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Abstract

Statistical models based on empirical orthogonal functions (EOF) analysis and non-linear

regression analysis (NLRA) were developed for the purpose of estimating the ionospheric

total electron content (TEC) during geomagnetic storms. The well-known least squares

method (LSM) and Metropolis-Hastings algorithm (MHA) were used as optimization tech-

niques to determine the unknown coefficients of the developed analytical expressions. Ar-

tificial Neural Networks (ANNs), the International Reference Ionosphere (IRI) model, and

the Multi-Instrument Data Analysis System (MIDAS) tomographic inversion algorithm were

also applied to storm-time TEC modelling/reconstruction for various latitudes of the African

sector and surrounding areas. This work presents some of the first statistical modeling of

the mid-latitude and low-latitude ionosphere during geomagnetic storms that includes solar,

geomagnetic and neutral wind drivers. Development and validation of the empirical models

were based on storm-time TEC data derived from the global positioning system (GPS) mea-

surements over ground receivers within Africa and surrounding areas. The storm criterion

applied was Dst 6 −50 nT and/or Kp > 4. The performance evaluation of MIDAS compared

with ANNs to reconstruct storm-time TEC over the African low- and mid-latitude regions

showed that MIDAS and ANNs provide comparable results. Their respective mean absolute

error (MAE) values were 4.81 and 4.18 TECU. The ANN model was, however, found to

perform 24.37 % better than MIDAS at estimating storm-time TEC for low latitudes, while

MIDAS is 13.44 % more accurate than ANN for the mid-latitudes. When their performances

are compared with the IRI model, both MIDAS and ANN model were found to provide more

accurate storm-time TEC reconstructions for the African low- and mid-latitude regions. A

comparative study of the performances of EOF, NLRA, ANN, and IRI models to estimate

TEC during geomagnetic storm conditions over various latitudes showed that the ANN model

is about 10 %, 26 %, and 58 % more accurate than EOF, NLRA, and IRI models, respectively,

while EOF was found to perform 15 %, and 44 % better than NLRA and IRI, respectively. It

was further found that the NLRA model is 25 % more accurate than the IRI model. We have

also investigated for the first time, the role of meridional neutral winds (from the Horizon-

tal Wind Model) to storm-time TEC modelling in the low latitude, northern and southern

hemisphere mid-latitude regions of the African sector, based on ANN models. Statistics have

shown that the inclusion of the meridional wind velocity in TEC modelling during geomag-

netic storms leads to percentage improvements of about 5 % for the low latitude, 10 % and 5

% for the northern and southern hemisphere mid-latitude regions, respectively. High-latitude

storm-induced winds and the inter-hemispheric blows of the meridional winds from summer

to winter hemisphere have been suggested to be associated with these improvements.
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Chapter 1

Introduction

The ionospheric electron density varies due to a mixture of complex mechanisms that modify

temporal and spatial distributions of ionized particles, such as changes in solar radiation

intensity, interaction of interplanetary and geomagnetic fields, as well as the atmospheric dy-

namics (Mitchell & Spencer, 2003). The state of the ionosphere becomes more complicated

during geomagnetic storms since the ionospheric electron density is redistributed due to elec-

tric field perturbations and induced currents in the ionosphere (Tsurutani et al., 2004, 2006a),

and other mechanisms such as neutral winds (Fesen et al., 1989), expansion of the equatorial

ionisation anomaly (Tsurutani et al., 2004), large-scale travelling ionospheric disturbances

(TIDs) (Borries et al., 2009), and neutral composition changes (Prölss, 1980). Among several

disturbances that highly affect the ionospheric variability, geomagnetic storms are listed at

the first place to have more and disadvantageous societal impacts. This is due to their long

duration (one to several days), and their extension to low and middle latitudes which are

the most populated regions (Davies, 1990). For satellite navigational systems, total elec-

tron content (TEC) is known to be a good descriptive parameter of the ionospheric dynamic

(Hofmann-Wellenhof et al., 1992). TEC is defined as the total number of electrons within

a column with a cross-section of 1 m2 centered on ray path between satellite and receiver

(Hofmann-Wellenhof et al., 1992; Misra & Enge, 2006). During geomagnetic and ionospheric

storms, ionospheric electron density/TEC may be enhanced or depleted relative to the days

that precede or follow the storm, and the effect is termed as positive or negative storm effect,

respectively (Prölss, 1980; Volland, 1995). A non-significant storm effect corresponds to the

case where there is no change in electron density/TEC during the storm day compared to

regular state (Vijaya Lekshmi et al., 2011; Matamba et al., 2015).

Understanding the mechanisms responsible for ionospheric responses during storm condi-

tions is of utmost importance for accurate storm-time prediction of the ionospheric dynamics.

Electron density/TEC variations due to geomagnetic and ionospheric storms have adverse

impacts on ground-based and space-based technologies. Typical examples of the deleterious

effects that severe storms and solar flares which occurred between October - November 2003

had on technological systems are listed in Doherty et al. (2004). For the benefits of the

society, the safety of ground-based and space-borne technologies is required. Thus, prod-
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ucts that are able to nowcast and forecast storm-time ionospheric behaviour are important

for space weather community in order to mitigate detrimental effects that may impact di-

rectly or indirectly on human life. This study focused on the development of mathematical

equations based on the constructed storm-time TEC databases, for estimating TEC during

geomagnetic storms. On a latitudinal scale, the performances of existing models/techniques

for reconstructing TEC during storm conditions were evaluated with respect to established

models. The models/techniques that were considered are the International Reference Iono-

sphere (IRI), which is a standard empirical model of the ionosphere (Rawer et al., 1978;

Bilitza, 2001), and the Multi-Instrument Data Analysis System (MIDAS), an inversion algo-

rithm for ionospheric tomography (Mitchell & Spencer, 2003). Observational TEC data used

in this study were derived from Global Navigation Satellite System (GNSS) measurements,

specifically, the Global Positioning System (GPS) records from a network of ground-based

receivers within the African sector and surrounding areas.

The ionosphere-thermosphere reaction due to magnetic storms can be understood via Physics-

based models and simulation studies. Empirical or data-based models of the ionosphere have

the advantage that, they do not depend on the evolving theoretical understanding of the

physical processes that govern the ionospheric dynamics (Bilitza et al., 2014). However,

the evaluation of the contribution of an included input in empirical models to storm-time

ionospheric modelling, can provide the information on whether a given physical process rep-

resented by that input influences the ionospheric variability or not. In this perspective, the

current study focuses on the development of empirical models and not on Physics-based mod-

els.

There exists a number of physics-based models (based on first principles) that can provide

electron density/TEC. Typical examples include the Thermosphere Ionosphere Electrody-

namics General Circulation Model (TIEGCM) (Richmond et al., 1992), Coupled Thermo-

sphere Ionosphere Plasmasphere Electrodynamics (CTIPe) model (Fuller-Rowell & Rees,

1980; Codrescu et al., 2008), Global Ionosphere Thermosphere Model (GITM) (Ridley et al.,

2006), and SAMI3 (Sami3 is Also a Model of the Ionosphere) (Huba et al., 2000). Em-

pirical (data-based) standard models of the ionosphere such as the IRI, Bent ionospheric

model, and NeQuick are also available (Llewellyn & Bent, 1973; Bilitza et al., 1988; Radi-

cella, 2009). Other empirical models of ionospheric TEC or critical frequency of the F2

layer (foF2) have been extensively developed based on mathematical approaches such as

data assimilation techniques (Kalman filtering and Kriging method) (e.g., Hajj et al., 2004;

Fuller-Rowell et al., 2006; Ercha et al., 2015; Pignalberi et al., 2017), empirical orthogo-

nal functions (EOF) analysis (e.g., Ercha et al., 2012; Uwamahoro & Habarulema, 2015;

Dabbakuti et al., 2016), regression analysis (e.g., Kakinami et al., 2009; Mukhtarov et al.,
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2013a,b; Hajra et al., 2016), and theory of splines (e.g., Schmidt et al., 2011; Erdogan et al.,

2017). Artificial neural networks (ANNs) have more often been applied to TEC and foF2

modelling during geomagnetically quiet and storm conditions (e.g., Hernandez-Pajares et al.,

1997; Cander, 1998; Poole & McKinnell, 2000; McKinnell & Poole, 2004; Tulunay et al., 2004;

Oyeyemi et al., 2006; Tulunay et al., 2006; Habarulema et al., 2007; Leandro & Santos, 2007;

Maruyama, 2007; Habarulema et al., 2009a,b, 2010; Acharya et al., 2011; Habarulema et al.,

2011; Habarulema & McKinnell, 2012; Ratnam et al., 2012; Watthanasangmechai et al., 2012;

Huang & Yuan, 2014; Sur et al., 2015; Uwamahoro & Habarulema, 2015; Okoh et al., 2016;

Tshisaphungo et al., 2018). Studies have shown that ionospheric modelling is more difficult

during storms compared to quiet conditions (e.g., Ratnam et al., 2011; Ercha et al., 2012;

Kumar et al., 2014; Cander, 2015). A number of challenges related to storm-time ionospheric

modelling/reconstruction have been raised. For example, the inaccuracy/failure of empirical

models to capture positive or negative ionospheric responses during storm conditions has

been reported (e.g., Fuller-Rowell et al., 2000; Habarulema et al., 2010, 2011; Watthanasang-

mechai et al., 2012; Mukhtarov et al., 2013a; Uwamahoro & Habarulema, 2015). Difficulty in

storm-time modelling of the low/equatorial ionosphere, normally characterized by complex

electrodynamic changes and consequential high TEC gradients compared to middle latitude

has also been reported (Materassi & Mitchell, 2005; Adewale et al., 2011; Kenpankho et al.,

2011; Chartier et al., 2014; Panda et al., 2015; Giday & Katamzi-Joseph, 2018; Uwamahoro

et al., 2018b). Incomplete knowledge of the main drivers of storms and the lack of/insufficient

representation of all mechanisms that are involved in storm processes, are likely the main

reasons for inaccurate storm-time ionospheric modelling. Another common reason for in-

accuracy in empirical models such as IRI in some regions (e.g., low/equatorial and auroral

latitudes) is the lack of or sparse data sources (Bilitza & Reinisch, 2008).

Although much effort has been put into the improvement of ionospheric modelling, fur-

ther improvements are still required in order to accurately predict the storm impact (e.g.,

Habarulema et al., 2011; Watthanasangmechai et al., 2012; Mukhtarov et al., 2013a; Uwama-

horo & Habarulema, 2015). For example, empirical models of the ionosphere such as IRI and

NeQuick have been and are still being improved as new data and more accurate models be-

come available (Bilitza, 2003; Radicella, 2009). In the same framework, the current work is

an effort towards improving TEC modelling during geomagnetic storms by investigating new

modelling inputs and evaluating their contributions. Thus, there are a number of particular-

ities of this work when compared with existing works. The first is that, in addition to the

standard modelling inputs that represent diurnal and seasonal variations of TEC, solar and

geomagnetic activities, the meridional wind velocity has been introduced for the first time

in storm-time TEC modelling and its contribution to modelling results has been evaluated

statistically. The second particularity concerns the databases used for the implementation
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of models. While previous empirical models were based on a mixture of TEC data for both

quiet and disturbed conditions, the present work relies on storm-time TEC databases only,

built based on the storm criterion of Dst 6 −50 nT and/or Kp > 4. On this point, the

hypothesis is that one of the sources of inaccuracy of previous storm-time models may have

resided in the use of databases dominated by quiet-time data.

1.1 Motivation and importance of the project

Propagation of ground-to-satellite and over-the-horizon radio signals depends on the structure

of the ionosphere. Geomagnetic and ionospheric storms significantly alter the properties of

the ionosphere. Thus, TEC perturbations due to geomagnetic storms have a significant

impact on radio communication over the entire radio spectrum, i.e. from extremely low

frequency (< 3 kHz) to super high frequency (3000 - 30 000 MHz), and to satellite applications

such as navigation, space weather forecasting, GPS surveying, and remote sensing systems,

which rely on electromagnetic signals that pass through the ionosphere (Hofmann-Wellenhof

et al., 1992; Moldwin, 2008; Gleason & Gebre-Egziabher, 2009; Ercha et al., 2015). For

instance, TEC encountered along the signal path between satellite and a receiver is one of

the main sources of error for positioning applications (Rama Rao et al., 2006; Ciraolo et al.,

2007). Time-varying currents induced in the ionosphere by large geomagnetic storms may in

turn generate electrical currents in ground-based infrastructures such as electric power lines,

telephone lines, and pipelines. The resulting adverse impacts such as disruption or complete

damage of the equipment could lead to enormous socioeconomic losses (Doherty et al., 2004;

Moldwin, 2008). Another point of motivation is that existing storm-time TEC models need

further improvements especially in predicting positive and negative storm phases. Accurate

storm-time models may provide warnings to space weather community, so as to offer an

opportunity to plan appropriately and at the right time referring to what is likely to happen

some time ahead.

1.2 Project objectives

The main objectives of this project are to:

� Build storm-time TEC databases for selected GPS stations within Africa and surround-

ing areas.

� Develop mathematical equations to estimate TEC during geomagnetic storms.

� Explore and evaluate the performances of different storm-time TEC techniques.

� Investigate new modelling inputs and evaluate their contributions to storm-time TEC

modelling.
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1.3 Thesis outline

This thesis consists of 7 chapters.

Chapter one discusses work done in the field of ionospheric modelling and the potential

contribution of the current work towards the improvement of storm-time TEC modelling.

The project motivation and objectives, and thesis structure are also presented.

Background theory on the Earth’s atmosphere, ionosphere and magnetosphere, as well as

a description of TEC, geomagnetic and ionospheric storms, is provided in Chapter 2.

The data sources exploited for this study, data processing steps, and modelling inputs, are

briefly presented in Chapter 3. Climatological models (IRI and Horizontal Wind Model

(HWM)) used in this work, and the MIDAS algorithm are also described. Background the-

ory on empirical storm-time TEC modelling techniques considered (artificial neural networks

(ANNs), Non-linear regression analysis (NLRA), the Metropolis-Hastings Algorithm (MHA),

and empirical orthogonal functions (EOF) analysis) is also provided.

Chapter 4 covers the evaluation of the contribution of different solar activity modelling inputs

(sunspot number (SSN), solar flux index (F10.7), and its derivative (F10.7p)) to TEC mod-

elling during geomagnetic storms and the results are compared with NLRA model predictions

complemented with MHA. This chapter also presents the results about the performance eval-

uation of ANNs and MIDAS over equatorial/low and mid-latitudes of the African sector.

Statistical results and highlights about different storm-time TEC models developed for low/equatorial

and middle latitudes, compared to IRI predictions over the locations considered, are presented

in Chapter 5.

Chapter 6 presents the results about the contribution of meridional neutral winds (repre-

sented by meridional neutral wind velocity in modelling) on TEC modelling during storm

conditions.

Conclusions and suggestions for future work are provided in Chapter 7.
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Chapter 2

Theoretical background

In this chapter, a brief description of the Earth’s atmosphere is provided and particular at-

tention is paid to the ionosphere, which is the most important layer for radio communication.

Basic theory of the ionospheric total electron content (TEC), as a descriptive parameter of

the state of the ionosphere, is provided. An introduction to Earth’s magnetosphere and its

coupling to the solar wind is also presented, as well as a brief summary on the mechanisms

that drive the ionospheric responses during geomagnetic storms.

2.1 Earth’s atmosphere

The atmosphere is a layer of mixed gases that surrounds the Earth. Its major components

are Nitrogen (N2, 78.11 %), Oxygen (O2, 20.95 %), Argon (Ar, 0.93 %), Neon (Ne, 18.18 ×
10−4 %), and Helium (He, 5.24 × 10−4 %). Other important constituents are water (H2O, 0 -

7 %), Carbon dioxide (CO2, 0.01 - 0.1 %), and Ozone (O3, 0 - 0.00001 %) (Zolesi & Cander,

2014). The Earth’s atmosphere is important for life since it protects us from solar and ex-

tragalactic cosmic rays, contains Oxygen we use to breath and Carbon dioxide necessary for

plants. The main source of atmosphere’s heat is the Sun and pressure gradients originating

from temperature differences between two points are the main drivers of atmospheric winds.

Terrestrial weather is also a direct result of temperature changes (heating and cooling) in

the lower atmosphere (White, 1970). The vertical structure of the Earth’s atmosphere is

described by studying the behaviour of temperature with altitude. Based on temperature

variation with respect to height, the Earth atmosphere is subdivided into several regions:

troposphere, stratosphere, mesosphere, thermosphere, and exosphere (Rishbeth & Garriott,

1969; White, 1970; Davies, 1990; Zolesi & Cander, 2014).

The troposphere extends from the Earth’s surface up to an altitude of about 15 km above

the equator, and 10 km above the geographical poles (Zolesi & Cander, 2014). Within this

region, the temperature decreases from about 290 K at the Earth’s surface to 220 K at the

tropopause, the upper boundary of the troposphere (White, 1970). The average tempera-

ture decrease is 6.5 K per km and convective movement of the air is the main reason for

the decrease in temperature within the troposphere. Warmer air masses in contact with the
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Earth’s surface cool down as they move upward in an adiabatic process (Zolesi & Cander,

2014). Above the troposphere is the stratosphere which extends up to an altitude of about

50 km, i.e. at the stratopause. The temperature increases with increasing altitude, from

220 K to about 270 K because of the existence of the ozone layer (tri-atomic Oxygen atom)

which absorbs ultraviolet (UV) radiation from the Sun (Rishbeth & Garriott, 1969; Kelley,

2009; Zolesi & Cander, 2014). The temperature increase in the stratosphere is not only from

absorption of UV by 03, but also the absorption by 02 and N2 is important. The mesosphere

lies within the altitude range of 50 km (stratopause) to about 85 km, i.e. the upper bound-

ary of the mesosphere, called the mesopause (Rishbeth & Garriott, 1969; Davies, 1990). The

temperature varies from about 270 K to 180 K at the mesopause (White, 1970). Above

the mesosphere is the thermosphere with its upper limit, the thermopause, at an altitude of

about 500 km. However, it is important to note that the exact altitude of the thermopause

varies with time of the day, solar flux, season, and location of solar energy inputs. The ther-

mosphere is named as such because of the rapid increase in temperature with height from 180

K to 1500 K at a height of about 300 km (White, 1970). The increase in temperature within

the thermosphere is due to the absorption of UV radiation by Oxygen and Nitrogen atoms

at greater heights (Rishbeth & Garriott, 1969; Kelley, 2009; Zolesi & Cander, 2014). The

UV radiation, and to some extend also X-rays, dissociate Oxygen and Nitrogen molecules

and a large fraction of the heat liberated in the thermosphere is removed by downward con-

duction in such a way that the temperature increases upward (Rishbeth & Garriott, 1969).

The outermost layer of the Earth’s atmosphere is called the exosphere and extends from the

thermopause to higher altitudes. The exosphere is characterized by a temperature which is

nearly constant and low atmospheric density, so that collisions between neutral molecules are

negligible (Rishbeth & Garriott, 1969; White, 1970). The lower boundary of the exosphere is

called the exobase and the upper boundary corresponds to the line of separation between the

Earth’s atmosphere and the interplanetary medium (Visconti, 2001; Zolesi & Cander, 2014).

An illustrative sketch of the atmospheric temperature variation with respect to altitude is

shown in Figure 2.1 (a).

The Large number of ionized particles found in thermosphere and exosphere results from

extreme UV (EUV) radiation and X-rays. These two regions overlap with the Earth’s iono-

sphere, which is a portion of the Earth’s upper atmosphere composed of charged particles

(free electrons and positive ions) under the control of gravity and the Earth’s magnetic field

(Zolesi & Cander, 2014). Free electrons and positive ions within the ionosphere are approx-

imately in equal number and the ionospheric medium is assumed to be electrically neutral

(Davies, 1990).
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(a) Average temperature profile
through the atmosphere.

(b) Schematic representation of daytime and nighttime ionospheric structures.

Figure 2.1: A schematic illustration of (a) Average temperature profile of the Earth’s atmo-
sphere (http://www.ces.fau.edu/nasa/module-2/atmosphere/earth.php) and (b) Day-
time and nighttime electron density profiles (http://www.sws.bom.gov.au/Educational).

2.2 Ionosphere

The region of the Earth’s atmosphere mostly composed of ions, extending from about 50 km

to 1000 km is called ionosphere (Misra & Enge, 2006). The ionosphere covers the mesosphere,

thermosphere, and the exosphere (Zolesi & Cander, 2014). The ozone layer (ozonosphere)

which extends roughly from 10 km to 80 km with a peak of concentration at about 25 km,

overlaps with the lower ionosphere from the altitude of about 50 km (Rishbeth & Garriott,

1969). Ions are formed through a process called photoionization. When EUV photons hit

neutral atoms (referred here as A) such as Oxygen atoms in the Earth’s atmosphere, some

electrons (e– ) are detached from neutrals and move freely, causing neutral atoms to become

positive ions (A+) as follows (McNamara, 1991; Kelley, 2009):

A −−→ A+ + e– .

Only free electrons are responsible for reflection of radio waves in the ionosphere because

they are much lighter than positive ions and thus, respond fast to rapid oscillations of radio

waves (McNamara, 1991). Through a reverse process of photoionization, namely recombi-

nation, electrons are lost in the upper ionosphere when they combine with positive ions to

form neutral atoms (Rishbeth & Garriott, 1969; McNamara, 1991; Kelley, 2009). In the

lower ionosphere, free electrons are mostly lost through a process called attachment. During

the attachment process, electrons are attached to neutral atoms which thus become negative
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ions (Rishbeth & Garriott, 1969; McNamara, 1991). Similar to positive ions, negative ions

are much heavier than electrons and are thus incapable of responding to rapid oscillations of

radio waves (McNamara, 1991).

There exists two types of recombination: radiative recombination (combination of atomic

ion with electron) and dissociative recombination (combination of molecular ion with elec-

tron) (Rishbeth & Garriott, 1969; McNamara, 1991). In the former, free electrons combine

directly with positive ions X+ to produce neutral atom A as follows:

X+ + e– −−→ A+ Radiative energy

In dissociative recombination, ions are lost through a two-stage process. In the first stage

(charge exchange), positive ions (X+) produced by photoionization combine with neutral

molecules, A2 (e.g., Oxygen or Nitrogen molecules) to produce positive molecular ions where

one atom in the primary molecule has been substituted.

X+ +A2 −−→ AX+ +A

In the second stage, the positive molecular ions (AX+) resulting from the charge exchange

process combine with free electrons to produce neutral atoms A and X:

AX+ + e– −−→ A+ X

An important point to note is that radiative recombination is less important than dissociative

recombination, which is more efficient. It should also be noted that photoionization occurs

only during daytime when the Sun is above the horizon, while recombination and attachment

are always happening, and take place at all ionospheric heights (McNamara, 1991).

It is well known that the neutral atmosphere is composed of a variety of atoms and molecules

(e.g., Oxygen, Nitrogen, Nitric oxide) which can be photoionized. Their densities decrease

with increasing altitude while the EUV radiation intensity responsible for photoionization

reduces towards lower altitudes due to sunlight absorption/attenuation. A consequential re-

sult of these two opposing effects is the formation of a layer of electrons characterized by

unequal electron densities at different altitudes. The maximum electron density is observed

at a certain height while below and above this particular point, electron densities are lower

(McNamara, 1991; Kelley, 2009). The structure of the ionosphere can be explained based on

electron density variation with respect to altitude (electron density profile). The ionosphere

is subdivided into different layers named D, E, and F, which cover the altitude ranges of

about 50 - 85 km, 85 - 140 km, and 140 - 600 km. The high ionosphere extends from 600

km to the altitudes above (White, 1970). During daytime, F layer splits into two different

layers F1 (140 - 200 km) and F2 (200 - 600 km). After sunset, photoionization ceases and
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recombination is the dominant mechanism. As a consequence, the D, E, and F1 layers al-

most disappear during nighttime while the F2 layer persists. This makes the F2 to be more

appropriate for high frequency (HF) communication (McNamara, 1991). A schematic rep-

resentation of daytime and nighttime structures of the ionosphere are shown in Figure 2.1 (b).

During solar quiet conditions, cosmic rays are the main source of photoionization in D layer,

specifically at altitudes below 70 km, because they have sufficient energy to deeper penetrate

the lower ionosphere. Above 70 km, in D and E layers, X rays and Lyaman-α UV radiation

are responsible for photoionization (Rishbeth & Garriott, 1969; White, 1970). The D layer is

absent during the night and typical value of the maximum electron density at noon is about

1.5 × 1010 m−3 in the mid-latitude, while it is 1.5 × 1011 m−3 in the E region, but reduces

up to <1010 m−3 during the night as the E layer tends to vanish completely (McNamara,

1991). For F layer, EUV radiation is the primary source of photoionization and maximum

electron densities are about 2.5× 1011 m−3 and 1012 m−3 at noon time for F1 and F2 layers,

respectively. At midnight the F2 layer density reduces to 1011 m−3 while the F1 layer is

absent at night (White, 1970; McNamara, 1991).

The electron density of a specific layer gives an idea about the frequency for HF commu-

nication. The ionospheric plasma is considered as a cold weakly ionized gas composed of

electrons (lighter species) and positive ions (heavy species) in equal number (Davies, 1990;

Baumjohann et al., 1997). When electron gas within a slab of plasma is displaced by a small

distance x from the gas of positive ions, the force acting on an electron is

F = mẍ = eE (2.1)

where m = 9.1091 × 10−31 kg, e = 1.6021 × 10−19 C, and ẍ are the electron mass, charge,

and acceleration, respectively, and E is the electric field induced by polarization of the slab

of electrically neutral plasma. Given that the expression of the surface charge density is

σ = Q/S = (n/V )ex = Nex, where Q = ne and n are the total charge and total number of

electrons within the slab, S and V = S× x are the slab surface and volume, N = n/V is the

electron density, the electric field is given by

E = − σ

ǫ0
= −Nex

ǫ0
. (2.2)

The equation of motion of the electron is obtained by combining Equations (2.1) and (2.2)

ẍ+
Ne2

ǫ0m
x = 0. (2.3)

Equation (2.3) represents a simple harmonic motion with angular plasma frequency
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ωp = 2πfp =

(

Ne2

ǫ0m

)1/2

(2.4)

where fp is the plasma frequency (Chen, 1984; Davies, 1990). Following the same procedure

and considering a single-charged positive ion (charge +e and mass M for a single particle),

the single-charged ion angular plasma frequency is

ωpi = 2πfpi =

(

Nie
2

ǫ0M

)1/2

(2.5)

where fpi is the single-charged ion plasma frequency. Comparing Equations (2.4) and (2.5)

and taking into account that N ≈ Ni (electrically neutral plasma), it follows that

fp
fpi

=

(

M

m

)1/2

(2.6)

Since positive ions are much heavier than electrons (M ≫ m =⇒ fp ≫ fpi) they appear

immobile compared to electrons. It can thus be assumed that the plasma oscillates at the

frequency fp given by Equation (2.4) (Davies, 1990). The same equation allows to establish

the relationship between the maximum density Nm of a specific layer of the ionosphere and

the critical frequency fc of that same layer, i.e. the maximum frequency that can be reflected

from that layer at vertical incidence. This is achieved by substituting all parameters with

their numerical values in Equation (2.4):

fc ≃ 8.98× 10−6
√

Nm (2.7)

where fc is in MHz and Nm in m−3 (White, 1970; Chen, 1984; Davies, 1990; McNamara,

1991; Kelley, 2009).

2.3 Ionospheric total electron content

The ionospheric total electron content (TEC) is a good descriptive quantity of the Earth’s

ionosphere. For Global Navigation Satellite System (GNSS) observations, TEC is defined as

the total number of electrons contained in a tube of a cross-sectional area of 1 m2 extend-

ing from a satellite to a receiver on the ground (Hofmann-Wellenhof et al., 1992; Misra &

Enge, 2006). It is expressed in TEC unit (1 TECU = 1016 electrons/m2) and computed by

integrating the electron density along the signal path according to the formula:

TEC =

∫ R

S

Ne(l)dl (2.8)

Ne(l) is the electron density, R and S in the integration limits stand for receiver and satellite

positions respectively, and dl is an element of distance in such a way that
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l =

∫

dl (2.9)

represents the geometric distance measured along the straight line between a satellite and

receiver (Hofmann-Wellenhof et al., 1992; Misra & Enge, 2006). The integration of electron

density over some distance is usually known as the total electron content and varies depend-

ing on the instrumentation used to compute this quantity (McNamara, 1985; Davies, 1990).

Different ways that are used to obtain TEC include but not limited to Faraday rotation (e.g.,

Titheridge, 1972; McNamara, 1985; Davies, 1990), ionosondes (e.g., McKinnell et al., 2007),

incoherent scatter radars (ISR) (e.g., Makela et al., 2000), low Earth orbit (LEO) satellites

(e.g., Yue et al., 2011), and GPS satellites (e.g., Gao & Liu, 2002; Araujo-Pradere, 2005;

Davies, 1990). All these techniques/instruments can provide TEC but within different alti-

tude ranges. For example, Titheridge (1972) reported that Faraday rotation measurements

by geostationary satellites can provide TEC up to an altitude of 2000 km. On the other

hand, TEC derived from ionosonde measurements was obtained up to the altitude of 1000

km (McKinnell et al., 2007), while TEC from ISR was limited to an upper altitude of 1500

km (Makela et al., 2000). Furthermore, derived TEC from differential Doppler measurements

on radio transmissions from the Transit 4A satellite was limited to the satellite altitude of

880 km (Bhonsle et al., 1965), whereas GPS TEC is an integrated quantity from the ground

up to an altitude of about 20,200 km (Makela et al., 2000).

TEC is a good indicator of ionospheric variability and can be derived from satellite mea-

surements as aforementioned. L band signals of GNSS are delayed when passing through

the ionosphere and this introduces positioning error which may go up to 100 m. As the

ionospheric delay experienced by a signal is proportional to TEC, mitigation of satellite posi-

tioning errors can be achieved by studying the ionospheric TEC variability (Jakowski et al.,

2011). In the following section, temporal and spatial variability of the ionosphere, as well as

its dependence on solar activity are described based on TEC.

2.3.1 Temporal and spatial variations of TEC

The main driver of the ionospheric variability is the Sun and the rate at which the photoion-

ization occurs depends on the solar zenith angle. TEC exhibits both temporal and spatial

variations since the energy received from the Sun is unequally distributed in the Earth’s

atmosphere. Figure 2.2 (a)-(d) illustrates the main ionospheric TEC variations which are

diurnal, seasonal, spatial (latitude/longitude) and solar activity dependence, respectively.
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(a) Diurnal variation of TEC on 17 March 2018.
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Figure 2.2: (a) Diurnal variation of TEC over Hartebeesthoek (HRAO; 25.89 ◦ S, 27.68◦ E,
36.32◦ S, geomagnetic), South Africa, on 17 March 2018. Local time (LT) = UT + 2 hours.
(b) Annual variation of TEC (only TEC values at 10:00 UT are presented) over HRAO during
2017. (c) Global TEC map for 17 March 2018 at 10:00 UT. Data used to generate the map
were obtained from ftp://cddis.gsfc.nasa.gov/pub/gps/products/ionex. (d) TEC (at 10:00
UT) variation (red dots) with solar activity (represented by SSN, blue dots) over HRAO
during the period 1996 - 2017.

2.3.1.1 Diurnal variation of TEC

As demonstrated in Figure 2.2 (a) which illustrates the diurnal variation of TEC over a mid-

latitude station, Hartebeesthoek (HRAO; 25.89 ◦ S, 27.68◦ E, 36.32◦ S, geomagnetic), South

Africa, on 17 March 2018, maximum TEC values are observed early afternoon (around 12:00

UT) while minimum values are observed at night. At local midday, the solar zenith angle

is zero, meaning that the Sun is overhead. The solar radiation and thus, the photoioniza-

tion rate, are maximum leading to higher TEC values around midday. Conversely, during

nighttime, photoionization ceases and recombination and attachment dominate. The loss of
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electrons during nighttime is the reason for low TEC values observed after sunset until just

before sunrise. A similar diurnal TEC trend has extensively been reported for different lati-

tude locations (e.g., Davies, 1990; Bagiya et al., 2009; Chauhan et al., 2011; Oron et al., 2013).

The morning overshoot in electron temperature Te is another phenomenon that may in-

fluence TEC variation specifically in the early morning hours. It is a rapid increase of Te

in the early morning that occurs in the sunlit atmosphere (Stolle et al., 2011). The morn-

ing overshoot has a direct effect on TEC variation in sense that when the temperature Te

increases, the recombination rate increases and consequently, TEC decreases. This could be

the reason of the TEC decrease observed in the morning on 17 March 2018, between 06:00

and 08:00 (Figure 2.2 (a)).

There are physical phenomena such as pre-reversal enhancement (PRE) of the zonal electric

field that cause irregular variations in electron density/TEC. The daytime eastward electric

field in the E and F layers near the magnetic equator often shows a significant and sharp in-

crease just some time before it reverses to nighttime westward direction. The suggested main

cause of the PRE is the F region winds (F region dynamo) (e.g., Fejer et al., 1979; Farley

et al., 1986), but some authors have also suggested the E region tidal winds (e.g., Walton &

Bowhill, 1979). A consequential result of PRE is that, sometimes after sunset, just before

the reversal of zonal electric field to westward, there is an uplifting of the F-layer which leads

to an increase in TEC/electron density in low latitudes (e.g., Anderson & Klobuchar, 1983;

England et al., 2006; Ram et al., 2006; Fagundes et al., 2009).

2.3.1.2 Seasonal variation

Figure 2.2 (b) which illustrates TEC variation during 2017 (only at 10:00 UT) over HRAO,

shows that maximum TEC values are observed during February - March and October -

November, just around/during the equinoxial months (March and September). Davies (1990);

Bagiya et al. (2009) reported the same observation in their study of the seasonal variation of

TEC in low- and mid-latitude regions. The reason for this is that the Sun is at the zenith

over the equatorial line during equinoxes and it thus shines more directly on the Earth during

this period than during the rest of the year. Therefore, high TEC values around equinoxial

months are a consequence of more pronounced photoionization during this period of the year.

