1,083 research outputs found

    Voltage-Mode Highpass, Bandpass, Lowpass and Notch Biquadratic Filters Using Single DDCC

    Get PDF
    A new voltage-mode multifunction biquadratic filter using one differential difference current conveyor (DDCC), two grounded capacitors and three resistors is presented. The proposed circuit offers the following attractive advantages: realizing highpass, bandpass, lowpass and notch filter functions, simultaneously, from the same circuit configuration; employing grounded capacitors, which is ideal for integration and simpler circuit configuration

    Novel active function blocks and their applications in frequency filters and quadrature oscillators

    Get PDF
    KmitočtovĂ© filtry a sinusoidnĂ­ oscilĂĄtory jsou lineĂĄrnĂ­ elektronickĂ© obvody, kterĂ© jsou pouĆŸĂ­vĂĄny v ĆĄirokĂ© oblasti elektroniky a jsou zĂĄkladnĂ­mi stavebnĂ­mi bloky v analogovĂ©m zpracovĂĄnĂ­ signĂĄlu. V poslednĂ­ dekĂĄdě pro tento Ășčel bylo prezentovĂĄno velkĂ© mnoĆŸstvĂ­ stavebnĂ­ch funkčnĂ­ch blokĆŻ. V letech 2000 a 2006 na Ústavu telekomunikacĂ­, VUT v Brně byly definovĂĄny univerzĂĄlnĂ­ proudovĂœ konvejor (UCC) a univerzĂĄlnĂ­ napět'ovĂœ konvejor (UVC) a vyrobeny ve spoluprĂĄci s firmou AMI Semiconductor Czech, Ltd. OvĆĄem, stĂĄle existuje poĆŸadavek na vĂœvoj novĂœch aktivnĂ­ch prvkĆŻ, kterĂ© nabĂ­zejĂ­ novĂ© vĂœhody. HlavnĂ­ pƙínos prĂĄce proto spočívĂĄ v definici dalĆĄĂ­ch pĆŻvodnĂ­ch aktivnĂ­ch stavebnĂ­ch blokĆŻ jako jsou differential-input buffered and transconductance amplifier (DBTA), current follower transconductance amplifier (CFTA), z-copy current-controlled current inverting transconductance amplifier (ZC-CCCITA), generalized current follower differential input transconductance amplifier (GCFDITA), voltage gain-controlled modified current-feedback operational amplifier (VGC-MCFOA), a minus-type current-controlled third-generation voltage conveyor (CC-VCIII-). PomocĂ­ navrĆŸenĂœch aktivnĂ­ch stavebnĂ­ch blokĆŻ byly prezentovĂĄny pĆŻvodnĂ­ zapojenĂ­ fĂĄzovacĂ­ch člĂĄnkĆŻ prvnĂ­ho ƙádu, univerzĂĄlnĂ­ filtry druhĂ©ho ƙádu, ekvivalenty obvodu typu KHN, inverznĂ­ filtry, aktivnĂ­ simulĂĄtory uzemněnĂ©ho induktoru a kvadraturnĂ­ sinusoidnĂ­ oscilĂĄtory pracujĂ­cĂ­ v proudovĂ©m, napět'ovĂ©m a smĂ­ĆĄenĂ©m mĂłdu. ChovĂĄnĂ­ navrĆŸenĂœch obvodĆŻ byla ověƙena simulacĂ­ v prostƙedĂ­ SPICE a ve vybranĂœch pƙípadech experimentĂĄlnĂ­m měƙenĂ­m.Frequency filters and sinusoidal oscillators are linear electric circuits that are used in wide area of electronics and also are the basic building blocks in analogue signal processing. In the last decade, huge number of active building blocks (ABBs) were presented for this purpose. In 2000 and 2006, the universal current conveyor (UCC) and the universal voltage conveyor (UVC), respectively, were designed at the Department of Telecommunication, BUT, Brno, and produced in cooperation with AMI Semiconductor Czech, Ltd. There is still the need to develop new active elements that offer new advantages. The main contribution of this thesis is, therefore, the definition of other novel ABBs such as the differential-input buffered and transconductance amplifier (DBTA), the current follower transconductance amplifier (CFTA), the z-copy current-controlled current inverting transconductance amplifier (ZC-CCCITA), the generalized current follower differential input transconductance amplifier (GCFDITA), the voltage gain-controlled modified current-feedback operational amplifier (VGC-MCFOA), and the minus-type current-controlled third-generation voltage conveyor (CC-VCIII-). Using the proposed ABBs, novel structures of first-order all-pass filters, second-order universal filters, KHN-equivalent circuits, inverse filters, active grounded inductance simulators, and quadrature sinusoidal oscillators working in the current-, voltage-, or mixed-mode are presented. The behavior of the proposed circuits has been verified by SPICE simulations and in selected cases also by experimental measurements.

