These experiments considered the number of 

workstations, ranging from 6 to16. Therefore, the comparison between the MMAS and the 

methods developed by the case studies in the experiments conducted was based on DFOS. 

The two experiments generated the number of cases randomly, and each consisted of 50 

cases. The total number of cases generated from the four experiments was 550, and these 

represented different characteristics of manufacturing systems. The number of workstations 

which were considered by the four experiments led to the generation of a number of feasible 

solutions in the search space, ranging from 64 to 16,777,216.  

11.1.1  Local search  

None of the metaheuristic methods used in the literature review used local search to improve 

the performance of their models. This work gives the details of an implementation of a local 

search method for the AOIS problem. It is widely agreed that in many of the most efficient 

implementations of ACO algorithms, the ants may apply a local search to improve the 

solutions they have constructed. In addition, the local search is part of the DaemonActions of 

the ACO algorithm. Therefore, many local search methods in other problems such as vehicle 

routing problems, quadratic assignment problems, travelling salesman problems and job 

scheduling problems have been investigated. In this research, six local search methods which 

are well-known in these problems are used and tested to improve the performance of the 

MMAS algorithm. These methods are crossover, interchange, swap, single insertion, delete 
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and add and block insertion. To yield a further reduction in run-time and to focus the local 

search around the part where potential improvements can be found, the don‟t look bits 

method was used. The experimental results show that the local search methods developed 

improved the performance of the MMAS algorithm considerably. This improvement can be 

observed in the average deviation from the optimal solution DFOS. In particular, the local 

search methods of crossover, single insertion and block insertion performed better than the 

other methods in terms of solution quality (see section 9.4).The superior results indicate the 

successful incorporation of the local search with the MMAS algorithm to increase the 

possibility of finding a better solution. This good performance can also be observed by 

varying the number of workstations. MMAS reached the optimal solution in certain 

conditions in 79% of the experiments conducted, particularly in Experiment 1(see section 

10.1.6). In addition, despite the GA and SA methods that were developed and combined with 

the same local search method used in the MMAS algorithm, the local search method in the 

MMAS performed better than the other two methods. This is because the initial solutions 

created by the MMAS are  good, and therefore the subsequent local search requires fewer 

steps to arrive at a good quality solution. 

11.1.2   Heuristic information 

It is well known that artificial ants in MMAS need heuristic information to guide them, so 

that they can build reasonably good solutions from the initial search of the algorithm. There is 

no heuristic information created for the AOIS problem. In addition, heuristic information is 

part of the ACO algorithm. Thus, there is a need to create heuristic information for the AOIS 

problem. In many cases heuristic information is the cost, or an estimate of the cost, of adding 

the component or connection to the solution under construction. In the AOIS problem there 

are many costs incurred by inspection operations or processing operations resulting from 

passing the raw materials through a sequence of processing workstations. These include the 
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costs of inspection, replacement, reworking, manufacturing, penalties and scrapping. It was 

found that the operation cost, defective rate and inspection cost are the most appropriate 

factors to consider as a guide to the heuristic information toward the best inspection plans of 

the search space.  

This research contributes to knowledge by developing two novel heuristic methods to guide 

the ant to locate an inspection station to a workstation based on the concerns of operation cost 

(Uk), inspection cost (ICk) and defective rate (Zk), respectively. These are the Operation Cost 

and Defective rate Method (OCDM) and the Scores Method (SM). The MMAS algorithm 

with two types of heuristic information MMAS-OCDM and MMAS-SM and with no heuristic 

information MMAS-NH was applied to 50 different cases generated randomly from the 

general cost model case study. The experimental results determined that the performance of 

the MMAS algorithm, in terms of solution quality when using heuristic information, was 

significantly better than without using heuristic information (see section 9.3). Specifically, it 

was found that the best average DFOS obtained by the MMAS-OCDM and MMAS-SM were 

0.00015 and 0.00033 respectively. However, when no heuristic information MMAS-NH was 

used, the best average DFOS was 0.0186. It is concluded that it is important to use heuristic 

information with the MMAS algorithm for tackling the AOIS problem.  

11.1.3   MMAS tuning parameters 

Selecting relevant parameters in the MMAS can have a great impact on the algorithm‟s 

performance, and a good combination of parameters will increase the overall search 

capability and convergence of the algorithm. On the other hand, inappropriate values will 

certainly slow down the process of discovering the best solution to the AOIS problem, and 

may even prevent the algorithm from finding the best solution. The optimal combination of 

the most influential parameters for the MMAS algorithm, applied to 50 case studies, was 
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identified. These cases were generated randomly using a uniform distribution, in order to 

represent the characteristics of different manufacturing systems. The MMAS algorithm was 

applied to these cases for each triplet (α, β, ρ) of parameter settings, in order to optimise the 

average DFOS. It was found that these optimal parameters significantly improved the 

performance of the MMAS algorithm (see section 8.4.1). In addition, the experimental results 

determined that the performance of the MMAS, GA, SA and PSO algorithms depends on the 

appropriate setting of parameters. For a specific problem, the optimal parameters will be 

slightly different, but the suggested parameters should be good for many AOIS problems with 

a similar structure. 

11.1.4   MMAS behaviour 

Measurement of convergence of the MMAS algorithm is important to stop the algorithm 

needlessly running when the optimum solution has already been achieved. To investigate the 

convergence of the MMAS algorithm towards a near optimal solution, extensive experiments 

were conducted. These experiments tested the most influential parameters ,  and  of the 

MMAS algorithm. In addition, as the MMAS algorithm relies on a number of parameters that 

control its behaviour, sensitivity analysis for the most influential parameters ,  and  was 

used. The aim was to determine how “sensitive” the model is to changes in the value of the 

parameters of the model. Parameter sensitivity is usually performed as a series of tests in 

which the modeller sets different parameter values to see how a change in the parameter 

causes a change in the behaviour of the MMAS algorithm.  