Minimum TEC values are observed during the winter season (June - August) and around

the solstice months (June and December). Relatively higher values observed during summer

compared to winter can be explained based on the noon solar zenith angle which is always

greater in winter than the corresponding solar zenith angle in summer. This indicates that

the Sun is more overhead in summer than in winter. Since the ionospheric variability is also

influenced by other factors such as changes of the neutral atmosphere, the seasonal variation
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as described above may always not be the case.

Another feature of the seasonal variation of electron density/TEC, particularly in mid-

latitude is the winter or seasonal anomaly, when daytime electron density at the F2 layer peak

height (NmF2) is greater in winter than in summer (Davies, 1990; McNamara, 1991; Lee

et al., 2011). This is, however, not always the case, due to the seasonal variations exhibited

by neutral atmospheric composition (McNamara, 1991).

2.3.1.3 TEC variation with latitude

The sunlight is more direct over the equatorial and low latitude regions than elsewhere. A

direct consequential effect is that the photoionization rate is more pronounced over equa-

torial and low latitude regions than other latitude sectors, leading to higher TEC values

over the equator and nearby locations. Since the intensity of solar radiation depends on the

solar zenith angle, which increases as one moves towards polar regions, the sunlight hits the

Earth’s atmosphere at an oblique angle in the middle and high latitude regions. Thus, the

rate at which photoionization occurs decreases with increasing latitude resulting in relatively

lower TEC at middle and high latitudes (McNamara, 1991).

The fountain effect is a well-known phenomenon that significantly influences TEC variability

in the low latitude ionosphere. The Lorentz force resulting from the E-region dayside electric

field and the Earth’s magnetic field lifts plasma upward to higher altitudes. As charged par-

ticles move upward, they loose part of their energy due to gravity and thus diffuse along the

Earth’s magnetic field lines towards mid-latitudes. A consequential net result is that, above

the equatorial region, a trough of electron density is created while at about ±(15−20)◦ from

the magnetic equator crests of enhanced electron density are created. The entire region re-

sulting from the fountain effect is called the equatorial ionization anomaly (EIA) (Appleton,

1946; McNamara, 1991; Lin et al., 2007). Figure 2.2 (c) of the global TEC map at 10:00

UT shows high TEC values in the EIA within a latitudinal coverage of about ±20◦. As one

moves farther from the EIA, TEC decreases gradually with increasing latitude.

2.3.1.4 TEC variation with solar activity

Figure 2.2 (d) illustrates the variation of TEC (shown in red dots) over HRAO for the duration

of about two solar cycles (1996 - 2017). The sunspot number (SSN, shown in blue dots) as

a good indicator of the activity on the Sun is also presented along with TEC values. As

demonstrated in Figure 2.2 (d), TEC and SSN have similar trends with maxima and minima

reached during high (1999 - 2001 and 2012 - 2014) and low (2005 - 2009) solar activity periods,

respectively. Over the considered period, a correlation coefficient of about 74.51 % was found

between the two quantities. A large number of sunspots at the Sun’s photosphere indicates
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that there are many active regions which could possibly release energy towards the Earth.

Solar flares are more frequent during the solar maximum and this could possibly be the reason

for a higher photoionization rate and thus high TEC values during the solar maximum period

(Davies, 1990). As solar flares are usually (although not always) accompanied with coronal

mass ejections (CMEs), most of geomagnetic storms occurred during the solar maximum

period. The dependence of geomagnetic storms on solar activity will be provided in the next

chapter. Other studies that investigated the impact of solar activity on TEC found similar

results (Huang & Cheng, 1995; Liu & Chen, 2009). For example, a correlation coefficient

of about 0.92 between 12-month running averages of TEC and SSN was found in a study

of TEC dependence on solar activity around the equatorial anomaly crest in eastern Asia

(Huang & Cheng, 1995). Bagiya et al. (2009) reported a strong correlation between the 10.7

cm solar flux index and daytime peak TEC over near EIA crest, during solar minimum period

of 2005 - 2007. A similar observation was noticed while studying the relationships between

TEC over a low latitude station (Mbarara, Uganda) and F10.7 index on one hand, and SSN

on the other hand, during the ascending phase of solar cycle (2010 - 2011) (Oron et al., 2013).

2.4 Single particle motion in a magnetic field

When a positively charged particle q moves in a uniform magnetic field ~B with an initial

velocity ~v perpendicular to the magnetic field (Figure 2.3 (a)), the magnetic force ~FB of

a constant magnitude qvB is perpendicular to ~v and ~B. In this case, the particle is in a

uniform circular motion in a plane perpendicular to ~B (Serway & Jewett, 2004, 2010). The

radius of the particle trajectory is found by equalizing the magnetic force with centripetal

force mv2/r:

r =
mv

qB
. (2.10)

m is the mass of the particle. The angular speed of the particle is

ω =
v

r
(2.11)

=
qB

m
,

while the period of the motion is given by
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T =
2π

ω
(2.12)

=
2πm

qB
.

In the case where the initial velocity makes some arbitrary angle with respect to ~B, the

particle trajectory is a helix. Figure 2.3 (b) illustrates the case where the component vx is in

the direction of ~B. The component of the force in the x direction (and hence, the accelaration

ax) is zero which implies that vx remains constant. The magnetic force ~FB = q(~v× ~B) causes

vy and vz to change with time, resulting in a helix motion whose axis is parallel to ~B (Serway

& Jewett, 2004, 2010).

(a) (b)

Figure 2.3: Motion of a charged particle in a uniform magnetic field: (a) initial velocity is
perpendicular to the magnetic field, and (b) initial velocity makes some arbitrary angle with
respect to the magnetic field (Serway & Jewett, 2004, 2010).

2.5 Solar wind and Earth’s magnetosphere coupling

The solar wind consists of a stream of charged particles (mostly protons, helium nuclei,

and electrons) emanating from the corona of the Sun, that travels supersonically in the

interplanetary medium and carrying with it a magnetic field. The solar wind magnetic

field is also called the interplanetary magnetic field (IMF) and corresponds to the Sun’s

magnetic field pulled out by the solar wind into the heliosphere (Moldwin, 2008). The region

surrounding the Earth where the behaviour of electrically charged particles near the Earth

is controlled by the Earth’s magnetic field is called the magnetosphere. The boundary of
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the magnetosphere with outer space is defined by a balance between the magnetic pressure

of the magnetosphere and solar wind pressure and is called the magnetopause (Page, 1973;

Moldwin, 2008). The exact location of the magnetopause depends on the pressure exerted by

the solar wind on the magnetosphere. The nominal location of the magnetopause is at ≈ 10

Earth radii on the dayside of the Earth and at a greater distance on the nightside (Rishbeth

& Garriott, 1969). The magnetosphere contracts earthward or expands when the solar wind

pressure increases or decreases. A schematic diagram of the Earth’s magnetosphere is shown

in Figure 2.4 (a) with the solar wind flow shown on the left and the north is up. Different

parts of the Earth’s magnetosphere are also labeled. Near the Earth, the dipole-like magnetic

field region constitutes the inner magnetosphere while non dipole regions like the tail-like

configuration observed on the nightside at around geosynchronous orbit (6.6 Earth radius)

constitutes the outer magnetosphere (Moldwin, 2008). The region of cold and dense plasma

just around the Earth and which co-rotates with the Earth is called the plasmasphere with

its upper boundary called the plasmapause (Moldwin, 2008; Darrouzet et al., 2009). The

major constituents of the plasmasphere include Hydrogen and Helium and some amount of

Oxygen. The Van Allen radiation belts often overlap with the plasmasphere.

(a) Schematic diagram of the Earth’s magnetosphere. (b) Magnetic reconnection.

Figure 2.4: (a) A schematic diagram of the Earth’s magnetosphere with solar wind shown
on the left (https://www.nasa.gov/mission_pages/ibex/news/spaceweather.html), and
(b) Magnetic reconnection between the solar wind and the Earth’s magnetic fields (https:
//www.nasa.gov/mission_pages/sunearth/multimedia/magnetosphere.html).

When directed towards the Earth, the solar wind encounters the Earth’s magnetosphere

which acts as an obstacle. Due to the supersonic nature of the solar wind, a shock wave

called the bow shock is formed upstream (at ≈ 3 Earth radii farther from the magnetopause,

but the exact location is highly variable with solar wind Mach number) while on the nightside

the magnetic field lines are stretched out and form a tail. The cylindrically-shaped region

with tail-like configuration is called the magnetotail, while the region within the shock front

is called the magnetosheath (Davies, 1990; Moldwin, 2008). In the case where the IMF
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and the Earth’s magnetic field have the same orientation, the solar wind moves around the

magnetosphere and its accompanying plasma does not enter the Earth’s magnetosphere.

Magnetic reconnection takes place when the solar wind magnetic field opposes (southward

IMF) the Earth’s magnetic field and there is cancellation of the magnetic field, and hence,

the creation of a neutral region at the front or nose of the Earth’s magnetosphere (Figure 2.4

(b)). Thus, the solar wind plasma combines with the plasma within Earth’s magnetosphere

(Page, 1973; Moldwin, 2008). The reconnection of the solar wind (white lines) and the Earth’s

magnetic fields (red lines) is illustrated in Figure 2.4 (b).

2.6 Geomagnetic and ionospheric storms

A geomagnetic storm occurs through solar wind - magnetosphere coupling via magnetic re-

connection. The interaction between solar wind and its magnetic field with the Earth’s

magnetic field alters the Earth’s magnetospheric topology. When the IMF Bz component is

southward oriented (indicated by negative Bz values) for a prolonged time, as the Earth and

solar wind magnetic fields are oppositely directed, the magnetosphere opens up and matter

squirts in. Some of the solar wind particles trapped by the Earth’s magnetic spiral around

the magnetic field lines between the northern and southern poles. Under the influence of the

Earth’s magnetic field, trapped particles also drift around the Earth (Davies, 1990). The

total motion of trapped particles generates an electric current in the form of a ring around

the Earth known as ring current. The net effect at the Earth is to reduce the horizontal

component of the Earth’s magnetic field due to an induced magnetic field that opposes the

total Earth’s magnetic field. This temporary disturbance of the Earth’s magnetic field caused

by solar wind plasma and associated magnetic field is called a geomagnetic storm (Gonzalez

et al., 1994; Baumjohann et al., 1997).

Four phases of a geomagnetic storm are the sudden storm commencement (SSC), an initial

phase, a main phase, and a recovery phase (Gonzalez et al., 1994; Campbell, 1996; Tsuru-

tani, 2001). However, not all geomagnetic storms have necessarily all the four phases. The

SSC corresponds to a sudden change in the Earth’s magnetic field associated with a shock

wave due to the arrival of the solar wind stream of electrically charged particles or coronal

mass ejection (CME) at the Earth’s magnetosphere (Gonzalez et al., 1994). An increase in

the solar wind ram pressure (∼ ρV 2
sw) due to an increase in speed Vsw and density (ρ) at

and behind the shock as the interplanetary shock wave hits the magnetosphere defines the

initial phase of the storm (Tsurutani & Gonzalez, 1997). The beginning of the main phase is

just when the magnetic reconnection takes place. The main phase corresponds to the period

during which the solar wind charged particles are injected into the magnetosphere with effect

of enhancing the ring current (Baumjohann et al., 1997). The period when the loss of the
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ring current particles from the magnetosphere via different physical mechanisms (plasma con-

vection, charge exchange with particles of the neutral atmosphere, Coulomb collisions and

wave-particles resonant interactions) takes place corresponds to the storm recovery phase

(Tsurutani, 2001).

There are two categories of geomagnetic storms to be distinguished: CME and co-rotating

interaction region (CIR) driven storms (Borovsky & Denton, 2006; Denton et al., 2006). A

CME refers to a large volume of plasma released from the Sun’s corona. When directed to-

wards the Earth and it reaches the magnetosphere, its accompanying magnetic field interacts

with the Earth’s magnetic field through magnetic reconnection process. CME-driven storms

are associated with solar events such as solar flares and eruptive prominences. They mostly

occur during the solar maximum and are the major sources of large magnetic storms which

cause more adverse societal impacts compared to CIR-driven storms (Gosling, 1993).

CIR-driven storms are numerous during the declining phase of the solar cycle and occur

recurrently every 27 days (solar rotation). They are produced in response to interaction be-

tween high-speed solar wind streams emanating from the coronal holes and slow-speed solar

winds in the interplanetary medium (Borovsky & Denton, 2006; Denton et al., 2006). In

general, CIRs are responsible for minor and moderate geomagnetic storms when they im-

pinge on the Earth’s magnetosphere (Srivastava & Venkatakrishnan, 2004; Tsurutani et al.,

2006a). The differences between CME- and CIR-driven storms are discussed in Borovsky &

Denton (2006); Denton et al. (2006) and references therein.

The disturbance storm-time (Dst) index is used to characterize a geomagnetic storm. It

allows identification of the storm occurrence, duration, and intensity. Normally, Dst varies

around 0 nT indicating geomagnetically quiet conditions (Gonzalez et al., 1994). The SCC

is indicated by a positive sudden increase of Dst for CME-driven storms. Dst remains posi-

tive and relatively constant during the initial phase, while for CIR-driven storms, the onset

of the initial phase occurs gradually. During the main phases of CME-related storms, Dst

decreases monotonically with time until it reaches its minimum value while for CIR-related

storms, their main phases are generally irregular in profiles and relatively weak in inten-

sity (weak-to-moderate, and sometimes negligible). Generally, CIR-generated storms exhibit

long recovery phases compared to CME-generated storms as monitored in Dst which in-

creases slowly from its minimum value towards normal values around zero (Tsurutani et al.,

2006b). Illustrative examples of CME and CIR-driven storms based on Dst and Kp indices,

solar wind proton density and speed Vsw, and IMF Bz component, are shown in Figure 2.5.

Different storm phases based on Dst are labeled and distinguished for both category of the

storms.
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(a) CME-driven storm of 14 - 18 May 2005. (b) CIR-driven storm of 21 - 29 October 2010.

Figure 2.5: (a) CME-driven storm of 14 - 18 May 2005, and (b) CIR-driven storm of 21 -
29 October 2010. Solar wind speed, Vsw, and proton density, as well as IMF Bz component
are also presented along with Dst and Kp indices. Different storm phases based on Dst are
labeled for each category of the storm.

The “quiet-time” magnetosphere is disturbed by solar events such as solar flares and CMEs.

Such magnetospheric disturbances can, in turn, generate large changes in the ionospheric

electron density distribution, TEC, and ionospheric current system. Ionospheric storms are

merely the manifestations of the ionosphere in response to geomagnetic storms and substorms

(Buonsanto, 1999). Ionospheric F2 region storms are known to be the most disruptive for

radio communication (Davies, 1990).

2.6.1 Ionospheric responses due to geomagnetic storms

Geomagnetic storms may significantly alter the ionospheric electron density/TEC distribu-

tion. Relative to the background ionosphere, positive, negative, or non-significant storm ef-

fects correspond to an increase, decrease, or no clearly noticeable changes in electron density

during the storm period (Prölss, 1980; Volland, 1995; Danilov & Lastovicka, 2001; Vijaya Lek-

shmi et al., 2011; Ngwira et al., 2012a; Habarulema et al., 2013; Matamba et al., 2015). The

main causes of the response of the ionosphere to geomagnetic storms are discussed in the

following section. Several authors identified storm-time ionospheric responses based on the

monthly median TEC representation of the background ionosphere according to the formula

∆TEC =
TECobs − TECm

TECm
× 100% (2.13)
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where TECobs is the observed TEC during the storm and TECm is the monthly median

TEC computed over the month when the storm occurred (e.g., Danilov & Lastovicka, 2001;

Burešová & Laštovička, 2007; Matamba et al., 2015, 2016; Matamba & Habarulema, 2018).

A cutoff of ±45% for quiet-time TEC variability was applied and depending on whether

∆TEC falls above, below, or within this threshold, the storm phase was identified as pos-

itive, negative, or non-significant, respectively. Based on the above procedure, illustrative

examples of positive, negative and non-significant storm effects are shown in Figure 2.6 for

Hartebeesthoek (HRAO; 25.89 ◦ S, 27.68◦ E, 36.32◦ S, geomagnetic), South Africa. Dst and

Kp are presented for each storm period to indicate the storm occurrence and intensity. During

the period 06 - 10 September 2017, a positive storm effect was observed on 08 September 2017

as indicated by ∆TEC (red dotted lines) that exceeds 45 % (Figure 2.6 (a)). An increase in

TEC is also noticeable on the same day. In contrast, a negative ionospheric response during

the storm of 19 - 23 December 2015 was seen on 21 and 22 December 2015 as shown in Figure

2.6 (b) with ∆TEC slightly below -45 %. A decrease in TEC relatively to monthly median

TEC was seen on 21 - 22 December 2015. A typical example of a non-significant storm effect

for the 15 - 18 July 2000 storm is presented in Figure 2.6 (c). In this case, ∆TEC lies within

±45% and no significant changes in TEC magnitude are observed.
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(a) Positive storm effect on 08 September 2017.
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(b) Negative storm effect on 21 - 22 December 2015.
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(c) Non-significant storm effect.

Figure 2.6: (a) Positive, (b) negative, and (c) non-significant storm effects as observed over
Hartebeesthoek (HRAO; 25.89 ◦ S, 27.68◦ E, 36.32◦ S, geomagnetic), South Africa. The red
line in the top panels represents the monthly median TEC (MM TEC) while the threshold
of ±45% is shown by the red dotted lines in the middle panel of each storm period. Dst and
Kp are also presented (bottom panel of each Figure) to indicate the storm time and intensity.
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2.6.2 Driving mechanisms of ionospheric responses during storm

conditions

Some of the mechanisms responsible for ionospheric responses due to geomagnetic storms are

known and have long been documented (e.g., Forbes, 1989; Lu et al., 2001; Lin et al., 2009).

Equatorward meridional neutral winds and associated travelling ionospheric disturbances

(TIDs) (e.g., Forbes, 1989; Lu et al., 2008), and prompt penetration electric fields (PPEFs)

have been listed as the main causes of positive ionospheric responses (e.g., Forbes, 1989;

Tsurutani et al., 2004, 2006a; Fejer et al., 2007; Tsurutani et al., 2008; Negreti et al., 2017).

Conversely, changes in neutral gas composition have been listed to be responsible for negative

ionospheric response (Forbes, 1989). Some of possible ways in which these mechanisms play

a role in the responses of the ionosphere during storm conditions, will be discussed in the

following sections.

2.6.2.1 Horizontal neutral winds

In the upper atmosphere and under quiet conditions, the temperature is highest near the

subsolar point and lowest on the nightside. The resulting pressure difference drive neutral

species (atoms and molecules) in the atmosphere from dayside to nightside. The net motion

of neutral atoms and molecules from high to low pressure regions constitutes neutral winds in

the atmosphere. Transport of charged particles by neutral winds is accomplished through col-

lisions between neutral species and ions (Davies, 1990). Through collisions between neutrals

and ions, the wind motion is transferred to the ions, and then to electrons by Coulomb at-

traction between ions of different polarities. Collisions are sufficiently numerous in the lower

ionosphere (D, E, and lower F1 layers) and therefore, the plasma motion depends on neutral

wind motions. In the upper ionosphere (F2 layer) where the collision frequency is relatively

low, neutral winds have minimal effect on movement of ions across the Earth magnetic field

(Davies, 1990). Meridional (south - north direction or vice versa) neutral winds have much

effect on ionization transport since ionization can move freely along the magnetic field lines

whereas zonal winds (east - west direction or vice versa) have little effect (Titheridge, 1995a).

From this point of view, only the meridional winds and their effects on transport of charged

particles, will be described.

Pressure gradients resulting from temperature changes at a specific height were highlighted

as the main driver of neutral winds in the atmosphere. The absorption of the extreme ul-

traviolet (EUV) solar radiation is thought to be the major heat source at heights above 150

km (F region), while at high latitudes, the main heat sources are particle precipitation and

large-scale convection of the magnetic field lines. Precipitating particles produce a contin-

ual ionisation which heats D and E regions at high latitudes during geomagnetically quiet
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conditions, while during geomagnetic storms the heat increases and extends to low latitudes

(Titheridge, 1995b). Since winds blow from high pressure (high temperature) regions to low

pressure (low temperature) regions, due to the high intensity of EUV radiation received in

the low latitude region, the Earth’s atmosphere is warmer in this region than elsewhere,

resulting in the overall poleward motion of winds. On the other hand, particle precipitation

and Joule heating at high latitudes cause a global motion of winds from both polar regions to

low latitudes and into the opposite hemisphere (Fuller-Rowell et al., 1994; Titheridge, 1995b).

Another global wind motion is the seasonally-dependent transequatorial winds which blow

from the summer hemisphere to winter hemisphere at low latitudes (Titheridge, 1995b).

While equatorward winds have a component directed upward along the Earth’s magnetic

field line, poleward winds have a component directed downward. As a consequence, equator-

ward winds lift ionisation to higher altitudes while poleward winds move down ionisation to

lower altitudes. The lifted ionisation adds to the existing ionisation at higher altitudes and

this increase in ionisation produces a large decrease in the overall loss rate. On the other

hand, the ionisation that moves to low altitudes decays more rapidly due to the recombina-

tion process (Prölss, 1980; Fuller-Rowell et al., 1994; Titheridge, 1995a). For a horizontal

wind in the direction of the magnetic meridian with velocity W , only the component WcosI

parallel to the the Earth’s magnetic field B, affects the ionisation (Titheridge, 1995a). Thus,

the vertical drift of the ionisation has the component WcosIsinI or equivalently, the effect

of the horizontal wind on ionisation is the same as the effect that a vertical wind V would

have, such that

V = WcosIsinI (2.14)

=
1

2
Wsin2I

where I represents the magnetic dip angle (or inclination angle) (Titheridge, 1995a; Lu et al.,

2008). Equation (2.14) shows that the effect of meridional winds in lifting or lowering plasma

depends on latitude since the magnetic dip angle changes. Such an effect is zero at the mag-

netic equator (I = 0◦) and at the south and north magnetic poles (I = 90◦), and maximum

at I = 45◦.

During geomagnetic storms, the increased energy input at high latitudes due mainly to par-

ticle precipitation and Joule heating causes the atmosphere to heat and then expand. The

resulting equatorward winds move ionisation up the magnetic field lines to regions of lower

recombination, and therefore, enhanced electron density/TEC is observed (Fedrizz et al.,

2008; Kintner et al., 2008; Ngwira et al., 2012a). For some storms, studies have shown that
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the primary cause of the positive storm response is the meridional wind (Lu et al., 2001;

Yuan et al., 2003; Lu et al., 2008). The coexistence of positive and negative storm responses

in opposite hemispheres has been interpreted as the result of transport of ionisation across

the dip equator by the storm-generated transequatorial winds which depletes electron density

from the upwind hemisphere and enhances it in the downwind hemisphere (Fesen et al., 1989;

Lu et al., 2001).

2.6.2.2 Travelling ionospheric disturbances

Atmospheric gravity waves (AGWs) generated due to a perturbed high latitude atmosphere,

manifest themselves through the atmosphere as wavelike structures called travelling atmo-

spheric disturbances (TADs) and in the ionosphere as travelling ionospheric disturbances

(TIDs) (Hines, 1959; Borries et al., 2009; Ngwira et al., 2012b; Borries et al., 2016). TIDs

can be monitored in TEC during geomagnetic storms. A study based on numerical simula-

tions has shown that neutral winds and the passage of TADs are the main causes of the storm

positive phase (Namgaladze et al., 2000). TADs carry along equatorward neutral winds that

lift charged particles to higher altitudes. As a consequence, positive ionospheric storms are

observed at middle or low latitudes during the passage of TIDs (Yuan et al., 2003). There

exists cases where the positive ionospheric effects due to geomagnetic storms were thought

to be caused by TIDs (Ngwira et al., 2012b; Habarulema et al., 2013). Studies have also re-

ported the presence of TIDs during geomagnetic storms and their possible sources and effects

on the ionosphere (Katamzi & Habarulema, 2013; Habarulema et al., 2015, 2016, 2018). A

shift in TEC enhancement from station to another within the same longitude sector during

the storm period of 7 - 12 November 2004 has been partly attributed to the passage of TIDs

(Habarulema et al., 2013). TEC enhancements observed during the mid-latitude magnetic

storm of 15 May 2005 were believed to be caused by neutral winds as well as the passage of

TIDs (Ngwira et al., 2012b).

2.6.2.3 Storm induced electric field

Prompt penetration electric fields (PPEFs) and long-lasting ionospheric disturbance dynamo

electric fields (DDEFs) are two main causes of changes in plasma drifts and currents in the

ionosphere under geomagnetically disturbed conditions (Blanc & Richmond, 1980; Scherliess

& Fejer, 1997; Negreti et al., 2017). Neutral winds together with diurnal and semi-diurnal

tidal components in the atmosphere produce the so-called Sq (solar quiet) wind dynamo

current that flows in the E region (about 100 - 120 km). The resulting electric field from this

current is directed eastward from dawn to dusk and westward during nighttime at low lati-

tudes and plays a significant role in transport of the plasma in the equatorial region, upward

during daytime and downward during nighttime (Anderson et al., 2006). The equatorial

daytime electric field variations in the ionosphere depend on local time, location, season, and
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solar activity. Apart from this, the solar wind interplanetary electric field (IEF) variations

have a direct influence on equatorial electric field perturbations as reported by Kelley et al.

(1979); Scherliess & Fejer (1999) and Manoj et al. (2008). PPEF is an abrupt appearance

of the IEF in the Earth’s ionosphere and magnetosphere, immediately after being convected

to the magnetosphere by the solar wind (Manoj et al., 2008; Tsurutani et al., 2008). PPEF

has a direct influence on the equatorial E × B drift as it reinforces the fountain effect. As

consequence, the enhanced fountain effect transports plasma from low to higher latitudes

(Tsurutani et al., 2004). A couple of studies on ionospheric responses due to geomagnetic

storms have suggested PPEFs as one of the main causes of positive storm effect (e.g., Forbes,

1989; Tsurutani et al., 2004, 2006a; Fejer et al., 2007; Lu et al., 2008; Tsurutani et al., 2008;

Singh & Sripathi, 2017; Negreti et al., 2017). As an example, during the severe storm of 30 -

31 October 2003, it was found that the dayside equatorial and near-equatorial ionosphere was

lifted to higher altitudes and latitudes where the recombination rate is lower due to PPEFs.

The scenario was that, due to enhanced eastward electric field that reinforced the fountain

effect (superfountain effect), crests of the EIA region expanded towards the mid-latitudes

resulting in TEC enhancement (Tsurutani et al., 2004). A similar observation was reported

for the St. Patrick’s Day storm of 17 - 18 March 2015 (Astafyeva et al., 2015).

2.6.2.4 Changes in neutral gas composition

Negative and sometimes positive storms effects are caused by neutral composition changes

(Prölss, 1980; Buonsanto et al., 1989; Forbes, 1989; Fuller-Rowell et al., 1994; Zhang et al.,

2004; Habarulema et al., 2013; Katamzi & Habarulema, 2013; Astafyeva et al., 2015). In

response to the solar wind energy input at high latitudes, Joule heating over auroral latitudes

increases. Induced equatorward winds due to the increase in pressure gradient reinforce the

normal equatorward wind on the nightside while it weakens or even reverses the poleward

wind on the dayside. The overall wind circulation therefore transports molecular air from

high to lower latitudes leading to enriched molecular Nitrogen (N2) and atomic Oxygen (O)

densities at the middle and low latitude regions, respectively (Mendillo, 2006). Analysis

of the ionospheric responses during the storm of 06 - 11 November 2004 have shown that

the increase and significant depletion in O/N2 were responsible for the positive and negative

storm phases (Habarulema et al., 2013). It was further found that a decrease in TEC observed

during mid-latitude storms correlated well with a decrease in the O/N2 ratio (Habarulema

et al., 2013; Katamzi & Habarulema, 2013). A significant depletion in O/N2 was also noticed

by Zhang et al. (2004) in their study of the storms of 01 - 04 October 2002.
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2.7 Summary

This chapter briefly described the Earth’s atmosphere, ionosphere and magnetosphere, with

emphasis on TEC and its behaviour during geomagnetic storms. Mechanisms responsible

for ionospheric responses during storm conditions were briefly discussed as well. In the next

chapter, data sources and mathematical approaches exploited during TEC modelling are

described.
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Chapter 3

Data sources and modelling techniques

TEC, considered as observational data for the implementation and validation of the models,

were derived from measurements provided by Global Navigation Satellite Systems (GNSS),

and more precisely, the Global Positioning System (GPS) receiver stations. In this chap-

ter, a brief introduction to the GNSS network with emphasis on GPS satellites is presented.

Then, the main steps involved in TEC derivation, and the inputs for the storm-time models,

are discussed. A summary of two climatological models, namely the International Refer-

ence Ionosphere (IRI) and the Horizontal Wind Model (HWM), used in the current work,

is provided. Furthermore, the fundamentals of the Multi-Instrument Data Analysis Sys-

tem (MIDAS), which is an inversion algorithm for ionospheric tomography, are provided.

This chapter ends with a brief description of different mathematical/modelling approaches

explored for storm-time TEC modelling, namely empirical orthogonal functions (EOF) anal-

ysis, non-linear regression analysis (NLRA), the Metropolis-Hastings algorithm (MHA), and

artificial neural networks (ANNs).

3.1 Global Navigation Satellite Systems (GNSS)

The term Global Navigation Satellite Systems (GNSS) refers to a variety of constellations of

satellites launched by different governments with navigation as the primary objective. GNSS

mainly comprises the Global Positioning Systems (GPS), controlled by the U.S. Department

of Defense (DoD), Global’naya Navigatsionnaya Sputnikovaya Sistema (GLONASS) under

control of the Russian Federation, BeiDou Navigation Satellite System (BDS), which is a

Chinese satellite navigation system, Galileo with the European Union in charge, Quasi-Zenith

Satellite System (QZSS) which is a Japanese satellite constellation, and the Indian Regional

Navigation Satellite System (IRNSS) (Kaplan & Hegarty, 2006; Misra & Enge, 2006; Gleason

& Gebre-Egziabher, 2009; Van Diggelen, 2009). The most widely used GNSS for Navigation

is the Global Positioning Systems (GPS) which determines with high accuracy, the position,

velocity, and in some cases, the attitude (or object orientation) of an object (or user) in space

or on the Earth, by processing signals transmitted from satellites in known orbits (Misra &

Enge, 2006). The following description will be limited to GPS satellites, given that TEC

data used in this study were derived from GPS measurements.
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3.1.1 GPS satellites

The GPS structure consists mainly of three parts, namely space, control, and user segments.

The space segment consists of a baseline of 24 satellites, each at a nearly circular orbit with

a radius of about 20,200 km, and with a period of about 12 hours. The GPS constellation

has six orbital planes inclined at 55◦ with respect to the Earth’s equatorial plane (Farrell &

Barth, 1999). There are various ways to identify a satellite in the entire constellation. For

example, a unique pseudorandom noise (PRN) code acts as a satellite identifier. A PRN-code

is assigned to each satellite in the constellation and when the satellite transmits a signal, the

decoded signal at the receiver location allows the user to identify the satellite (Hofmann-

Wellenhof et al., 1992). Another means of identification is by orbital number specification.

A two-character code composed of a letter that identifies the orbital plane (from A to F as

six orbits are available) and a number that specifies the satellite number in plane (from 1

to 4 as there are four satellites per orbit for the baseline constellation). For example, an

identifier A4 indicates satellite number 4 in the orbital plane A (Misra & Enge, 2006). The

constellation is designed in such a way that at least four satellites are visible at a given time

and anywhere in the world. However, it may sometimes happen that the user observes six

to eight satellites. Each individual satellite transmits synchronized signals and only signals

from satellites in view are received by a user at slightly different times since satellites are

different distances away. The receiver can thus calculate the position of the user with high

accuracy (Farrell & Barth, 1999; Misra & Enge, 2006). The baseline GPS constellation is

illustrated in Figure 3.1.

Figure 3.1: Baseline GPS constellation consisting of 24 satellites in orbital planes in-
clined at about 55◦ with respect to the Earth’s equatorial plane. Credit: National
Oceanic and Atmospheric Administration (NOAA) (https://celebrating200years.noaa.
gov/transformations/gps/Figure_1.html).

The GPS control segment consists basically of a system of tracking stations, a Master Con-
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trol Station (MCS), monitor stations, and ground antennas, with a primary objective of

monitoring the status and health of the space segment. The MCS is responsible for satellite

operation and provides commands and control functions. Monitor stations provide useful

data for satellite orbit tracking and clock bias estimations while, ground antennas are used

to communicate with the satellites. The GPS user segment consists of GPS receiver equip-

ment, such as antennas and receiver-processors. The signals transmitted by GPS satellites

are received via antennas and decoded by receiver-processors which specify the user position

and velocity, as well as the precise timing information (French, 1996; Farrell & Barth, 1999;

Misra & Enge, 2006).

3.1.1.1 Dual-frequency GPS signals

One of the frequency bands of the radio spectrum is the Ultra High Frequency (UHF) band

which covers a frequency range of 0.3 - 3 GHz. The L-band, with a frequency range of 1

- 2 GHz is a subset of the UHF band and signals transmitted by GPS satellites are within

this band. GPS satellite signals are continuously transmitted using two radio frequencies in

the L-band commonly known as Link 1 (L1) and Link 2 (L2) and centered at fL1
= 1575.42

MHz (for L1) and fL2
= 1227.60 MHZ (for L2). fL1

and fL2
are derived from a fundamental

frequency f0 = 10.23 MHz such that fL1
= 154f0 and fL2

= 120f0 (Hofmann-Wellenhof et al.,

1992; Misra & Enge, 2006; Borre et al., 2007). The three components of GPS signals are

the carrier, codes, and navigation data/messages. The carrier consists of a sinusoidal radio

wave/signal with frequency fL1
or fL2

. Codes are specific characteristic for each satellite and

comprise the coarse/acquisition (C/A) and precision (P(Y)) codes. The C/A-code is reserved

for civilians and is purposely modulated on L1 only, whereas the P-code is modulated on

both L1 and L2 and is for US military and authorized users (Hofmann-Wellenhof et al.,

1992). Navigation data are binary-coded messages that comprises data related to satellite

health status, ephemeris data used for satellite position and velocity computation, and other

information, known as almanac, which concerns the status of the whole satellite constellation

(Misra & Enge, 2006; Borre et al., 2007).

