176 research outputs found

    Finite Length Analysis of Rateless Codes and Their Application in Wireless Networks

    Get PDF
    Mobile communication systems are undergoing revolutionary developments as a result of the rapidly growing demands for high data rates and reliable communication connections. The key features of the next-generation mobile communication systems are provision of high-speed and robust communication links. However, wireless communications still need to address the same challenge–unreliable communication connections, arising from a number of causes including noise, interference, and distortion because of hardware imperfections or physical limitations. Forwarding error correction (FEC) codes are used to protect source information by adding redundancy. With FEC codes, errors among the transmitted message can be corrected by the receiver. Recent work has shown that, by applying rateless codes (a class of FEC codes), wireless transmission efficiency and reliability can be dramatically improved. Unlike traditional codes, rateless codes can adapt to different channel conditions. Rateless codes have been widely used in many multimedia broadcast/multicast applications. Among the known rate- less codes, two types of codes stand out: Luby transform (LT) codes and Raptor codes. However, our understanding of LT codes and Raptor codes is still in- complete due to the lack of complete theoretical analysis on the decoding error performance of these codes. Particularly, this thesis focuses on the decoding error performance of these codes under maximum-likelihood (ML) decoding, which provides a benchmark on the optimum system performance for gauging other decoding schemes. In this thesis, we discuss the effectiveness of rateless codes in terms of the success probability of decoding. It is defined as the probability that all source symbols can be successfully decoded with a given number of success- fully received coded symbols under ML decoding. This thesis provides a detailed mathematical analysis on the rank profile of general LT codes to evaluate the decoding success probability of LT codes under ML decoding. Furthermore, by analyzing the rank of the product of two random coefficient matrices, this thesis derived bounds on the decoding success probability of Raptor codes with a systematic low-density generator matrix (LDGM) code as the pre-code under ML decoding. Additionally, by resorting to stochastic geometry analysis, we develop a rateless codes based broadcast scheme. This scheme allows a base station (BS) to broadcast a given number of symbols to a large number of users, without user acknowledgment, while being able to pro- vide a performance guarantee on the probability of successful delivery. Further, the BS has limited statistical information about the environment including the spatial distribution of users (instead of their exact locations and number) and the wireless propagation model. Based on the analysis of finite length LT codes and Raptor codes, an upper and a lower bound on the number of transmissions required to meet the performance requirement are obtained. The technique and analysis developed in this thesis are useful for designing efficient and reliable wireless broadcast strategies. It is of interest to implement rateless codes into modern communication systems

    Layered Wireless Video Relying on Minimum-Distortion Inter-Layer FEC Coding

    Full text link

    NASA Tech Briefs, February 1989

    Get PDF
    This issue contains a special feature on shaping the future with Ceramics. Other topics include: Electronic Components & and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences

    The 25th Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting

    Get PDF
    Papers in the following categories are presented: recent developments in rubidium, cesium, and hydrogen-based frequency standards, and in cryogenic and trapped-ion technology; international and transnational applications of precise time and time interval (PTTI) technology with emphasis on satellite laser tracking networks, GLONASS timing, intercomparison of national time scales and international telecommunication; applications of PTTI technology to the telecommunications, power distribution, platform positioning, and geophysical survey industries; application of PTTI technology to evolving military communications and navigation systems; and dissemination of precise time and frequency by means of GPS, GLONASS, MILSTAR, LORAN, and synchronous communications satellites

    Exposing a waveform interface to the wireless channel for scalable video broadcast

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 157-167).Video broadcast and mobile video challenge the conventional wireless design. In broadcast and mobile scenarios the bit-rate supported by the channel differs across receivers and varies quickly over time. The conventional design however forces the source to pick a single bit-rate and degrades sharply when the channel cannot support it. This thesis presents SoftCast, a clean-slate design for wireless video where the source transmits one video stream that each receiver decodes to a video quality commensurate with its specific instantaneous channel quality. To do so, SoftCast ensures the samples of the digital video signal transmitted on the channel are linearly related to the pixels' luminance. Thus, when channel noise perturbs the transmitted signal samples, the perturbation naturally translates into approximation in the original video pixels. Hence, a receiver with a good channel (low noise) obtains a high fidelity video, and a receiver with a bad channel (high noise) obtains a low fidelity video. SoftCast's linear design in essence resembles the traditional analog approach to communication, which was abandoned in most major communication systems, as it does not enjoy the theoretical opimality of the digital separate design in point-topoint channels nor its effectiveness at compressing the source data. In this thesis, I show that in combination with decorrelating transforms common to modern digital video compression, the analog approach can achieve performance competitive with the prevalent digital design for a wide variety of practical point-to-point scenarios, and outperforms it in the broadcast and mobile scenarios. Since the conventional bit-pipe interface of the wireless physical layer (PHY) forces the separation of source and channel coding, to realize SoftCast, architectural changes to the wireless PHY are necessary. This thesis discusses the design of RawPHY, a reorganization of the PHY which exposes a waveform interface to the channel while shielding the designers of the higher layers from much of the perplexity of the wireless channel. I implement SoftCast and RawPHY using the GNURadio software and the USRP platform. Results from a 20-node testbed show that SoftCast improves the average video quality (i.e., PSNR) across diverse broadcast receivers in our testbed by up to 5.5 dB in comparison to conventional single- or multi-layer video. Even for a single receiver, it eliminates video glitches caused by mobility and increases robustness to packet loss by an order of magnitude.by Szymon Kazimierz Jakubczak.Ph.D