The results determined that the ratio between and β was the key driver of the convergence 

speed of the results. Since and β are the parameters of relative influence of the pheromone 

strength and the heuristic information respectively, the relative influence of the pheromone 

strength which dominated in the searching process makes the convergence happen early. The 
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results showed the optimum ratio between and β ( 25 ). It was found that when   

(e.g. 15 ) the convergence speed is faster. Correspondingly, there was no convergence 

when   (e.g. 31 ). Regarding the  parameter (evaporation rate),it was found that if

is large (e.g. 05.0 ), it is easy to find marked relative differences between the pheromone 

trails on arcs contained in high quality tours and those which are not part of the best tours in a 

few iterations, so the algorithm may stagnate and prematurely converge. Otherwise, for a 

lower ρ (e.g. 01.0 ), the pheromone trails on arcs which do not belong to the high quality 

tours will not decrease faster and the algorithm is able to explore a wider search space, but 

longer evolution iterations are needed. Therefore, if a larger total evolution iteration is used, a 

lower can be selected for obtaining a better convergence value; otherwise, a higher will 

help achieve a better convergence speed (see section 9.1).  

Regarding sensitivity analysis, it should be noted that the vast majority of papers reviewed 

did not consider this issue. This research provides further information about understanding 

the sensitivity analysis of the AOIS problem. As MMAS algorithm rely on a number of user-

defined parameters that control their behaviour, sensitivity analysis for the most influential 

parameters ,  andwas conducted. The aim was to study the importance of each parameter 

for increasing the number of workstations in the AOIS problem. Four different sizes of AOIS 

problem are tested, with 15, 16, 17 and 18 workstations. The experimental results show that 

the studied parameters ,  and do not have a significant influence on the performance of 

the MMAS algorithm when the number of workstations is increased (see section 9.2). The 

experimental results show that from a sensitivity perspective the parameters and are 

sensitive parameters to a fixed cost model. 

Updating the pheromone trails for the MMAS algorithm was done using a mixed strategy

gbib
s


. The aim of this strategy was to obtain stronger exploration of the search space early 
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in the search and stronger exploitation of the overall best solution later in the run. This mixed 

strategy specifies that in the first 300 iterations, the iteration best ant 
ib

s was used to update 

the pheromone trails, and then, at every tenth iteration, the global best ant gbs was used for 

the pheromone trail update. To test the performance of this mixed strategy, it was compared 

with the other two methods for updating pheromone trails, s
ib

 and s
gb

.  The results showed 

that the performance of the MMAS in terms of average deviation from the optimal solution 

when using mixed strategy is much better than the other two strategies (see section 9.6). 

Specifically, it was found that the average DFOS obtained by the MMAS when the mixed 

strategy was used was 0.00012, but when the iteration best ant and the global best ant were 

used, the average DFOS were 0.00015 and 0.0002 respectively. 

In this research, three variants of the MMAS algorithm were developed and tested. In the first 

variant, denoted as MMAS10+ls, 10 ants were used and every ant applied local search to its 

tour. In the second variant, MMAS+ls+ib, the algorithm started with a fixed number of 10 ants 

and then the number of ants which applied local search was then successively increased by 

one after a certain number of iterations. The third variant uses the MMAS algorithm without 

local search and is denoted as MMAS-nls. The results showed that the best average DFOS 

obtained by the MMAS10+ls  algorithm was 0.00012, whereas the best average DFOS obtained 

by the MMAS+ls+ib and MMAS-nlsalgorithms were 0.0002 and 0.005 respectively (see section 

9.7). It was concluded that the MMAS10+ls algorithm performs better than the other two 

variants in terms of solution quality. 

On the other hand, the MMAS+ls+ib algorithm needed less processing time to reach a near-

optimal solution compared with the other two variants. It was found that by adapting the 

number of ants which apply local search, a good compromise between convergence speed 

and solution quality can be obtained. The computational results presented in this section 
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suggest that, especially for larger problems, using the MMAS+ls+ib algorithm may be 

advantageous. In the variant MMAS-nls algorithm, the processing time was slightly higher 

than with the other two variants.  

11.1.5   Major results   

The results showed that the MMAS algorithm reached the optimal solution in the vast 

majority of the experiments conducted. In Experiments 1 and 2, the MMAS algorithm 

performed much better than the other methods. The optimal solution of the experiments was 

obtained by using a complete enumeration method. This is because the full enumeration of 

the search space can be generated in a reasonable time. The experimental results confirmed 

that the average DFOS obtained by the MMAS algorithm was significantly better than the 

solutions obtained by the other methods, in all the experiments. In addition, in all the 

experiments, the standard deviation of the total cost of inspection plans obtained by the 

MMAS was much less than the other methods. This indicates a more reliable performance of 

the MMAS algorithm. In Experiment 1, it was found that even the worst result of the DFOS 

obtained by the MMAS algorithm is much better than the other methods developed. 

The results showed that the PSO method developed reached an optimal solution in 70% of 

the experiments conducted. This percentage was lower than the MMAS algorithm, which 

achieved 79% for the same number of experiments. In addition, the solution quality, in terms 

of average DFOS, achieved by the PSO method was close to the optimal solution. PSO 

therefore comes second among the developed methods in terms of solution quality, and as a 

result, the PSO method could be considered a competitive technique to the MMAS algorithm. 