3.1.1.2 Ionospheric effect on GPS signals

Radio signals from GPS satellites at an altitude of about 20,200 km are received by antennas

at GPS receivers. Due to the non-uniform composition of the ionosphere, the refractive index

of the medium varies along the signal path. Thus, multiple refractions experienced by GPS

signals make the signal path to become longer than the geometrical straight-line path from

the satellite to receiver. As a consequential observation, the time it takes a GPS signal to

travel from the satellite to receiver is longer than the time it would have taken the same signal

through vacuum (Misra & Enge, 2006). The time delay experienced by a GPS signal with

frequency f is directly proportional to TEC encountered along the signal path, and inversely
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proportional to the square of the signal frequency (Hofmann-Wellenhof et al., 1992). Thus,

the ionospheric TEC encountered by GPS signals is the main source of positioning error

particularly for single-frequency users (Araujo-Pradere, 2005). Mathematically, the travel

time of a radio signal from satellite to receiver is found by integrating the refractive index

profile n(l) along the signal path (Misra & Enge, 2006):

τ =
1

c

∫ R

S

n(l)dl (3.1)

where c = 299, 792, 458 m.s−1 is the speed of light in a vacuum and n(l) is the variable

refractive index along the signal path. It is obvious that the time it would have taken the

signal to travel the same distance in a vacuum (n(l) = 1) is

τ0 =
1

c

∫ R

S

1 · dl. (3.2)

The difference ∆τ = τ − τ0 represents the time delay in the signal propagation due to

refraction and is equal to

∆τ =
1

c

∫ R

S

[n(l)− 1]dl (3.3)

while the corresponding excess in path length is (Araujo-Pradere, 2005; Misra & Enge, 2006)

∆ρ = c∆τ (3.4)

=

∫ R

S

[n(l)− 1]dl

The ionosphere as a dispersive medium, the refractive index and the wave propagation speed

depend on the signal frequency. The relation of dispersion of the ionosphere as a function

of the plasma angular frequency ωp = 2πfp, and electromagnetic signal angular frequency

ω = 2πf is given by (Crawford, 1968):

ω2 = c2k2 + ω2
p. (3.5)

The quantities k = 2π/λ, f , and fp, are the wave number, the signal and plasma frequencies

respectively, and λ is the wavelength of the electromagnetic signals. The plasma frequency

fp is the ionospheric characteristic/critical frequency for radio wave propagation through

the ionosphere in a sense that signals with ω > ωp cross the ionosphere while signals with

ω < ωp are reflected by the ionospheric medium (Davies, 1990; McNamara, 1991). From the

Equation (3.5), the phase and group velocities are given by (Wells et al., 1987)
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vph =
ω

k
(3.6)

=
c

√

1−
(

ωp

ω

)2

and

vgr =
dω

dk
(3.7)

= c

√

1−
(

ωp

ω

)2

The refractive index of a medium (n = c/v) being defined as the ratio of the speed of

propagation of the signal in a vacuum to the speed of propagation of the signal in that

medium, v, (Hofmann-Wellenhof et al., 1992), the phase and group refractive indices of the

ionosphere can be expressed as

nph =
c

vph
(3.8)

=

√

1−
(

ωp

ω

)2

and

ngr =
c

vgr
(3.9)

=
1

√

1−
(

ωp

ω

)2

Substituting ωp/ω by fp/f into Equations (3.8) and (3.9), and using the approximation

(1 + x)α ≃ 1 + αx, for |x| ≪ 1, which is the case for the ratio fp/f , the phase and group

refractive indices are expressed as follows (Wells et al., 1987):

nph ≈ 1− 1

2

(

fp
f

)2

(3.10)
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ngr ≈ 1 +
1

2

(

fp
f

)2

(3.11)

Replacing the plasma frequency by its expression provided by Equation (2.4) (after substi-

tuting all parameters by their numerical values which leads to fp = 8.98
√
Ne with fp in Hertz

and Ne in m−3) in Equations (3.10) and (3.11) we get

nph = 1− 40.3

f 2
Ne (3.12)

ngr = 1 +
40.3

f 2
Ne (3.13)

Comparing Equations (3.12) and (3.13), it can be noticed that ngr > nph which indicates

that vgr < vph. Thus, GPS code measurements are delayed while carrier phase measurements

are advanced (Hofmann-Wellenhof et al., 1992).

Substituting Equations (3.12) and (3.13) into Equations 3.3 and 3.4 and considering Equa-

tion 2.8, it follows that the excess phase delay (in seconds) experienced by a signal as it

propagates through the ionosphere is (Hofmann-Wellenhof et al., 1992; Misra & Enge, 2006)

∆τph =
1

c

∫ R

S

[np(l)− 1]dl (3.14)

= −1

c

∫ R

S

40.3Ne(l)

f 2
dl

= −40.3

cf 2
· TEC

while the corresponding excess phase delay (in meters) is

IΦ = c∆τph (3.15)

= −40.3

f 2
· TEC.

In a similar way, the group delay (in seconds) is given by

∆τgr =
40.3

cf 2
· TEC (3.16)

and when expressed in meters, it becomes
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Iρ = c∆τgr (3.17)

=
40.3

f 2
· TEC

Except opposite signs, both ionospheric delay terms for measurements of carrier phase (Equa-

tion (3.15)) and pseudorange (Equation (3.17)) are equal in magnitude. The negative sign

in Equation (3.15) indicates that the phase is advanced, while the appellation “group delay”

is justified by the positive sign in Equation (3.17). On 17 March 2018, the peak TEC value

was about 19.5 TECU and the corresponding excess phase delays on L1 and L2 are -3.17 m

and -5.21 m, respectively, while the group delays are 3.17 m and 5.21 m for L1 and L2.

3.1.2 Deriving TEC from GPS measurements

In GPS theory, the observable refers to things being measured, while the measurement itself

is known as the observation. The two types of observables are the pseudorange and the

carrier phase. The pseudorange measurement consists of estimating the apparent satellite-

receiver distance/range by taking into account the geometric distance between satellite and

a receiver, path delays, as well as the effects of the satellite and receiver clock errors. The

carrier phase measurement consists of estimating the apparent distance between a satellite

and receiver in terms of cycles of the carrier frequency. However, it is not possible for the

receiver to measure directly the total number of carrier cycles between a given satellite and a

receiver. What can rather be measured is a change in the number of the carrier cycles (Farrell

& Barth, 1999). TEC can be derived from GPS pseudorange or carrier phase measurements

and literature on deriving TEC from GPS measurements is available (e.g., Gao & Liu, 2002;

Araujo-Pradere, 2005; Carrano & Groves, 2009).

3.1.2.1 Deriving TEC from pseudorange measurements

The pseudorange observation equations are (Carrano & Groves, 2009):

P1 = ρ+ c(△tr −△ts) + I1 + T + bP1r + bP1s +mP
1 + εP1 (3.18)

and

P2 = ρ+ c(△tr −△ts) + I2 + T + bP2r + bP2s +mP
2 + εP2 (3.19)

where the subscripts 1 and 2 refer to L1 (fL1
= 1575.42 × 106 Hz) and L2 (fL2

= 1227.60 ×
106 Hz) respectively. P is the pseudorange (m), ρ is the geometric range (m), △tr and △ts

are the receiver and satellite clock errors (s), I and T are the ionospheric and tropospheric
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delays (m), br and bs are instrumental biases for receiver and satellite, mP is the multipath

effect (m), and εP represents the thermal noise (m). From Equations (3.18) and (3.19) it

follows that

P2 − P1 = I2 − I1 + (bP2r − bP1r) + (bP2s − bP1s) (3.20)

= I2 − I1 + bPr + bPs

where the multipath and thermal noise terms are neglected, and the geometric range, clock

error and tropospheric terms cancel through subtraction. Using Equation (3.17) for the GPS

dual signals into (3.20) and solving for TEC, we get

TEC =
1

40.3

[

f 2
L1
f 2
L2

f 2
L1

− f 2
L2

]

[(P2 − P1)− (bPr + bPs )] (3.21)

= 9.52× 1016[(P2 − P1)− (bPr + bPs )]

in electron/m2. When expressed in TECU, the expression of TEC derived from the pseudo-

range measurements is

TEC = 9.52[(P2 − P1)− (bPr + bPs )]. (3.22)

The pseudorange TEC (without bias terms) is defined as (Carrano & Groves, 2009; Araujo-

Pradere, 2005)

TECP = 9.52(P2 − P1). (3.23)

Although TECP is unambiguous, it is noisy and thus inaccurate/imprecise quantity (Carrano

& Groves, 2009).

3.1.2.2 Deriving TEC from carrier phase measurements

The carrier-phase observation equations are (Carrano & Groves, 2009)

Φ1 = ρ+ c(△tr −△ts) + I1 + T + bΦ1r + bΦ1s + λ1N1 +mΦ
1 + εΦ1 (3.24)

and

Φ2 = ρ+ c(△tr −△ts) + I2 + T + bΦ2r + bΦ2s + λ2N2 +mΦ
2 + εΦ2 . (3.25)

With subscripts 1 and 2 referring to L1 and L2 GPS signals, Φ is the carrier phase (m), λ is
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the GPS signal wavelength (m), and N is the phase cycle ambiguity. In a similar manner as

previously discussed, subtracting Equation (3.25) from Equation (3.24) yields

Φ1 − Φ2 = I1 − I2 + (bΦ1r − bΦ2r) + (bΦ1s − bΦ2s) + (λ1N1 − λ2N2) (3.26)

= I1 − I2 + bΦr + bΦs + (λ1N1 − λ2N2)

Using the expression of the ionospheric phase advance (Equation (3.15)) for both GPS signal

frequencies gives

Φ1 − Φ2 = I1 − I2 + 40.3

(

1

f 2
L2

− 1

f 2
L1

)

TEC + bΦr + bΦs + (λ1N1 − λ2N2) (3.27)

Solving this equation for TEC yields

TEC =
1

40.3

[

f 2
L1
f 2
L2

f 2
L1

− f 2
L2

]

[(Φ1 − Φ2)− (bPr + bPs )− (λ1N1 − λ2N2)] (3.28)

= 9.52× 1016[(Φ1 − Φ2)− (bPr + bPs )− (λ1N1 − λ2N2)]

in electron/m2. Expressing Equation (3.28) in TECU, it becomes

TEC = 9.52[(Φ1 − Φ2)− (bPr + bPs )− (λ1N1 − λ2N2)] (3.29)

The phase TEC is defined by

TECΦ = 9.52(Φ1 − Φ2) (3.30)

which is ambiguous but precise (Araujo-Pradere, 2005; Carrano & Groves, 2009).

3.1.2.3 Mapping from slant to vertical TEC

TEC measured along the signal path from satellite to receiver is called Slant Total Electron

Content (STEC). Vertical TEC (VTEC) refers to TEC encountered along the vertical/zenith

direction (overhead direction). Through the ionosphere, the path length in the zenith direc-

tion is the shortest and thus, VTEC is lower compared to STEC. Conversion from STEC

to VTEC is performed with the assumption that the ionosphere is a single thin shell at the

mean ionospheric height hI (usually assumed to be in the range 300 km - 400 km) (Hofmann-

Wellenhof et al., 1992; Gao & Liu, 2002; Misra & Enge, 2006). The intersection of the line

of sight between GPS receiver and the observed satellite with the thin shell ionosphere is

called the ionospheric pierce point while its perpendicular projection onto the Earth’s sur-
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face is called the subionospheric point. Figure 3.2 is a typical geometric representation of the

thin-shell ionosphere.

Figure 3.2: A schematic illustration of STEC to VTEC mapping (Adapted from Figure 5.8
in (Misra & Enge, 2006)).

Figure 3.2 indicates that mapping from STEC to VTEC and vice versa can be accomplished

by using the formula

STEC =
1

cosZ ′
V TEC (3.31)

where the quantity (cosZ ′)−1 is called the obliquity factor and Z ′ is the zenith angle of the

satellite at the IPP. The relationship between the satellite zenith angle Z at the receiver

position and Z ′ is obtained by applying the sine rule in trigonometry:

sinZ

RE + hI
=

sinZ ′

RE
(3.32)

where RE = 6371 km is the average Earth radius.
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3.1.2.4 GPS-TEC software used to derive TEC

Storm-time TEC considered as observations (GPS TEC), was derived from RINEX (Receiver

INdependent EXchange) records using a software developed at Boston College (Seemala &

Valladares, 2011), which allowed us to get both slant and vertical TEC. For a specific time of

the day, TEC values for different satellites were averaged to get TEC at that time. The cutoff

satellite elevation angle was limited to 20◦ in order to reduce multipath effects. It is well

known that during TEC derivation from GPS records, some errors are introduced. Possible

sources of error are due to instrumental biases, mapping function, and assumptions made

during different steps involved in TEC derivation (Ho et al., 1997). The GPS-TEC software

used in this study reads the GPS raw data from RINEX files and calculates phase and code

TEC values along with corresponding elevation and azimuth angles of the satellite(s) for the

epochs, and then estimates biases as briefly described in the following steps (Uwamahoro

et al., 2018a).

A single shell mapping function (Mannucci et al., 1993; Langley, 2002) is used to calcu-

late the vertical TEC, assuming an ionospheric pierce point height of 350 km (Rama Rao

et al., 2006). Cycle slips in the phase TEC are corrected arithmetically by computing the

difference between successive TEC values and comparing them with the mean difference of

the last 20 values. This helps to reduce any noise at the start of data epoch or for low ele-

vation angle. If the difference of the phase TEC at current epoch (TECPi) to the previous

value (TECPi−1) is greater than 4 times the mean difference or 2 TEC units (considered

for 30-second RINEX data), then the presence of a cycle slip (CS) is identified. The CS is

then defined as CS = TECPi − TECPi−1+ previous mean difference. And from the val-

ues there on, this cycle slip is corrected as TECPi = TECPi−CS (Uwamahoro et al., 2018a).

After the cycle slip correction, the phase TEC is leveled to the code TEC to get abso-

lute TEC without integer ambiguity. The differential satellite bias corrections published by

the University of Bern (ftp://ftp.unibe.ch/aiub/CODE/) are used to remove satellite bi-

ases. The differential receiver bias is assumed to be constant for the current data set (daily

RINEX file data) and is solved using the least squares method. A range of bias values for

different satellites is added to the STEC, which is then used to calculate VTEC. Using the

simple least squares method, the best bias value is selected. In this method, differences or

error minimization were checked using a range of possible bias values (e.g., from -300 to

+300 TECU in steps of 0.1 TECU), each of which is added to STEC and then VTEC is

calculated. The resultant VTEC for the entire dataset for this range of biases are checked

for minimized difference against average diurnal TEC. The bias value that generated the

minimum difference is then taken as the receiver bias for that day. The procedure is repeated

for all days and final biases are added to STEC followed by the recalculation of final VTEC
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Figure 3.3: Calibrated (top panels) and uncalibrated (bottom panels) TEC over Nazret
(NAZR, 8.57◦ N, 39.29◦ E, 0.25 ◦ S geomagnetic), by taking into account cycle slips, satellite
and receiver biases for quiet (16 March 2015, Figure 3.3 (a)) and disturbed (17 March 2015,
Figure 3.3 (b)) days. Red and green lines show the average VTEC over all satellites and
VTEC from individual satellite, respectively.

by the GPS-TEC software. Figure 3.3 shows a typical example of the difference between

calibrated (top panels) and uncalibrated (bottom panels) TEC over Nazret (NAZR, 8.57◦

N, 39.29◦ E, 0.25 ◦ S geomagnetic), Ethiopia, by taking into account cycle slips, satellite

and receiver biases for quiet (16 March 2015, Figure 3.3 (a)) and disturbed (17 March 2015,

Figure 3.3 (b)) days, using an elevation threshold of 20◦. The green and red curves represent

VTEC for individual PRNs and the average TEC, respectively (Uwamahoro et al., 2018a).

Owing to the assumptions in bias calculations, single shell mapping function used in conver-

sion of Slant TEC to Vertical TEC (Mannucci et al., 1998), and computation of average TEC

for all visible satellites at a specific time of the day, the accuracy of the GPS-TEC software

used in this work in terms of standard deviation, is of the order of a few TEC units (1 - 3

TECU) during geomagnetically quiet conditions; and this error may increase in disturbed

conditions to about 3 to 6 TECU as demonstrated in Figure 3.4 with light-blue shaded areas.

Figure 3.4 shows diurnal TEC over both mid-latitude (SUTH, 32.38◦ S, 20.81◦ E) and equa-

torial latitude (ADIS, 9.04◦ S, 38.77◦ E) locations, for a disturbed day (09 March 2012) and

the most quiet day of the month (25 March 2012). The average TEC is plotted in blue while

the shaded band within the red curves represents the range of standard deviation values. For

ADIS and SUTH, it is clear that the error range is mostly between 1 - 3 TECU during quiet

conditions (Figure 3.4, left panels), but may also increase during storm conditions up to 6

TECU as shown in Figure 3.4, particularly for SUTH (bottom right panel).

It is also important to note that the GPS-TEC software used in this study has been com-
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Figure 3.4: Diurnal VTEC (blue line) observed over mid-latitude (SUTH, 32.38◦ S, 20.81◦

E) and equatorial latitude (ADIS, 9.04◦ S, 38.77◦ E) during quiet (25 March 2012, left panels)
and disturbed (09 March 2012, right panels) days. The light-blue shaded areas represent the
standard deviations of VTEC values for all visible satellites at a specific time of the day.
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pared with other techniques such as the one presented in Ciraolo et al. (2007) alongside the

European Geostationary Navigation Overlay System (EGNOS) algorithm, which was used

as a reference (Abe et al., 2017). Generally, both softwares are consistent with the EGNOS

algorithm, but the GPS-TEC software was found to be closer to EGNOS in low-latitudes.

On the other hand, the technique described in Ciraolo et al. (2007) was more accurate for

the mid latitudes, in estimating TEC derived from the EGNOS algorithm. It is also worth

noting that the GPS-TEC software used in the current work has extensively been used to

derive TEC as reported in different studies (Adewale et al., 2011; Seemala & Valladares,

2011; Olwendo et al., 2012; Akala et al., 2013; Matamba et al., 2015). In this work, to re-

duce multipath effects and at the same time keeping useful amount of data, VTEC values

corresponding to elevation angles greater than a threshold of 20◦ were considered for both

development and validation of the models.

3.2 Modelling inputs

As described in Chapter 2, some of the factors that influence TEC variability are known and

where data are available, they should be taken into account for empirical TEC modelling. In

this study, diurnal and seasonal variations of TEC were represented by time of day, t, and day

number of the year, d, respectively. Geomagnetic and solar activities were also considered in

storm-time TEC modelling by introducing their representative indices. Another input that

was considered, is the meridional neutral wind velocity to represent the effect of neutral wind

in transporting ionized particles along the Earth’s magnetic field lines. The most popular

geomagnetic indices include the auroral electrojet index AE, the disturbance storm-time

Dst index (or symH), and the 3-hour K index, its equivalent on a planetary scale, namely

planetary Kp, and their derivatives: 3-hour local index, a, 3-hour planetary index, ap, as well

as the daily Ap index. The solar indices used were the solar flux index at a wavelength of

10.7 cm, F10.7, its derivative, F10.7p, and sunspot number (SSN).

3.2.1 Solar indices

Solar indices are indicators of the Sun’s activity level for a specific period of time (Richards

et al., 1994a; Perrone & De Franceschi, 1998; Tapping, 2013). Figure 3.5 illustrates the

variation of SSN, F10.7 and F10.7p for the period from 1996 to 2018 along with the number

of geomagnetic storms which occurred within the same time interval. A geomagnetic storm

was identified based on the storm criterion of Dst 6 −50 nT and/or Kp > 4. Figure 3.5

shows that a large number of geomagnetic storms occurred during solar maximum periods,

while few storms were observed in the solar minimum, the period during which the solar

activity level is low. In Figure 3.5, high and low solar activity periods are clearly identified

by large and small values of the three solar indices, respectively.
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Figure 3.5: Variation of SSN, F10.7 and F10.7p during the period from 1996 to 31 August
2018. The number of geomagnetic storms observed within the same period is also illustrated.

3.2.1.1 Sunspots and sunspot number

Sunspots are dark spots at the photosphere of the Sun (Figure 3.6). They appear darker

than the surrounding area, because their surface temperature of about 3000 K is less than

the temperature of the photosphere which is about 6000 K (Davies, 1990). The darkness

of sunspots can be understood by imagining the Sun as a black body which emits thermal

radiation at an effective temperature Teff . Its luminosity, L⊙ = 4πR2
⊙
σSBT

4
eff (R⊙ = 6.96×

105 km and σSB = 5.67×10−8 Wm−2K−4 are the solar radius and Stefan-Boltzmann constant,

respectively) is proportional to the fourth power of the temperature and this shows that cooler

regions (sunspots) radiate less compared to hotter regions (surrounding photosphere).

Sunspots are characterized by a strong magnetic field and often appear in pairs with opposite

magnetic field polarities. Due to convective motions, the photosphere is heated by hotter

particles from layers below. The strong magnetic field of sunspots holds matter so tightly in

such a way that convective motions are inhibited. A consequential net result is that hotter

constituents are prevented from reaching sunspot locations and they are thus cooler than

surrounding regions (Meyer-Vernet, 2007). Sunspots appear and disappear with time and

have a lifetime of a few days, and only a small number can last longer (about four to five solar

rotations, each counting 27 days). The presence of sunspots on the solar surface indicates
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Figure 3.6: Image of sunspots taken by Solar and Heliospheric Observatory (SOHO) satel-
lite on 27 September 2001. Sunspots are dark spots at the Sun’s photosphere. Credit:
National Aeronautics and Space Administration (NASA), (https://science.nasa.gov/
science-news/science-at-nasa/2008/30sep_blankyear).

that the Sun is active and therefore, there is a possibility of releasing energy to space. Thus,

the number of sunspots located at the solar surface facing the Earth is a good indicator of

the global activity level that the Sun is having on the ionosphere (Davies, 1990; McNamara,

1991). Sunspots may occur by themselves or appear in sunspot groups, each group having

several distinguishable spots. The number of sunspots is given by

R = k(10g + s) (3.33)

where g and s are the numbers of sunspot groups and the observed individual spots, re-

spectively. Both equipment and observer are taken into consideration within the correction

factor k which is approximately equal to unity (Davies, 1990). The analysis of sunspot

number variation with time has shown a nearly cyclic trend of a period of about 11 years.

Troughs and crests of the solar cycle correspond to solar minimum and solar maximum pe-

riods, respectively, while ascending and declining phases represent moderate phases of solar

activity. Long-term data for SSN are available at SILSO (Sunspot Index and Long-term

Solar Observations) website (http://sidc.oma.be/silso/datafiles).

3.2.1.2 Solar radio flux indices

The F10.7 solar radio flux index is a measure of daily total radio emission from all sources

present at the solar disk at a wavelength of 10.7 cm (or frequency of 2.8 GHz) (Davies,
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1990; Tapping, 2013; Schonfeld et al., 2015). The F10.7 index is measured in solar flux

unit (1 SFU = 10−22 W.m2.Hz) every day at the Penticton Radio Observatory in British

Columbia, Canada. Like the SSN, the F10.7 index is a solar activity level indicator (Davies,

1990; McNamara, 1991; Tapping, 2013) and varies from near 65 during the solar minimum

to a maximum of about 200 during the high solar activity period (Davies, 1990). Daily

and monthly average values of F10.7 adjusted at 1 AU (1 AU = 1.5 ×1011 m is the astro-

nomical unit) are available at different sources: 1) Solar-Geophysical Data (SGD) website

(https://www.ngdc.noaa.gov/stp/solar/sgd.html), 2) omniweb data (http://omniweb.

gsfc.nasa.gov/form/dx1.html). Details regarding the measurement of F10.7 are provided

in Tapping (2013) and references therein.

A recent analysis of F10.7 variation with the solar EUV irradiance and critical frequency of

F2 (foF2) during the deep solar minimum (2007 - 2009), showed inconsistency in variation

of these parameters with respect to each other, and this contradicted what was previously

reported. The main findings revealed that F10.7 does not represent well the solar EUV irra-

diance, and its correlation with foF2 drops during deep solar minimum (Chen et al., 2011).

Previous studies demonstrated that the modified solar flux index F10.7p = (F10.7+F10.7A)/2

(where F10.7A is 81-day running mean of F10.7) is a better indicator of the solar activity level

than F10.7 (e.g., Richards et al., 1994b; Liu et al., 2006; Liu & Chen, 2009). On the basis

of a long-term ionospheric data analysis, Liu et al. (2006) showed that F10.7p is a better

representation of the solar EUV flux than F10.7. It was also noticed that F10.7p correlates

well with the peak electron density of the F2 layer (NmF2 = 1.24× 104(foF2)2), compared

to the correlation between F10.7 and NmF2. The concluding observation was that F10.7p

is a better representation of solar activity than F10.7.

3.2.2 Geomagnetic indices

Geomagnetic indices provide information about the state of the Earth’s magnetic field. In

this section, the description will be limited to the most frequently used geomagnetic indices,

namely the K index and its derivatives, auroral electrojet (AE) index, and disturbance storm-

time index.

3.2.2.1 K and Kp indices

The K index is an indicator of irregular variations associated with the Earth’s magnetic

field disturbances, as observed at a specific observatory. As a local index, the K-index is

derived from data recorded at a single location and can only have values between 0 and

9, the former and the latter indicating geomagnetically very quiet and extremely disturbed

conditions, respectively. For every 3-hour interval (00:00 - 03:00, 03:00 - 06:00, ..., 21:00 -

24:00) a value of K index is assigned, leading to eight values per day for each observatory
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(Bartels et al., 1939; Rostoker, 1972; Davies, 1990). The difference (measured in gamma

(1 γ = 10−5 gauss (G) = 10−9 Tesla (T) = 1 nT)), between the absolute maximum and

absolute minimum values of a magnetic element, within the 3-hour interval, is called the

amplitude range (R) and is used to define the K index. For each element D, H , and Z

(D is the magnetic declination, H , and Z are the horizontal and vertical components of the

Earth’s magnetic field, respectively), or X , Y , and Z (where X and Y are the northward

and eastward components of H , respectively), R is computed. Its largest value implies the

most disturbed element and is thus considered as the basis for K index. The conversion

table which is used to convert R to K index, differs from one observatory to another and the

values in the table depend on geomagnetic latitude of the observatory. Since the K index

range is between 0 and 9, R is such that the lower range limit for K = 9 equals 100 times

the upper range limit for K = 0 (Bartels et al., 1939; Rostoker, 1972; Davies, 1990). As an

illustrative example, K index and R values for Hermanus (34.42◦ S, 19.22◦ E, geographic;

42.34◦ S, 82.14◦ E, geomagnetic) are provided in Table 3.1.

Table 3.1: Conversion table between K index and R for Hermanus (34.42◦ S, 19.22◦ E,
geographic; 42.34◦ S, 82.14◦ E, geomagnetic).

K 0 1 2 3 4 5 6 7 8 9
R (nT) 3 6 12 24 42 72 120 198 300

First introduced by Bartels et al. (1939), the planetary K index, commonly denoted as Kp,

describes the worldwide level of geomagnetic activity for every 3-hour interval. Some of the

major difficulties that are encountered when using K index for statistical studies, are the

very pronounced diurnal variation (for example, the 3-hour intervals near local geomagnetic

midnight are generally more disturbed than the rest of the day), and its seasonal dependence.

To circumvent these difficulties, conversion tables subdivided by seasons and universal time

(UT) intervals were developed by introducing a continuous variable Ks index (as opposed to

the integer K index) ranging between 0.0 and 9.0, and expressed in thirds of an integer. Typ-

ical Ks ranges are 0 - 1/6, 1/6 - 3/6, 3/6 - 5/6, 5/6 - 7/6,... and the corresponding Ks codes

(ranging from 0o to 9o) are 0o, 0+, 1-, 1o,..., respectively. The Kp is thus computed every

3-hour interval by averaging Ks from thirteen mid-latitude observatories presented in Table

3.2 (Bartels et al., 1939; Rostoker, 1972). For further information related the computation

of Kp, readers are referred to Bartels et al. (1939) and Rostoker (1972).

For the storm classification based on Kp index, the National Oceanic and Atmospheric

Administration (NOAA) Space Weather Scale for geomagnetic storms available at https:

//www.swpc.noaa.gov/NOAAscales can be used. In this classification, Kp values of 5, 6, 7,

8, and 9, correspond to minor, moderate, strong, severe, and extreme geomagnetic storms,

respectively. Locations of 13 observatories involved in the computation ofKp index are shown

on the map in Figure 3.7.
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Table 3.2: Geographic (GLat & Glon) and geomagnetic (GMLat & GMLon) coordinates of
13 observatories that are used to compute Kp index.

Code Name Country GLat Glon GMLat GMLon
1 LER Lerwick Scotland 60.13 358.82 62.00 89.20
2 MEA Meanook Canada 54.62 246.67 61.70 305.70
3 SIT Sitka Alaska 57.05 224.67 60.40 279.80
4 ESK Eskdalemuir Scotland 55.32 356.80 57.90 83.90
5 UPS Uppsala Sweden 59.90 17.35 58.50 106.40
6 OTT Ottawa Canada 45.40 284.45 55.80 355.00
7 BFE Brorfelde Denmark 55.62 11.66 55.40 98.60
8 HAD Hartland England 50.97 355.52 54.00 80.20
9 WNG Wingst Germany 53.75 9.07 54.10 95.10
10 NGK Niemegk Germany 52.07 12.68 51.90 97.70
11 FRD Fredericksburg USA 38.20 282.63 48.60 353.10
12 CNB Canberra Australia -34.70 149.00 -42.90 226.80
13 EYR Eyrewell New Zealand -42.58 172.35 -47.20 253.80

3.2.2.2 a, ap, Ap indices

The K index is naturally quasi-logarithmic and for some arithmetic manipulations, an index

based on a linear scale is required. The equivalent of the local K and planetary Kp indices on

a linear scale are the 3-hour a and ap indices. Conversion from quasi-logarithmic indices to

linear indices is performed using Table 3.3. It must be pointed out that the 3-hour ap index

is based on mid-latitude observations, as is the case for the Kp index. The daily magnetic

activity is described by Ap index which is just the sum of eight values of ap indices for a

specific day.

Table 3.3: Table for conversion from K to a index.

K 0 1 2 3 4 5 6 7 8 9
a 0 3 7 15 27 48 80 140 240 400

The 3-hour K index for Hermanus was converted to 3-hour a index used during storm-time

TEC modelling for Hermanus according to Table 3.3. The ap and Ap indices used in this

work were obtained from https://omniweb.gsfc.nasa.gov/form/dx1.html.

3.2.2.3 AE index

The planetary Kp describes the general state of geomagnetic activity on a planetary scale

and contains at least contributions from both auroral electrojet and the ring current. Partic-

ular studies of geomagnetic activity at auroral latitudes require the auroral electrojet (AE)

index, which was first introduced by Davis & Sugiura (1966). The AE index represents the

geomagnetic activity perturbation caused by ionospheric currents (eastward and westward
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Table 3.4: Geographic and geomagnetic coordinates of 12 observatories used to construct
AE index. Source: http://wdc.kugi.kyoto-u.ac.jp/aedir/ae2/AEObs.html.

Observatory IAGA Code GLat (◦ N) GLon (◦ E) GMLat (◦ N) GMLon (◦ E)
1 Abisko ABK 68.36 18.82 66.04 115.08
2 Dixon Island DIK 73.55 80.57 63.02 161.57
3 Cape Chelyuskin CCS 77.72 104.28 66.26 176.46
4 Tixie Bay TIK 71.58 129.00 60.44 191.41
5 Cape Wellen CWE 66.17 190.17 61.79 237.10
6 Barrow BRW 71.30 203.25 68.54 241.15
7 College CMO 64.87 212.17 64.63 256.52
8 Yellowknife YKC 62.40 245.60 69.00 292.80
9 Fort Churchill FCC 58.80 265.90 68.70 322.77
10 Poste-de-la-Baleine PBQ 55.27 282.22 66.58 347.36
11 Narsarsuaq NAQ 61.20 314.16 71.21 36.79
12 Leirvogur LRV 64.18 338.30 70.22 71.04

auroral electrojets) flowing at auroral latitudes. The AE index is based on measurements

from auroral and slightly sub-auroral zone stations, chosen so as to provide uniformly-spaced

coverage around the auroral zone (Rostoker, 1972; Davies, 1990). Table 3.4 lists the 12 ob-

servatories which are used to calculate the AE index, while Figure 3.7 shows their locations

(blue dots) on a map.

For the construction of AE index, only the H-component of the perturbation field at each

observatory is used with a quiet time baseline as a reference level. When H-components from

various observatory magnetograms are superimposed, the amplitudes of the upper (AU) and

lower (AL) envelopes represent the maximum magnetic perturbations generated by east-

ward and westward electrojets, respectively. The AE index is defined as AE = AU − AL,

and represents the difference, expressed in gammas, between the upper and lower ampli-

tudes at a given time (Rostoker, 1972; Davies, 1990), while the AO index defined as the

average value of AU and AL (AO = (AU + AL)/2), provides a measure of the equiv-

alent zonal current (Davis & Sugiura, 1966; Davies, 1990). AE is available at different

sources such as http://wdc.kugi.kyoto-u.ac.jp/aedir/index.html, https://omniweb.

gsfc.nasa.gov/form/dx1.html (hourly and daily values), and https://omniweb.gsfc.

nasa.gov/form/omni_min.html (1 and 5-minute resolution). The AE used in the current

work was obtained from the last two sources. The locations of 13, 12, and 4 observatories

involved in the computation of Kp, AE, and Dst indices, respectively, are shown on the world

map presented in Figure 3.7.

3.2.2.4 Disturbance storm-time index

The magnetic field of the Earth controls the motions of charged particles in the Earth’s

environment. The three types of motion executed by charged particles trapped by the Earth’s
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Figure 3.7: Locations of geomagnetic observatories used to compute Kp (light-blue dots),
AE (blue dots), and Dst (red dots) indices. The green line represents the geomagnetic
equator, while the dark yellow lines located at ±15◦ from the geomagnetic equator indicate
the locations of the EIA crests.

magnetic field are drift motion across the Earth’s magnetic field lines, spiral/gyro motion

around the magnetic field lines, and bouncing motion back and forth along the magnetic

field lines between two turning/mirror points (Chen, 1984; Baumjohann et al., 1997). Figure

3.8 illustrates the three types of motions of charged particles under control of the Earth’s

magnetic field.