    Modelling storm-time TEC changes using linear and non-linear techniques

    Get PDF
    Statistical models based on empirical orthogonal functions (EOF) analysis and non-linear regression analysis (NLRA) were developed for the purpose of estimating the ionospheric total electron content (TEC) during geomagnetic storms. The well-known least squares method (LSM) and Metropolis-Hastings algorithm (MHA) were used as optimization techniques to determine the unknown coefficients of the developed analytical expressions. Artificial Neural Networks (ANNs), the International Reference Ionosphere (IRI) model, and the Multi-Instrument Data Analysis System (MIDAS) tomographic inversion algorithm were also applied to storm-time TEC modelling/reconstruction for various latitudes of the African sector and surrounding areas. This work presents some of the first statistical modeling of the mid-latitude and low-latitude ionosphere during geomagnetic storms that includes solar, geomagnetic and neutral wind drivers.Development and validation of the empirical models were based on storm-time TEC data derived from the global positioning system (GPS) measurements over ground receivers within Africa and surrounding areas. The storm criterion applied was Dst 6 −50 nT and/or Kp > 4. The performance evaluation of MIDAS compared with ANNs to reconstruct storm-time TEC over the African low- and mid-latitude regions showed that MIDAS and ANNs provide comparable results. Their respective mean absolute error (MAE) values were 4.81 and 4.18 TECU. The ANN model was, however, found to perform 24.37 % better than MIDAS at estimating storm-time TEC for low latitudes, while MIDAS is 13.44 % more accurate than ANN for the mid-latitudes. When their performances are compared with the IRI model, both MIDAS and ANN model were found to provide more accurate storm-time TEC reconstructions for the African low- and mid-latitude regions. A comparative study of the performances of EOF, NLRA, ANN, and IRI models to estimate TEC during geomagnetic storm conditions over various latitudes showed that the ANN model is about 10 %, 26 %, and 58 % more accurate than EOF, NLRA, and IRI models, respectively, while EOF was found to perform 15 %, and 44 % better than NLRA and IRI, respectively. It was further found that the NLRA model is 25 % more accurate than the IRI model. We have also investigated for the first time, the role of meridional neutral winds (from the Horizontal Wind Model) to storm-time TEC modelling in the low latitude, northern and southern hemisphere mid-latitude regions of the African sector, based on ANN models. Statistics have shown that the inclusion of the meridional wind velocity in TEC modelling during geomagnetic storms leads to percentage improvements of about 5 % for the low latitude, 10 % and 5 % for the northern and southern hemisphere mid-latitude regions, respectively. High-latitude storm-induced winds and the inter-hemispheric blows of the meridional winds from summer to winter hemisphere have been suggested to be associated with these improvements

    Understanding Quantum Technologies 2022

    Full text link
    Understanding Quantum Technologies 2022 is a creative-commons ebook that provides a unique 360 degrees overview of quantum technologies from science and technology to geopolitical and societal issues. It covers quantum physics history, quantum physics 101, gate-based quantum computing, quantum computing engineering (including quantum error corrections and quantum computing energetics), quantum computing hardware (all qubit types, including quantum annealing and quantum simulation paradigms, history, science, research, implementation and vendors), quantum enabling technologies (cryogenics, control electronics, photonics, components fabs, raw materials), quantum computing algorithms, software development tools and use cases, unconventional computing (potential alternatives to quantum and classical computing), quantum telecommunications and cryptography, quantum sensing, quantum technologies around the world, quantum technologies societal impact and even quantum fake sciences. The main audience are computer science engineers, developers and IT specialists as well as quantum scientists and students who want to acquire a global view of how quantum technologies work, and particularly quantum computing. This version is an extensive update to the 2021 edition published in October 2021.Comment: 1132 pages, 920 figures, Letter forma

    Cumulative index to NASA Tech Briefs, 1986-1990, volumes 10-14

    Get PDF
    Tech Briefs are short announcements of new technology derived from the R&D activities of the National Aeronautics and Space Administration. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This cumulative index of Tech Briefs contains abstracts and four indexes (subject, personal author, originating center, and Tech Brief number) and covers the period 1986 to 1990. The abstract section is organized by the following subject categories: electronic components and circuits, electronic systems, physical sciences, materials, computer programs, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences
    corecore