On the other hand, the results of the experiments showed that SA and GA reached the optimal 

solution in 65% and 25% of experiments respectively. In particular, the performance of GA 

for tackling the AOIS problem, in terms of solution quality, was much poorer than the 



 
 
 

268 
 

MMAS and PSO. Apart from the PRS algorithm, the solution quality obtained by the ROT-a 

method was lower than the other methods studied, particularly in comparison with the 

MMAS algorithm. The solution quality obtained by the PRS algorithm was thus the worst of 

all the methods studied, particularly in comparison with the MMAS algorithm, because the 

solutions obtained were purely random. The results obtained by the MMAS algorithm for 100 

case studies were extensively investigated, leading to the development of a new rule of thumb 

(ROT-b) to tackle the AOIS problem. The performance of ROT-b was tested against ROT-a 

and the MMAS algorithm. The three algorithms were applied to the same 100 case studies for 

engine valves consisting of 24 workstations. The average total costs obtained by the ROT-a, 

ROT-b and the MMAS algorithm were 2556.65, 2526.51 and 2492.76 respectively. It was 

concluded that the performance of ROT-b in terms of solution quality was much better than 

that of ROT-a, but was worse than the MMAS algorithm. The rule of thumb developed will 

be very useful for industry, as no tuning parameters are needed. 

Regarding saving money in the long term, it was found that the additional cost of using the 

MMAS algorithm to obtain a near optimal solution is much less than the waiting time cost 

resulting from using CEM for the engine valves case study consisting of 24 workstations. 

Also, it was found that the MMAS algorithm costs $6205 less annually than the GA for the 

engine valves case study consisting of 36 workstations. In addition, the MMAS algorithm 

costs $28,805 less annually than the PRS algorithm for the engine valves case study 

consisting of 24 workstations. It was concluded that using the MMAS saves money by 

minimising the computation time and the total cost of the product, and keeps the company in 

a good competitive position.  

In terms of processing time, all the developed methods applied in Experiments 1 and 2 were 

tested by using CPU time. This is the time taken to execute the computer programs for 

problem-solving in the computer system. It should be noted that an efficient method should 



 
 
 

269 
 

provide a significant saving in execution time over the complete enumeration method. The 

experimental results confirmed that, except for the ROT method, the MMAS algorithm 

needed less processing time to reach a near optimal solution than the other optimisation 

methods. This is very clear, as the AOIS problem increases significantly with the number of 

processing workstations. In contrast, the execution time provided by the ROT-a method was 

significantly less than the other methods used. This is because the ROT-a method is based on 

a simple algorithm, and the solution can be obtained in just one iteration. However, the 

solution quality obtained by the ROT-a method was worse than the other methods. In real 

life, the production management in firms is more interested in solution quality than 

processing time, provided the execution time of the method used is reasonable. On the other 

hand, the processing time needed by the GA to reach a solution close to the optimal was 

much greater than the other methods. It is well known that the main drawback of the GA is 

that it requires a large number of response (fitness) function evaluations depending on the 

number of individuals and the number of generations. Therefore, genetic algorithms may take 

a long time to evaluate the individuals. 

In summary, the strength of the MMAS algorithm was demonstrated in its considerably 

shorter execution time and robustness. As a result, the MMAS algorithm is found to be a 

proper approach for tackling the AOIS problem, even when the number of workstations 

increases significantly. 

11.2   Future work 

For future research the following possible area may be studied: 

 The incorporation of the material handling cost in the case of inspection not immediately 

performed after the processing workstation but at a special inspection location. The 

material handling cost is incorporated explicitly into the problem to make it more realistic. 
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The material handling cost is a function of distance travelled, type of handling equipment, 

type of product, inspection station layout. Therefore, in this case, the cost of inspection 

will include the cost of physical inspection and the cost of material handling. 

 Online tuning of the MMAS algorithm is an alternative to offline tuning. Based on the 

results obtained, the parameters given here for the AOIS problem applications performed 

very well over a wide range of instances. Nevertheless, in other applications, adaptive 

versions, which tune the parameters dynamically during the algorithm‟s execution, may 

increase the algorithm‟s robustness. Typically, this consists of the modification of an 

algorithm‟s parameter settings while solving a problem instance. A potential advantage of 

an online modification of parameters is that algorithms may adapt better to the particular 

instance‟s characteristics.  

 The ant system and its variants have been applied to a variety of discrete and continuous 

optimisation. However, some famous optimisation problems have not been tackled with 

ant algorithms yet such as material requirements planning (MRP) and multi-objective 

problems. This is most often as a result of difficulties in finding a representation of the 

solution space that can be travelled by ants. Based on the results obtained in this research, 

further research is needed to find solutions to these difficulties, and apply the ACO to an 

ever increasing range of problems. 

11.3    Contribution of the thesis 

This thesis delivers a number of contributions to the field of allocation of inspection stations 

and development of optimisation algorithms, especially to the area of Ant Algorithms. 

11.3.1 General cost modelling formulation  

The cost of the AOIS problem involves many characteristics, including inspection errors 

(type I and type II), internal failure cost (rework and scrap), external failure cost (repair and 
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replacement), inspection cost (fixed and variable) and manufacturing cost. No literature has 

previously considered all these characteristics together. This is because many earlier studies 

were more interested in developing new heuristic methods to approach the complexity of the 

AOIS problem. These simplified assumptions are also introduced to allow a tractable 

formulation model and solution. The simplified assumptions in those cost models in the 

literature review have led to the lack of generality. All the cost models surveyed assumed that 

when an inspection is performed after the processing workstation, 100% inspection occurs. 

This assumption increases the cost of inspection and inspection time. In addition, all the cost 

models studied used the total cost per input unit and the total cost per output unit as the 

objective function. However, a customer totally sophisticated in quality determination is 

hypothesised, that is, one who can determine the quality of an item with 100% accuracy. 

Furthermore, all previous cost models were represented external failure cost items as 

aggregate or only include one of them. 