Figure 3.8: Motions of charged particles in the Earth’s magnetosphere (Karavaev, 2010).

The drift motion is so that positively charged particles move westward around the Earth
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Table 3.5: Geographic and geomagnetic coordinates for four observatories used to compute
the Dst index. Source: http://wdc.kugi.kyoto-u.ac.jp/dstdir/dst2/onDstindex.

html.

Observatory Country GLat Glon GMLat GLon
Hermanus South Africa -34.40 19.22 -42.33 82.15
Kakioka Japan 36.23 140.18 29.04 211.49
Honolulu USA (until April 1960) 21.30 201.90 21.64 269.43

(after April 1960) 21.32 201.98 21.66 269.50
San Juan USA (until January 1965) 18.31 293.88 28.97 9.90

(after January 1965) 18.11 293.88 28.78 9.87

whereas electrons drift eastward. The current generated by this double transport of charged

particles is called the ring current (“ring” because it encircles the Earth) and flows in the

equatorial plane in the westward direction (Baumjohann et al., 1997; Moldwin, 2008). The

disturbance storm-time (Dst) index is an indicator of change in the ring current intensity

in sense that when the ring current intensity increases, Dst decreases. In fact, injection

of particles by the solar wind into the Earth’s magnetosphere during the main phase of

the storm leads to enhancement of the ring current. Since the ring current itself induces a

magnetic field directed oppositely to the Earth magnetic field, the increase in ring current

intensity leads to enhancement of the induced magnetic field and thus, to a decrease in the

Earth’s magnetic field intensity. The Dst index (normally expressed in nanotesla (nT)) is a

measure of the depression/decrease in the horizontal component, H , of the Earth’s magnetic

field in equatorial/low latitude region due to an increase in the magnetospheric ring current

(Gonzalez et al., 1994). Thus, four low-latitude magnetic observatories (listed in Table 3.5)

are used to compute the Dst index.

The Dst index is often used to define a geomagnetic storm and serves as an indicator of

the storm occurrence time, duration, and its intensity. In the current work, geomagnetic

storms were identified based on the storm criterion of Dst 6 −50 nT and/or Kp > 4.

The storm classification based on Dst and according to Loewe & Prölss (1997) is presented

in Table 3.6. Long-term data (from 1957 to date) of Dst index can be found at http:

//wdc.kugi.kyoto-u.ac.jp/.

Table 3.6: Classification of geomagnetic storms according to Loewe & Prölss (1997).

Range of minimum Dst Storm classification
-30 nT > min(Dst) > -50 nT Weak
-50 nT > min(Dst) > -100 nT Moderate
-100 nT > min(Dst) > -200 nT Strong
-200 nT > min(Dst) > -350 nT Severe

6 -350 nT Great

Figure 3.9 displays the variation of hourly AE, AU , AL, ap, Kp, and Dst indices during
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the period 06 - 11 September 2017. Significant changes in all indices are observed during

the storm main phase which was on 07 - 08 September 2017 according to the Dst index.

According to the NOAA Space Weather Scale of geomagnetic storms, the 07 - 08 September

2017 storm with Kp index of about 8 was a severe storm, while according to the Loewe &

Prölss (1997) classification, the storm is strong based on the minimum Dst index of -142 nT

which is within -100 nT and -200 nT.
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Figure 3.9: Variation of AE, AU , AL, ap, Kp, and Dst indices during the period 06 - 11
September 2017.

3.2.2.5 Energy coupling function of Akasofu

When electromagnetic waves travel through space, their energy can be transferred to objects

encountered in their path (Serway & Jewett, 2004). The rate of energy flow in electromagnetic

waves is described by the poynting vector defined by

~S =
~E × ~B

µ0
(3.34)

where ~E and ~B are electric and magnetic fields, and µ0 = 4π× 10−7 N/A is the permeability

of free space (Griffiths, 1999). With regard to the solar wind and magnetosphere coupling, ~E

and ~B represent the solar wind electric and magnetic fields. The magnitude of the poynting
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vector is the energy flux density or equivalently, the energy per unit time (power), per unit

area, transported by electromagnetic fields ( ~E and ~B). Since the energy per unit time

crossing the infinitesimal surface d~a (energy flux) is ~S · d~a, the total energy per unit time

flowing through a closed surface A can be expressed as

∮

A

~S · d~a =
EB

µ0
(4πl20) (3.35)

=
(vB)B

µ0
(4πl20)

=
4π

µ0

vB2l20

where l0 = 7RE, RE is the radius of the Earth, and A = 4πl20 = 4π(7RE)
2 ≈ π(14RE)

2

total area. Equation (3.35) gives the total energy per unit time passing through a surface

of a circle of which the radius is 14RE , which is roughly the magnetopause radius at the

terminator (Koskinen & Tanskanen, 2002). From the idea above, the interplanetary energy

flux in terms of the poynting vector

ε =
4π

µ0
vB2l20sin

4
(θ

2

)

(3.36)

= 107vB2l20sin
4
(θ

2

)

[Watts].

This equation represents the solar wind energy input (power) into the magnetosphere during

geomagnetic storms (Perreault & Akasofu, 1978; Akasofu, 1981, 2007). E = vB is the

interplanetary electric field (IEF) intensity, v is the solar wind velocity, B represents the

interplanetary magnetic field (IMF) strength, and θ is the IMF clock angle defined by

θ = tan−1

(

| By |
| Bz |

)

, Bz > 0. (3.37)

or

θ = 180◦ − tan−1

(

| By |
| Bz |

)

, Bz < 0. (3.38)

In the future, the plan is to investigate if the energy transferred by the solar wind into

the magnetosphere during geomagnetic storms, may contribute to storm-time ionospheric

modelling.
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3.3 Climatological models

This section is limited to a discussion of the climatological models that were used in this

study, namely the International Reference Ionosphere (IRI) and the Horizontal Wind Model

(HWM).

3.3.1 International Reference Ionosphere (IRI)

The IRI is an empirical (data-based) standard model that estimates ionospheric plasma pa-

rameters within an altitude range of 60 - 2000 km for a given location and at a specific time

(Bilitza, 2003). When date, time (UT or LT), and location (geographic or geomagnetic co-

ordinates) are specified, the IRI model gives monthly averages of electron and ion densities,

temperatures, and velocities, ion composition (percentage of O+, H+, He+, N+, NO+, O+
2 ,

and cluster ions). Additional parameters that are provided by the IRI model include vertical

ionospheric TEC (specification of the upper height limit is required for the integration of

electron density profile), low-latitude ion vertical drift, the occurrence probabilities of F1

layer and spread F (percentage of days per month during which the F1 layer and spread F

are expected), as well as auroral boundaries (Bilitza, 2003; Bilitza & Reinisch, 2008; Bilitza

et al., 2014; Bilitza, 2014; Bilitza et al., 2017).

The IRI project was established and is sponsored by the Committee on Space Research

(COSPAR) and the International Union of Radio Science (URSI), which are also responsible

for its improvement and update as new data and models become available (Bilitza et al., 2011,

2014; Bilitza, 2014; Bilitza et al., 2017). As an empirical model, IRI is based on observations

of the ionospheric plasma recorded by space-based and worldwide ground based instruments.

IRI data resources include ionosondes (electron density profile from E to F peak), incoher-

ent scatter radars (entire profile of electron density, E - valley), topside sounders (topside

electron density profile), rockets (D-region plasma parameters), Global Navigation Satellite

Systems (for TEC), and low Earth orbit (LEO) satellites (electron density profile) (Bilitza

& Reinisch, 2008; Bilitza et al., 2011; Bilitza, 2017).

Inputs required for the IRI model include solar (12-month running mean of SSN (R12),

F10.7, F10.7A, and 12 month running mean of F10.7) and geomagnetic (Ap and 3-hour ap) in-

dices, the Global ionospheric index (IG) (ionosonde IG index 12-month running mean), and

COSPAR International Reference Atmosphere (CIRA) neutral densities and temperatures.

Optional inputs consists of measured values of the peak plasma frequencies foF2, foF1, foE,

and foD, or alternatively the peak densities NmF2, NmF1, NmE, NmD, and/or peak heights

hmF2 (or the correlated propagation factor M(3000)F2), hmF1, hmFE, and hmD (Bilitza

et al., 2014).
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As an empirical model, the IRI has the advantage that it does not rely on theoretical un-

derstanding of physical processes that govern ionospheric dynamics. However, since the IRI

model strongly depends on underlying database, it has the disadvantage of being inaccurate

for locations (oceans and most of the southern hemisphere) and time periods that are not

well represented (Rawer et al., 1978; Bilitza et al., 2011; Bilitza, 2014).

One of the models used in the IRI to provide the topside electron density profiles, is the

NeQuick topside model developed by Radicella & Leitinger (2001) and Cöısson et al. (2006),

which is based on ionosonde and topside sounder data (Bilitza, 2009). A performance eval-

uation of the NeQuick topside model (IRI-2007-NeQ) compared to the IRI-2007-corrected

model (a correction of the IRI-2001 model, and which is another topside model developed

by Bilitza (2004), showed the superiority of the former over the latter in terms of providing

better results. However, the IRI-2007-corrected model was found to provide a more realistic

representation for the EIA region, specifically in terms of altitudinal - latitudinal structure

(Bilitza, 2009). Since it was found to be more accurate than other topside models, we have

used in the current work the NeQuick model as topside option.

It is worth noting that both NeQuick2 and IRI models have recently been validated in the

low latitude East African region by comparing their predictions with GPS TEC measure-

ments (Mengistu et al., 2018). The study examined the performances of NeQuick2, IRI-2016

(latest version which is currently available), IRI-2012, and IRI-2007 models, in describing the

monthly and seasonal mean TEC. Particularities for each model in terms of solar activity

and seasonal dependences were highlighted.

Related to IRI geomagnetic storm modelling, the model developed by Timothy J. Fuller

- Rowell and described in Fuller-Rowell et al. (1998) and Fuller-Rowell et al. (2000), is

incorporated in the IRI model (Bilitza, 2003). The IRI storm-time model was found to

be more efficient in capturing negative phases for summer mid-latitude ionospheric storms,

while its inefficiency was highlighted particularly in following the winter mid-latitude pos-

itive ionospheric phases (Fuller-Rowell et al., 2000). Since this study deals with geomag-

netic storms, the IRI model currently available at https://ccmc.gsfc.nasa.gov/modelweb/

models/iri2016_vitmo.php, with STORM option on, was used.

3.3.2 Horizontal Wind Model (HWM)

The HWM is an empirical model that provides a statistical representation of the horizontal

wind patterns in the Earth’s atmosphere (Drob et al., 2008). The HWM07 has a quiet-

time component (Drob et al., 2008) and a geomagnetic storm-time component, known as the
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disturbance wind model (DWM07) which describes on average, the storm-induced pertur-

bations of the neutral winds in the upper thermosphere (Emmert et al., 2008). The latest

version of the HWM is HWM14 developed based on a database of about 73 × 106 measure-

ments recorded over a period of 60 years by 44 different instruments all over the world (Drob

et al., 2015). For the update from the HWM07 to the HWM14 version, the geomagnetic

storm time component (DWM07) was left unchanged (Drob et al., 2015). However, as it

can be seen at https://github.com/timduly4/pyglow/blob/master/pyglow/models/dl_

models/hwm14/hwm14.f90#L76, the DWM07 is incorporated in the HWM14 used to com-

pute the meridional wind velocity. When position (latitude, longitude, altitude) and time

(day of the year and time of the day) are specified, HWM14 provides the meridional and

zonal components of the horizontal neutral winds for an altitude range 0 - 500 km, i.e., from

ground to exosphere (Drob et al., 2008, 2015). Details about the HWM are provided in a

number of sources (Hedin et al., 1988, 1991, 1996; Drob et al., 2008; Emmert et al., 2008;

Drob et al., 2015).

Since this research mostly concerns the African sector, it is worth noting that the HWM

has been validated for the African low- and mid-latitude regions. The HWM predictions

were found to be in good agreement with the Fabry Perot interferometer (FBI) observations

in low- and mid-latitude locations (Fisher et al., 2015; Tesema et al., 2017). The meridional

neutral wind velocity used in this study was obtained from the HWM14, accessed via pyglow

package available at https://github.com/timduly4/pyglow/. Results related to the use of

the meridional wind velocity as a new input for TEC modelling during storm conditions are

presented in Chapter 6.

3.4 Modelling and reconstructing techniques

Several empirical models have been employed to model TEC for geomagnetic storm con-

ditions. The models considered in this study are based on empirical orthogonal functions

(EOF) analysis, Non-linear regression analysis (NLRA), the Metropolis - Hastings Algo-

rithm (MHA), and artificial neural networks (ANNs). For storm-time TEC reconstruction,

the Multi-Instrument Data Analysis System (MIDAS) algorithm was applied for Equato-

rial, low- and mid-latitude regions. Brief summaries of the modelling and reconstruction

techniques explored in this work are presented in the following subsections.

3.4.1 Empirical orthogonal functions (EOF) analysis

Empirical orthogonal functions (EOF) analysis, also known as principal component analysis

(PCA) or natural orthogonal component (NOC) algorithm (Ercha et al., 2012), is a statistical

method used to examine inter-relations among a set of variables of a dataset in order to
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identify hidden structures in the data. Through an orthogonal transformation, a dataset of

intercorrelated variables is transformed to a new dataset of uncorrelated variables that still

contains most of the information in the original dataset. As a powerful tool of data analysis,

some particular advantages of EOF analysis include:

� reducing the dimensionality of a dataset, i.e. from a large number of interrelated

variables to a small number of uncorrelated variables (lower dimension) without much

loss of information (Venegas, 2001; Smith et al., 2002; Shlens, 2003).

� revealing hidden patterns in a dataset and classifying them according to the percentage

of the total variance in the original dataset they account for (Smith et al., 2002; Shlens,

2003)

� reducing redundancy and filtering some of the noise in the data (Mankin, 2014)

� preparing data for further analyses (Mankin, 2014).

In ionospheric research, EOF analysis has widely been applied to the modelling of iono-

spheric parameters such as TEC (Mao et al., 2005, 2008; Ercha et al., 2012; Chen et al.,

2015; Uwamahoro & Habarulema, 2015; Dabbakuti et al., 2016; Le et al., 2016; Dabbakuti

& Ratnam, 2017), critical frequency of the F2 layer (foF2) (Zhang et al., 2009; Ercha et al.,

2011; Yu et al., 2015) ionospheric peak height of F1 (hmF1) (Yu et al., 2015) and F2 layers

(hmF2) (Zhang et al., 2010; Lin et al., 2014; Yu et al., 2015), and the ionospheric propaga-

tion factor, M(3000)F2 (Liu et al., 2008; Zhang et al., 2010; Yu et al., 2015). Except for the

study by Uwamahoro & Habarulema (2015), which for the first time in TEC modelling, used

the EOF analysis for storm conditions, other studies focused on ionospheric modelling for

geomagnetically quiet conditions. Apart from being used as analytical model for ionospheric

parameters, EOF analysis was capable to reveal hidden structures in TEC data. For exam-

ple, through EOF decomposition, features such as diurnal and long-term TEC variability, the

hemispherically asymmetric pattern manifesting the summer-to-winter annual variation, and

the EIA phenomenon were well described through EOF mode analysis (Ercha et al., 2012).

In comparison with other modelling techniques such as IRI, EOF analysis based models were

found to be more accurate in modelling ionospheric parameters specifically during geomag-

netically quiet conditions (e.g., Mao et al., 2005; Ercha et al., 2012; Dabbakuti et al., 2016).

The first application of EOF analysis to the modelling of mid-latitude geomagnetic storms

led to encouraging results in reproducing TEC variability particularly for non-significant

ionospheric storm effects (Uwamahoro & Habarulema, 2015).

According to the theory of EOF analysis, a continuous space-time field X(t, s) can be de-

composed in terms of EOF basis functions Ek(s) (functions of space) and associated EOF

coefficients Ck(t) (functions of time) according to the equation (Hannachi et al., 2007)
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X(t, s) =
m
∑

k=1

Ck(t)× Ek(s). (3.39)

m denotes the number of modes contained in the field, t and s are time and spatial position

respectively. Ek are the eigenvectors of the covariance matrix Σ constructed from the original

data X . Σ is defined by

Σ = XTX (3.40)

where the superscript T denotes the transpose of the matrix X (Weare & Nasstrom, 1982;

Björnsson & Venegas, 1997; Xu & Kamide, 2004; De Michelis et al., 2010). Other definitions

of the covariance matrix provided in the literature are Σ = 1
n
XTX (e.g., Hannachi et al., 2007;

Mao et al., 2008), and Σ = 1
n−1

XTX , where n is the number of samples within the dataset

(e.g., Shlens, 2003; Hannachi, 2004; Goodfellow et al., 2016). They differ from Equation

(3.40) by a constant and this does not matter, since the computation of basis functions with

any of the definitions above, will only differ by a constant (Björnsson & Venegas, 1997). The

m eigenvectors/EOF basis functions (E1, E2, E3, ..., Em) are obtained by first determining

the corresponding eigenvalues (λ1, λ2, λ3, ..., λm), solving the characteristic equation

|Σ− λI| = 0, (3.41)

and then using the equation

ΣEi = λiEi (3.42)

with i = 1, 2, 3, ..., m. In Equation (3.41), I is the identity matrix of dimension m×m and λ,

a parameter of which the values obtained by solving Equation (3.41) are the eigenvalues λi.

Before determining the eigenvectors from Equation (3.42), the eigenvalues should be arranged

such that λ1 > λ2 > ... > λm. Such a decomposition provides a new frame of reference defined

by E = (E1, E2, ..., Em) where the variables in this new frame are uncorrelated. EOF basis

functions/eigenvectors are orthogonal to each other and hence, the appellation empirical

orthogonal functions. This simply means that EOF basis functions are uncorrelated over

space (Björnsson & Venegas, 1997). The orthogonality condition of basis functions is

ETE = EET = I (3.43)

Graphically, the eigenvectors indicate the directions in which the data are most spread out,

with E1 (which corresponds to the highest eigenvalue λ1) pointing in the direction of the

greatest variation, E2 (associated with λ2) in the direction with the next highest variation,

and so on (Björnsson & Venegas, 1997). Once the matrix E of EOF basis functions is found,

the matrix C of EOF expansion coefficients can be deduced from the matrix equation
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X = CE (3.44)

and the orthogonality condition expressed by Equation (3.43) as (Zhang et al., 2009)

C = XE−1 (3.45)

= XET .

An alternative for the calculation of EOF basis functions and associated coefficients without

using the covariance matrix, is by means of the singular value decomposition (SVD) method,

as described in Goodfellow et al. (2016). Any m by n data matrix X can be written in terms

of two orthonormal matrices, V (m by m) and W (n by n), as follows:

X = V ΛW T (3.46)

where Λ (m by n) is a diagonal matrix of singular values of the data matrix X . The singular

values of X are related to eigenvalues previously described by γi =
√
λi and should also be

arranged from the greatest to the lowest value (γ1 > γ2 > ... > γm) while applying the SVD

method. Λ has diagonal elements equal to and is padded out by zeros to make it a m × n

matrix. The left singular vectors or equivalently, the column vector of the matrix V are the

EOF basis functions previously described, while EOF expansion coefficients are given by

A = ΛW T . (3.47)

One of the advantages of EOF analysis is the quick convergence of the series represented by

Equation (3.39). Thus, rather than considering all m EOF components Ai ×Ei (with i = 1,

2, ..., m) to reconstruct the original data, a few components may be enough to account for a

large percentage of variance in the original data. Since the sum of diagonal elements of the

covariance matrix (trace of Σ) is the total variance of the original dataset, the fraction of

variance explained by the first k components is given by (Boyd et al., 1992; Venegas, 2001;

Zhang et al., 2009)

ρ1→k =

∑k
i=1 λi

∑n
j=1 λj

× 100% (3.48)

while the percentage of variance explained by the k-th component is

ρk =
λk

∑n
j=1 λj

× 100%. (3.49)

Since the first EOF basis function, E1, corresponds to the highest eigenvalue λ1, the highest

percentage of variance in the original dataset is explained by A1 × E1. There are different
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ways of selecting the number of EOF components to be retained and some are listed below:

� The number of EOF components to be retained can be determined by ignoring com-

ponents of which the variance explained is less than the average variance, when the

covariance matrix is used during EOF decomposition, or less than 1 when a correlation

matrix is used (Holland, 2016).

� In the context of EOF analysis, a graph of eigenvalues (or variances) versus the cor-

responding PC rank is called a scree plot. The position of the “elbow” of a scree plot

corresponds roughly to the number of EOF components that should be retained. Fig-

ure 3.10 is an example of a scree plot and one may decide to retain between 2 and 4

components. It is important to emphasise that the localisation of the exact position of

an elbow on a scree plot may not always be straightforward and thus, the scree test is

not considered as always a good method (Bremner, 2009).
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Figure 3.10: An illustrative example of a scree plot.

� Ignore high order/last EOF components that explain roughly equal percentages of

variance (Holland, 2016).

� Knowing in advance the percentage of variance that may be suitable for the case being

examined, one may decide to keep EOF components that explain the desired variance

in the original dataset (Holland, 2016).
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3.4.2 Linear and non-linear regression analysis

Regression analysis is a mathematical method that allows the establishment/examination

of relationships between one or more variables, commonly referred to as dependent vari-

ables (or response variables, explained variables, predicted variables, or regressands), and

several independent variables (also called explanatory variables, control variables, or regres-

sors) (Chatterjee & Hadi, 2013). Apart from allowing to establish a relationship between

dependent and independent variables, a regression analysis model allows also to predict the

dependent variable based on independent variables, and determine which independent vari-

able contributes more than others to the response of dependent variable (Yan, 2009). Math-

ematically, a regression analysis model that relates dependent and independent variables Y

and X respectively, is expressed approximately as follows

Y ≈ f(X, β) (3.50)

where β represents a set of unknown parameters and are determined using statistical methods

for optimization (Chatterjee & Hadi, 2013). The difference between the true/observed value

Y of the dependent variable and the estimated value Ỹ is called the residual (ε = Y − Ỹ ).

A regression is termed linear or non-linear if the dependent variable is a linear or non-linear

combination of the parameters. Three types of regression are distinguished: simple linear

regression (SLR), multiple linear regression (MLR), and non-linear regression (NLR) (Yan,

2009). In SLR, the dependent and independent variables are related by equation

y = β0 + β1x+ ε (3.51)

where β1 is the slope of the regression line, β0 is the y intercept, and ε is the random error.

SLR can thus be used to model a linear relationship between two variables y and x. In

contrast, MLR relates one dependent variable to several independent variables according to

expression

y = β0 + β1x1 + β2x2 + β3x3 + ...+ βpxp + ε. (3.52)

ε represents the random error and β0, β1, β2, β3, ..., βp are regression coefficients. In the

case where the relationship between a dependent variable and an independent variable is

not linear in regression parameters, we have a non-linear regression (NLR) model (Pawitan,

2001). A typical example of such a model is

y =
α

1 + eβx
+ ε (3.53)

where α and β are the regression parameters and ε is the random error. The regression

parameters of a model are unknown and should be estimated from the data. Finding the
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regression parameters of a model from a given dataset is referred to as model fitting or

parameter estimation (Chatterjee & Hadi, 2013). In this study, the least squares method,

which is the most commonly used method to determine the unknown coefficients of a model,

and the Bayesian approach based on the MHA, were used.

3.4.3 Metropolis - Hastings Algorithm (MHA)

In this work, the Metropolis - Hastings algorithm (MHA) was applied for the first time in

TEC modelling during storm conditions. MHA was used to determine the coefficients of a

NLRA-based model and the task was accomplished by maximizing the likelihood function

which represents the probability of getting the data given the model. The MHA advantage is

that not only it allows the determination of the model unknown coefficients, but also provides

the error bars and confidence intervals for all parameter estimates (Lewis & Bridle, 2002).

MHA belongs to the class of algorithms that generate Markov chains i.e. a set of random vari-

ables having the property that the next state in the sequence depends only on the previous

one and not on the states that preceded it (Christensen et al., 2001, 2003; Doran & Müller,

2004; Liddle, 2009; Akeret et al., 2013). Hence, MHA is known as one of the Markov Chain

Monte Carlo (MCMC) techniques. MHA generates samples from a probability distribution

in such a way that the more samples are generated, the more closely their distribution ap-

proximates the desired/targeted distribution (Lewis & Bridle, 2002; Christensen et al., 2003).

First developed by Metropolis and then later generalized by Hastings (Metropolis et al., 1953;

Hastings, 1970), the MHA has been a standard tool in statistical mechanics for solving nu-

merical problems (Hastings, 1970). Nowadays, the MHA is widely used in cosmology as a

standard technique for estimating cosmological parameters (Christensen et al., 2001; Knox

et al., 2001; Lewis & Bridle, 2002; Christensen et al., 2003; Rubino-Martin et al., 2003; Do-

ran & Müller, 2004; Jewell et al., 2004; Dunkley et al., 2005; Liddle, 2009; Akeret et al., 2013).

The likelihood function is formulated based on the observed data defined by the data matrix

D = (Di), with i = 1, 2, ...,M , and a set of unknown parameters Θ = (θ1, θ2, ..., θN ) that

defines the NLRA. Di are data points, M and N are total numbers of data points and the

model’s parameters respectively. The likelihood L(D|Θ) = P (data/model) represents the

probability of obtaining the data given the model (Pawitan, 2001). Representing the true

model by f(Θ), the noise is just the difference between the data and the model estimates.

Similarly as established in Bretthorst (1988), under a Gaussian likelihood assumption, the

likelihood function was defined as
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L ∝

M
∏

i=1

exp

{

−1

2

(

Di − fi(Θ)

σi

)2
}

(3.54)

= exp

{

−1

2

M
∑

i=1

(

Di − fi(Θ)

σi

)2
}

= exp

(

−1

2
χ2

)

where

χ2 =
M
∑

i=1

(

Di − fi(Θ)

σi

)2

(3.55)

and σi are the error per each data point. In a matrix form, Equation 3.54 can be generalized

as follows

L ∝ exp

{

−1

2
(D − F )TΣ−1(D − F )

}

(3.56)

where Σ is the covariance matrix of the observed dataset and F is the matrix of the model’s

estimates. The task is to find a set of parameters θ1, θ2, ..., θN that maximizes the likelihood,

or equivalently, that minimizes χ2. MHA is a computational way of maximizing the likelihood

and can be summarized as follows (Doran & Müller, 2004; Liddle, 2009):

1. Choose randomly a starting point Θ0 = (θ01, θ02, ..., θ0N ) within the parameter space.

Save Θ0 as a starting point of the chain.

2. Compute L0 = L(D|Θ0), i.e. the value of the likelihood that corresponds to the starting

set of parameters.

3. Generate a new set of parameters Θi = (θi1, θi2, ..., θiN) from a proposed distribution.

In the current work, this was accomplished by sampling the step size from a Gaussian

distribution with 0 mean and standard deviation equal to the step size. By considering

Θ0 = Θi−1 (and L0 = Li−1), the new point Θi is obtained by moving a small step size

∆Θi−1 from the previous point Θi−1: Θi = Θi−1 +∆Θi−1.

4. Compute the likelihood Li = L(D|Θi) i.e. the value of the likelihood that corresponds

to the new set of parameters Θi.

5. If Li > Li−1, take the step. Save Θi as a new point in the chain and go to (3).

6. If Li < Li−1, there is a possibility of taking the following step, but with a certain

probability. Generate a random number u from [0, 1]. If u 6 Li/Li−1, take the step as
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in (5). If u > Li/Li−1, reject Θi and then save Θi−1 as new point in the chain and go

to (3).

7. Repeat (3) - (6) until the chain converges to the optimum solution.

The output is a chain i.e. matrices of N columns (number of the unknown coefficients)

and rows equal to the number of steps taken. In the case of perfectly behaving Gaussian

distributions, for each column of the chain, a corresponding distribution is made and its

mean value is considered as the best estimate of the parameter associated to that column

while the standard deviation represents the error bar. Optimization in Bayesian sense, as

the one performed in the present work, consists of maximizing the Posterior distribution.

Monte Carlo techniques (one implementation being the Metropolis-Hastings Algorithm) have

the merit to provide sampling of both the posterior and likelihood distributions and their

maxima. Figure 3.11 is an illustration of how the best estimate of a randomly chosen model

coefficient/parameter, error bar and confidence interval can be extracted from a posterior

distribution. The mean (µ ≃ −0.376 × 10−03) as shown by the vertical red line, is the best

estimate of the coefficient. It corresponds to the maximum value of the posterior distribution.

The standard deviation is σ ≃ 0.24× 10−04 while µ± σ defines the lower and upper limits of

1σ confidence interval.
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Figure 3.11: Typical illustration of the posterior distribution of a random model coefficient.

3.4.4 Artificial Neural Networks (ANNs)

3.4.4.1 Basics of an artificial neural network

An artificial neural network (ANN), also referred to as neural network (NN), is a computer

programme/information processing system that learns and generalizes relationships between
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input(s) and the corresponding known (observed/measured) output(s) provided to it, and

then estimates a desired output (Haykin, 1994; McKinnell & Poole, 2004; Oyeyemi et al.,

2006). An ANN is mainly composed of a set of neurons, also called nodes, units or cells,

and connection links between them (Fausett, 1994; Gurney, 1997; Gershenson, 2003; Kriesel,

2005). Neurons can be seen as information processing units or simply, computational units

where models that process information are inspired (Fausett, 1994; Gershenson, 2003). Con-

nection links connect two neurons, and allow the information flow between them. For each

connection link, there is an associated strength or weight. The weight can be understood as

the strength or amplitude of a connection between two nodes. Thus, its role is to strengthen

or multiply the inputs of a given neuron in such a way that, the higher the weight is, the

stronger the input multiplied with it will be (Fausett, 1994; Gershenson, 2003). As an exam-

ple, if three neurons X1, X2, and X3 transmit signals x1, x2, and x3 to a neuron Y, and we

denote by w1, w2, and w3, the weights associated with connection links from X1 to Y, X2 to

Y, and X3 to Y, respectively, then the input signal to neuron Y is yin = x1w1+ x2w2 +x3w3.

Such a quantity is termed as the weighted sum (Kriesel, 2005). More generally, consider n

signals x1, x2, ..., xi, ..., xn from neurons X1, X2, ..., Xi, ..., Xn to a neuron Yj , and store them

in the input vector of the network x = (x1, x2, ..., xi, ..., xn). There are n weights associated

with connection links from X1, X2, ..., Xi, and Xn to Y, denoted w1j , w2j, ..., wij, ..., wnj,

where for example, wij symbolizes the weight on connection link from neuron Xi to neuron

Yj. If the weights are stored in a matrix W = (wij), the vector of weights (the j
th column of

the matrix W ) is w.j = (w1j, w2j, ..., wij, ..., wnj)
T , where T denotes the transpose (Fausett,

1994; Kriesel, 2005). Thus, the net input yinj
to the neuron Yj will be

yinj
= x · w.j (3.57)

=

n
∑

i=1

xiw.j.

Considering an additional input x0 = 1 with weight w0j = bj called the bias, the input vector

becomes x = (1, x1, x2, ..., xi, ..., xn) and therefore, the net input yinj
to the neuron Yj is
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yinj
= x · w.j (3.58)

=
n
∑

i=0

xiwij

= x0w0j +

n
∑

i=1

xiwij

= bj +
n
∑

i=1

xiwij

Thus, in an ANN, a bias acts in a similar way as a weight does, but on a connection link

of which the activation is equal to 1. The introduction of non-linearity into the output

of a neuron is performed by an activation function also called a squashing function. This

process is important, given that most of the real world data are non-linear and the aim is to

learn these non-linear patterns within datasets. Typical examples of activation functions are

provided in Fausett (1994); Kriesel (2005); Goodfellow et al. (2016).

3.4.4.2 Artificial neural network architectures

When neurons are visualized as arranged in layers, ANNs can be classified as single-layer

or multilayer (Fausett, 1994; Haykin, 1994). The number of layers within an ANN can be

obtained by simply counting the layers of connection links contained in that same network.

Alternatively, the same task can be achieved by counting the number of the layers of neurons

contained in the network , excluding the layer of the input neurons, since these do not perform

any computation (Fausett, 1994). As shown in Figure (3.12) (a), a single-layer NN has one

layer of connection links, or equivalently one layer of neurons (the output layer, in this case).

In such a network, the links directly join the input to the output neurons. Figure (3.12)

(b) shows a multilayer NN with two layers of connection links. A multilayer NN is generally

composed of an input layer, one (case of Figure 3.12) or several hidden (or middle) layer(s)

of which the computational units are called hidden neurons, and an output layer (Haykin,

1994; Fausett, 1994; Gurney, 1997).

The input layer which consists of a set of inputs, feeds information contained in the inputs

to the network (Oyeyemi et al., 2006). The number of neurons in the input layer equals the

number of inputs fed to the network. The hidden layer is an intermediate layer between the

input and the output layers. The activity of each hidden neuron depends on the activities

of the input neurons and weights associated with the connection links between input and

hidden neurons. The output layer consists of a set of outputs and the number of output

neurons equals the number of outputs provided by the network.The behaviour of the output

neurons depends on both the activity of hidden units and the weights associated with the
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(a) Single-layer neural network. (b) Multilayer neural network.

Figure 3.12: A schematic illustration of single-layer and multilayer feed-forward neural
networks.

connection links between hidden and output units (Goodfellow et al., 2016).

An ANN that allows the information flow in one direction, from input to the output neu-

rons, is termed a feed-forward neural network (FFNN) (Fausett, 1994; Haykin, 1994). In a

such network, there are no feedback or loops, meaning that the output information from a

specific layer does not affect that same layer. Figure (3.12) illustrates a typical example of

a single-layer FFNN (Figure (3.12) (a)) and a multilayer FFNN (Figure (3.12) (b)). When

loops are introduced in an ANN, then information can flow in both directions (forward and

backward). In this case, the network is a termed feedback neural network (FBNN). FBNNs

are very powerful networks and sometimes extremely complicated.

3.4.4.3 Training an artificial neural network

An ANN should be trained in order to perform a given task. Training an ANN consists of a

fine adjustment of weight and threshold in order to achieve a required functionality (Gurney,

1997). This process begins by randomly choosing initial weights. Appropriate algorithms are

used during the training process. There are two ways of training an ANN, namely supervised

and unsupervised training. In the former, the desired output is presented to the network

with the inputs. In unsupervised training no desired output is presented to the network and

the network itself has to learn the inputs without outside help (Fausett, 1994).