    Voltage-Mode Multifunction Biquadratic Filters Using New Ultra-Low-Power Differential Difference Current Conveyors

    Get PDF
    This paper presents two low-power voltage-mode multifunction biquadratic filters using differential difference current conveyors. Each proposed circuit employs three differential difference current conveyors, two grounded capacitors and two grounded resistors. The low-voltage ultra-low-power differential difference current conveyor is used to provide low-power consumption of the proposed filters. By appropriately connecting the input and output terminals, the proposed filters can provide low-pass, band-pass, high-pass, band-stop and all-pass voltage responses at high-input terminals, which is a desirable feature for voltage-mode operations. The natural frequency and the quality factor can be orthogonally set by adjusting the circuit components. For realizing all the filter responses, no inverting-type input signal requirements as well as no component-matching conditional requirements are imposed. The incremental parameter sensitivities are also low. The characteristics of the proposed circuits are simulated by using PSPICE simulators to confirm the presented theory

    Low-Voltage High-Linearity Wideband Current Differencing Transconductance Amplifier and Its Application on Current-Mode Active Filter

    Get PDF
    A low-voltage high-linearity wideband current differencing transconductance ampliïŹer (CDTA) is presented in this paper. The CDTA consists of a current differencing circuit and a cross-coupling transconductance circuit. The PSPICE simulations of the proposed CDTA show a good performance: -3dB frequency bandwith is about 900 MHz, low power consumption is 2.48 mW, input current linear range is ±100 ”A and low current-input resistance is less than 20 ℩, high current-output resistance is more than 3 M℩. PSpice simulations for a current-mode universal filter and a proposed high-order filter are also conducted, and the results verify the validity of the proposed CDTA

    Dual-mode multifunction filter realized with a single voltage differencing gain amplifier (VDGA)

    Get PDF
    This article presents the dual-mode multifunction biquad filter realized employing only a single voltage differencing gain amplifier (VDGA), one resistor and three capacitors. The proposed filterwith one input and three outputs can configure as voltage-mode or current-mode filter circuit with the appropriate input injection choice. It can also synthesis the three standard filter functions, which are highpass, bandpass, and lowpass responses without modifying the circuit configuration. Orthogonal adjustment between the natural angular frequency (o) and the quality factor (Q) of the filter is achieved. Detail analysis of non-ideal VDGA effects and circuit component sensitivity are included. The circuit principle is verified by means of simulation results with TSMC 0.35-m CMOS process parameters

    High Input Impedance Voltage-Mode Biquad Filter Using VD-DIBAs

    Get PDF
    This paper deals with a single-input multiple-output biquadratic filter providing three functions (low-pass, high-pass and band-pass) based on voltage differencing differential input buffered amplifier (VD-DIBA). The quality factor and pole frequency can be electronically tuned via the bias current. The proposed circuit uses two VD-DIBAs and two grounded capacitors without any external resistors, which is suitable to further develop into an integrated circuit. Moreover, the circuit possesses high input impedance, providing easy voltage-mode cascading. It is shown that the filter structure can be easily extended to multi-input filter without any additional components, providing also all-pass and band-reject properties. The PSPICE simulation and experimental results are included, verifying the key characteristics of the proposed filter. The given results agree well with the theoretical presumptions

    Electronically Tunable Resistorless Mixed Mode Biquad Filters

    Get PDF
    This paper presents a new realization of elecÂŹtronically tunable mixed mode (including transadmittance- and voltage-modes) biquad filter with single input, three outputs or three inputs, single output using voltage differ-encing transconductance amplifier (VDTA), a recently introduced active element. It can simultaneously realize standard filtering signals: low-pass, band-pass and high-pass or by selecting input terminals, it can realize all five different filtering signals: low-pass, band-pass, high-pass, band-stop and all-pass. The proposed filter circuit offers the following attractive feature: no requirement of invert-ing type input signal which is require no addition circuit, critical component matching conditions are not required in the design, the circuit parameters ω0 and Q can be set orthogonally or independently through adjusting the bias currents of the VDTAs, the proposed circuit employs two active and minimum numbers of passive components. Fur-thermore, this filter was investigated from the point of view of limited frequency range, stability conditions, effects of parasitic elements and effects of non-ideal and sensitivity. Thus, taking these effects and conditions into consideraÂŹtion, working conditions and boundaries of this filter are determined. We also performed Monte Carlo, THD and noise analyses. Simulation results are given to confirm theoretical analyses