This research contributes to knowledge by developing a general cost model (GCM) to include 

all the characteristics of the AOIS problem described above. The developed cost model also 

contributes to knowledge by determining the locations of inspection stations using the 

sampling inspection plan. Furthermore, the GCM is developed such that the optimality is 

defined in terms of minimising the cost per item accepted by the customer. To do so, the 

general cost model is developed such that the number of conforming parts can be computed 

at each processing workstation. Also the external failure costs are represented to be more 

complex to include all of its items. Introducing all these issues into the GCM significantly 

increases the level of complexity, makes the general cost model is very different from those 

in the previous literature and maintains the generality. Figure 11.1 shows the contribution of 

the GCM in serial multistage manufacturing processes. 
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11.3.2 Evaluating the MMAS algorithm on the AOIS problem 

A max-min ant system (MMAS) algorithm was evaluated against a new type of problems 

known as the allocation of inspection stations (AOIS) in serial multistage manufacturing 

processes. This was a problem because, in the allocation problem, when the number of 

processing workstations increases, the processing time required for solving the problem 

grows exponentially, and the complete enumeration method becomes impractical. Empirical 

validation shows that the MMAS algorithm is effective and efficient compared to other 

metaheuristics algorithms. A method has been developed to find the optimal combination of 

the most influential parameter values for the MMAS algorithm. This work is important 

because it shows the link between the theoretical and practical algorithms being developed in 

the field. Also, this work provides further information on optimisation by evaluating MMAS 

algorithm on this type of AOIS problem in a serial multistage manufacturing process. 

11.3.3   Developing two heuristic information methods 

Two heuristics information methods for the problem of allocating inspection stations have 

been constructed. The two novel heuristic methods are created to guide the ant to locate an 

inspection station at a workstation. These are the Operation Cost and Defective rate Method 

Costs and 

characteristics 

of AOIS 

problem 

 

Limited resources 

of inspection 

stations 

 

Sampling 

inspection 

 

Optimum allocation of inspection 

stations in multistage manufacturing 

processes 

 
Figure 11.1: Contribution of the GCM in serial multistage manufacturing processes 
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(OCDM) and the Scores Method (SM). The originality of the contribution is that these 

methods have never been applied to this type of AOIS problem or in different areas. In 

particular, the SM was first used by Shetwan et al. (2011) as a new heuristic method to solve 

the AOIS problem as a part of this research. Previous heuristic information methods were 

based on a simple idea such as in TSP. However, the concept of the two heuristic methods is 

more complex and very different from those in the previous literature. Specifically, the steps 

of SM include investigation of the characteristics for the AOIS problem, selecting the most 

important characteristics, assigning scores for each workstation, finding the total scores, 

compute the priority, link the priority via mathematical formula and implementing the 

heuristic information method. The significance of the contribution is that the heuristic 

information makes ACO algorithms (AS, ACS, Ant-Q and MMAS) more efficient in solving 

real-world problems in a number of different areas of the AOIS problem. Examples are the 

rigor of the inspections (acceptance limits) for each inspection station, the number of 

inspections executed (sample size-sampling frequency) for each inspection station and these 

issues are able to include different production configuration such as assembly and non-serial. 

Furthermore, by introducing heuristic information the probable search space becomes much 

smaller than the original search space. In addition, the heuristic information increases the 

ability of ACO to find high-quality solutions in a reasonable time. 

11.3.4   Developing a good new rule of thumb 

A good new rule of thumb has been developed to solve the AOIS problem. The solutions 

obtained by the MMAS algorithm for solving the AOIS problem are extensively investigated. 

Investigation of inspection plans is done by looking at the positions of inspection stations in 

the solutions obtained and comparing them with their characteristics. The aim is to analyse 

the behaviour of the MMAS algorithm for allocating inspection stations. The analysis of the 

solutions leads to the development of a good new rule of thumb. The importance of the rule 
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of thumb lies in the simplicity of its method: no tuning parameters are needed, so it is 

preferred by industry.  
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Appendix A 

This appendix describes the exact methods used in the literature review. 

1. Integer programming  

An integer programming problem is any linear programming model in which some or all the 

variables are restricted to be integral (Hillier and Lieberman, 2010). In its most general form, 

the aim in such a program is to assign integers to a set of variables such that a set of linear 

inequalities are satisfied and a linear goal function is minimised or maximised. It is widely 

known that many real-world problems can be captured conveniently by integer programs 

(Jonsson and Nordh, 2006). An integer programming problem can be formulated as follows: 

integer,0

tosubject

xx

bAx

xcMax T

x





 

where x is the vector of variables to be solved for, A is a matrix of known coefficients, and c 

and b are vectors of known coefficients. The expression „cx‟ is called the objective function, 

and the equations „Ax≤ b‟ are called the constraints.  

2. Linear programming    

Linear programming is a technique for optimisation models in which the objective and 

constraints functions are strictly linear. Linear programming is one of the most successful 

disciplines within the field of operation research (Hamdy, 2003). In its standard form, the 

linear programming problem calls for finding non-negative x1,....,xn so as to maximise a linear 

function 


n

j
jj xc

1
 subject to a system of linear equations: 

a11 x1 +.....+a1n xn=b1 

              

am1 x1 +.....+am n xn=bm 

This problem can be stated in vector notation as: 

xcT Maximise  

subject to   bxA   

0x  
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where 
nmR A is assumed to have  linearly independent rows, and mRb and c, nRx . 

In fact, any problem of maximising or minimising a linear function subject to linear equation 

and equalities can be easily reduced to the standard form (Megiddo, 1991).  

3.   Non-linear programming      

Nonlinear programming is the process of solving a system of equalities and inequalities over 

a set of unknown real variables, along with an objective function to be maximised or 

minimised (Hamdy, 2003). In general, the non-linear programming problem is to find                   

x = (x1,x2,...,xn) so as to 

maximise f(x), 

subject to 

gi (x)≤ bi,   for i = 1,2,...,n, 

and   x ≥0, 

where f(x) and the gi(x) are given functions of the n decision variables. There are many 

different types of nonlinear programming problems, depending on the characteristics of the 

f(x) and gi(x) functions (Hillier and Lieberman, 2010). 