In this work, only supervised training was done and the FFNN with back propagation al-

gorithm was used. This training algorithm is called as such because, during the training

process, the ANN output is compared with the desired value and the error computed by the

network is sent back to the input layer for a better adjustment of the weights and bias for

each neuron. This iteration process is repeated over and over until the error converges to the
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optimum value (Fausett, 1994; Haykin, 1994; Sur et al., 2015). The Leverberg-Marquardt

backpropagation algorithm was used during training because of its time saving advantage

(Hagan et al., 1996; Habarulema & McKinnell, 2012)

3.4.5 Multi-Instrument Data Analysis System (MIDAS) algorithm

MIDAS is a general package that provides a time varying 3D image of the ionosphere. A

number of studies related to ionospheric tomography imaging based on MIDAS inversion

algorithm are available (Mitchell & Spencer, 2003; Yin et al., 2004; Materassi & Mitchell,

2005; Meggs et al., 2005; Dear & Mitchell, 2006; Muella et al., 2011; Chartier et al., 2014;

Rose et al., 2014; Giday et al., 2016; Jayawardena et al., 2016; Giday & Katamzi-Joseph,

2018). Using data from a network of GPS receivers over the USA mid-latitudes, it has been

proven that MIDAS can produce images of electron concentration and TEC during extreme

geomagnetic conditions (Kp = 9) that are in good agreement with observations (Yin et al.,

2004). The maximum electron density of the F2 layer (NmF2) and peak height (hmF2) ob-

tained from MIDAS reconstruction using data from GPS receivers within South Africa have

shown good agreement with the ionosonde measurements (Giday et al., 2016). The authors

further showed that MIDAS provides more accurate estimates of NmF2 than IRI model while

the reverse was noticed for hmF2. With respect to the NmF2 values extracted from MIDAS

reconstruction during geomagnetic storms, it was found that MIDAS performs well for some

storms while for others, relatively high deviations were observed (Giday et al., 2016). For

the European and North American regions, a good agreement between the reconstructed

TEC by MIDAS and IRI with observations was observed despite some discrepancies for some

periods of solar activity between 1998 - 2009 (Chartier et al., 2012). MIDAS has also been

applied to generate electron density and TEC maps for the equatorial ionosphere over the

South America using data from GPS receivers distributed throughout the region of interest

(Materassi & Mitchell, 2005).

Due to the dispersive nature of the ionosphere, dual-frequency radio signals transmitted

from a GPS satellite experience differential phase changes, which are directly proportional

to TEC between a satellite and receiver (Davies, 1990; Yin et al., 2004; Jayawardena et al.,

2016). MIDAS starts from differential phase observations and then generates a matrix of

slant TEC (STEC). From the definition

STEC =

∫ R

S

Ne(r, θ, φ)dl, (3.59)

MIDAS, as an inversion method, uses STEC as input data and computes the electron den-

sity Ne (Yin et al., 2004). In Equation (3.59), S and R represent the satellite and receiver

positions, r, θ, and φ are the radial distance from the center of the Earth to satellite, latitude
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and longitude, respectively, while l is the distance along the signal path from satellite to

receiver. A detailed description of MIDAS is provided in Mitchell & Spencer (2003); Meggs

et al. (2005); Jayawardena et al. (2016) and the summary presented here is based on these

articles. To do imaging, the region of the ionosphere that is required to be imaged is sub-

divided into three-dimensional elements called voxels, bounded in latitude, longitude and

altitude. Lengths of ray path elements of radio signals from satellites as observed within

each voxel can be measured and stored in matrix A. Assuming that the electron density is

constant within each voxel, the task is to solve a system of linear equations:

Ax = b (3.60)

where x is the column matrix of electron densities within voxels, and b is the column matrix

of the observed STEC. Since Equation 3.60 cannot be solved directly due to the complicated

nature of the matrix A (e.g., A is a rectangular matrix and can therefore not be inverted), a

new matrix X of orthonormal basis functions is introduced in such a way that the unknowns

are just the coefficients of orthonormal basis functions. Representing the unknowns with the

matrix W , Equation (3.60) can be written

AXW = b (3.61)

The basis functions X can be generated using spherical harmonic expansion to represent

the horizontal variation of the electron concentration, while empirical orthonormal functions

(EOFs) which are for radial representation of the electron concentration, can be obtained

from Chapman function or IRI model (Mitchell & Cannon, 2002; Mitchell & Spencer, 2003).

For example, the basis functions used in Mitchell & Cannon (2002), consisted of 60 Legendre

polynomials which represented the latitudinal variation of the electron concentration, while

two EOFs generated using SVD decomposition from a limited range of Chapman profiles with

peak heights ranging from 250 km to 350 km, were used to describe the variation of the radial

electron concentration (Mitchell & Cannon, 2002; Mitchell & Spencer, 2003). Figure 3.13

illustrates the two EOFs derived from the Chapman function during the inversion problem.

Solving Equation 3.61 for W we get

W = (AX)−1b (3.62)

According to singular value decomposition (SVD) theory, the matrix (AX)−1 can be written

in terms of orthonormal matrices V and U and a diagonal matrix (D = diag(1/w)) of singular

values w:

(AX)−1 = V DUT (3.63)

Then W is obtained by substituting this expression into Equation (3.62):
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Figure 3.13: EOFs generated using SVD decomposition from a limited range of Chapman
profiles with peak heights ranging from 250 km to 350 km (Mitchell & Cannon, 2002).

W = (V DUT ).b (3.64)

Once W is found, the electron densities within voxels can finally be calculated by comparing

Equations (3.60) and (3.61):

x = XW, (3.65)

MIDAS computes Vertical TEC by vertical integration of the electron density obtained fol-

lowing the above procedure. Detailed theory about MIDAS can be found in a number of

literature sources (Mitchell & Spencer, 2003; Meggs et al., 2005; Bust et al., 2007; Spencer &

Mitchell, 2007; Jayawardena et al., 2016; Yin et al., 2017) and references therein. For more

information about the recent MIDAS algorithm used in this study, readers are referred to

Spencer & Mitchell (2007), and Yin et al. (2017).

3.5 Summary

This chapter briefly described the data sources, modelling inputs, as well as different tech-

niques/algorithms considered during storm-time TEC modelling. In the following chapter,

results based on ANNs and NLRA complimented with the MHA, are presented. The perfor-

mance evaluation of MIDAS compared to ANNs, to reconstruct TEC during storm conditions,

for the African low- and mid-latitude regions, is also discussed.
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Chapter 4

Storm-time TEC modelling and recon-

struction for various African latitudes

Solar radiation is the main driver of TEC variability. In this chapter, a simultaneous eval-

uation of the contributions of three solar activity indices F10.7, F10.7p, and SSN , to TEC

modelling during storm conditions, for a mid-latitude station, Hermanus, (HNUS, 34.40◦

S, 19.22◦ E geographic; 42.33◦ S, 82.15◦ E geomagnetic), South Africa, is presented. The

results are compared with the results of the NLRA model complemented by the Metropolis-

Hastings Algorithm (MHA), specifically used to determine the unknown coefficients of the

NLRA model. The results on TEC reconstruction for various African latitude regions based

on Multi-Instrument Data Analysis System (MIDAS) inversion algorithm and ANNs, are

also presented and compared. This comparative study of MIDAS and ANN results for the

African low- and mid-latitude regions was published in Uwamahoro et al. (2018a).

4.1 Simultaneous evaluation of solar indices in storm-

time TEC modelling

Three storm-time ANN models with same modelling inputs but different from the solar

index considered (F10.7p, F10.7, or SSN) were developed and statistically evaluated. The

results were compared with the NLRA model complemented by MHA, the latter having been

specifically used for the model parameter estimation.

4.1.1 Data and description of modelling techniques

4.1.1.1 Data

Measurements at Hermanus, South Africa, GPS receiver station (HNUS, 34.40◦ S, 19.22◦ E

geographic; 42.33◦ S, 82.15◦ E geomagnetic), for 2000 - 2017, were used to derive TEC. Only

storm-time data for the period 2000 - 2017 were selected based on criterion of Dst 6 −50 nT

and/or Kp > 4, and used to implement the models. Storm periods considered for validation

were chosen based on the storm intensity, and the period of the solar activity when the storm
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happened. Thus, four geomagnetic storm periods were considered for each level of solar

activity (high, moderate, low). Great, severe, strong, and moderate storms (as classified

by Loewe & Prölss (1997)) are all represented in the validation dataset. Table 4.1 lists the

storm periods selected for validation and their classification by Loewe & Prölss (1997). The

minimum Dst and maximum Kp indices reached during the storms are also given.

Table 4.1: Storm periods selected for validation and their classification according to Loewe
& Prölss (1997).

Storm period
Period of

solar activity
Minimum
Dst (nT)

Storm
classification

Maximum
Kp

15 - 23 July 2000 High -301 Severe 9
28 - 31 October 2003 High -383 Great 9
17 - 24 January 2005 Low -103 Strong 8

26 - 30 September 2011 Moderate -118 Strong 6.3
06 - 12 November 2013 High -80 Moderate 5

27 February - 02 March 2014 High -97 Moderate 5.3
06 - 12 September 2015 Moderate -98 Moderate 7.0

12 - 17 April 2016 Moderate -59 Moderate 5.0
12 - 15 October 2016 Moderate -104 Strong 6.3
27 - 30 March 2017 Low -73 Moderate 6.3

07 - 10 November 2017 Low -70 Moderate 6.3
17 - 19 March 2018 Low -50 Moderate 6.0

The modelling inputs for both ANN and NLRA models comprise universal time (t) of the day

which represents diurnal variation of TEC, day number (d) of the year to account for seasonal,

annual and semiannual variations of TEC, solar activity representations (F10.7p, F10.7, SSN

for the ANN model, and F10.7p for the NLRA model), as well as the local 3-hour magnetic

index (a) derived from the 3-hour K index recorded at Hermanus Magnetic Observatory, and

the symmetric disturbance field in the horizontal component of the Earth’s magnetic field

H (symH), which both represent geomagnetic activity. The symH as an equivalent of high

resolution Dst index, is a measure of geomagnetic activity related to ring currents that flow

in the equatorial plane (Saba et al., 1997). Studies have shown that geomagnetic activity due

to CME-driven storms is well represented by the Dst index, and hence symH , whereas the

Kp index better describes geomagnetic activity due to CIRs-driven storms (e.g., Huttunen

et al., 2002; Denton et al., 2006). This is thus the reason for using both symH and a (derived

from K index) indices in storm-time modelling to represent geomagnetic activity, since the

storm criterion of Dst 6 −50 nT and/or Kp > 4 considers both types of geomagnetic storms.

The lone solar activity proxy F10.7p was used in the NLRA model because of the exorbitant

computational cost for the MHA while determining the NLRA model coefficients.
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4.1.1.2 Description of ANN architectures

The ANN architectures considered in this study were defined by nine inputs (tc, ts, dc1, ds1,

dc2, ds2, a, symH , and one of each F10.7p, F10.7p, SSN indices, n hidden nodes, and 1

output node (TEC). The quantities tc, ts, dc1, ds1, dc2, ds2 defined by

tc = cos

(

2π × t

24

)

, ts = sin

(

2π × t

24

)

(4.1)

dc1 = cos

(

2π × d

365.25

)

, ds1 = sin

(

2π × d

365.25

)

(4.2)

dc2 = cos

(

4π × d

365.25

)

, ds2 = sin

(

4π × d

365.25

)

, (4.3)

are cosine and sine components of time of the day (tc, ts), cosine and sine components of

day number d of the year with periods of one year (dc1, ds1) to account for annual variation

of TEC, and period of half a year (dc2, ds2) for the semiannual variation of TEC. Such time

and day number decomposition into sine and cosine arguments was recommended by earlier

studies in order to get rid of unrealistic trends sometimes observed at midnight (Poole &

McKinnell, 2000; McKinnell & Poole, 2004; Oyeyemi et al., 2006; Habarulema et al., 2007).

Such unrealistic trends are not related to the physics around midnight, but rather to inappro-

priate treatment of continuity at midnight (Poole & McKinnell, 2000). For each of the solar

activity indices F10.7p, F10.7, SSN , ANN models were developed and validated. These are

referred to as MF107p, MF107, and MSSN, respectively. For each model, the relationship

between TEC and modelling inputs can be approximated as

for MF107p:

TEC ≈ F1(tc, ts, dc1, ds1, dc2, ds2, F107p, a, symH), (4.4)

for MF107:

TEC ≈ F2(tc, ts, dc1, ds1, dc2, ds2, F107, a, symH), (4.5)

and for MSSN:

TEC ≈ F3(tc, ts, dc1, ds1, dc2, ds2, SSN, a, symH). (4.6)

Each of the ANN models was trained 12 times by changing the number of hidden neurons

from 9 to 20 (random selection) and its accuracy was evaluated by computing the root mean

square error (RMSE) defined by

RMSE =

√

√

√

√

1

N

N
∑

i=1

(TECmod − TECobs)2 (4.7)
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between the observed TEC in validation dataset and the corresponding ANN output. The

RMSE is a measure of the spread between the observed and modelled TEC, which means

that the smaller the RMSE, the better the model. N is the number of observations, while

TECobs and TECmod are the observed and modelled TEC, respectively. Figure 4.1 illustrates

the variation of RMSE with the number of hidden neurons within the range 9 - 20.
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Figure 4.1: Variation of RMSE with number of hidden neurons.

Figure 4.1 shows that the suitable numbers, (corresponding to the lowest RMSE values)

of hidden nodes are 12 (MF107p), 11 (MF107), and 14 (MSSN). Therefore, the selected

ANN architectures are 9 - 12 - 1, 9 - 11 - 1, 9 - 14 - 1 for MF107p, MF107, and MSSN,

respectively. An ANN architecture/configuration of type 9 - 12 - 1 shows that there are nine

input neurons, twelve hidden neurons, and one output neuron, in the input, hidden, and

output layers, respectively.
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4.1.1.3 Analytical representation of NLRA

The NLRA model of TEC was established as a product of different functions which individ-

ually represent different drivers of TEC variability during geomagnetic storms. For instance,

diurnal variation of TEC was taken into account within an analytical expression f1 of both

sine and cosine components of time t of the day, defined as

f1(t) = α0 + α1.cos

(

2π × t

24

)

+ α2.sin

(

2π × t

24

)

, (4.8)

where α0, α1, and α2 are constants. Annual, semiannual, and seasonal variations of TEC were

all represented by an analytical function f2, containing harmonic functions of day number of

the year d, with periods of a year and half of the year:

f2(d) = β0 +
n=2
∑

k=1

[

βk.cos

(

k
2π × d

365.25

)

+ βk+2.sin

(

k
2π × d

365.25

)]

(4.9)

where β0, β1,..., β4 are constants. Solar and geomagnetic activities were included in the

model via a linear function f3, defined in terms of solar and geomagnetic indices, as follows

f3(F107.p, a, symH) = γ0 + γ1.(F107.p) + γ2.a+ γ3.symH, (4.10)

with γ0, ..., γ3 being constants. Thus, storm-time TEC was estimated with a non-linear

expression defined as

TEC(t, d, F107.p, a, symH) = [f1(t)× f2(d)× f3(F107.p, a, symH)]κ (4.11)

where κ is a constant that should be chosen such that the left side of equation (4.11) is

positive, given that TEC is a positive quantity. The development of the product in equation

(4.11) leads to 60 unknown constants and these were determined by using MHA as described

in Chapter 3. The constant κ was determined statistically, using two measures of model

accuracy: RMSE and correlation coefficient between observed and modelled TEC. The Pear-

son correlation coefficient is a measure of the capacity of a model to reproduce the observed

trend and is defined as (e.g., Suhov & Kelbert, 2005):

R =
cov(TECobs, TECrec)

σobsσrec

(4.12)

=

∑N
i=1(TECobsi − TECobs)(TECreci − TECrec)

√

∑N
i=1(TECreci − TECrec)2

√

∑N
i=1(TECobsi − TECobs)2

.

where cov(TECobs, TECrec) represents the covariance between the observed (TECobs) and

reconstructed TEC (TECrec), σrec and σobs are standard deviations of the reconstructed
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Figure 4.2: Variation of RMSE and R with κ.

and observed TEC, respectively. TECobsi and TECreci represent the i− th observation and

the corresponding reconstructed TEC, while TECobs and TECrec are the mean values of

the observed and reconstructed TEC, respectively. In Equation (4.11), we have arbitrarily

considered the values of κ (even number to ensure the positivity of TEC) in the range 2 -

10 in steps of 2, followed by computation of the RMSE and R between observations and

modelled TEC for a given value of κ. The obtained values and the corresponding κ values

are shown in Table 4.2. Figure 4.2 illustrates the variation of RMSE (top panel) and R

(bottom panel) with κ.

Table 4.2: RMSE and R values for different values of κ.

κ 2.00 4.00 6.00 8.00 10.00
RMSE 7.72 7.14 7.68 7.69 7.70
R (%) 82.22 82.96 82.54 82.51 82.48

Both Table 4.2 and Figure 4.2 show that for κ = 4.00, the RMSE is the lowest and R value is

the highest. Thus, TEC obtained using Equation 4.11 corresponded to κ = 4.00. The case of

κ = 1 has been considered while validating Equation 4.11. It was excluded from the selected

values of κ because, for some geomagnetic storms considered for validation, negative TEC

values were found and this is unrealistic.
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4.1.2 Results and discussions

The results of modelling storm-time TEC with ANN and NLRA models are presented and

compared in Figures 4.3 - 4.5. The geomagnetic activity during the selected storms, as ob-

served at Hermanus GPS receiver location is described by the local 3-hour K index and its

derivative 3-hour magnetic index. The equivalent description on a planetary scale is rep-

resented by the 3-hour Kp index, while the intensity and occurrence time of the storm is

identified by means of Dst index. All these geomagnetic indices are presented along with

modelled and GPS TEC (considered as observed TEC).

Figure 4.3 compares observed TEC (black curve) with MF107p (green curve), MF107 (red

curve), MSSN (blue curve) and NLRA (light blue curve) predictions for storm periods that

occurred during the solar maximum. Figures 4.3 (a), (b), (c) and (d) consist of the storm

periods of 15 - 23 July 2000, 28 - 31 October 2003 (Halloween storm), 06 - 12 November

2013, and 27 February - 02 March 2014, respectively. Throughout the 17 - 23 July 2000

storm period, MF107p and MF107 provide close predictions which are in good agreement

with actual data, specifically on 17 - 19 July 2000. For all the models, large discrepancies

between modelled TEC and observations are noticed from 20 - 23 July 2000 where all the

models underestimate the magnitude of daytime TEC. The negative storm effect on 16 July

2000 is better reflected by MSSN than by other modelling techniques. For the Halloween

storm of 28 - 31 October 2003, all the models overestimate daytime TEC, while a reverse

observation is seen for the moderate storm period of 27 February - 02 March 2014. For all

the storms between 06 - 12 November 2013 (Figure 4.3 (c)) underestimation of TEC by all

the models is observed on 06 - 10 November 2013 (exception with MSSN). The decrease

in TEC observed on 11 November 2013 is more accurately estimated by MF107p than by

MF107, MSSN, and NLRA models, while on 12 November 2013, MSSN predictions are in

good agreement with observations.

The results of MF107p, MF107, MSSN, and NLRA models for storms which occurred during

the moderate solar activity period are presented along with the observed TEC in Figure 4.4.

Figure 4.4 (a) shows that all the models provide daytime predictions that exceed observations

for almost the entire storm period of 06 - 12 September 2015, with large discrepancies specif-

ically by the NLRA model. Figure 4.4 (b) shows that, although all the models fail to capture

the observed TEC enhancement on 13 October 2016, the NLRA model estimates TEC bet-

ter than other modelling techniques for the rest of the period. Figure 4.4 (c) shows that the

NLRA model performs better than MF107p, MF107, and MSSN, where it estimates TEC

magnitude accurately, with few exceptions, specifically during the afternoon where NLRA

model results exceed observations. As shown in Figure 4.4 (d), all the models make almost

the same predictions which are generally lower than observed TEC, specifically during day-
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time.

Figure 4.5 compares MF107p, MF107, MSSN, and NLRA results with observed TEC for

four geomagnetic storm periods which occurred during the solar minimum period. Figure 4.5

(a) which consists of the storm period of 07 - 10 November 2017 shows that all the models fail

to accurately estimate TEC on 07 November 2017. For 08 - 09 November 2017, the NLRA

model provides more accurate estimates of the magnitude of TEC than MF107p, MF107,

and MSSN, while an opposite case is seen on 10 November 2017. Figure 4.5 (b) (storm

period of 27 - 30 March 2017) shows that daytime TEC is underestimated by all the models,

except for 30 March 2017 where MSSN predictions agree well with actual data, specifically

around midday. Figure 4.5 (c) which consists of the storm period of 17 - 19 March 2018

shows that, despite the shift in peak on 19 March 2018, the NLRA model provides more

accurate predictions than other models, of which the predictions exceed observations, mostly

in the afternoon. A comparison of the MF107p, MF107, MSSN, and NLRA results with GPS

TEC for a sequence of geomagnetic storms which occurred between 17 - 24 January 2005

is presented in Figure 4.5 (d). The MF107, MSSN, and NLRA models largely overestimate

daytime TEC on 17 - 20 January 2005, while MF107p makes predictions which are fairly

close to observations. TEC enhancement observed on 21 January 2005 is seen by the MF107,

MSSN, and NLRA models, while the 22 January 2005 TEC depletion is slightly followed by

MF107.

Figure 4.6 presents the RMSE and R values for the twelve storm periods considered for

validation. Evaluating the performance of MF107p, MF107, and MSSN (three models that

differ from the solar activity index used) based on RMSE values (top panel of Figure 4.6), it

was found that MF107p is more accurate (smaller values of RMSE) than MF107 and MSSN

for 5 out of 12 storm periods. However, MF107 provides more accurate predictions than

MF107p and MSSN for 4 out of 12 storm periods, while MSSN was found to predict TEC

better than MF107p and MF107 for 3 out of 12 storm periods. These results show that a

model with F10.7p index as solar proxy is likely to be more accurate than models with F10.7

or SSN as solar activity representation. This agrees with empirical results presented by Liu

et al. (2006) and Liu & Chen (2009) who demonstrated that, in a statistical sense, F10.7p is

a better representation of solar activity than F10.7 index.

Explanations for the fact that MF107p and MF107 perform better than MSSN may be

linked with the interpretation of F10.7 and SSN indices. The SSN , which is the number of

sunspots on the Sun’s photosphere, indicates that there are active regions on the Sun surface

that could possibly release energy towards the Earth. On the other hand, F10.7 represents

the total amount of solar flux being received at a wavelength of 10.7 cm. Thus F10.7 has a

direct influence on the Earth’s ionosphere compared with SSN and this could be the reason
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(b) Storm period of 28 - 31 October 2003.
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(d) Storm period of 27 February - 02 March 2014.

Figure 4.3: Comparison of observed and modelled TEC for the solar maximum storm periods.

for the better performance of MF107p and MF107 than MSSN.

When comparing the performances of the ANN-based models, MF107p, MF107, and MSSN,

with the NLRA model, Figure 4.6 (top panel) shows that the NLRA model is more accurate

than other models for 6 out of the 12 storm periods that were considered for validation. This

is indicated by the relatively smaller values of RMSE noticed for 15 - 23 July 2000, 27 Febru-

ary - 02 March 2014, 12 - 17 April 2016, 12 - 15 October 2016, 07 - 10 November 2017, and

17 - 19 March 2018. The higher accuracy of the NLRA model compared with other models

is confirmed by the relatively high values of R mostly for NLRA (Figure 4.6, bottom panel).

This indicates its ability to reproduce the general trend of the observed TEC. It is how-
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(b) Storm period of 12 - 15 October 2016.

0
5

1
5

2
5

3
5

T
E

C
 [

T
E

C
U

]

12/04/2016 13/04/2016 14/04/2016 15/04/2016 16/04/2016 17/04/2016

GPS TEC MF107p MF107 MSSN NLRA

0
2

4
6

8

K
 i
n

d
e
x

0
1

0
2

0
3

0
4

0
5

0

a
 i
n

d
e
x
 [

n
T

]

K
p

 i
n

d
e
x

0

2

4

6

8

−60

−40

−20

0

D
s
t 

[n
T

]

0 6 12 0 6 12 0 6 12 0 6 12 0 6 12 0 6 12 0

Time [UT hour]

(c) Storm period of 12 - 17 April 2016.
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(d) Storm period of 26 - 30 September 2011.

Figure 4.4: Comparison of the observed and modelled TEC for the storm periods which
occurred during the moderate solar activity period.

ever important to point out that short terms features are not captured by the NLRA model

(e.g., 28 - 31 October 2003) and for some cases, the model is insensitive to TEC dynamics

observed during storms (e.g., 15 - 23 July 2000). The ability of a regression analysis (RA)

based technique to estimate TEC during geomagnetically quiet conditions was highlighted by
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(a) Storm period of 07 - 10 November 2017.
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(b) Storm period of 27 - 30 March 2017.
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(c) Storm period of 17 - 19 March 2018.
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(d) Storm period of 17 - 24 January 2005.

Figure 4.5: Comparison of the observed and modelled TEC for the storm periods which
occurred during the solar minimum.

Feng et al. (2016) who developed an empirical TEC model for the northeast region of China

(40◦ − 50◦ N, 120◦ − 130◦ E). The efficiency of an empirical TEC model based on RA was

reported by Hajra et al. (2016) when modelling quiet-time TEC over the northern equatorial

ionization anomaly (EIA) crest (Calcutta). Quiet-time TEC modelling over Taiwan (120◦ E,

24◦ N) based on functional fitting has been developed and validated (Kakinami et al., 2009).

The range of RMSE values (∼ 4−14 TECU) obtained for quiet-time modelling by Kakinami
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Figure 4.6: RMSE and R values between observed and modelled TEC for storm periods
considered for validation.

et al. (2009) is comparable with the values obtained by the NLRA model (∼ 1− 13 TECU)

for storm conditions.

The average RMSE values (RMSEav) computed over 12 storm periods considered for vali-

dation are 6.56, 6.59, 6.73, and 6.25 TECU for MF107p, MF107, MSSN, and NLRA models,

respectively. The performance of each model with respect to another can be evaluated using

the expression

RMSEav
Model1

− RMSEav
Model2

RMSEav
Model2

× 100%, (4.13)

which indicates how much percentage, on average, model 2 is more accurate than model

1. The application of Equation (4.13) shows that MF107p performs ∼ 0.46 % and 2.59

% better than MF107 and MSSN models, respectively, while the NLRA model performs

7.68 %, 5.44 %, and 4.96 % better than MSSN, MF107, and MF107p models, respectively.

Previously, the weakness of the ANN model to specifically predict the positive storm effect,

or both positive and negative storm effects within a single storm period, has been reported

by Habarulema et al. (2010, 2011); Uwamahoro et al. (2018b). The fact that such types

of storms are more dominant in the storm-time dataset reserved for validation may be the
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reason that the ANN model failed to provide accurate storm-time predictions compared with

NLRA model. However, intensive computation of NLRA model coefficients based on MHA

requires high computing facilities, and this makes ANN model to be more employed for most

of the work presented in this study for time saving and computational cost reduction. In

the following section, the ANN model is evaluated and compared with MIDAS performance

along various latitudes of the African regions.

4.2 Performance evaluation of MIDAS and ANNs to

reconstruct storm-time TEC

In Chapter 3, we provided examples of studies that applied ANNs and MIDAS to TEC re-

construction in low and mid-latitude regions. Although MIDAS and ANNs have separately

been tested under both geomagnetically quiet and disturbed conditions, no study has com-

pared their performances relative to each other over various latitudes (low and mid-latitude

regions). In this perspective, we aimed at performing a statistical evaluation, for the first

time, of the capability of MIDAS compared with ANNs to reconstruct storm-time TEC over

the African low and mid-latitude regions. Additionally, MIDAS and ANN results are com-

pared with IRI-2016 TEC predictions. A study like the one presented in the current work

which compares different modelling/reconstructing techniques of the ionospheric TEC during

geomagnetic storms, is important for future improvements in ionospheric modelling. Evalua-

tion of how much percentage and under which circumstances a model is more accurate with

respect to another, is a contribution towards the efforts to implement a more efficient opti-

mization algorithm for storm-time TEC modelling/reconstruction. This study is particularly

useful for the IRI community considering the fact that, since its establishment, the IRI model

has continuously been improved and is still being updated as new data and more accurate

models become available. The work presented in this section was published in Uwamahoro

et al. (2018a).

4.2.1 Data and methods

4.2.1.1 Data selection

Using a storm criterion of Dst 6 −50 nT and/or Kp > 4, databases of historical storm-time

TEC data were built and used for TEC modelling based on ANNs. In this study, individual

ANN models were developed for each location considered. Storm-time TEC data used to

implement ANN models were derived from GPS measurements over receiver stations repre-

senting mid-latitude: Tete (TETE, 16.15◦ S, 33.58◦ E; 26.94◦ S geomagnetic), Mozambique;

low latitude: Moiu (MOIU, 0.29◦ N, 35.29◦ E; 9.17◦ S geomagnetic), Kenya; Nazret (NAZR,

8.57◦ N, 39.29◦ E, 0.25 ◦ S geomagnetic), Ethiopia; and Sheb (SHEB, 15.85◦ N, 39.05◦ E;
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7.36◦ N geomagnetic), Eritrea. Due to the lack of data specifically for ANN model develop-

ment, the African mid-latitude in the northern hemisphere wasn’t part of this study. Four

geomagnetic storm periods were selected to evaluate the ability of MIDAS, ANNs and IRI to

reconstruct/predict storm-time TEC. The selected validation periods were chosen in different

stages of solar cycle: 06 - 13 March 2012 and 18 - 24 February 2014, 16 - 22 March 2015, and

24 - 30 October 2016, for high, moderate, and low solar activity periods, respectively. The

classification of the selected storms based on their intensity is presented in Table 4.3.

Table 4.3: Classification of the selected storm periods by Kp (NOAA Space Weather Scales)
and Dst (Loewe & Prölss, 1997).

Storm period Solar activity
Maximum

Kp

Classification
(NOAA)

Minimum
Dst (nT)

Classification
(Loewe & Prölss, 1997)

06 - 13 March 2012 High 8 Severe -145 Strong
18 - 24 February 2014 High 6 Moderate -116 Strong

16 - 22 March 2015 Moderate 8 Severe -223 Severe
24 - 30 October 2016 Low 6 Moderate -64 Moderate

For independent validation-data, the four validation storms periods were excluded in databases

used to develop ANN models. In the case of missing data for some of the storm periods

selected, the closest stations such as Addis Ababa (ADIS, 9.04◦ N, 38.77◦ E; 0.18◦ N geo-

magnetic), Ethiopia; Zomba (ZOMB, 15.38◦ S, 35.33◦ E; 26.07◦ S geomagnetic), Malawi; and

Debarek (DEBK, 13.15◦ N, 37.89◦ E; 4.32◦ N geomagnetic), Ethiopia; were used for NAZR,

TETE and SHEB, respectively. Note that it has been demonstrated that a model developed

at one station can be validated over any other location within a latitudinal and longitudi-

nal coverage of 8.7◦ and 10.6◦, respectively (Uwamahoro & Habarulema, 2015). Table 4.4

presents geographic coordinates and magnetic latitudes (MLA) (tan(MLA) = 0.5× tanI) of

GPS ground receiver stations considered to develop and validate ANN models, while their

locations are shown on the map in Figure 4.7. For each station, the magnetic inclination I

that was used to compute MLA was obtained from the International Geomagnetic Reference

Field (IGRF) model.

Table 4.4: Geographic (GLat & GLon) coordinates and magnetic latitudes (MLA) of the
ground receiver stations used for the development (shown with ∗) and validation of the ANN
models.

Station name Station ID Country GLat (◦) GLon (◦) MLA (◦)
Debarek DEBK Ethiopia 13.15 37.89 6.21

Sheb∗ SHEB Eritrea 15.85 39.05 9.71
Nazret∗ NAZR Ethiopia 8.57 39.29 0.78

Addis Ababa ADIS Ethiopia 9.04 38.77 1.28
Moiu∗ MOIU Kenya 0.29 35.29 -10.52
Tete∗ TETE Mozambique -16.15 33.58 -33.01

Zomba ZOMB Malawi -15.38 35.33 -31.45
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Figure 4.7: Location of ground-based GPS receiver stations used to develop and validate
ANN models (blue triangles). Shown in magenta are stations used for validation in the case
of missing data at primary locations.

For each station considered for validation, IRI TEC data were obtained by running the online

IRI-2016 model currently available at https://ccmc.gsfc.nasa.gov/modelweb/models/

iri2016_vitmo.php, with NeQuick as topside option and with the STORM option on. It

is worth noting that the validity of the storm-time model incorporated in the IRI has been

evaluated for mid-latitude storms and it was found that the model captures negative iono-

spheric effects fairly well during summer season, but that it was inaccurate in predicting

positive storm effects for winter mid-latitude storms (Fuller-Rowell et al., 2000). It is also

important to mention that IRI model provides TEC values up to the altitude of 2000 km

(Chartier et al., 2012; Habarulema & Ssessanga, 2017).

4.2.1.2 MIDAS

In the current study, the African region within −30◦ to 36◦ latitude and 30◦ to 44◦ longitude

was considered during inversion, with voxel elements defined by a grid of 2◦ latitude × 2◦

longitude, and an altitude range of 100 to 1200 km in steps of 40 km. Slant TEC used as input

to MIDAS is an integrated quantity along the satellite - receiver signal path and thus, ray

path elements intercepting within a given voxel contain some plasmasphere contribution. It

is therefore likely that an unknown amount of plasmaspheric TEC is included at ionospheric

heights during reconstruction (Chartier et al., 2012; Kinrade, 2013). Since the matrix of ray

path elements is rectangular and therefore can not be directly inverted, a set of orthonormal

basis functions and an appropriate mapping matrix are required to perform the inversion
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(Mitchell & Spencer, 2003). The introduction of basis functions permits the representation

of temporal and spatial distributions of the ionospheric electron density separately (Mitchell

& Cannon, 2002). The set of empirical orthogonal functions (EOF) can be generated from

ionospheric models such as IRI and Chapman function (Mitchell & Spencer, 2003; Yin et al.,

2017) and the latter was used in the current work. MIDAS uses observation data from a

user-defined time window centered at the time of the inversion. However, depending on the

choice of the length of the time window, which translates into the amount of observation

data ingested in each time step of the inversion process, the final output may vary. Short

temporal variations may not be captured when a wide time-window is used, but also the

amount of observation data that goes into the inversion matters. Therefore, a compromise

needs to be made between the amount of observation data that goes into a single run for a

single solution and width of the time-window. In a region of sparse GPS receivers such as

the one considered in this study, shorter time windows mean less observation data for the

inversion. Thus, observations from a sliding time window of 5.5 h was used in the inversion to

obtain electron densities at every 30-minute interval. Also a non-linear optimization method

was used to produce the results presented in this study since it has an advantage of avoiding

negative values of electron density. Vertical TEC from MIDAS was computed by vertical

integration of the electron density obtained following the above procedure.

