29,054 research outputs found

    Human-Computer Interaction for BCI Games: Usability and User Experience

    Get PDF
    Brain-computer interfaces (BCI) come with a lot of issues, such as delays, bad recognition, long training times, and cumbersome hardware. Gamers are a large potential target group for this new interaction modality, but why would healthy subjects want to use it? BCI provides a combination of information and features that no other input modality can offer. But for general acceptance of this technology, usability and user experience will need to be taken into account when designing such systems. This paper discusses the consequences of applying knowledge from Human-Computer Interaction (HCI) to the design of BCI for games. The integration of HCI with BCI is illustrated by research examples and showcases, intended to take this promising technology out of the lab. Future research needs to move beyond feasibility tests, to prove that BCI is also applicable in realistic, real-world settings

    Analysis of research methodologies for neurorehabilitation

    Get PDF

    Teegi: Tangible EEG Interface

    Get PDF
    We introduce Teegi, a Tangible ElectroEncephaloGraphy (EEG) Interface that enables novice users to get to know more about something as complex as brain signals, in an easy, en- gaging and informative way. To this end, we have designed a new system based on a unique combination of spatial aug- mented reality, tangible interaction and real-time neurotech- nologies. With Teegi, a user can visualize and analyze his or her own brain activity in real-time, on a tangible character that can be easily manipulated, and with which it is possible to interact. An exploration study has shown that interacting with Teegi seems to be easy, motivating, reliable and infor- mative. Overall, this suggests that Teegi is a promising and relevant training and mediation tool for the general public.Comment: to appear in UIST-ACM User Interface Software and Technology Symposium, Oct 2014, Honolulu, United State

    Design and semantics of form and movement (DeSForM 2006)

    Get PDF
    Design and Semantics of Form and Movement (DeSForM) grew from applied research exploring emerging design methods and practices to support new generation product and interface design. The products and interfaces are concerned with: the context of ubiquitous computing and ambient technologies and the need for greater empathy in the pre-programmed behaviour of the ‘machines’ that populate our lives. Such explorative research in the CfDR has been led by Young, supported by Kyffin, Visiting Professor from Philips Design and sponsored by Philips Design over a period of four years (research funding £87k). DeSForM1 was the first of a series of three conferences that enable the presentation and debate of international work within this field: ‱ 1st European conference on Design and Semantics of Form and Movement (DeSForM1), Baltic, Gateshead, 2005, Feijs L., Kyffin S. & Young R.A. eds. ‱ 2nd European conference on Design and Semantics of Form and Movement (DeSForM2), Evoluon, Eindhoven, 2006, Feijs L., Kyffin S. & Young R.A. eds. ‱ 3rd European conference on Design and Semantics of Form and Movement (DeSForM3), New Design School Building, Newcastle, 2007, Feijs L., Kyffin S. & Young R.A. eds. Philips sponsorship of practice-based enquiry led to research by three teams of research students over three years and on-going sponsorship of research through the Northumbria University Design and Innovation Laboratory (nuDIL). Young has been invited on the steering panel of the UK Thinking Digital Conference concerning the latest developments in digital and media technologies. Informed by this research is the work of PhD student Yukie Nakano who examines new technologies in relation to eco-design textiles

    Augmenting Sensorimotor Control Using “Goal-Aware” Vibrotactile Stimulation during Reaching and Manipulation Behaviors

    Get PDF
    We describe two sets of experiments that examine the ability of vibrotactile encoding of simple position error and combined object states (calculated from an optimal controller) to enhance performance of reaching and manipulation tasks in healthy human adults. The goal of the first experiment (tracking) was to follow a moving target with a cursor on a computer screen. Visual and/or vibrotactile cues were provided in this experiment, and vibrotactile feedback was redundant with visual feedback in that it did not encode any information above and beyond what was already available via vision. After only 10 minutes of practice using vibrotactile feedback to guide performance, subjects tracked the moving target with response latency and movement accuracy values approaching those observed under visually guided reaching. Unlike previous reports on multisensory enhancement, combining vibrotactile and visual feedback of performance errors conferred neither positive nor negative effects on task performance. In the second experiment (balancing), vibrotactile feedback encoded a corrective motor command as a linear combination of object states (derived from a linear-quadratic regulator implementing a trade-off between kinematic and energetic performance) to teach subjects how to balance a simulated inverted pendulum. Here, the tactile feedback signal differed from visual feedback in that it provided information that was not readily available from visual feedback alone. Immediately after applying this novel “goal-aware” vibrotactile feedback, time to failure was improved by a factor of three. Additionally, the effect of vibrotactile training persisted after the feedback was removed. These results suggest that vibrotactile encoding of appropriate combinations of state information may be an effective form of augmented sensory feedback that can be applied, among other purposes, to compensate for lost or compromised proprioception as commonly observed, for example, in stroke survivors

    Smart Kitchens for People with Cognitive Impairments: A Qualitative Study of Design Requirements

    Get PDF
    Individuals with cognitive impairments currently leverage extensive human resources during their transitions from assisted living to independent living. In Western Europe, many government-supported volunteer organizations provide sheltered living facilities; supervised environments in which people with cognitive impairments collaboratively learn daily living skills. In this paper, we describe communal cooking practices in sheltered living facilities and identify opportunities for supporting these with interactive technology to reduce volunteer workload. We conducted two contextual observations of twelve people with cognitive impairments cooking in sheltered living facilities and supplemented this data through interviews with four employees and volunteers who supervise them. Through thematic analysis, we identified four themes to inform design requirements for communal cooking activities: Work organization, community, supervision, and practicalities. Based on these, we present five design implications for assistive systems in kitchens for people with cognitive deficiencies

    'Girlfriends and Strawberry Jam’: Tagging Memories, Experiences, and Events for Future Retrieval

    Get PDF
    In this short paper we have some preliminary thoughts about tagging everyday life events in order to allow future retrieval of events or experiences related to events. Elaboration of these thoughts will be done in the context of the recently started Network of Excellence PetaMedia (Peer-to-Peer Tagged Media) and the Network of Excellence SSPNet (Social Signal Processing), to start in 2009, both funded by the European Commission's Seventh Framework Programme. Descriptions of these networks will be given later in this paper
    • 

    corecore