4.    Branch and Bound 

Branch and Bound algorithm is a general algorithm for finding optimal solutions of various 

optimisation and combinatorial optimisation problems. In particular, the idea of branch-and-

bound algorithms is based on partitioning the solution set and using lower bounds to 

construct a proof of optimality without an exhaustive search. That is, a search tree is built, 

where each node represents a partition of the set of solutions, and each child of a node is a 

subset of that partition (this is the „branch‟ part). An algorithm is available for calculating a 

lower bound on the cost of any solution in a given subset (the „bound‟ part). The search tree 

is searched by using the lower bounds to remove whole sub-trees, effectively reducing the 

number of checked solutions. Clearly, the partitioning and the way the lower bound is defined 

have a major impact on the performance of the algorithm (Di Caro, 2004).  

5.    Dynamic programming  

Dynamic programming is a recursive method, which determines the optimum solution to an 

n-variable problem by decomposing it into n stages, with each stage constituting a single 

variable sub-problem. Each stage has a number of states associated with the beginning of that 

stage. The number of states may be either finite or infinite. Thus the full recursion tree 
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generally has polynomial depth and an exponential number of nodes (Hamdy, 2003). 

Dynamic programming works at best by computing the value of each state in an effective 

way, and using these values to compute the optimal decision policy. 

Assume that decision variables xn (n=1, 2, 3, 4) be the immediate destination on stage n for a 

problem consisting of 4 stages. Given that s is state and xn as the immediate destination. 

Given s and n, let xn* denote any value of xn (not necessarily unique) that minimizes fn(s, xn), 

and let f n* (s) be the corresponding minimum value of fn(s, xn). Let fn (s, xn) be the total cost 

of the best overall policy for the remaining stages as shown in equation C1: 

)}({min
1)( ** nnsx

xsn
xfcf

n
n


            C1 

The value of csxn is the cost to move from state i to state j, which is denoted by cij, by setting i 

= s (the current state) and j= xn (the immediate destination).  

Therefore, finding the optimal policy decision starting in state s, at stage n, requires finding 

the minimum value of xn. The recursive relationship among dynamic programming problems 

is summarised below: 

N = number of stages. 

n = represents current stage (n=1, 2,…, N). 

sn = current state for stage n. 

xn = decision variable for stage n. 

*
nx  = optimal value of xn (given sn). 

csxn= constant. 

),( nnn xsf = contribution of stages n, n+1,…,N to objective function if system starts in state 

sn at stage n, immediate decision is xn , and optimal decisions are made after, as given by 

equation C2:                                      

),( *

)(* nnnsn
xxff

n
             C2 

The recursive relationship will always be in the form given by equation C3: 

     )},({min)(*
nnnxnn xsfsf

n
   C3  

where ),( nxnsnf would be written in terms of )(,, 1
*

1  nnnn sfxs , and some measure of the 

immediate contribution of xn 
to the objective function. With the addition of )( 1

*
1  nn sf

 
on the 
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right–hand side, )(* nn
sf is defined in terms of )( 1

*
1  nn sf , which makes the expression for

)(* nn sf
 a recursive relationship. The solution procedure starts at the end and moves 

backwards, stage by stage, recursively, time finding the optimal policy for that stage until it 

finds the optimal policy, starting at the initial stage. This optimal policy yields an optimal 

solution for the entire problem (Hillier and Lieberman, 2010).  

Appendix B 

This appendix contains the steps which describe simulated annealing procedure and pseudo-

code.  The basic steps of a SA algorithm are as follows: 

Step1  Generate an initial feasible solution for the problem (inspection plans). This is the first 

current solution. Set the initial temperature, number of repetitions at each temperature 

step, the rule for decreasing the value of temperatures, the number of transitions at 

each temperature, and the time at which annealing should be stopped are referred to as 

the cooling schedule. 

Step2  Generate a new set of solution/s from the current solution. 

Step3  Evaluate the solution in terms of the objective function. Keep track of the best 

solution found so far. 

Step4  If the newly generated solution is better than the current solution update the current 

solution to the newly found better solution. If not, the new solution is accepted 

depending on the p[accept] Metropolis‟s criterion (Metropolis et al., 1953). In 

practice, this probabilistic acceptance is achieved by generating a uniformly random 

number R in [0, 1] and comparing it with p[accept]. If R < P[accept], the newly 

solution is accepted and becomes the current solution, otherwise the newly solution is 

rejected and the current solution stays the same. 

Step5 Iterate through steps 2, 3and 4 for the number of transitions at each temperature. 

Step6  Adjust the cooling temperature using the decided reduction criterion. Iterate through 

steps 2, 3, 4 and 5 for the decided number of times. After ending the last iteration, 

stop. Print the best solution found so far. 
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Appendix C 

This appendix contains the steps which describe genetic algorithm procedure and pseudo-

code. The following steps describe the genetic algorithm procedure:  

Step1 Generate a set of initial chromosomes (solutions randomly) with a population size, 

which is the quantity of chromosomes used in the study (inspection plans). In this 

research, initial populations of 50 inspection plans randomly generated are deemed to 

be appropriate (Langner et al., 2002). The fitness function is evaluated to each 

individual solution. 

Step2 Roulette wheel selection method is used to reproduce the higher performance 

chromosomes and place them into a mating pool. 

Step3 Recombination is performed based on a crossover rate which is the percentage of 

chromosomes in the mating pool to perform recombination or exchange. Two pieces 

of chromosomes in the mating pool is selected in a random way. Using the One-Point-

Crossover method, randomly determine the crossover point. All genes beyond this 

point in the chromosome string are swapped between the two parent chromosome 

strings. 