4.2.1.3 ANN configuration

Feed-forward neural networks (FFNNs) with the Levernberg-Marquardt backpropagation al-

gorithm were used during training in the current work. Such type of configuration is preferred

especially the training algorithm that is well known for its time saving while implementing the

input-output mapping process (Jang et al., 1997), and has previously been applied to quiet

and storm time TEC modelling over the South African mid-latitude region (Habarulema

& McKinnell, 2012; Uwamahoro & Habarulema, 2015). The selection of modelling inputs

was done based on factors that influence TEC variability such as diurnal, seasonal, annual

and semiannual variations, solar and geomagnetic activities (Habarulema et al., 2007; Ercha

et al., 2012). Diurnal variation is represented by time of the day t, while day number of the

year d represents annual and seasonal variation of TEC. The time of the day and day number

of the year were decomposed into cosine and sine components of time (tc, ts) and day (dc, ds)

as previously defined by equations (4.1) and (4.2). The solar activity was represented by the

modified solar flux index F10.7p. For geomagnetic activity, the planetary 3-hour ap index, au-

roral electrojet index AE (5-minute time resolution), and the symmetric disturbance field in

the horizontal component of the Earth’s magnetic field H (5-minute time resolution), symH ,

were all used during storm-time TEC modelling. The symH is a measure of geomagnetic

activity due to ring currents as observed in low latitude (Saba et al., 1997). AE stands for

geomagnetic activity that results from ionospheric currents flowing in the auroral ionosphere
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(Saba et al., 1997; Ballatore & Maclennan, 1999), and in the current work we think that,

given the amount of storm-time data used, there is a possibility that some of these currents

may also affect the mid-latitude. In addition to this, AE also plays a significant role in

computation of the total magnetospheric energy consumption rate during magnetic storms

and substorms (Akasofu, 1981). The 3-hour ap index is derived from Kp index and the lat-

ter represents the intensity of magnetic activity on a planetary scale as seen at sub-auroral

latitudes (Rostoker, 1972; Saba et al., 1997). Previous studies (e.g., Huttunen et al., 2002;

Denton et al., 2006) have shown that Kp index is a good representation of magnetic activ-

ity for CIR-driven storms, while Dst index and hence, symH , represents well geomagnetic

activity for CME-driven storms. Thus, considering that original datasets are composed of a

large number of storms, taking also into account that CIR and CME-driven storms are both

included in the datasets, the three geomagnetic indices were all used to globally represent, at

a latitudinal scale, different geomagnetic activity contributors to TEC changes due to storms.

There also exists a couple of works that included all three geomagnetic indices in modelling

over different latitude sectors (Ercha et al., 2012; Dabbakuti et al., 2016; Dabbakuti & Rat-

nam, 2017; Tshisaphungo et al., 2018). The number of input neurons was therefore eight as

defined by eight different inputs: tc, ts, dc, ds, F107p, ap, AE, symH whereas there was one

output neuron corresponding to the modelled parameter, TEC. For a specific station, the

ANN architecture used during training was determined by selecting the number of hidden

neurons that corresponds to the minimum RMSE. For each location, the network was trained

by varying the number of hidden neurons from 6 - 20 (range selected randomly), followed

by computation of the RMSE between the observed and the reconstructed/predicted TEC

when ANN models are tested on validation datasets. Figure 4.8 illustrates the variation of

RMSE with number of hidden neurons for different locations.

It is clear from Figure 4.8 that 15, 14, 11, 15 hidden neurons were used for MOIU, NAZR/ADIS,

SHEB/DEBK and TETE/ZOMB respectively, because they correspond to the lowest RMSE

over the validation period. Therefore, the corresponding architectures (which gave minimum

RMSE values) considered for TEC reconstruction by ANN are 8-15-1, 8-14-1, 8-11-1, and

8-15-1. The amount of data used for the development of ANN models and the fact that TEC

varies with latitude differently, are likely the main reasons of different ANN architectures.

Table 4.5 shows the selected architectures, data coverage periods, and number of data points

within datasets used to develop ANN models.

4.3 Results and discussion

For each storm period used for validation the intensity and the occurrence time of the storm

are shown by Dst andKp indices. Figure 4.9 shows validation results from MIDAS, ANN and

IRI-2016 models along with GPS TEC observations for storms that occurred during high solar
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Figure 4.8: Variation of RMSE between GPS TEC observations and ANN predictions with
number of hidden nodes for validation storm periods.

Table 4.5: ANN architectures, data coverage periods, and number of data points within
datasets used to develop ANN models.

Station Architecture Period Number of data points
SHEB 8-11-1 2004 - 2016 178946
NAZR 8-14-1 2007 - 2016 206162
MOIU 8-15-1 2008 - 2016 224491
TETE 8-15-1 2011 - 2016 178258

activity, between 06-13 March 2012. The last panel of Figure 4.9 shows Dst and Kp indices

which indicate that the 06 - 13 March 2012 storm period consisted of a succession of storms

with different intensities. For the entire storm period and for all stations, MIDAS reconstructs

the storm-time TEC well and short term features are accurately captured. Similarly, ANN

model reconstructed TEC well for almost the entire storm period except some overestimations

observed during daytime on 08 March 2012 for DEBK, ADIS and MOIU. In contrast to what

was observed for MIDAS and ANNs, IRI model shows large daytime underestimations of

GPS TEC for the entire storm period specifically for DEBK and ADIS. For DEBK and

ADIS, RMSE values between IRI predictions and observations are about 9.83 and 15.69

TECU, respectively. IRI model provides more accurate predictions for MOIU and TETE

with respective RMSE values of 8.77 and 8.17 TECU. However, some discrepancies dominated
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Figure 4.9: Comparison of the observed and reconstructed TEC for the storm period of 06
- 13 March 2012.

by underestimations and overestimations for MOIU and TETE, respectively, are observed

specifically during daytime.

Figure 4.10 is similar to Figure 4.9 but for the storm period of 18 - 24 February 2014 and

stations DEBK, NAZR, MOIU and TETE. The 18 - 24 February 2014 storm period consisted

of a sequence of storms as indicated by Dst 6 −50 nT or Kp > 4. It can be seen from

Figure 4.10 that MIDAS TEC agrees well with observations for NAZR and TETE. However,

remarkable discrepancies mainly dominated by daytime overestimations are seen for DEBK

and MOIU. What can also be noticed is the MIDAS good capability to capture short term

variations of the observed TEC and follow the TEC depletion over MOIU on 20 February

2014. ANN model estimates the observed TEC accurately in spite of some clear deviations

on 19 February 2014 for DEBK, NAZR and MOIU and on 23 February 2014 for DEBK.

Except on 20 February 2014 where a good performance of IRI model in estimating the

storm-time TEC magnitude is noticed for TETE and MOIU, IRI underestimates daytime

TEC magnitude for the entire storm period.
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Figure 4.10: Comparison of the observed and reconstructed TEC for the storm period of 18
- 24 February 2014.
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Figure 4.11: Comparison of the observed and reconstructed TEC for the storm period of 16
- 22 March 2015.

Figure 4.11 presents MIDAS, ANN and IRI results along with observations over DEBK,

NAZR, MOIU, and TETE stations during the storm period of 16 - 22 March 2015. As

indicated by the minimum Dst (-223 nT) and maximum Kp (of about 8) indices, the 16

- 22 March 2015 storm period consisted of one severe storm. The storm had a very long

recovery phase that lasted for about 5 days as shown by Dst index below -50 nT. Both

MIDAS and ANNs reconstruct TEC accurately over all stations although for some days,

daytime overestimations and underestimations are observed for DEBK and MOIU. TEC

enhancement observed over TETE on 17 March 2015 is better followed by MIDAS than by

ANNs. The IRI model underestimates TEC mainly during daytime for the entire storm

period for DEBK and NAZR and some days for MOIU while relatively small overestimations

are observed over TETE.

Figure 4.12 illustrates GPS TEC observations over DEBK, ADIS, MOIU, and ZOMB stations

along with MIDAS, ANN and IRI results, for a sequence of moderate geomagnetic storms

which occurred between 24 - 30 October 2016. Except on 30 October 2016 where daytime
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overestimation is observed, MIDAS makes accurate estimations of TEC for DEBK, MOIU,

and ZOMB for the rest of the storm period. The TEC depletion observed on 26 October

2016 over DEBK, MOIU, and ZOMB is also captured well by MIDAS. However, MIDAS

underestimates daytime TEC over ADIS for almost the entire storm period. On the other

hand, ANN model estimates the magnitude of TEC accurately for DEBK and MOIU but

fails to capture the depletion observed on 26 October 2016. For ADIS and ZOMB, daytime

TEC is underestimated for almost the entire storm period. Except for 26 October 2016 where

the TEC depletion observed over the four stations is not seen by the IRI model, for the rest

of the storm duration IRI predictions are in good agreement with observations specifically

for DEBK and MOIU. However, for ADIS, daytime TEC magnitude is underestimated for

some days while for ZOMB an overestimation is observed throughout the storm period. The

common characteristics of the three methods used for storm-time TEC reconstructions are

their high accuracy for early morning and sometimes around midnight hours, and where

over/under-estimations exist, these are generally observed during daytime.

0
2
0

4
0

6
0

T
E

C
 [
T

E
C

U
]

24/10/2016 25/10/2016 26/10/2016 27/10/2016 28/10/2016 29/10/2016 30/10/2016

GPS TEC MIDAS ANN IRIDEBKDEBK

0
2
0

4
0

6
0

T
E

C
 [
T

E
C

U
]

GPS TEC MIDAS ANN IRIADISADIS

0
2
0

4
0

6
0

T
E

C
 [
T

E
C

U
]

GPS TEC MIDAS ANN IRIMOIUMOIU

0
2
0

4
0

6
0

T
E

C
 [
T

E
C

U
]

GPS TEC MIDAS ANN IRIZOMBZOMB

K
p
 i
n
d
e
x

0

2

4

6

8

−70

−60

−50

−40

−30

−20

−10

0

D
s
t 
[n

T
]

0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0

Time [UT hour]

Figure 4.12: Comparison of the observed and reconstructed TEC for the storm period of 24
- 30 October 2016.
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To be able to determine which model/technique between MIDAS, ANNs or IRI best recon-

structs the storm-time TEC over different African latitude regions, a statistical analysis was

done based on the mean absolute error (MAE) and Pearson’s correlation coefficient (de-

fined by equation (4.12)) between the observed and reconstructed TEC. Starting from the

definition of the absolute error (AE) (Habarulema et al., 2007; Leandro & Santos, 2007):

AE = |TECrec − TECobs|, (4.14)

MAE is given by (Mitchell & Spencer, 2003; Willmott & Matsuura, 2005)

MAE =
1

N

N
∑

i=1

|TECrec − TECobs| (4.15)

where N is the number of observations, TECrec and TECobs are the reconstructed and

observed TEC respectively. MAE represents the average of the vertical distances between

the observed and predicted quantities and has been proven to be a good parameter to use over

the RMSE in assessing the performance of a model (Willmott & Matsuura, 2005). Figure

4.13 shows the calculated MAE values (left panels) and correlation coefficients (right panels)

for all validation storm periods. For the storm periods of 06 - 13 March 2012 and 24 - 30

October 2016, smaller values of MAE generally found for MIDAS reveal that, on average,

MIDAS reconstructs storm-time TEC better than ANN and IRI models. In contrast, for 18 -

24 February 2014 and 16 - 22 March 2015 storm periods, ANN model shows higher accuracy,

on average. Except for TETE where MAE values for IRI model are comparable with the

values obtained for ANNs specifically for the storm period of 18 - 24 February 2014, MAE

values for IRI model are higher for all other cases. This indicates that IRI model is not as

good as MIDAS and ANN techniques in making accurate storm-time TEC reconstructions. A

similar observation was highlighted in previous works that compared MIDAS reconstructions

with IRI predictions (Chartier et al., 2012; Giday et al., 2016), and ANN estimations with IRI

predictions (Habarulema et al., 2007, 2009a; Watthanasangmechai et al., 2012; Okoh et al.,

2016). The underestimation of TEC by IRI model compared to MIDAS and ANN can be

attributed to differences in the altitude ranges at which TEC is estimated (Kenpankho et al.,

2011; Chartier et al., 2012; Habarulema & Ssessanga, 2017). IRI model does generate TEC

for the altitude range 60 - 2000 km and the contribution of the plasmasphere is therefore

not fully taken into account in IRI model. In contrast, it is worth noting that the input

for MIDAS include GPS ray paths that contain information of the plasmasphere (Chartier

et al., 2012). Similarly for ANNs, GPS TEC used to develop ANN models was derived based

on the line integral of the electron density along the signal path from GPS satellites (at the

altitude of about 20200 km) to ground receivers. These may be some of the reasons that

make MIDAS and ANNs more accurate in estimating the magnitude of TEC compared to

IRI model. Particularly for ANN models, the amount of data used for training and the choice
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Figure 4.13: MAE and correlation between the observed and reconstructed TEC by MIDAS,
ANN and IRI.

of the number of hidden nodes also influenced the modelling results. The fact that MIDAS

captures short term features and follows TEC enhancements and depletions observed during

geomagnetic storms better than ANN and IRI models can be explained in terms of data used

when applying or developing the techniques. MIDAS uses direct measurements around the

specific time of inversion/reconstruction while ANNs and IRI are empirical models based on

historical data.

Table 4.6: Average MAE values (in TECU) computed over four storm periods for a specific
station (columns 2 to 5) and for all stations considered for validation (last column).

Technique DEBK NAZR/ADIS MOIU TETE/ZOMB Average over all stations
MIDAS 5.35 4.89 5.78 3.20 4.81

ANN 5.16 3.96 3.96 3.63 4.18
IRI 8.19 10.05 7.35 6.16 7.94
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It can also be seen from Figure 4.13 that relatively high values of MAE were generally found

for the low latitude stations (DEBK, NAZR, ADIS, MOIU) compared to the mid-latitude

stations (TETE, ZOMB). The average MAE values computed over the four validation storm

periods per location (Table 4.6) confirm that higher error values were found for low latitudes.

The reconstructing techniques used in this work estimate TEC better for the mid-latitude

than the low latitude. This agrees well with what was previously reported about the per-

formance of IRI (Kumar et al., 2015) and MIDAS (Chartier et al., 2014) in low and mid-

latitude. Generally, the difficulty in reconstructing/modelling the low latitude ionosphere

has been frequently reported (Materassi & Mitchell, 2005; Adewale et al., 2011; Kenpankho

et al., 2011; Panda et al., 2015). Overall high values of MAE observed for the low latitude

compared to mid-latitude are likely due to higher TEC gradients caused by the equatorial

ionisation anomaly as a result of the fountain effect. The influence of high TEC variability

due to fountain effect on TEC modelling/reconstruction was reported as the major cause

that makes modelling difficult for the low latitude ionosphere. This observation was reported

by Chartier et al. (2014) when performing the tomography of the African ionosphere during

geomagnetically quiet conditions, and Panda et al. (2015) during TEC reconstruction with

IRI model over low latitude in the Indian sector. It can therefore be considered that TEC

reconstruction is more difficult for the low latitude than mid-latitude and this agrees well

with what was previously reported (Chartier et al., 2014; Kumar et al., 2015).

Similar to equation (4.13), to evaluate how accurate a model performs with respect to an-

other, the percentage improvement (PI) was computed according to the following Equation

(Muslim et al., 2015):

PI =
MAEav

1 −MAEav
2

MAEav
2

× 100% (4.16)

where MAEav
1 and MAEav

2 are the average values of MAE for model 1 and model 2, respec-

tively. In the context of this work, model 1 and model 2 represent any of MIDAS, ANNs

or IRI. Equation (4.16) indicates how much percentage model 2 performs better than model

1. Over the storm periods considered for validation, we found that, on average, ANN model

performs 3.69 %, 23.48 %, 45.96% better than MIDAS for DEBK, NAZR/ADIS, MOIU, re-

spectively. The average PI of 24.37 % obtained for the three locations shows higher accuracy

of ANN in the low latitude compared to MIDAS. The fact that individual storm-time ANN

models were developed for different locations and not a regional model that covers the entire

region of interest might be another contributing factor for the good performance of ANNs

over MIDAS and IRI in the low latitude ionosphere. However, we also note that a regional

ANN model over the African region would be prone to significant errors due to few/lack

of observations in some latitude regions. On the other hand, MIDAS performs better for

the mid-latitude station TETE/ZOMB by 13.44 % compared to ANN model. Figure 4.14
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Figure 4.14: PI values for African low and mid-latitude regions: IRI and MIDAS (left
panel), IRI and ANNs (middle panel), MIDAS and ANNs (right panel). Also shown above
each panel, are formulas used to compute PI values.

illustrates PI values computed for African low and mid-latitude regions. Since we have three

locations (DEBK, NAZR/ADIS, MOIU) that represented the low latitude in this study, av-

erage MAE over these locations was first calculated for each technique/model to represent

the low latitude with a single value. Then the formulas presented in Figure 4.14 were applied

to compute PI values for both low and mid-latitude locations. Positive PI values shown on

the left (IRI and MIDAS) and the middle (IRI and ANNs) panels of Figure 4.14 indicate

that MIDAS and ANNs perform better than IRI for both low and mid-latitude African re-

gions. However, the right panel shows good performance of ANNs in low latitude compared

to MIDAS while a reverse situation is noticed in the mid-latitude.

The high accuracy of ANN model in TEC modelling has previously been reported for both

low (Acharya et al., 2011; Watthanasangmechai et al., 2012) and mid-latitude regions (Huang

& Yuan, 2014). Over all stations considered for validation, we wish to note that the average

MAE values of 4.81, 4.18 and 7.94 TECU were found for MIDAS, ANN and IRI, respec-

tively. This confirms that, overall, MIDAS and ANN provides comparable results, and are

both better than IRI model for storm-time TEC reconstruction.

All three techniques considered in this work gave high correlation coefficients (between 73 -

99 % ). In the context of this study, high correlation coefficients confirm good performance of

MIDAS, ANN and IRI techniques in reproducing diurnal trend of the observed TEC. Over all

stations, the highest correlation coefficients found for MIDAS indicate that there is a strong

positive linear relationship between observations and MIDAS estimations compared to other
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techniques. It can therefore be concluded that MIDAS reconstructs short term features and

follows the storm-time TEC dynamics more accurately than IRI and ANN models. The high

performance of MIDAS during disturbed conditions was noticed and reported by (Yin et al.,

2004) when reconstructing the electron density over the USA. As it can be seen from Figure

4.13, there is no clear dependence of performances of MIDAS, ANNs and IRI on the storm

intensity. As an example, smaller MAE values were generally obtained for the severe storms

of 16 - 22 March 2015 (Minimum Dst of -223 nT) compared to strong storms of 18 - 24

February 2014 (Minimum Dst of -116 nT).

4.4 Summary and conclusions

In this chapter, we investigated the contribution of each of the solar activity indices F10.7p,

F10.7 and SSN to storm-time TEC modelling over a mid-latitude station, Hermanus, (HNUS,

34.40◦ S, 19.22◦ E geographic; 42.33◦ S, 82.15◦ E geomagnetic), South Africa. The task was

performed based on ANN models (MF107p, MF107, and MSSN) which differ from each other

by the solar index used. It was shown that a model with F10.7p as solar proxy, is likely to

lead to more accurate results compared to models that considered F10.7 and SSN as solar

activity representations. Thus, from here onwards, F10.7p will be used as the solar proxy

during storm-time TEC modelling. This agrees with statistical results presented in Liu et al.

(2006); Liu & Chen (2009) where it was shown that F10.7p represents the solar activity bet-

ter than F10.7. A comparative study of MF107p, MF107, MSSN, with a NLRA developed

at the same location shows that the latter is 7.68 %, 5.44 %, and 4.96 % better than MSSN,

MF107, and MF107p models, respectively.

We have statistically evaluated the capability of MIDAS compared with ANNs to reconstruct

storm-time TEC for the African low and mid-latitude regions. It was found that MIDAS

and ANNs provide comparable results in reconstructing the storm-time TEC over differ-

ent African latitudes with MAE values of 4.81 and 4.18 TECU, respectively. On the other

hand, statistics show that, on average, ANN model performs 24.37 % better than MIDAS

in estimating storm-time TEC over low latitudes while MIDAS accuracy is 13.44 % higher

than ANN in mid-latitude. However, it has been shown that MIDAS captures short term

variations of the observed TEC and follows enhancements and depletions observed during ge-

omagnetic storms more accurately than ANNs. Both MIDAS and ANN model provide more

accurate storm-time TEC reconstructions than IRI model in African low and mid-latitude

regions. Similar to previous studies (Chartier et al., 2014; Kumar et al., 2015; Panda et al.,

2015), storm-time TEC reconstruction/modelling is more difficult for the low latitude than

mid-latitude ionosphere. The fountain effect and the resulting higher TEC gradients over low

latitude ionosphere are likely to be the causes of the difficulty in reconstructing/modelling
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TEC over this region. The performance of MIDAS, ANNs and IRI do not seem to depend

on the storm intensity. For example, it was shown that MIDAS, ANNs and IRI can even

reconstruct storm-time TEC more accurately for severe storms (e.g., 16 - 22 March 2015)

than it does for strong storms (e.g., 18 - 24 February 2014).
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Chapter 5

Highlights about the performances of

different storm-time TEC models

In this chapter, statistical evaluation of storm-time TEC modelling techniques over various

latitudes of the African sector and surrounding areas is presented. For each selected receiver

station, three different storm-time models based on empirical orthogonal functions (EOF)

analysis, non-linear regression analysis (NLRA), and Artificial neural networks (ANNs), were

implemented. Such a comparative study that involves these three modelling techniques, along

different latitudes, and during storm conditions, is performed for the first time, and this forms

the main objective of this chapter. Storm-time GPS TEC data used for both development and

validation of the models were selected based on the storm criterion of Dst 6 −50 nT and/or

Kp > 4 to take into account both CME and CIR-driven storms, respectively. To make an

independent test of the models, storm periods considered for validation were excluded from

datasets used during the implementation of the models and results are compared with obser-

vations (GPS TEC), monthly median TEC values, and International Reference Ionosphere

(IRI-2016) predictions. Results presented in this chapter and their discussions are mostly

derived from a published paper (Uwamahoro et al., 2019).

5.1 Data selection and modelling inputs

In order to assess the performances of the models over different latitudes, data from 6 GPS

receiver stations were selected for the implementation of the models. Among the six stations

considered, two belong to the southern hemisphere mid-latitude (HRAO: 36.32◦ S geomag-

netic, ZAMB: 26.27◦ S geomagnetic), one in the northern hemisphere mid-latitude (TEHN:

30.62◦ N geomagnetic), and three in low latitude, at the nominal trough (NAZR: 0.25◦ S ge-

omagnetic), southern crest (SEY1: 13.55◦ S geomagnetic) and northern crest (YIBL: 16.10◦

N geomagnetic) of the equatorial ionization anomaly (EIA). In cases of unavailable data for

some storms selected for validation at the primary locations (used to implement the models),

co-located/close stations with available data were considered for validation. Thus, MONG

(25.98◦ S geomagnetic) and MAUA (30.83◦ S geomagnetic) were used for ZAMB, whereas

SEYG (13.55◦ S geomagnetic), ADIS (0.18◦ N geomagnetic), KUWT (23.50◦ N geomagnetic)
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replaced SEY1, NAZR, and YIBL, respectively. For clarity, it is of great importance to point

out that validating a model developed for specific location using data from co-located/close

stations has been studied. It was shown that results agree with observations quite reasonably

when such validation is performed within a latitudinal and longitudinal separations of 8.7◦

and 10.6◦, respectively, from the primary station (Uwamahoro & Habarulema, 2015). Details

about stations selected for development and validation of the models and data coverage pe-

riods are provided in Table 5.1. Locations of the considered stations in this study are shown

on the map in Figure 5.1.

Table 5.1: Geographic and geomagnetic latitudes and longitudes of the GPS receiver stations
used during development (shown with *) and validation of the models. Also presented, are
data coverage periods considered while implementing the models.

Station ID Name Country GLat (◦) GLon (◦) GMLat (◦) GMLon (◦) Data
HRAO* Hartebeesthoek South Africa -25.89 27.69 -36.32 94.69 1996 - 2016
ZAMB* Zambia Zambia -15.43 28.31 -26.27 98.40 2002 - 2016
MONG Mongu Zambia -15.25 23.15 -25.98 93.03 -
MAUA Maun Botswana -19.90 23.53 -30.83 92.33 -
SEY1* Seychelles Seychelles -4.67 55.48 -13.55 126.73 1998 - 2016
SEYG Seychelles Seychelles -4.68 55.53 -13.55 126.73 -

NAZR* Nazret Ethiopia 8.57 39.29 -0.25 111.01 2007 - 2016
ADIS Addis Ababa Ethiopia 9.04 38.77 0.18 110.47 -

YIBL* Yibal Oman 22.19 56.11 16.10 128.13 2010 - 2016
KUWT Kuwait Kuwait 29.33 47.97 23.50 119.69 -
TEHN* Tehran Iran 35.70 51.33 30.62 123.26 2004 - 2016

For validation, six storm periods (four were reserved for interpolation and two for extrapola-

tion) were selected based on their intensities (storm classification by Loewe & Prölss (1997)),

and the period of solar activity. It is worth noting that none of the storms selected for vali-

dation were included in the primary datasets considered to develop the models. This is of a

particular importance for independent data-model validation. Details about selected storm

for validation are provided in Table 5.2.

Table 5.2: Storm periods selected for validation and their classification according to Loewe
& Prölss (1997).

Storm period
Period of

solar activity
Minimum
Dst (nT)

Storm
classification

Maximum
Kp Stations used for validation

07 - 14 October 2012 High -109 Strong 6.7 HRAO, ZAMB, SEY1, ADIS, YIBL, TEHN
03 - 09 January 2015 Moderate -105 Strong 6.3 HRAO, ZAMB, SEYG, ADIS, YIBL, TEHN

22 - 29 June 2015 Moderate -204 Severe 8.3 HRAO, MONG, SEYG, NAZR, YIBL, TEHN
24 - 30 October 2016 Low -64 Moderate 6.3 HRAO, ZAMB, SEYG, ADIS, KUWT, TEHN

28 February - 04 March 2017 Low -61 Moderate 5.7 HRAO, MAUA, SEYG, ADIS, KUWT, TEHN
27 - 30 May 2017 Low -125 Strong 7.0 HRAO, MAUA, SEYG, ADIS, KUWT, TEHN

The inputs used during the development of the models comprise the time of the day (diurnal

variation), day number of the year (seasonal variation), the F10.7p solar flux index (solar

activity), and geomagnetic activity representations (3 hourly planetary ap, auroral electrojet
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Figure 5.1: Locations of GPS receiver stations used to implement and validate the models
(shown in magenta). Shown in blue, are stations considered for validation in the cases of
unavailable data at the primary locations.

AE, and symmetric disturbance in the horizontal component of the Earth’s magnetic field

symH).

5.2 Analytical formulation of storm-time TEC mod-

elling techniques

5.2.1 Empirical orthogonal functions (EOF) analysis

EOF analysis was applied to TEC modelling by first decomposing the original dataset into

basis functions and expansion coefficients. An EOF-based model was developed for each

location shown with * in Table 5.1. We considered 15-minute resolution TEC data which

lead to 96 TEC values per day and hence, the original TEC data matrix was defined by

96 columns, and the number of rows equal to the number of storm days with complete

observations (1327, 592, 528, 332, 263, and 321 for HRAO, ZAMB, SEY1, NAZR, YIBL,

and TEHN, respectively) considered for a given station during the development of the EOF

models. Thereafter the original TEC dataset was decomposed into basis functions Ek(UT )

representing diurnal variation of TEC and expansions coefficients which represent long-term
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variations (solar cycle, annual, semiannual, and seasonal) of TEC according to

TEC(UT, d) =

n=96
∑

k=1

Ck(d)×Ek(UT ) (5.1)

where UT is the universal time. The quick convergence of the EOF series defined by equation

(5.1) allows to reconstruct storm-time TEC data using only 10 out of 96 EOF components

(Cj × Ej, with j = 1, 2, ..., 10) without loosing much information in the original data. The

fractions of the total variances (computed using equation (3.48)) accounted for by the first

ten EOF components retained while developing EOF models are presented in Table 5.3, and

clearly, all are greater than 97.0 % for all stations considered.

Table 5.3: Percentage of variances accounted for by first 10 EOF components.

EOF component Variances (%)
HRAO ZAMB SEY1 NAZR YIBL TEHN

C1 ×E1 90.130 81.950 83.700 86.920 71.370 75.860
C2 ×E2 3.914 6.731 5.166 4.935 7.622 8.760
C3 ×E3 2.568 4.288 3.386 2.246 6.287 5.583
C4 ×E4 0.728 1.640 1.787 2.001 3.454 2.481
C5 ×E5 0.697 1.052 1.215 0.888 3.193 2.290
C6 ×E6 0.445 0.753 0.856 0.643 2.142 1.475
C7 ×E7 0.349 0.627 0.521 0.432 1.188 0.853
C8 ×E8 0.227 0.495 0.507 0.383 0.783 0.652
C9 ×E9 0.187 0.395 0.406 0.283 0.643 0.429
C10 ×E10 0.126 0.264 0.291 0.247 0.399 0.328

Total variance 99.369 98.193 97.834 98.983 97.083 98.715

As an illustration, Figure 5.2 shows diurnal and long-term variations of EOF basis functions

and coefficients, respectively, for HRAO station. It can be seen from Figure 5.2 (a) that

E1 represents well the diurnal mean TEC computed over the entire dataset. Correlation

coefficient between the diurnal average TEC and E1 was found to be 99.34 %. Similarly, E2

have some features of diurnal mean TEC with a correlation of 70.94 %, while high order EOF

basis functions represent short-term variations due to day-to-day variations in the observed

TEC. Figure 5.2 (b) shows that C1 and F10.7p have similar trends with a correlation coefficient

of 78.90 %. This confirms that C1 has clear patterns of solar activity. High order EOF

coefficients have also some features of solar activity remarked from their high and low values

noticed for solar maximum and minimum periods, respectively.

After TEC dataset decomposition into basis functions and associated coefficients, factors that

influence TEC variability were taken into account by expressing the expansion coefficients in

terms of modelling inputs as follows:
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(a) Diurnal variation of EOF basis functions.
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(b) Long-term variation of EOF coefficients.

Figure 5.2: (a) Diurnal variation of the first ten EOF basis functions and (b) Long-term
variation of the first ten EOF coefficients, for HRAO station.

Ck(d) = ζk0 + ζk1.F10.7p(d) + ζk2.Ap(d) + ζk3.AE(d) + ζk4.Dst(d) (5.2)

+[ζk5 + ζk6.F10.7p(d) + ζk7.Ap(d) + ζk8.AE(d) + ζk9.Dst(d)]cos

(

2π × d

365.25

)

+[ζk10 + ζk11.F10.7p(d) + ζk12.Ap(d) + ζk13.AE(d) + ζk14.Dst(d)]sin

(

2π × d

365.25

)

+[ζk15 + ζk16.F10.7p(d) + ζk17.Ap(d) + ζk18.AE(d) + ζk19.Dst(d)]cos

(

4π × d

365.25

)

+[ζk20 + ζk21.F10.7p(d) + ζk22.Ap(d) + ζk23.AE(d) + ζk24.Dst(d)]sin

(

4π × d

365.25

)

where k = 1, 2, 3, ..., m, and m (equal to 10 for all stations) is the number of retained

EOF components. The factor 0.25 located at the denominator of cosine and sine arguments

accounts for the extra day in each leap year. Ap(d) represents the daily planetary magnetic

index and is obtained by averaging 8 values of the 3-hour ap index for a given day d. AE(d)

and Dst(d) are daily auroral electrojet and disturbance storm-time indices, respectively. For

each Ck(d), the unknown coefficients ζk0, ..., ζk24 were determined using the method of least

squares. Once the the unknown coefficients in Equation 5.2 are found, the same equation is

used to estimate the EOF expansion coefficients when F10.7p(d), AE(d), Ap(d) and Dst(d) are

provided for a specific day d. The modelled TEC at a specific day was obtained using the

modelled EOF coefficients (C̃) together with EOF basis functions according to the equation

TEC(UT, d) =
m=10
∑

k=1

C̃k(d)×Ek(UT ) (5.3)
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5.2.2 Non-linear regression analysis (NLRA)

Relationship between TEC and modelling inputs was established using a non-linear mathe-

matical expression that comprises harmonic functions with periods of one year and half a year

to represent the annual and semiannual variation of TEC, respectively. The amplitude of

each of the harmonic functions varies with components of time, solar and geomagnetic indices

while seasonal variation of TEC is represented by day number of the year. The modelled

TEC were then obtained using the expression

TECα = c0 + c1.tc + c2.ts + c3.F10.7p + c4.ap + c5.AE + c6.symH (5.4)

+[c7 + c8.tc + c9.ts + c10.F10.7p + c11.ap + c12.AE + c13.symH ].cos

(

2π × d

365.25

)

+[c14 + c15.tc+ c16.ts+ c17.F10.7p + c18.ap + c19.AE + c20.symH ].sin

(

2π × d

365.25

)

+[c21 + c22.tc+ c23.ts+ c24.F10.7p + c25.ap + c26.AE + c27.symH ].cos

(

4π × d

365.25

)

+[c28 + c29.tc+ c30.ts+ c31.F10.7p + c32.ap + c33.AE + c34.symH ].sin

(

4π × d

365.25

)

where tc and ts defined as follows

tc = cos

(

2π × h

24

)

, ts = sin

(

2π × h

24

)

, (5.5)

are cosine (tc) and sine (ts) components of time t of the day. The parameter α can randomly

be chosen in such a way that the right side of Equation 5.4 is positive since TEC is always a

positive quantity. In this work, three different values of α (0.125, 0.25, and 0.5) were tested

and 0.5 was found to lead to minimum error. Thus, α was assigned a value of 0.5 for all

stations considered during implementation of NLRA models. For each station, the unknown

coefficients c0, c1, ..., c34 were determined using the method of least squares.