    Circuits for Analog Signal Processing Employing Unconventional Active Elements

    Get PDF
    DisertačnĂ­ prĂĄce se zabĂœvĂĄ zavĂĄděnĂ­m novĂœch struktur modernĂ­ch aktivnĂ­ch prvkĆŻ pracujĂ­cĂ­ch v napěƄovĂ©m, proudovĂ©m a smĂ­ĆĄenĂ©m reĆŸimu. Funkčnost a chovĂĄnĂ­ těchto prvkĆŻ byly ověƙeny prostƙednictvĂ­m SPICE simulacĂ­. V tĂ©to prĂĄci je zahrnuta ƙada simulacĂ­, kterĂ© dokazujĂ­ pƙesnost a dobrĂ© vlastnosti těchto prvkĆŻ, pƙičemĆŸ velkĂœ dĆŻraz byl kladen na to, aby tyto prvky byly schopny pracovat pƙi nĂ­zkĂ©m napĂĄjecĂ­m napětĂ­, jelikoĆŸ poptĂĄvka po pƙenosnĂœch elektronickĂœch zaƙízenĂ­ch a implantabilnĂ­ch zdravotnickĂœch pƙístrojĂ­ch stĂĄle roste. Tyto pƙístroje jsou napĂĄjeny bateriemi a k tomu, aby byla prodlouĆŸena jejich ĆŸivotnost, trend navrhovĂĄnĂ­ analogovĂœch obvodĆŻ směƙuje k stĂĄle větĆĄĂ­mu sniĆŸovĂĄnĂ­ spotƙeby a napĂĄjecĂ­ho napětĂ­. HlavnĂ­m pƙínosem tĂ©to prĂĄce je nĂĄvrh novĂœch CMOS struktur: CCII (Current Conveyor Second Generation) na zĂĄkladě BD (Bulk Driven), FG (Floating Gate) a QFG (Quasi Floating Gate); DVCC (Differential Voltage Current Conveyor) na zĂĄkladě FG, transkonduktor na zĂĄkladě novĂ© techniky BD_QFG (Bulk Driven_Quasi Floating Gate), CCCDBA (Current Controlled Current Differencing Buffered Amplifier) na zĂĄkladě GD (Gate Driven), VDBA (Voltage Differencing Buffered Amplifier) na zĂĄkladě GD a DBeTA (Differential_Input Buffered and External Transconductance Amplifier) na zĂĄkladě BD. DĂĄle je uvedeno několik zajĂ­mavĂœch aplikacĂ­ uĆŸĂ­vajĂ­cĂ­ch vĂœĆĄe jmenovanĂ© prvky. ZĂ­skanĂ© vĂœsledky simulacĂ­ odpovĂ­dajĂ­ teoretickĂœm pƙedpokladĆŻm.The dissertation thesis deals with implementing new structures of modern active elements working in voltage_, current_, and mixed mode. The functionality and behavior of these elements have been verified by SPICE simulation. Sufficient numbers of simulated plots are included in this thesis to illustrate the precise and strong behavior of those elements. However, a big attention to implement active elements by utilizing LV LP (Low Voltage Low Power) techniques is given in this thesis. This attention came from the fact that growing demand of portable electronic equipments and implantable medical devices are pushing the development towards LV LP integrated circuits because of their influence on batteries lifetime. More specifically, the main contribution of this thesis is to implement new CMOS structures of: CCII (Current Conveyor Second Generation) based on BD (Bulk Driven), FG (Floating Gate) and QFG (Quasi Floating Gate); DVCC (Differential Voltage Current Conveyor) based on FG; Transconductor based on new technique of BD_QFG (Bulk Driven_Quasi Floating Gate); CCCDBA (Current Controlled Current Differencing Buffered Amplifier) based on conventional GD (Gate Driven); VDBA (Voltage Differencing Buffered Amplifier) based on GD. Moreover, defining new active element i.e. DBeTA (Differential_Input Buffered and External Transconductance Amplifier) based on BD is also one of the main contributions of this thesis. To confirm the workability and attractive properties of the proposed circuits many applications were exhibited. The given results agree well with the theoretical anticipation.

    The voltage-mode first order universal filter using single voltage differencing differential input buffered amplifier with electronic controllability

    Get PDF
    In this research contribution, the electronically tunable first-order universal filter employing a single voltage differencing differential input buffered amplifier (VD-DIBA) (constructed from two commercially available integrated circuit (IC): the operational transconductance amplifier, IC number LT1228, and the differential voltage input buffer, IC number AD830), one capacitor and two resistors. The features of the designed first order universal filter are as follows. Three voltage-mode first-order functions, low-pass (LP), all-pass (AP) and high-pass (HP) responses are given. The natural frequency (0) of the presented configuration can be electronically adjusted by setting the DC bias current. Moreover, the voltage gain of the LP and HP filters can be controllable. The phase responses of an AP configuration can be varied from 00 to −1800 and 1800 to 00. The power supply voltages were set at ±5 . Verification of the theoretically described performances of the introduced electronically tunable universal filter was proved by the PSpice simulation and experiment

    One input voltage and three output voltage universal biquad filters with orthogonal tune of frequency and bandwidth

    Get PDF
    This research paper contributes the one input three output voltage mode universal biquad filters with linear and electronic control of the natural frequency (w0), using two commercially available ICs, LT1228s as active device with two grounded capacitors, five resistors. The presented universal biquad filters can simultaneously provide three voltage-mode filtering functions, low-pass (LP), high-pass (HP) and band-pass (BP) without changing the circuit architecture. Furthermore, the first presented biquad filter provides low impedance at HP, BP voltage output nodes and LP, BP output voltage nodes are low impedance for the second proposed filter which is easy cascade ability with other voltage mode circuits without the employment of buffer circuits. The quality factor (Q) of both proposed filters is orthogonally adjusted from the passband voltage gain and w0. The proposed filters are simulated and experimented with commercially accessible ICs, LT1228. The simulated and experimental results demonstrate the filtering performances
    • 

    corecore