Step4 According to a mutation rate, which is the percentage of chromosomes in the mating 

pool to perform mutation, this number of chromosome in the mating pool is selected 

randomly. Find a mutation point in these chromosome strings at random, and then 

change the gene at this position. This step is performed to avoid local optima. 

Step5 A new population is developed through reproduction, crossover, and mutation, and 

then the fitness function value of all the chromosomes can be calculated. Compare the 

chromosome having the best fitness function value with that in the last generation, 

and select the chromosome having the best fitness function value to keep for the next 

generation. 

Step6 If the execution has not yet reached the end condition, then repeat Steps 2 to 5. A   

generation number is set for stopping the procedure.  
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Appendix D 

The results for different parameter combinations for optimising GA are presented in Tables 

D1-D5. 

Table D1: Average 
*
DFOS for GA (Cross over 0.1) 

Population Mutation rate 
0.001 0.002 0.003 0.004 0.005 0.01 0.017 0.02 

20 14.1 13.9 14.6 14.0 14.0 14.10 14.2 14.2 
30 13.7 13.5 13.3 13.5 13.5 12.9 13.6 14.0 

40 13.4 13.8 13.5 13.9 13.4 14.0 14.2 13.4 

50 13.2 13.3 12.6 13.0 13.0 13.5 13.4 13.5 

60 12.7 13.3 13.1 13.3 13.1 13.4 13.2 12.9 

70 12.9 12.5 12.9 12.5 12.7 12.7 12.9 12.7 

80 12.6 12.2 12.2 12.6 12.0 12.4 12.3 12.4 

90 14.1 14.0 14.0 13.9 14.6 14.10 14.2 14.2 

100 12.9 13.6 14.0 13.5 13.5 13.7 13.5 13.3 

*DFOS×0.001 

Table D2: Average 
*
DFOS for GA (Cross over 0.2) 

Population Mutation rate 
0.001 0.002 0.003 0.004 0.005 0.01 0.017 0.02 

20 11.7 11.8 11.8 11.9 11.8 12.2 11.8 11.8 

30 11.7 11.8 11.9 11.7 12.1 11.6 11.9 11.6 

40 12 11.8 11.8 11.7 11.6 11.9 11.6 12 

50 11.6 11.4 11.7 11.8 11.7 11.9 11.6 11. 

60 8.8 8.6 8.4 8.7 8.2 8.2 8.8 8.5 

70 8.2 8.0 7.9 7.6 7.5 8.2 7.6 8.0 

80 8.1 7.8 7.7 8.3 7.6 8.1 7.9 7.8 

90 8.0 7.6 8.0 7.9 7.6 8.0 7.9 8.0 

100 8.3 7.6 8.1 8.1 7.6 7.7 8.3 7.6 

*DFOS×0.001 

Table D3: Average 
*
DFOS for GA (Cross over 0.6) 

Population Mutation rate 
0.001 0.002 0.003 0.004 0.005 0.01 0.017 0.02 

20 7.7 7.6 7.6 7.5 70 7.4 7.5 7.6 

30 7.1 7.0 7.1 7.1 6.7 6.8 7.0 7.1 

40 7.0 7.0 7.1 7.1 6.7 6.7 6.8 7.2 

50 7.3 7.0 7.0 7.1 6.7 7.2 7.0 7.1 

60 7.2 7.1 7.2 7.0 6.9 6.7 7.0 7.1 

70 6.8 6.7 6.9 6.7 6.7 6.8 6.9 6.9 

80 5.8 6.1 5.9 5.5 5.3 6.0 5.7 5.8 

90 6.2 5.8 6.1 6.1 5.7 6.2 5.9 6.4 

100 6.6 6.2 5.8 6.0 5.4 5.8 6.0 6.1 

*DFOS×0.001 
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Table D4: Average 
*
DFOS for GA (Cross over 0.8) 

Population Mutation rate 
0.001 0.002 0.003 0.004 0.005 0.01 0.017 0.02 

20 5.3 4.7 4.8 4.9 4.6 4.9 4.7 4.8 

30 3.7 3.8 4.0 3.8 3.9 3.6 4.2 4.2 

40 2.1 3.3 2.1 3.3 2.1 3.3 2.1 3.3 

50 2.1 3.3 2.1 3.3 2.1 3.3 2.1 3.3 

60 2.1 2.1 3.3 2.1 2.0 2.1 3.3 2.1 

70 1.9 1.9 2 1.8 1.8 1.9 2.0 2.0 

80 1.5 1.5 1.4 1.3 1.2 1.3 1.4 1.4 

90 3.3 2.1 3.3 3.3 2.1 3.3 2.1 3.3 

100 2.1 3.3 3.3 3.3 2.1 3.3 2.1 3.3 

*DFOS×0.001 

 

Table D5: Average 
*
DFOS for GA (Cross over 0.9) 

Population Mutation rate 
0.001 0.002 0.003 0.004 0.005 0.01 0.017 0.02 

20 2.5 2.6 2.6 2.4 2.4 2.5 2.6 2.6 

30 2.4 2.5 2.6 2.2 2.4 2.3 2.6 2.6 

40 2.4 2.3 2.6 2.2 2.3 2.3 2.6 2.6 

50 2.4 2.3 2.6 2.6 2.2 2.3 2.6 2.6 

60 2.4 2.3 2.6 2.6 2.2 2.3 2.6 2.6 

70 2.6 2.5 2.4 2.4 2.1 2.5 2.4 2.5 

80 2.5 2.4 2.4 2.3 2.0 2.3 2.6 2.6 

90 2.6 2.9 2.7 2.5 2.5 2.6 2.7 2.9 

100 2.9 2.7 2.7 2.6 2.6 2.9 2.9 2.9 

*DFOS×0.001 

 

Appendix E 

The results for different parameter combinations for optimising SA are presented in Table E1. 