5.2.3 Artificial neural networks (ANNs)

The ANN architectures considered in this work were defined by 10 inputs (F10.7p, ap, AE,

symH , tc, ts, dc1, ds1, dc2, ds2), n hidden nodes, and 1 output node (TEC). The quantities

tc and ts are the same as presented in equation 5.5 while dc1, ds1, dc2, ds2 defined as follows

dc1 = cos

(

2π × d

365.25

)

, ds1 = sin

(

2π × d

365.25

)

, (5.6)

dc2 = cos

(

4π × d

365.25

)

, ds2 = sin

(

4π × d

365.25

)

, (5.7)
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are cosine and sine components of day number d of the year, with periods of one year (dc1, ds1)

and half a year (dc2, ds2). They represented the annual and semiannual variations of TEC in

the ANN models. For a specific station, a suitable number (corresponding to lowest error)

n of hidden nodes was statistically determined based on the mean absolute error (MAE)

computed according to the formula (Mitchell & Spencer, 2003)

MAE =
1

N

N
∑

i=1

|TECmod − TECobs| (5.8)

where TECobs and TECmod are observed and modelled TEC, respectively, and N is the

number of observations. For each station considered to implement ANN models, a sequence

of sixteen ANN trainings was performed by varying the number of hidden nodes from 10

to 25 (range selected arbitrarily). Thereafter, MAEs were computed for all sixteen sets

of results obtained for each station using storm-time TEC data reserved for validation (all

six storm periods considered for validation combined together) and the corresponding output

obtained for each training process. For a given station, the selected number of hidden neurons

corresponded to the lowest MAE value obtained within the range 10 - 25. Difference in

numbers of data points within training datasets and in TEC gradients at various latitudes

may be the reason of different optimum numbers of hidden neurons obtained for different

locations. Figure 5.3 illustrates the variation of MAE values versus the number of hidden

nodes for the six stations used to implement ANN models, while Table 5.4 presents the

selected architectures (number of input-hidden-output neurons) as well as the number of

data points considered during training.

Table 5.4: ANN architectures and amount of data points used to develop ANN models. The
numbers 10 and 1 correspond to the number of input and output layer neurons, respectively.
Shown in between, are the numbers of hidden layer neurons.

Station ANN architecture Number of data points
HRAO 10 - 24 - 1 829459
ZAMB 10 - 14 - 1 369315
SEY1 10 - 19 - 1 325213
NAZR 10 - 11 - 1 206162
YIBL 10 - 16 - 1 158440
TEHN 10 - 11 - 1 196706

5.3 Results and discussion

The modelled TEC by EOF, ANN, NLRA, and IRI models, and monthly medians (MM)

TEC values representing the background ionosphere are presented along with observations

for different storm periods and locations selected for validation. Also shown at the bottom
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Figure 5.3: Variation of MAE values with number of hidden nodes for different locations.

of each graph, are Kp and Dst indices from which a geomagnetic storm is identified by

Dst 6 −50 nT or Kp > 4. MM TEC values were computed using TEC data for quiet days

of the month when the storm occurred. It is evident to point out that comparison of NLRA,

EOF, and ANN predictions with IRI estimations is critical since IRI was developed using

a very large earlier dataset of density measurements and provides monthly averages of the

ionospheric parameters while other models are based on real observations.

5.3.1 Interpolation results

Results for the storm period of 07 - 14 October 2012 are presented in Figure 5.4 for six

stations considered for validation. EOF, NLRA, ANN and IRI model results are plotted as

dark yellow, red, blue, and light blue curves, respectively. TEC observations and respective

monthly medians are represented as black and green curves respectively. EOF, NLRA, ANN

models provide comparable predictions which for some locations, are in good agreement

with the actual data despite a few discrepancies (e.g., TEHN, YIBL, SEY1, ZAMB, and

HRAO), while for ADIS, underestimations are more dominant. Also remarked, are deviations

from the observations during TEC enhancements (e.g., 09 October 2012 for ADIS, and 14

October 2012 for YIBL and SEY1), and depletions (e.g., 10 October 2012 for ZAMB, and

10 - 11 October 2012 for HRAO). Except for SEY1 and HRAO where IRI predictions are

most of the time close to observations, overestimations of the observed TEC are noticed

for TEHN, YIBL, and ZAMB, while underestimations are observed for ADIS. As expected
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for TEC enhancements over YIBL and SEY1 on 14 October 2012, the background TEC is

below observations whereas a reverse situation is noticed for ZAMB and HRAO where MM

TEC values exceed observations specifically on 10 October 2012 for ZAMB, and 10 - 11

October 2012 for HRAO. In some cases when GPS TEC is not visible, it may be due to good

agreement with one of the models (e.g., in the afternoon of 10 October 2012 for YIBL) or lack

of observations for a given period (e.g., on 11 October 2012 for YIBL, SEY1, and ZAMB).
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Figure 5.4: Comparison of EOF, NLRA, ANN, and IRI results with the observed TEC for
the storm period of 07 - 14 October 2012.

Illustrated in Figure 5.5, are EOF, NLRA, ANN, and IRI results, as well as MM estimates for

the storm period of 03 - 09 January 2015. For TEHN and ADIS, EOF and ANN models make

more accurate TEC predictions than NLRA and IRI models (e.g., For TEHN, MAEEOF =

1.54 TECU, MAEANN = 1.78 TECU, MAENLRA = 2.78 TECU, MAEIRI = 3.19 TECU).

NLRA model underestimates daytime TEC over TEHN between 05 - 09 October 2015, and

ADIS between 06 - 09 January 2015, while for IRI model, over- and underestimations are

respectively observed for TEHN and ADIS almost throughout the storm period. For the cases

when both negative (depletion relative to MM TEC) and positive (enhancement relative to

MM TEC) ionospheric responses are observed within the same storm period (e.g., 05 January

2015 and 08 January 2015 for YIBL, and 05 January 2015 and 07 January 2015 for ZAMB and

HRAO), none of the models follow accurately TEC variations. However, modelling results

are close to MM estimates throughout the storm period for SEYG, ZAMB, and HRAO.
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Figure 5.5: Comparison of EOF, NLRA, ANN, and IRI results with the observed TEC for
the storm period of 03 - 09 January 2015.

Results displayed in Figure 5.6 are for the severe storm of 22 - 29 June 2015, for TEHN,

YIBL, NAZR, SEYG, MONG, and HRAO stations. Except for IRI model which largely

overestimates GPS TEC specifically for TEHN, YIBL, and SEYG, other models provide

comparable results which also are in good agreement with observations except on 22 June

2015 for NAZR, SEYG, MONG, and HRAO. Furthermore, the models are capable of cap-

turing negative ionospheric response over TEHN and TEC enhancements over MONG and

HRAO observed on 23 June 2015. Large discrepancies between modelling results and MM

estimates are noticed during TEC enhancement over MONG and HRAO whilst good agree-

ment between modelled TEC and MM TEC with observations are observed during the storm

recovery phase particularly for NAZR, MONG, and HRAO.

Figure 5.7 is similar to Figure 5.6 but for the 24 - 30 October 2016 moderate storms. In spite

of some daytime deviations from the observations, EOF and ANN models are more accurate

over ZAMB (MAEEOF = 2.37 TECU, MAEANN = 2.04 TECU, MAENLRA = 2.69 TECU,

MAEIRI = 3.92 TECU), while for HRAO, EOF, ANN, and IRI models perform better than

NLRA model which largely over predicts daytime observations. In contrast, for ADIS station,

NLRA (MAENLRA = 4.05 TECU) estimates TEC more accurately than EOF (MAEEOF =

4.57 TECU) and IRI (MAEIRI = 5.05 TECU) models. For all the models, large discrepancies

between observations and predictions are remarkable for KUWT whereas MM estimates agree
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Figure 5.6: Comparison of EOF, NLRA, ANN and IRI results with the observed TEC for
the storm period of 22 - 29 June 2015.

well with observations. Also noticed is the failure of EOF, NLRA, ANN, and IRI models

to capture short-term features (e.g., TEHN) as well as the decrease in TEC observed on 26

October 2016 (e.g., ZAMB and HRAO) identified from large daytime deviations below the

MM values. Particularly for NLRA model, large daytime overestimations of GPS TEC are

seen over HRAO.

5.3.2 Extrapolation results

Extrapolation results are presented in Figure 5.8 along with GPS TEC and MM TEC for the

storm periods of 28 February - 04 March 2017 (Figure 5.8 (a)) and 27 - 30 May 2017 (Figure

5.8 (b)). It can be seen from Figure 5.8 (a) that EOF estimates are smaller than observations

throughout the storm period, specifically for TEHN station. For other models, despite some

overestimates seen during the day, there is no much difference between observations, MM

estimates, and modelled TEC. The models however, provide TEC values that exceed actual

data for KUWT, specifically around midday and in the afternoon. A reverse case is observed

for ADIS where all the models underpredict daytime TEC throughout the storm period. For

SEYG and MAUA, there is not much difference between EOF, ANN, and IRI estimates and

these are comparable with TEC values observed during the negative storm response on 03
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Figure 5.7: Comparison of EOF, NLRA, ANN and IRI results with the observed TEC for
the storm period of 24 - 30 October 2016.

March 2017. NLRA model estimates well the amplitude of the observed TEC for SEYG with

exception on 03 March 2017. However, for MAUA station, NLRA daytime values exceed

observations on 02 - 04 March 2017. Although NLRA captures well the slight increase seen

on 01 March 2017 over HRAO, it fails to follow TEC decrease on 03 March 2017. An oppo-

site situation related to both increase and decrease on 01 March 2017 and 03 March 2018,

respectively, is noticed for the rest of the models. Relatively large deviations between GPS

TEC and MM medians are remarkable during positive TEC enhancements (e.g., 01 March

2017, HRAO; 02 March 2017, KUWT) and negative ionospheric responses on 03 March 2017

over HRAO.

Figure 5.8 (b) shows that TEC enhancements that occurred on 28 May 2017 over MAUA and

HRAO are seen by EOF, NLRA, and ANN models. For the rest of the storm period NLRA

daytime predictions exceed observations. MM TEC is largely below observations during the

positive storm responses seen over MAUA and HRAO. On 27 May 2017, EOF, NLRA, and

IRI daytime predictions exceed observations for TEHN whereas for the rest of the period,

the observed TEC is accurately estimated by ANN model compared to other modelling tech-

niques. The high accuracy for IRI and ANN models (MAEIRI = 3.19 TECU, MAEANN =

3.55 TECU) with respect to others (MAEEOF = 5.32 TECU, MAENLRA = 5.71 TECU) is
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noticed for KUWT station. For all the models, overestimations are dominantly seen in the

afternoon for ADIS station, while in the morning and during nighttime, TEC is accurately

estimated. Except for IRI model which slightly over predicts the observations over SEYG,

other models make accurate predictions almost throughout the entire storm period.
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Figure 5.8: Comparison of EOF, NLRA, ANN and IRI results with the observed TEC for
the storm periods of (a) 28 February - 04 March 2017 and (b) 27 - 30 May 2017.

The presented results show that, generally, all the models make accurate predictions for night-

time and early morning and can follow positive and negative ionospheric responses for some

storms and fail to do so for others. Also short-term variations observed in GPS TEC are not

sufficiently captured by the models. The failure of storm-time models to accurately predict

the storm impact has been reported by Fuller-Rowell et al. (2000) when validating simula-

tion results provided by the coupled thermosphere ionosphere model (CTIM) with ionosonde

measurements of foF2. It is however worth noting that storm-time TEC modelling does

not fully depend on the analytical expressions or optimization techniques used in this study,

but also on the representations of physical mechanisms that drive the storms. Some of these

include horizontal neutral winds which are among the transport mechanisms of ionized par-

ticles within the ionosphere and can thus cause both positive (Titheridge, 1995b; Lu et al.,

2008) and negative ionospheric responses (Lu et al., 2001); the superfountain effect (enhanced

fountain effect) which was stated to be responsible of positive ionospheric enhancements when

dayside low and a part of mid-latitude ionosphere are uplifted due to interplanetary electric

field (IEF) shock (Tsurutani et al., 2004); travelling ionospheric disturbances (TIDs) respon-

sible for positive ionospheric responses, and changes in neutral composition responsible of
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negative storm effects (Lu et al., 2001). Lack of the inputs that represent well the main

geomagnetic storm drivers may be attributed to the failure, in some cases, of all the models

to reproduce TEC dynamics observed during the storms.

Particularly for IRI and NLRA models, under/overestimations are more frequently observed

for some validation periods when compared to ANN and EOF models. The reason specified

for the IRI model is the lack of plasmasphere contributions within the model as TEC computa-

tion is performed between 60 - 2000 km while GPS TEC is derived along the receiver-satellite

line of sight which extends up to an altitude of 20 200 km (Kenpankho et al., 2011; Chartier

et al., 2012; Habarulema & Ssessanga, 2017). The case of NLRA to over/underestimate ob-

servations can be attributed to analytical expression itself which may not be more sensitive to

change in TEC. However, NLRA model is more efficient for storms with non-significant iono-

spheric responses. We wish to note that the inefficiency of a regression analysis (RA) based

model to capture positive storm response was also reported by Mukhtarov et al. (2013b).

Both ANN and EOF models tend to perform better compared to NLRA and IRI models

although they also fail to predict the storm impacts especially when both positive and neg-

ative ionospheric responses are observed within a single storm period. Reminding that the

number of hidden nodes was statistically determined within the range 10 - 25 for individual

location, training an ANN over a very wide range may lead to more accurate results. Thus,

ANN results can thus be improved by extending the range 10 - 25 to a large interval, and

this is one of the key advantage of using ANNs in modelling as different choices of hidden

neurons may lead to different solutions. We emphasize that, in some cases, the increasing of

the amount of neurons in the hidden layers may cause performance improvements. However,

depending on the data set and the problem under investigation, a large amount of neurons

can lead to a loss of generalization (overfitting), leading to a reduction of ANN performance.

It is also important to note that ANN and NLRA models were implemented considering high

temporal resolution (5 minutes) data while for the EOF model, daily indices were used. High

resolution geomagnetic indices used for ANN may probably be the reason of its superiority

relative to EOF in terms of accuracy. The ability of EOF model to reveal hidden features in

TEC databases, and to reconstruct TEC with fewer components at the same time keeping as

much as the information in the original datasets, are its advantages when compared to other

models.

5.3.3 Statistical analysis

Accuracies of EOF, NLRA, ANN, and IRI models are evaluated on basis of statistical pa-

rameters such as mean absolute error (MAE), mean absolute percentage error (MAPE) and

correlation coefficient (R) computed using observations (GPS TEC) and modelled TEC. To
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evaluate how close predictions are from observations MAE values computed according to

Equation 5.6 were used. Since TEC varies differently at different latitudinal regions, the per-

formance of a model at different locations can further be evaluated by introducing MAPEs

to make the comparison scale-free. MAPEs were calculated using the formula (Mitchell &

Spencer, 2003)

MAPE =
1

N

N
∑

i=1

|TECmod − TECobs|
TECobs

× 100%. (5.9)

The measure of how much accuracy the observed trend is reproduced by the model was

evaluated by the Pearson correlation coefficient R provided by equation (4.11). All statistical

parameters for individual storm periods are provided in Figure 5.9 (a), the left, middle, and

right panels, representing MAE, MAPE, and R values, respectively.

It is clear from the left panel of Figure 5.9 (a) that smaller values of MAE were generally

found for ANN and EOF models and this shows that both models are more accurate than

NLRA and IRI models in estimating the magnitude of the observed TEC. More specifically,

20 out of 36 cases (with 17 out 24 cases for interpolation and 6 out of 12 for extrapolation)

presented on the left panel of Figure 5.9 (a), indicate that MAE values for ANN model are

smaller than the values obtained for EOF model and this reveals that ANN is better than

EOF in general. Also noticed from the same panel, are high values of MAE generally found

for IRI (interpolation results) and NLRA (extrapolation results) compared to other mod-

elling techniques. It can thus be considered that NLRA performs better than IRI during

interpolation while the latter is more accurate than the former during extrapolation. This is

based on the fact that, 20 out of 36 cases (including 17 out of 24 for interpolation and 3 out

of 12 for extrapolation) show higher values of MAE for NLRA compared to IRI model.

The middle panel of Figure 5.9 (a) also indicates that, for most of the cases, MAPE values

for IRI and NLRA are generally higher than the values obtained for ANN and EOF models.

This confirms the good performance of ANN and EOF models with respect to NLRA and

IRI models. From the right panel of Figure 5.9 (a) it is clear that R values are high (between

82 - 99 %) for all modelling techniques considered in this study. It can hence be concluded

that all the models are capable of reproducing the general diurnal trend of TEC for all storm

periods considered for validation.

To qualitatively evaluate the performances of the models at each location, statistics were

carried out over six storm periods combined together for individual station. Statistical re-

sults are presented in Figure 5.9 (b): MAE (top left), MAPE (top right), percentage accuracy,

PA (bottom left), as well as R values (bottom right). Both top left and right panels of Figure

5.9 (b) show that, for most of the cases, highest MAE and MAPE values correspond to sta-
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(b) MAE (top left panel), MAPE (top right panel), PA (bottom left panel) and R (bottom right panel) values for combined
storm periods.

Figure 5.9: MAE, MAPE, PA, and R values.

tions located at the trough and crests/ near the crests of EIA. Thus, ionospheric responses to

geomagnetic storms in low latitudes are difficult to model, perhaps due to a couple of complex
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mechanisms such as fountain effect, which may become even more complex during disturbed

conditions: “superfountain effect” (Tsurutani et al., 2004), and thermospheric neutral winds

that compete with fountain effect during plasma transport in the low latitude ionosphere

(Fesen et al., 1989).

PA values computed according to the formula

PAModel1/Model2 =
MAEModel1 −MAEModel2

MAEModel2

× 100%, (5.10)

reveal that, over all six storm periods considered for validation, ANN model performs 9.62

%, 26.41 %, and 57.61 %, better than EOF, NLRA, and IRI models, respectively; while

EOF is 15.31 %, and 43.78 % more accurate than NLRA and IRI, respectively. Moreover,

the accuracy of NLRA was found to be 24.69 % higher than IRI model accuracy. This

is also confirmed with relatively higher values of R obtained for ANN model compared to

other models (bottom right panel of Figure 5.9 (b)). The superiority of ANN model relative

to other techniques was noted in previous modelling studies that compared ANN with IRI

(Habarulema et al., 2007, 2010; Watthanasangmechai et al., 2012; Okoh et al., 2016), and

ANN with EOF model in mid-latitude (Uwamahoro & Habarulema, 2015).

Statistical results presented above were computed by considering GPS TEC as reference.

Bearing in mind that IRI model is based on monthly average values, and taking into consid-

eration that positive and negative storms are part of our analysis, we have also performed

a statistical analysis referring to the background ionosphere represented by monthly median

values. Computations were done using Equations (5.8) - (5.10), where TECobs was substi-

tuted by MM TEC. The summary of the results (not all shown) are presented in Tables

5.5 and 5.6 along with results obtained when GPS TEC was considered as reference, for

comparison purposes.

Table 5.5 presents MAE values obtained per location, when all storm periods selected for

validation are combined together. The standard deviations (SD) are also presented in the

last column of the table. In both cases (GPS and MM TEC as references), for all models,

and for all stations, the results presented in Table 5.5 show that difference between MAE

values with respect to GPS TEC and MM TEC does not exceed 1.5 TECU. Average MAE

values found with respect to both considered references confirm that ANN model is more

accurate than other modelling techniques considered in this study.

The range of error obtained in this study are generally smaller or comparable with errors

reported in different studies. For example, the average MAE values found for storm-time

TEC modelling/reconstruction over mid-latitude locations are 3.20, 3.63, and 6.16 TECU for

MIDAS, ANNs, and IRI models, respectively (Uwamahoro et al., 2018a) while in the current

study, 2.74, 3.31, 2.46, and 3.61 TECU, were found for EOF, NLRA, ANN, and IRI mod-
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Table 5.5: MAE values (in TECU) between modelled and GPS TEC (as reference) on one
hand, modelled and MM TEC (as reference) on the other hand, for each location considered
during development or validation of the models. For each location, all storm periods are
combined within a single dataset. MAEav and SD represent average value of MAE and
standard deviation, respectively.

Method Reference TEHN YIBL NAZR SEY1 ZAMB HRAO MAEav SD
EOF GPS TEC 2.16 5.32 5.01 4.13 3.32 2.75 3.78 1.26

MM TEC 1.89 5.17 3.89 3.84 3.46 1.91 3.36 1.26
NLRA GPS TEC 2.60 5.28 5.84 5.10 3.84 3.50 4.36 1.24

MM TEC 2.46 5.07 4.95 5.62 4.30 3.32 4.29 1.19
ANN GPS TEC 1.98 4.11 4.79 4.31 3.10 2.41 3.45 1.13

MM TEC 1.47 3.63 3.68 4.06 2.94 2.15 2.99 1.00
IRI GPS TEC 3.73 7.39 7.24 7.17 4.22 2.88 5.44 2.05

MM TEC 3.40 5.63 6.82 6.43 2.93 2.24 4.58 1.95

Table 5.6: PA values (in %) computed by separately considering GPS TEC and MM TEC
as references.

Reference EOF/ANN NLRA/ANN IRI/ANN NLRA/EOF IRI/EOF IRI/NLRA
GPS TEC 9.62 26.41 57.61 15.31 43.78 24.69
MM TEC 12.40 43.33 52.96 27.51 36.08 6.72

els, respectively. Although in some cases different error metrics have been used to evaluate

statistically a storm-time model performance, relatively high errors in TEC modelling were

found. For instance, the root mean square errors reported in Uwamahoro & Habarulema

(2015) and Mukhtarov et al. (2013a) are within the range ∼ 2.0− 12.5 for storm conditions.

Table 5.6 presents PA values (in %) between a pair of models as indicated by Equation

5.10. It can clearly be seen that PA of given model with respect to IRI model has been

reduced when MM values are considered as reference compared to the case when GPS TEC

is taken as reference. For example, the last column of Table 5.6 indicates that NLRA model

is 24.69 % and 6.72 % more accurate than IRI model when GPS TEC and MM TEC are

separately considered as references, respectively. The reason of PA reduction particularly

computed between other models with respect to IRI when MM TEC is considered as a refer-

ence is that, IRI modeled values are based on monthly averages, and are therefore relatively

close to MM TEC values. In contrast, for other cases where IRI model is excluded, PA

values increase and this depends on how close the model predictions are close to MM values.

Statistical results based on MM values also show the superiority of ANN with respect to

other modelling techniques presented in this study.
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5.4 Summary and conclusions

In this chapter, we compared the performances of EOF, NLRA, ANN, and IRI models to

predict TEC during geomagnetic storm conditions over various latitudes based on a statistical

analysis. Based on their accuracies, storm-time TEC models considered can generally be

classified (from high to low accuracy) as follows: ANNs, EOF, NLRA, and IRI. With GPS

TEC as a reference for statistical computations, PA values have showed that ANN model is

about 10 %, 26 %, and 58 % more accurate than EOF, NLRA, and IRI models, respectively,

while EOF was found to perform 15 %, and 44 % better than NLRA and IRI, respectively.

On the other hand, the NLRA accuracy was found to be 25 % higher than the accuracy of

IRI model. Statistical results referring to background ionosphere represented by MM TEC

values have also shown the superiority of ANN with respect to other modelling techniques,

followed by EOF, NLRA, and then IRI model. Generally, highest errors were observed at

the locations of both crests of EIA and at the magnetic equator, and then at mid-latitude

locations. The accuracies of the models increase with increasing latitude. It was however

noticed that all the models are capable to capture some of ionospheric responses and fail to

do so for others. In the next chapter the contribution of meridional neutral winds to TEC

modelling will be evaluated. From now onward, ANN based model will be used as it was

found to be more accurate than other models considered in this work.
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Chapter 6

Contribution of meridional neutral winds

to storm-time TEC modelling

This chapter presents storm-time total electron content (TEC) modelling results based on

artificial neural networks (ANNs), for both low- and mid-latitude African regions. The devel-

oped storm-time TEC models were based on Global Positioning System (GPS) observations

from GPS receiver stations selected in low, northern and southern mid-latitude regions of

the African sector. GPS data selection was based on a storm criterion of Dst 6 -50 nT

and storm datasets used to develop the models were within the periods 2001 - 2015, 2000

- 2015, and 1998 - 2015, for African low, northern and southern hemisphere mid-latitude

regions, respectively. For the first time in storm-time TEC modelling, the meridional wind

velocity was introduced as an additional input to the well-known TEC modelling inputs (di-

urnal variation, seasonal variation, solar activity, and geomagnetic activity representations)

to take into account the effect of neutral winds in moving ionisation within the ionosphere

along the magnetic field lines. The results presented in this chapter have been published in

Uwamahoro et al. (2018b).

6.1 Data selection and modelling inputs

Storm-time TEC data used to develop ANN models were derived from GPS measurements

at three locations: RABT (33.99◦ N, 6.85◦ W; 23.88◦ N, geomagnetic), Morocco; MBAR

(0.60 ◦ S, 30.73◦ E; 10.22 ◦ S, geomagnetic), Uganda; and SUTH (32.38◦ S, 20.81◦ E, 41.09◦

S, geomagnetic), South Africa. RABT and SUTH are in mid-latitude region while MBAR

is in the low latitude region, in the nominal equatorial ionisation anomaly (EIA) region.

For a given station, when there are missing data for a specific storm period selected for

validation, the closest station with available data was used. In this instance, Tetouan (TETN;

35.56◦ N, 5.36◦ W, 26.18◦ N, geomagnetic), Morocco; Malindi (MAL2; 2.99◦ S, 40.19◦ E,

12.42◦ S, geomagnetic), Kenya; and Hartebeesthoek (HRAO; 25.89 ◦ S, 27.68◦ E, 36.32◦ S,

geomagnetic), South Africa; were used to replace RABT, MBAR and SUTH respectively.

Table 6.1 shows the geographic and geomagnetic coordinates of stations used in this study

while Figure 6.1 displays their locations on the African map.
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Table 6.1: Geographic and geomagnetic latitudes and longitudes of the GPS receiver stations
used for development and validation of the models.

Station ID Name Country GLat (◦) GLon (◦) GMLat (◦) GMLon (◦)
RABT Rabat Morocco 33.99 -6.85 23.88 69.23
TETN Tetouan Morocco 35.56 -5.36 26.18 70.68
MBAR Mbarara Uganda -0.60 30.73 -10.22 102.36
MAL2 Malindi Kenya -2.99 40.19 -12.42 111.86
SUTH Sutherland South Africa -32.38 20.81 -41.09 84.76
HRAO Hartebeesthoek South Africa -25.89 27.68 -36.32 94.69
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Figure 6.1: Locations of GPS receiver stations used during development and validation of
the models.

For development and validation of the models, only storm-time TEC data (5-minute time

resolution) selected based on the storm criterion of Dst 6 -50 nT was considered. Original

datasets used to implement the models consisted of historical storm-time data (all storm

periods with available data) within the coverage periods 2000 - 2015, 2001 - 2015, and 1998 -

2015, for RABT, MBAR, and SUTH, respectively. Thus, for each station, positive, negative,

and non-significant storms are all included in a single dataset used to implement the ANN

model for that station. Also taken into account while selecting validation storm periods is the

period of solar activity (low, moderate and high). Two storm periods per each solar activity

period were chosen for validation within 2000 - 2015 (interpolation) while outside the data

range used during modelling, two storm periods in 2016 were reserved for extrapolation. It

is of great importance to point out that the selected validation storm periods were excluded
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from the original datasets used while implementing the models to make an independent

validation. Table 6.2 shows the selected storm periods and stations used for validation, as

well as the storm intensities as indicated by the minimum Dst index reached during the storm

main phase.

Table 6.2: Selected geomagnetic storm periods and GPS receiver stations used for validation.

Storm period
Solar activity

period Minimum Dst (nT)
Stations used
for validation

14 - 16 Dec 2006 Low -162 RABT, MBAR, SUTH
21 - 23 Jul 2009 Low -83 RABT, MBAR, HRAO
05 - 07 Aug 2011 Moderate -107 RABT, MBAR, SUTH
16 - 21 Mar 2015 Moderate -223 TETN, MBAR, SUTH
06 - 10 Mar 2012 High -74, -131 RABT, MAL2, SUTH
18 - 24 Feb 2014 High -116, -91, -60, -51 RABT, MBAR, SUTH

31 Dec 2015 - 02 Jan 2016 Low -110 RABT, MAL2, HRAO
05 - 08 Mar 2016 Low -98 RABT, MBAR, SUTH

The common modelling inputs considered are universal time (t) which represents diurnal

variation of TEC, day number (d) of the year to account for seasonal, annual and semiannual

variations of TEC, modified solar flux index (F10.7p) for solar activity representation, and

geomagnetic activity indices: 3-hour planetary magnetic index (ap), symmetric disturbance

field in the horizontal component of the Earth’s magnetic field H (symH) as well as the

auroral electrojet (AE) index. The three geomagnetic indices were all used to globally

represent, at a latitudinal scale, different geomagnetic activity contributors to TEC changes

due to geomagnetic storms. For a specific location, two ANN models were developed, the

difference being that one contains the meridional wind velocity (v) as an extra input, obtained

from the HWM.

6.2 Description of the modelling technique

The modelling technique described here consists of two main steps: determination of the

suitable altitude for the meridional wind computation using non-linear regression analysis

(NLRA) technique, and development of storm-time TEC models based on ANNs.

6.2.1 Determination of suitable altitude for the computation of v

Since the meridional wind velocity varies with altitude, we first determined statistically the

appropriate altitude for the meridional wind velocity (v) computation. In this context, the

altitude range of 100 - 500 km was considered in steps of 50 km. Thus, for each considered

location, v was computed at altitudes of 100, 150, 200, 250, 300, 350, 400, 450, and 500 km.
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Then, the computed v at a specific altitude was used together with TEC modelling inputs t,

d, F10.7p, ap, AE, symH in Equation (6.1) to estimate TEC.

ln(TEC) = ζ0 + ζ1.cos

(

2π × t

24

)

+ ζ2.sin

(

2π × t

24

)

(6.1)

+ ζ3.F10.7p+ ζ4.ap + ζ5.AE + ζ6.symH + ζ7.v

+ [ζ8 + ζ9.F10.7p+ ζ10.ap + ζ11.AE + ζ12.symH + ζ13.v]cos

(

2πd

365.25

)

+ [ζ14 + ζ15.F10.7p+ ζ16.ap + ζ17.AE + ζ18.symH + ζ19.v]sin

(

2πd

365.25

)

+ [ζ20 + ζ21.F10.7p+ ζ22.ap + ζ23.AE + ζ24.symH + ζ25.v]cos

(

4πd

365.25

)

+ [ζ26 + ζ27.F10.7p+ ζ28.ap + ζ29.AE + ζ30.symH + ζ31.v]sin

(

4πd

365.25

)

The established standard expression comprises Fourier series with amplitudes changing with

F10.7p, ap, AE, symH . The semiannual and annual variations of TEC were also taken into

account by introducing harmonic functions with periods of half year and year respectively.

The natural logarithm was taken on the left hand side of Equation (6.1) to ensure that the

modelled TEC is a positive quantity. The unknown constants ζ0, ζ1, ζ2, ..., ζ31 in Equation

(6.1) were found using the least squares method at each time the altitude for computation

of v changed, followed by computation of root mean square error (RMSE) defined by

RMSE =

√

√

√

√

1

N

N
∑

i=1

(TECmod − TECobs)2 (6.2)

where TECmod and TECobs are the modelled/reconstructed and observed TEC respectively,

and N is the number of observations. The variation of RMSE with altitude is illustrated

in Figure 6.2. It can be seen from Figure 6.2 that the smallest RMSE was obtained at the

altitude of 350 km. Above 350 km, the RMSE is almost constant. Therefore, the altitude of

350 km was selected as the appropriate altitude at which v was computed to get the optimum

solution. The constant values of RMSEs at high altitudes can be understood based on the

theory presented in Titheridge (1995b). Theoretically, it is known that the atmospheric gas

density, ρ, decreases exponentially with altitude (Davies, 1990; Titheridge, 1995b). Due to

their relative motions, horizontal winds at different heights are subjected to frictional drag

which is proportional to µ/ρ, where µ is the viscosity coefficient. A decrease in density causes

an increase in frictional drag in such a way that for the altitudes above about 250 km, the

horizontal wind velocity is independent of the altitude (Titheridge, 1995b).

The reliability of the HWM in the African sector has been verified by comparing its pre-

dictions with actual data from the Fabry - Perot Interferometer (FPI), for both low and
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Figure 6.2: Variation of RMSE values between the observed and reconstructed TEC with
altitude. RMSEs were computed for three GPS receiver stations: RABT (dark green), MBAR
(magenta) and SUTH (blue).

mid-latitude regions (Fisher et al., 2015; Kaab et al., 2017; Tesema et al., 2017). A study

carried out over a period of half a year showed that the HWM estimates the meridional

neutral winds well over Bahir Dar, Ethiopia (11.6◦N, 37.4◦E; 3.7◦ N, geomagnetic). It was

further showed that the zonal wind is well reproduced by the HWM although an overestima-

tion (of about 25 m/s) was remarked during winter months (Tesema et al., 2017). On the

other hand, the climatology of quiet time thermospheric winds based on FPI measurements

has been done for the African mid-latitude, precisely at Oukaimeden, (32.20◦N, 7.87◦W;

21.21◦N), Morrocco. A comparative study between FPI measurements and HWM predic-

tions showed how well the HWM makes accurate estimates for both meridional and zonal

winds over Oukaimeden during winter season (Fisher et al., 2015). The authors however have

noticed a tendency of the HWM to overestimate the meridional wind during equinox, and the

magnitude of equatorward winds around local midnight. While validating the HWM14 over

Oukaimeden, Kaab et al. (2017) found that most of the features in the FPI measurements

were captured by the HWM14 with a exception in zonal winds specifically during summer,

where an offset in peaks of about four hours was noticed. Figure 6.3 displays comparisons

between monthly averages of FPI horizontal neutral wind measurements (blue) (meridional

and zonal components), with airglow-weighted model results provided by the HWM07, and

neutral winds estimates from HWM14.
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(a) Comparisons of meridional winds from FPI and HWM. (b) Comparisons of zonal winds from FPI and HWM.