Table E1: Average 
*
DFOS for SA  

Iterations at each 

temperature  

Temperature decrement 

0.4 0.5 0.6 0.65 0.7 0.75 0.8 0.85 0.9 

100 1.5 1.5 1.5 1.5 1.4 1.4 1.4 1.3 1.4 

200 1.3 1.3 1.2 1.3 1.2 1.1 0.95 0.94 0.95 

300 1.3 1.2 1.2 1.2 1.1 1.1 0.94 0.9 0.95 

400 1.3 1.3 1.2 1.2 1.2 1.1 0.95 0.93 0.98 

500 1.3 1.3 1.3 1.2 1.2 1.2 0.98 0.94 0.96 

600 1.4 1.4 1.3 1.2 1.2 1.1 1.0 0.95 1.0 

700 1.3 1.3 1.2 1.2 1.2 1.1 1.1 0.98 1.1 

800 1.3 1.3 1.3 1.3 1.2 1.2 1.2 1.0 1.2 

900 1.4 1.4 1.4 1.4 1.2 1.2 1.2 1.1 1.2 

1000 1.4 1.4 1.3 1.3 1.3 1.3 1.3 1.2 1.3 

1100 1.4 1.4 1.4 1.4 1.4 1.3 1.3 1.3 1.4 

1200 1.5 1.5 1.5 1.4 1.4 1.4 1.5 1.3 1.5 

*DFOS×0.001 
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Appendix F 

The results for different parameter combinations for optimising PSO are presented in Tables 

F1-F4. 

Table F1: Average 
*
DFOS for PSO (ω=0.8)  

Number 

of 

 Particles 

Cognitive coefficients 

 c1=1 
c2=1 

 
 

1 
 

c1=1 
c2=1.5 

 
 

1 
 

c1=1.5 
c2=1 

 
 

1 
 

c1=1.5 
c2=1.5 

 
 

1 
 

c1=2 
c2=2 

 
 

1 
 

c1=2 
c2=2.5 

 
 

1 
 

c1=2.5 
c2=2 

 
 

1 
 

c1=2.5 
c2=2.5 

 
 

1 
 

c1=3 
c2=3 

 
 

1 
 

c1=3 
c2=3.5 

 
 

1 
 

c1=3.5 
c2=3 

 
 

1 
 

c1=3.5 
c2=3.5 

 
 

1 
 

10 2.5 2.5 2.5 2.1 2.1 2.3 2.4 2.4 2.4 2.4 2.5 2.5 

20 2.5 2.5 2.5 2.1 2.0 2.3 2.3 2.4 2.4 2.5 2.5 2.5 

40 2.1 2.1 2.1 2.1 2.0 2.2 2.2 2.2 2.4 2.4 2.4 2.4 

60 1.9 1.9 1.9 1.8 1.75 1.8 1.8 1.9 1.9 1.9 1.9 2.1 

80 1.9 1.9 1.9 1.8 1.8 1.8 1.8 1.9 1.9 1.9 1.9 1.9 

100 2.1 2.1 1.9 1.8 1.8 1.8 1.8 1.9 1.9 2.0 2.0 2.1 

*DFOS×0.001 

 

Table F2: Average 
*
DFOS for PSO (ω=0.9)  

Number 

of 

 Particles 

Cognitive coefficients 

 c1=1 
c2=1 

 
 

1 
 

c1=1 
c2=1.5 

 
 

1 
 

c1=1.5 
c2=1 

 
 

1 
 

c1=1.5 
c2=1.5 

 
 

1 
 

c1=2 
c2=2 

 
 

1 
 

c1=2 
c2=2.5 

 
 

1 
 

c1=2.5 
c2=2 

 
 

1 
 

c1=2.5 
c2=2.5 

 
 

1 
 

c1=3 
c2=3 

 
 

1 
 

c1=3 
c2=3.5 

 
 

1 
 

c1=3.5 
c2=3 

 
 

1 
 

c1=3.5 
c2=3.5 

 
 

1 
 

10 1.2 1.2 1.2 1.2 1 1.3 1.3 1.3 1.3 1.3 1.3 1.4 

20 1.2 1.2 1.2 0.98 0.98 1.1 1.1 1.1 1.1 1.1 1.1 1.2 

40 0.97 0.97 0.97 0.93 0.85 0.82 0.82 0.83 0.84 0.84 0.84 0.85 

60 0.83 0.82 0.82 0.82 0.78 0.8 0.79 0.79 0.8 0.8 0.81 0.85 

80 0.82 0.83 0.83 0.82 0.8 0.82 0.83 0.83 0.84 0.84 0.86 0.86 

100 0.84 0.84 0.84 0.84 0.8 0.84 0.84 0.84 0.84 0.84 0.86 0.87 

*DFOS×0.001 

Table F3: Average 
*
DFOS for PSO (ω=1.1)  

Number 

of 

 Particles 

Cognitive coefficients 

 c1=1 
c2=1 

 
 

1 
 

c1=1 
c2=1.5 

 
 

1 
 

c1=1.5 
c2=1 

 
 

1 
 

c1=1.5 
c2=1.5 

 
 

1 
 

c1=2 
c2=2 

 
 

1 
 

c1=2 
c2=2.5 

 
 

1 
 

c1=2.5 
c2=2 

 
 

1 
 

c1=2.5 
c2=2.5 

 
 

1 
 

c1=3 
c2=3 

 
 

1 
 

c1=3 
c2=3.5 

 
 

1 
 

c1=3.5 
c2=3 

 
 

1 
 

c1=3.5 
c2=3.5 

 
 