Figure 6.3: Comparisons of monthly averages (period of January 2014 to February 2016)
of neutral wind measurements from FPI (blue curve), with (a) meridional components, and
(b) zonal components, of airglow-weighted results from HMW07 (red curve) and HWM14
estimates (green curve). Source: (Kaab et al., 2017).

6.2.2 Artificial neural network configuration

Two different ANN models per each considered location were developed, with 10 and 11

input neurons for model 1 and model 2, respectively. The 10 input neurons for model 1

correspond to sine and cosine components of time t of the day, and day number d of the year

as defined in Chapter 4 by equations (4.4), (4.5), and (4.6), as well as solar and geomagnetic

activity representations: F10.7p, ap, AE, symH . For model 2, an extra neuron that stood

for the meridional wind velocity v was added making a total number of 11 input neurons.

Relationships between TEC and modelling inputs can therefore be established as follows:

Model 1:

TEC ≈ f1(tc, ts, dc1, ds1, dc2, ds2, F10.7p, ap, AE, symH) (6.3)

Model 2:

TEC ≈ f2(tc, ts, dc1, ds1, dc2, ds2, F10.7p, ap, AE, symH, v) (6.4)

where f1 and f2 are functions of modelling inputs. The output layer is defined by 1 neuron

which stands for TEC as the modelled parameter, while the number of hidden neurons

were determined statistically. For each considered location, ANN was trained 15 times by

varying the number of hidden neurons from 11 to 25 (range selected randomly) followed by

a computation of RMSE between the observed TEC and ANN output.
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Figure 6.4: Variation of RMSE with number of hidden neurons.

Figure 6.4 shows the variation of RMSE with the number of hidden neurons when models are

tested on validation datasets. For both models, the selection of numbers of hidden neurons

considered in this study was based on the lowest RMSE values observed within the range

11 - 25. For the case of RABT/TETN (top panel of Figure 6.4), an architecture of 10-12-1

selected for model 1 means that there were 10, 12 and 1, input, hidden and output neurons,

respectively. For model 2, 11 input neurons were used and the additional input neuron stood

for the meridional wind velocity. Thus, 11 - 15 - 1 architecture was considered for model 2.

In the same manner, 10 - 15 - 1 (model 1) and 11 - 16 - 1 (model 2) architectures were chosen

for MBAR/MAL2 while for SUTH/HRAO, 10 - 13 - 1 (model 1), 11 - 14 - 1 (model 2) were

selected.

6.3 Results

Validation results of models 1 and 2 are presented for both interpolation (2000 - 2015) and

extrapolation (2016) storm periods and compared with actual GPS TEC (5 minute time

resolution). We wish to note that validation datasets were not used when developing the

models and 2016 falls outside the data range considered during the implementation of the

models. For each storm period, validation was done for three locations at different latitudinal

regions. Dst and Kp indices are also presented for each storm period to indicate the time and

the strength of the storm. For all the results presented in this study, a geomagnetic storm

can be identified for Dst ≤ −50 nT or Kp ≥ 4.
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6.3.1 Interpolation (2006 - 2015) and extrapolation (2016) results

Figure 6.5 shows the observed and estimated TEC by models 1 and 2 for four geomagnetic

storm periods of 14 - 16 December 2006 and 21 - 23 July 2009 (interpolation results), 31

December 2015 - 02 January 2016 and 05 - 08 March 2016 (extrapolation results), belonging

to low solar activity period. For each storm period, the presented results are for three

different latitudinal locations considered for validation based on data availability. The good

performance of ANNs in following positive (e.g., 15 December 2006 (Figure 6.5 (a)) for

RABT) and negative (e.g., 01 January 2016 (Figure 6.5 (c)) for HRAO, 07 March 2016

(Figure 6.5 (d)) for SUTH) storm effects can be noticed. However, there are some cases

where ANNs fail to follow negative ionospheric responses (e.g., 15 December 2006 (Figure

6.5 (a)) for MBAR), and the case where the depletion is seen by the models but they could

not predict accurately the magnitude of the depletion (e.g., 01 January 2016 (Figure 6.5

(c)) for MAL2). Considering the performances of models 1 and 2 separately, it can be seen

from Figure 6.5 (a) that both models make different TEC predictions over RABT, MBAR

and SUTH. TEC enhancement observed over RABT on 15 December 2006 is followed by

both models while TEC depletion over MBAR is not captured. For SUTH, model 2 largely

overestimates daytime TEC on 15 December 2006 compared to model 1 while a reverse

situation is observed on 16 December 2006. As shown in Figure 6.5 (b), the 21 - 23 July 2009

storm effect is not really significant over RABT, MBAR and HRAO. Both models provide

comparable TEC predictions over RABT and MBAR although some over/underestimations

of the observed TEC are observed at midday and sometime in the afternoon. Despite some

underestimations, model 2 estimates TEC better than model 1 over HRAO. Figures 6.5 (c)

and (d) show that both models are capable of following TEC depletions observed during the

two storm periods (e.g., on 01 January 2016 for MAL2 and HRAO, and on 07 March 2016

for SUTH) although some daytime overestimations are observed. Generally, the results for

both models are encouraging specifically in estimating storm-time TEC magnitude.
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(a) Storm period of 14 - 16 December 2006.
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(b) Storm period of 21 - 23 July 2009.
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(c) Storm period of 31 December 2015 - 02 January
2016.
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(d) Storm period of 05 - 08 March 2016.

Figure 6.5: Comparison of the observed and modelled TEC for storms that occurred during
the low solar activity period.

Figure 6.6 is similar to Figure 6.5 but for geomagnetic storms which occurred during moderate
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(05 - 07 August 2011 and 16 - 21 March 2015) and high (06 - 10 March 2012 and 18 - 24

February 2014) solar activity periods. The accuracy of ANNs in following TEC enhancement

is noticed on 06 August 2011 (Figure 6.6 (a) for SUTH), 17 March 2015 (Figure 6.6 (b) for

TETN and SUTH), 09 March 2012 (Figure 6.6 (c) for RABT), and on 20 February 2014

(Figure 6.6 (d) for RABT). On 18 March 2015, a remarkable shift in TEC peak is noticed

for TETN while the negative storm effect observed over SUTH is identified by the models

even though predictions exceed observations. Some TEC overestimations are observed in

the afternoon throughout the 06 - 10 March 2012 storm period for MBAR, during daytime

specifically on 06 and 08 March 2012 for SUTH (Figure 6.6 (c)), and on 19 February 2014

for SUTH (Figure 6.6 (d)). Comparing the performances of both models, Figures 6.6 (a)

and (b) show that models 1 and 2 make close TEC predictions for all stations considered

for validation. Both models make accurate TEC predictions for the 05 - 07 August 2011

storm period except on 05 August 2011 for RABT and 06 August 2011 for MBAR where

overestimations are observed. Positive storm response observed on 17 March 2015 over TETN

and SUTH is seen by both models while the magnitude of TEC depletion observed over

SUTH on 18 March 2015 is not accurately estimated. Despite some daytime overestimations,

both models make accurate TEC predictions for the two storm periods selected within the

moderate solar activity period. Figures 6.6 (c) and (d) show that both models make TEC

predictions that are close to each other except for some few cases. It can be seen from Figure

6.6 (c) that TEC magnitude is well estimated for RABT, while overestimations are observed

in the afternoon and around midday for MBAR and SUTH, respectively. The performance

of models 1 and 2 can also be appreciated in Figure 6.6 (d) where TEC is well estimated for

all three stations, except an overestimation observed in the early afternoon, for SUTH, on

19 February 2014.
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(a) Storm period of 05 - 07 August 2011.
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(b) Storm period of 16 - 21 March 2015.

0
2
0

4
0

6
0

T
E

C
 [
T

E
C

U
]

06/03/2012 07/03/2012 08/03/2012 09/03/2012 10/03/2012

GPS TEC Model 1 Model 2RABTRABT

0
2
0

4
0

6
0

8
0

T
E

C
 [
T

E
C

U
]

GPS TEC Model 1 Model 2MBARMBAR

0
2
0

4
0

6
0

T
E

C
 [
T

E
C

U
]

GPS TEC Model 1 Model 2SUTHSUTH

K
p

 i
n

d
e
x

0

2

4

6

8

−150

−100

−50

0

D
s
t 

[n
T

]

0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0

Time [UT hour]

(c) Storm period of 06 - 10 March 2012.
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(d) Storm period of 18 - 24 February 2014.

Figure 6.6: Comparison of the observed and modelled TEC for storms that occurred during
moderate and high solar activity periods.

6.3.2 Statistical analysis

To quantitatively evaluate which of the models performs better in estimating TEC at different

latitudinal regions, RMSEs, percentage improvement (PI) as well as correlation coefficients

between the observed and modelled TEC were calculated. RMSE can be understood as an

average distance measured along the vertical line between the observed and modelled points,

with the property that the smaller the RMSE, the better the model (e.g., Zhang et al., 2009).

Thus, RMSE is a good indicator of the accuracy of a model and RMSE values presented in this
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work were computed using Equation (6.2). On the other hand, the percentage improvement

defined by

PI =
RMSEav

1 − RMSEav
2

RMSEav
2

× 100% (6.5)

was used to evaluate the contribution of v to TEC modelling. Equation (6.5) shows how

much percentage, on average, model 2 performs better than model 1. PI was calculated

based on average RMSEs for models 1 (RMSEav
1 ) and 2 (RMSEav

2 ) computed over 8 storm

periods selected for validation. Correlation coefficient as a measure of how much information

in the observed TEC is covered in the estimated TEC was also taken into account to assess

the accuracy of the models. All statistical parameters are presented in Figure 6.7 for all

8 validation storm periods. For individual storm period, RMSE values obtained for three

different locations are compared (Figure 6.7 (a)) to evaluate the accuracy of ANN models at

various latitudes. The top and bottom panels of Figure 6.7 (a) correspond to model 1 and

model 2, respectively. It can be seen from Figure 6.7 (a) that relatively high RMSE values

were generally found for low latitude locations (MBAR/MAL2) indicating that both ANN

models perform better in mid-latitude regions than in the low latitude. Figure 6.7 (b) shows

a direct comparison of RMSE values obtained for models 1 and 2. For almost all the cases, it

can be seen that RMSE values for model 1 are greater than the values obtained for model 2

indicating that the latter performs, on average, better than the former. PI values presented

in Figure 6.7 (c) show that improvements in TEC modelling results were obtained for 8 out of

8 (100 %), 6 out of 8 (75 %) and 6 out 8 (75 %) validation storm periods, for RABT/TETN,

MBAR/MAL2, and SUTH/HRAO, respectively, when v was included. On case-case basis,

the highest improvements of about 32 %, 13 %, and 12 % were found for storm periods of

05 - 08 March 2016 (RABT), 16 - 21 March 2015 (MBAR), and 31 December 2015 - 02

January 2016 (HRAO), respectively. High correlation coefficients presented in Figure 6 (d)

shows that both models capture well the observed TEC trend for both low and mid-latitude

regions. It is well known that more storms occur during solar maximum compared to solar

minimum period (Matamba et al., 2015). Thus, in our developed empirical (data-based)

models, datasets used to implement the ANN models are mostly dominated by high solar

activity storms. Slightly lower values of correlation coefficients and the failure for ANNs

to capture accurately the low solar activity storms can partly be attributed to the lack of

sufficient amount of data representing the low solar minimum periods within the datasets

considered for the models’ implementation.

6.4 Discussion

The implemented ANN models are capable of predicting both positive and negative storm

effects for some storms while for others, the storm impact is not well captured. A statistical
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Figure 6.7: Statistical evaluation of models 1 and 2: (a) Comparison of RMSE values
per location (b) Comparison of RMSE values per model (c) Percentage improvement (d)
Correlation coefficients.

analysis revealed that storm-time TEC modelling is more difficult in low latitude compared to

mid-latitude ionosphere. The presence of the equatorial ionisation anomaly (EIA) and com-
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plicated low latitude electrodynamics during storm conditions are probably the reasons that

make it difficult to model TEC for the low latitude region. The difficulty in modelling TEC for

the low latitude ionosphere due to mixture of complex mechanisms happening in this region

was also highlighted in different TEC modelling literatures (Liu et al., 2013; Kumar et al.,

2015; Sur et al., 2015). Previous empirical TEC modelling studies mainly considered diurnal

variation, seasonal variation, solar and geomagnetic activity representations as modelling in-

puts (Mao et al., 2005; Habarulema et al., 2007; Mao et al., 2008; Habarulema et al., 2009a,b,

2010, 2011; Ercha et al., 2012; Habarulema & McKinnell, 2012; Watthanasangmechai et al.,

2012; Chen et al., 2015; Uwamahoro & Habarulema, 2015; Dabbakuti et al., 2016; Le et al.,

2016). The performances of models 1 and 2 in following TEC enhancements and depletions

for some storms are very encouraging when compared to previous works where the failure of

ANN, IRI, EOF and other empirical models in following storm-time TEC enhancement was

noticed (Habarulema et al., 2010, 2011; Olwendo et al., 2012; Mukhtarov et al., 2013a; Kumar

et al., 2015; Uwamahoro & Habarulema, 2015). For example, Mukhtarov et al. (2013a) noted

some large underestimations of TEC enhancements observed within the storm periods of 05

- 13 April 2000 and 06 - 13 November 2004. For the first time, the current work evaluated

the contribution of the meridional winds in improving TEC modelling results during geomag-

netic storms. For the northern hemisphere mid-latitude, improvements were obtained for all

8 storm periods considered for validation. Over RABT/TETN, meridional wind directions

from HWM were dominantly northward (poleward) during daytime and southward (equator-

ward) during nighttime for 8 validation storm periods. As observed over SUTH/HRAO, the

wind direction was dominantly southward during daytime and northward during nighttime.

For example, Figure 6.8 illustrates changes of v for the storm case of 16 - 21 March 2015,

where v > 0 and v < 0 corresponds to northward and southward wind direction, respectively.

Perturbations in the background wind are observed during the storm main phase over TETN,

MBAR and SUTH. Inclusion of v provided an improvement of 11.12 %, 13.05 %, and 6.00 %

for TETN, MBAR, and SUTH, respectively.
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Figure 6.8: Meridional wind velocity from HWM over TETN, MBAR, and SUTH, during
the storm period of 16 - 21 March 2015. Dst (nT) index is displayed in the last panel to
show the intensity of the storm during this period.

From the literature, it is known that the main driver of equatorward winds is the pressure

gradient resulting from Joule heating and particle precipitation over polar regions which in-

creases during geomagnetic storms and then generate equatorward winds which penetrated

further into the opposite hemisphere. The existence of such winds from polar regions to

low latitudes has been reported in different literatures (Buonsanto et al., 1989; Fuller-Rowell

et al., 1994; Titheridge, 1995b). Storm-generated winds were highlighted as the main cause

of changes in the global wind circulation during geomagnetic storms (Buonsanto et al., 1989;

Emmert et al., 2002) and have direct effect on transport of ionisation. This effect is strength-

ened during storm conditions when storm-generated winds reinforce the background winds.

Equatorward winds move ionisation up the magnetic field lines to higher altitudes, into re-

gions of lower recombination while poleward winds move ionisation down to lower altitudes,

into regions of stronger recombination (Anderson & Klobuchar, 1983; Fuller-Rowell et al.,

1994; Titheridge, 1995a). In this point of view, simulation studies have concluded that merid-

ional winds are the primary cause of the positive storm response when NmF2 and hmF2 are

positively correlated (Fuller-Rowell et al., 1994; Lu et al., 2001, 2008; Bhattacharyya et al.,
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2011; Balan et al., 2013). As the energy increases at high latitudes during geomagnetic storms

(increase in particle precipitation and Joule heating), the resulting equatorward winds move

ionisation up the magnetic field lines to higher altitudes where a large decrease in overall loss

rate is observed. This leads to an increase in hmF2 and NmF2, and hence, an enhancement

of electron density/TEC (Lu et al., 2001; Fedrizz et al., 2008; Lu et al., 2008; Kintner et al.,

2008). Such an effect is very significant in the mid-latitude due to its dependence on sin2I

where I is the magnetic dip, and zero at the magnetic equator (I = 0◦) and poles (I = 90◦)

(Titheridge, 1995a,b). Thus, improvements obtained for some of the mid-latitude storms can

probably be attributed to the effect of meridional winds of lowering or lifting (e.g., storm

case of 16 - 21 March 2015 over SUTH) ionisation below or above the magnetic field lines.

For the low latitude ionosphere, improvements in TEC modelling were found for six storm

periods and the wind direction over MBAR/MAL2 was northward for four storm periods and

southward for two storm periods belonging to south hemisphere winter (21 - 23 July 2009,

05 - 07 August 2011). Inter-hemispheric flow of meridional winds driven by plasma pressure

gradients between summer and winter hemispheres has been suggested as one of the causes

of the ionisation transport in the low latitude region (Fesen et al., 1989; Fuller-Rowell et al.,

1994; Titheridge, 1995b; Lu et al., 2001). Another fact that contributes to the ionisation

transport in the low latitude is the fountain effect. Meridional winds and the fountain effect

compete in moving ionisation in such a way that, simultaneous equatorward winds oppose

the fountain effect since they move plasma horizontally from the Appleton peaks to the equa-

tor while simultaneous poleward winds enhance electron density at the Appleton peaks and

deplete it at the equator. Winds blowing in one direction across the equator deplete electron

concentrations from one Appleton peak and enhance them in the other Appleton peak in the

opposite hemisphere (Fesen et al., 1989). This double transport of ionisation (fountain effect

and horizontal meridional winds) are probably linked with the improvements obtained for

low latitude.

Coexistence of positive and negative storm responses in opposite hemispheres was interpreted

as a result of transport of ionisation across the dip equator by storm-generated transequato-

rial winds which deplete electron density from the upwind hemisphere and enhances it in the

downwind hemisphere (Fesen et al., 1989; Lu et al., 2001). However, this can only be inves-

tigated with a further analysis about wind direction over two stations approximately at the

same latitude but with different ionospheric responses. We wish to note that improvements

in TEC modelling when neutral winds were taken into consideration were also reported in

the work by Anderson & Klobuchar (1983); Sur et al. (2015, 2017), during quiet conditions.

Being mindful that in this study the meridional wind velocity used during modelling was

obtained from HWM, further studies based on real observations are required to accurately
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evaluate the contribution of neutral winds to storm-time TEC modelling. However, as men-

tioned before, it is of utmost importance to state that the HWM has been validated with

Fabry-Perot Interferometer (FPI) measurements in African low and mid-latitudes over Bahir

Dar, Ethiopia (11.6◦N, 37.4◦E; 3.7◦ N, geomagnetic) and Oukaimeden, Morrocco (32.20◦N,

7.87◦W; 21.21◦N) respectively (Fisher et al., 2015; Kaab et al., 2017; Tesema et al., 2017).

It should also be noted that not all storm-time ionospheric responses are driven by neu-

tral winds. Changes in neutral composition were highlighted as the main cause of negative

storm effect (Prölss, 1980), while the expansion of the equatorial ionisation anomaly (EIA),

prompt penetrating electric fields (PPEF) (Tsurutani et al., 2004) and large-scale traveling

ionospheric disturbances (Borries et al., 2009) were found to be the causes of positive storm

effect in the mid-latitude. Thus, the failure of ANN models to accurately predict the storm

impacts may partly be attributed to the lack of modelling inputs that represents mechanisms

responsible for storm-time ionospheric responses. Different mechanisms at play even during

the same storm period over different latitude regions may be the reason why models 1 and 2

fail to capture both the magnitude and dynamics for some storms. Therefore other potential

inputs to TEC modelling could include electric field information from both prompt pene-

tration and ionospheric disturbance dynamo, and thermospheric composition changes which

could be represented by O/N2 ratio. These storm-related mechanisms have some associated

challenges in terms of quantitatively representing them in TEC modelling. For-example, for

African low/equatorial latitudes, the current available way of getting an idea about elec-

tric field varitions is through the differential magnetometer approach where magnetometer

measurements are used for locations at the magnetic equator and one displaced by roughly

6◦−9◦ away (Anderson et al., 2004; Yizengaw et al., 2012). This technique is only applicable

during local daytime. Some magnetometer data for applying this method are simultane-

ously available over Addis Ababa, AAE (0.2◦N,110.5◦E, geomagnetic) and Adigrat, ETHI

(6.0◦N,111.1◦E, geomagnetic) only during 2008 - 2013 which is a smaller portion of the period

(2001 - 2015) used in our TEC modelling. Additionally, 2008 - 2013 had few geomagnetic

storms as it mostly consisted of low solar activity period. With regard to thermospheric

composition changes, it has been reported that the variability of O/N2 ratio agrees with

TEC changes during geomagnetic storms over the African region using the Global Ultravio-

let Imager and GPS TEC data (e.g., Habarulema et al., 2013). However, satellite data does

not provide the required continuous data coverage to be included in single station/longitude

modelling, in addition to its limitation in the time resolution covered by TEC models. The

alternative for O/N2 ratio inclusion would be the investigation of outputs from empirical

approaches such as the NRLMSISE-00 model of the atmosphere (Picone et al., 2002). Such

empirical approaches require validation over the African region with actual data (which is

non-existent according to our knowledge). Nevertheless, these sources will be investigated in
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future TEC modelling.

6.5 Summary and conclusions

This chapter evaluated the performance of ANN models in the African low and mid-latitude

regions. It also investigated for the first time, the role of meridional neutral winds to storm-

time TEC modelling. Statistically, it was shown that TEC modelling is more difficult for

low latitude compared to mid-latitude region. Inclusion of the meridional wind velocity

in TEC modelling during geomagnetic storms led to percentage improvements of about 10

% (northern hemisphere mid-latitude), 5 % (low latitude) and 5 % (southern hemisphere

mid-latitude), for RABT/TETN, MBAR/MAL2 and SUTH/HRAO, respectively. These im-

provements in modelling results may be attributed, on one hand, to the storm-induced surges

in meridional winds due to an increase in energy (Joule heating and particle precipitation) at

high latitudes during the storm periods; on the other hand, to inter-hemispheric blows of the

meridional winds across the magnetic equator, from summer to winter hemisphere. However,

the lack of knowledge of the main drivers of some storms may have contributed to the failure

of the models for some storm periods. These include the “superfountain” effect and prompt

penetrating electric fields (PPEF) (Tsurutani et al., 2004), large-scale traveling ionospheric

disturbances (Borries et al., 2009), as well as changes in neutral composition (Prölss, 1980).
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Chapter 7

General conclusions and future work

In this study, several methods to model TEC at times of geomagnetic storms are tried,

and attempts to identify the best method are made. The developed models were based on

empirical orthogonal functions (EOF) analysis and non-linear regression analysis (NLRA),

with the least squares method and Metropolis-Hastings Algorithm (MHA) as optimization

techniques. Artificial neural networks (ANNs) and the International Reference Ionosphere

(IRI) models were also applied to TEC modelling and their performances were evaluated

and compared with the performances of the developed analytical models. Also employed

for storm-TEC reconstruction along different African latitudinal regions, was the Multi-

Instrument Data Analysis System (MIDAS) inversion algorithm. The observational TEC

data that were used to develop and validate storm-time TEC models were derived from

GPS measurements over African stations and surrounding areas, the storm criterion being

Dst 6 −50 nT and/or Kp > 4. Thus, this study was based only on storm-time TEC data

for both the development and validation of the models. General observations and findings

are summarised in the next section.

7.1 Conclusions

Since solar radiation is the main driver of ionospheric variability, the contribution of each of

the solar activity indices, F10.7p, F10.7 and SSN , to storm-time TEC modelling over the

mid-latitude station, Hermanus, (HNUS, 34.40◦ S, 19.22◦ E geographic; 42.33◦ S, 82.15◦ E

geomagnetic), South Africa, was simultaneously evaluated for the first time. The task was

accomplished by training ANN models (hereafter named MF107p, MF107, and MSSN) which

differed from each other by the type of solar index used as input. It was found that more

accurate storm-time TEC modelling results can be achieved when F10.7p is used as the solar

proxy. This finding agrees with statistical results reported by Liu et al. (2006); Liu & Chen

(2009) in which the superiority of F10.7p over F10.7 as representing the solar activity was

highlighted. The performance evaluation of MF107p, MF107, and MSSN, compared with a

NLRA model developed at the same location, and whose coefficients were found using the

MHA, shows that the latter is about 8.00 %, 5.00 %, and 5.00 % better than MSSN, MF107,

and MF107p models, respectively. Thus, NLRA complemented with MHA can be used to

135



model TEC during storm conditions and achieve fair results. With its advantage of providing

the error bar for each estimated coefficient, MHA is a better technique for finding unknown

coefficients of analytical expressions when compared with regression analysis (RA) since the

ranges of the MHA estimates covers the RA estimates. However, the intensive computation

of the MHA technique requires high-performance computing facilities. This posed a big chal-

lenge and was the reason for adopting the ANN model for most of this work.

A statistical evaluation of the capability of MIDAS compared with ANNs to reconstruct

storm-time TEC over the African low and mid-latitude regions, showed that MIDAS and

ANNs provide comparable results with respective MAE values of 4.81 and 4.18 TECU. It

was further found that, on average, the ANN model is 24.37 % better than MIDAS at estimat-

ing storm-time TEC over low latitudes, while MIDAS is 13.44 % more accurate than ANN

in mid-latitude. MIDAS, however, captures short-term variations of the observed TEC and

follows enhancements and depletions observed during geomagnetic storms more accurately

than ANNs. Compared with the IRI model, both MIDAS and the ANN model were found

to provide more accurate storm-time TEC reconstructions than the IRI model for African

low and mid-latitude regions (Uwamahoro et al., 2018a). It was proven statistically that

TEC reconstruction/modelling is more difficult for the low latitude than the mid-latitude

ionosphere as previously reported in different literatures (Chartier et al., 2014; Kumar et al.,

2015; Panda et al., 2015). Complex low-latitude electrodynamic mechanisms such as the

fountain effect and the resulting higher TEC gradients are among the reasons why it is diffi-

cult to reconstruct/model TEC for low latitude region. The intensity of the storm does not

seem to have an impact on storm-time TEC modelling. MIDAS, ANNs, and IRI were found

to reconstruct storm-time TEC more accurately for severe storms (e.g., 16 - 22 March 2015)

than strong storms (e.g., 18 - 24 February 2014) (Uwamahoro et al., 2018a).

On a basis of statistical analysis, a comparative study of the performances of EOF, NLRA,

ANN, and IRI models to predict TEC during geomagnetic storm conditions over various

latitudes was carried out. From high to low accuracy, the evaluated models are classified as

follows: ANNs, EOF, NLRA, and IRI. Considering GPS TEC as a reference for statistical

computations, results showed that ANN model is about 10 %, 26 %, and 58 % more accurate

than EOF, NLRA, and IRI models, respectively, while EOF was found to perform 15 %, and

44 % better than NLRA and IRI, respectively. It was further found that the accuracy of

NLRA model is 25 % higher than that of the IRI model (Uwamahoro et al., 2019). The rea-

son for the IRI model inaccuracy to estimate TEC during geomagnetic storms as the other

models, can be partly attributed to the fact that IRI is based on monthly median values

(climatological model) and the integration of electron density profiles is performed between

the altitude range 60 - 2000 km (Bilitza et al., 2014; Kenpankho et al., 2011; Chartier et al.,
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2012; Habarulema & Ssessanga, 2017). Thus, the plasmaspheric contribution is not taken

into account fully in the IRI model, while other models were developed based of storm-time

TEC data obtained along the line of sight extended from GPS receivers on the ground up

to GPS altitude of about 20,200 km. The superiority of ANN model with respect to other

modelling techniques, followed by EOF, NLRA, and then IRI model, was also noticed when

performing a statistical analysis referring to background ionosphere represented by monthly

median (MM) TEC values (Uwamahoro et al., 2019). It can thus be concluded that the

ANN model is more accurate storm-time TEC estimation when compared to other models

examined in this study. The greatest errors were generally observed at the locations of both

crests of the EIA and at the magnetic equator, and then at mid-latitude locations. It can

thus be reconfirmed that storm-time TEC modelling is more difficult for low and equatorial

latitudes than for the mid-latitude.

This study also investigated, for the first time, the role of the meridional neutral winds

(from the HWM) in storm-time TEC modelling for the low latitude, northern and south-

ern hemisphere mid-latitude regions of the African sector, based on ANN models. Statistics

have shown that the inclusion of the meridional wind velocity in TEC modelling during ge-

omagnetic storms lead to percentage improvements of about 5 % for the low latitude, 10 %

and 5 % for the northern and southern hemisphere mid-latitude regions, respectively. The

storm-induced surges in meridional winds due to an increase in energy (Joule heating and

particle precipitation) at high latitudes during the storm periods, and the inter-hemispheric

meridional winds across the magnetic equator from summer to winter hemisphere, may be

the main reasons for the improvements obtained when meridional wind velocity was included

in storm-time TEC modelling (Uwamahoro et al., 2018b). Since the meridional wind velocity

was obtained from the HWM, further studies that use actual data are required for accurate

evaluation of the contribution of neutral winds to storm-time ionospheric modelling.

In light of the fact that each latitudinal region has its own challenges in terms of modelling,

it is suggested that for a regional/global model development it would be better to develop

individual regional models for different latitudinal regions within the region of interest and

then combine them into a regional/global model.

7.2 Future work

Although some efforts have been made towards the improvement of TEC modelling for storm

conditions, further work toward accurate storm-time ionospheric modelling is still a research

priority. The challenge of storm-time modelling may be due to insufficient knowledge about

the mechanisms that drive the storms, and lack of inputs that may accurately represent
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them. Different mechanisms at play even during the same storm period over different lati-

tudinal regions may be another contributing factor to the failure of storm-time TEC models

to capture both the magnitude and dynamics of some storms. The solution to this problem

for the space weather community, may be approached by considering both mathematical

approaches/optimization techniques that may lead to more accurate models, and by intro-

ducing new representations of storm driven-mechanisms.

With regard to the first suggestion, the exploration of advanced optimization algorithms

and more sophisticated modelling platforms such as deep learning and the Kalman filtering

data assimilation method, could be beneficial to storm-time TEC modeling.

Some of the driving mechanisms of ionospheric responses due to geomagnetic storms are

well-known and documented. These include the prompt penetrating electric fields (PPEF)

and the “superfountain” or enhanced fountain effect (e.g., Tsurutani et al., 2004), neutral

winds (e.g., Titheridge, 1995a,b), large-scale travelling ionospheric disturbances (e.g., Borries

et al., 2009), and changes in neutral composition (e.g., Prölss, 1980). Future plans include the

representation of thermospheric composition changes by O/N2 ratio from the NRLMSISE-00

empirical model of the atmosphere (Picone et al., 2002). As more data becomes available, the

low-latitude vertical drift velocities could also be included in storm-time ionospheric mod-

elling in the sense that the fountain or superfountain effect may be represented in storm-time

ionosphere modelling specifically for the low latitude region.

Apart from including in ionospheric modelling parameters representing some of the mech-

anisms responsible for ionospheric responses due to geomagnetic storms, another potential

input could be the energy transferred by the solar wind into the magnetosphere during storms

(ongoing work). The energy coupling function of Akasofu defined by equation (3.36), was

used to compute the energy per unit time (power) that is transferred by the solar wind into

the magnetosphere during storms. The computed energy for negative and positive storms of

19 - 23 December 2015 and 09 - 11 September 2017 for Hartebeesthoek (HRAO, 25.89◦ S,

27.68◦ E), South Africa, is shown in figure 7.1, along with TEC and geomagnetic indices.
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(a) Storm period of 19 - 23 December 2015.
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(b) Storm period of 07 - 11 September 2017.

Figure 7.1: Comparison of the energy input by the solar wind into the magnetosphere, along
with TEC and geomagnetic indices for the negative and positive storms of 19 - 23 December
2015 and 09 - 11 September 2017 for Hartebeesthoek (HRAO, 25.89◦ S, 27.68◦ E), South
Africa.

For the storm period 19 - 23 December 2015 (minimum Dst index of -155 nT), the correla-

tion coefficients between the computed energy with geomagnetic indices are 0.64 (AE), 0.89

(Ap), and -0.78 (symH), while for the 07 - 11 September 2017 (minimum Dst index of -124

nT), they are 0.48 , 0.56, -0.38 for AE, Ap, and symH , respectively. For some storms (e.g.,

19 - 23 December 2015), there is thus some hope that storm-time modelling results may be

improved when the solar wind energy input into magnetosphere is taken into account. It is,

however, worth noting that when the energy is transferred into the magnetosphere at time t,

the ionosphere will respond some time later at t+ τ . The challenge is the computation of the

elapsed time τ which differs from storm to another since the response of the ionosphere to a

specific geomagnetic storm depends on the time of onset of the storm, the storm intensity,

season, solar activity, and location (Prölss, 1980; Ngwira et al., 2012b). Therefore, the com-

putation of τ should be done by first classifying the storms into different categories based

on its time of onset, intensity, season, location, and solar activity period, and then apply a

cross-correlation function to each category to find the maximum lag between TEC and the

energy. The results of this ongoing work will probably be available in the future.

One aspect of modeling is that modelling inputs can be changed and this facilitates to ex-

plore the importance of a given parameter and understand individual mechanisms. As the

meridional neutral wind model gives both magnitude and direction, it will be useful in the
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future to explore both components and focus on individual days instead of storm intervals. It

will also be important to evaluate how the change in magnitude of the neutral wind velocity

affects modelling results.

Another aspect of difficulty of modeling storms is that the UT of the SSC can have an

impact on the dayside response. For example, if the SSC hits at noon LT, the response at

other local times during the daytime is different since the lag between the day and SSC is

variable. The effect of the SSC on dayside response in storm-time TEC modelling will be

investigated in future.
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