1 
 

10 1.1 1.1 1.1 1.2 1 1.1 1.2 1.2 1.3 1.3 1.3 1.4 

20 1.1 1.1 0.97 0.95 0.92 0.93 0.94 0.94 0.98 1.1 1.1 1.2 

40 0.83 0.82 0.82 0.83 0.8 0.82 0.82 0.83 0.8 0.82 0.83 0.85 

60 0.83 0.82 0.82 0.8 0.8 0.75 0.79 0.79 0.8 0.8 0.81 0.85 

80 0.82 0.83 0.83 0.82 0.7 0.82 0.83 0.83 0.84 0.84 0.86 0.86 

100 0.84 0.84 0.84 0.84 0.8 0.84 0.84 0.84 0.84 0.84 0.86 0.87 

*DFOS×0.001 
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Table F4: Average 
*
DFOS for PSO (ω=1.2)  

Number 

of 

 Particles 

Cognitive coefficients 

 c1=1 
c2=1 

 
 

1 
 

c1=1 
c2=1.5 

 
 

1 
 

c1=1.5 
c2=1 

 
 

1 
 

c1=1.5 
c2=1.5 

 
 

1 
 

c1=2 
c2=2 

 
 

1 
 

c1=2 
c2=2.5 

 
 

1 
 

c1=2.5 
c2=2 

 
 

1 
 

c1=2.5 
c2=2.5 

 
 

1 
 

c1=3 
c2=3 

 
 

1 
 

c1=3 
c2=3.5 

 
 

1 
 

c1=3.5 
c2=3 

 
 

1 
 

c1=3.5 
c2=3.5 

 
 

1 
 

10 1.1 1.1 1.1 1.2 1 1.1 1.2 1.2 1.3 1.3 1.3 1.4 

20 1.1 1.1 1.1 1.1 0.98 1.0 1.1 1.1 1.1 1.1 1.1 1.2 

40 1.1 1.2 1.2 1.2 0.97 0.92 0.92 0.95 0.95 0.97 0.97 0.97 

60 0.94 0.94 0.94 0.9 0.85 0.94 0.94 0.94 0.94 0.94 0.94 0.95 

80 0.96 0.96 0.96 0.9 0.88 0.94 0.94 0.94 0.95 0.95 0.95 0.95 

100 094 0.94 0.94 0.95 0.90 0.94 0.94 0.94 0.94 0.94 0.96 0.96 

*DFOS×0.001 

 

 

Appendix G 

This appendix describes the detailed investigation of the solutions for 100 case studies 

obtained by the MMAS algorithm that led to develop ROT-b. 

As described in section 10.1, the 100 case studies were randomly generated in order to 

represent the varying characteristics of different manufacturing systems. These characteristics 

including inspection errors (type I and type II), internal failure cost (rework and scrap), 

external failure cost (repair and replacement), inspection cost (fixed and variable), defective 

rates and manufacturing cost. Some of these characteristics have a greater effect on the total 

cost of the product than others. For example, the operation cost at processing workstations is 

an important characteristic for the AOIS problem. This is because the operation cost is 

calculated for all items processed at every processing workstation, regardless of whether or 

not an inspection is performed at any of the processing workstations. In addition, the 

defective rates generated at workstations are an important characteristic for the AOIS 

problem. This is because the workstations that have a high defective rate lead to an increase 

in the total manufacturing cost of the product. For a particular characteristic, the importance 

of that characteristic depends on whether its value at a workstation is high or low. For 

example, workstations which characteristically have a higher operating cost have more 

influence on the total cost of the product than the other workstations. On the other hand, 

workstations which characteristically have a lower unit inspection cost have more influence 

on the total cost of the product than the other workstations. The influence of the characteristic 

can be observed when an inspection station is frequently located at a workstation having that 

characteristic, through the inspection plans. The investigation of the inspection plans is 
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carried out by looking at where the inspection stations are located and whether the value of 

the characteristic at a workstation is high or low.   

The aim is to find any link or relationship between the places of inspection stations and the 

characteristics, and to see how the MASS algorithm behaved for locating these inspection 

stations. In other words, the aim is to find which of these characteristics have the greatest 

impact on the effectiveness of the MMAS algorithms on placing inspection stations. The 

investigation also includes the characteristics of the processing workstations which are 

located after each inspection station in the inspection plans. This is because some locations of 

inspection stations may be influenced by such characteristics as operation cost.  

Because the investigation is done manually, it is difficult to investigate all 100 cases at once. 

To simplify the investigation, the inspection plans of the 100 cases are divided into 10 groups 

in sequence, each of which consists of 10 inspection plans. The same procedure is used for 

their characteristics. A spreadsheet for each characteristic of the workstations for the 

inspection plans is prepared. The width of the spreadsheet is equal to the number of 

workstations. In the first inspection station of the first inspection plan, all characteristic 

values for workstation k (where the first inspection station is located) are checked to find out 

which of them has a greater influence than the others. Figure G1 shows the importance of the 

characteristics at workstation k in the inspection plan where the first inspection station is 

located. In particular, Figure G1 (a) shows that the defect rate (Z) has a greater influence than 

the others. Therefore, this characteristic is considered and recorded in the spreadsheet. In 

contrast, Figure G1 (b) shows that no characteristic has a great influence on the total cost of 

the product. Therefore, nothing recorded in the spreadsheet. The same procedure is used for 

the other inspection stations in the first inspection plan (the second inspection station, the 

third inspection station,..., the last inspection station). The characteristic that has the greatest 

influence on the MMAS for locating each inspection station in the inspection plans is 

recorded in the spreadsheet corresponding to the workstation. The same procedure is used for 

the other inspection plans. After that all these characteristics are collected and analysed. 
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Figure G1: Importance of the characteristics at workstation k 
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