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Abstract

Mobile communication systems are undergoing revolutionary developments as a

result of the rapidly growing demands for high data rates and reliable communica-

tion connections. The key features of the next-generation mobile communication

systems are provision of high-speed and robust communication links. However,

wireless communications still need to address the same challenge–unreliable com-

munication connections, arising from a number of causes including noise, inter-

ference, and distortion because of hardware imperfections or physical limitations.

Forwarding error correction (FEC) codes are used to protect source infor-

mation by adding redundancy. With FEC codes, errors among the transmitted

message can be corrected by the receiver. Recent work has shown that, by ap-

plying rateless codes (a class of FEC codes), wireless transmission efficiency and

reliability can be dramatically improved. Unlike traditional codes, rateless codes

can adapt to different channel conditions. Rateless codes have been widely used

in many multimedia broadcast/multicast applications. Among the known rate-

less codes, two types of codes stand out: Luby transform (LT) codes and Raptor

codes. However, our understanding of LT codes and Raptor codes is still in-

complete due to the lack of complete theoretical analysis on the decoding error

performance of these codes. Particularly, this thesis focuses on the decoding er-

ror performance of these codes under maximum likelihood (ML) decoding, which

provides a benchmark on the optimum system performance for gauging other

decoding schemes. In this thesis, we discuss the effectiveness of rateless codes in
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terms of the success probability of decoding. It is defined as the probability that

all source symbols can be successfully decoded with a given number of success-

fully received coded symbols under ML decoding. This thesis provides a detailed

mathematical analysis on the rank profile of general LT codes to evaluate the

decoding success probability of LT codes under ML decoding. Furthermore, by

analyzing the rank of the product of two random coefficient matrices, this thesis

derived bounds on the decoding success probability of Raptor codes with a sys-

tematic low-density generator matrix (LDGM) code as the pre-code under ML

decoding.

Additionally, by resorting to stochastic geometry analysis, we develop a LT

codes based broadcast scheme. This scheme allows a base station (BS) to broad-

cast a given number of symbols to a large number of users, without user acknowl-

edgment, while being able to provide a performance guarantee on the probability

of successful delivery. Further, the BS has limited statistical information about

the environment including the spatial distribution of users (instead of their exact

locations and number) and the wireless propagation model. Based on the analy-

sis of finite length LT codes and Raptor codes, an upper and a lower bound on

the number of transmissions required to meet the performance requirement are

obtained.

The technique and analysis developed in this thesis are useful for designing

efficient and reliable wireless broadcast strategies. It is of interest to implement

rateless codes into modern communication systems.
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Chapter 1

Introduction

This chapter describes the background and motivation for this research work

by briefly introducing the field in Section 1.1. Section 1.2 explains the principal

research problems, followed by a summary of the main contributions of this thesis.

The outline of the thesis is provided in Section 1.3.

1.1 History

In the past century, telecommunication systems have experienced several rev-

olutionary developments to meet the constantly rising demands for high data

rates and reliable communication connections. Telecommunication systems can

be divided into two categories, wired and wireless telecommunication systems.

Among them, many communication channels face the same challenge–unreliable

communication connections, arising from a number of causes including noise,

interference, and distortion caused by hardware imperfections or physical limita-

tions. Additionally, most applications of the modern telecommunication system

can not endure erroneous transmissions.

Over the past years, several means have been proposed to address this vital

challenge in telecommunication systems. Conventionally, to ensure reliable deliv-

ery of the original data, erroneous data frames or symbols need to be resent. A

1



1.1. History

renowned retransmission mechanism is Automatic Repeat reQuest (ARQ) [3, 4],

which uses feedbacks to indicate the correct transmission or erroneous transmis-

sion of certain transmitted data frames or symbols. With ARQ, feedbacks are

transmitted back to the transmitter after each transmission using either acknowl-

edgements (ACKs) if the data frames or symbols are correctly received or negative

acknowledgements (NACKs) if the data frames or symbols are deemed erroneous.

If NACKs are received or ACKs are not received within a predesignated amount

of time, the transmitter will retransmit the data frames or symbols. The three

basic ARQ protocols are Stop-and-wait ARQ, Go-Back-N ARQ and Selective Re-

peat ARQ. All three ARQ protocols utilize the sliding window protocol to inform

the transmitter which data frames or symbols should be retransmitted. There are

also more sophisticated retransmission mechanisms, such as the Type II hybrid

ARQ (HARQ) protocol [5]. With Type II HARQ, the transmitter will send ex-

tra redundancy on the unrecovered data frames or symbols to a particular user,

instead of retransmitting the original symbols.

However, several drawbacks appear when using transmission acknowledgment.

Firstly, the overhead incurred when gathering acknowledgment information from

multiple receivers increases with the number of receivers. In other words, when

the number of receivers is large, acknowledgement may cause significant delays

and bandwidth consumption [6]. Consequently, using ARQ for wireless broadcast

is not scalable [7]. Secondly, for different receivers, distinct and independent

errors are often encountered. In such cases, the retransmitted data frames or

symbols are only useful to a specific user and with no value for others. Hence, it

is highly undesirable to send respective erroneous data frames or symbols to each

user.

On the other hand, forwarding error correction (FEC) codes are proposed to

protect the source information by adding redundancy. With FEC codes, errors

among the transmitted message can be corrected by the receiver to recover the

2



1.1. History

original information. FEC codes have come to pervade every aspect of our lives.

They have strongly affected not only the wireless cellular network and satellite

communication systems, but also the Internet computer networks and data stor-

age. The pioneering work of Shannon in 1948 [8] broke the ground for FEC codes.

In [8], Shannon derived the theoretical limit on the transmission rate over a noisy

channel, i.e., the channel capacity. Meanwhile, he introduced digital FEC codes

as well, which is also called channel codes. FEC codes are capable of allowing

communication with an arbitrarily small probability of error at any rate, as long

as it does not exceed the channel capacity.

In the next decades, several FEC codes were proposed, such as Hamming

codes [9], convolutional codes [10] and Reed-Solomon (RS) codes [11, 12]. These

coding techniques were mostly based on the algebraic property. However, there

were no FEC codes that could closely approach the theoretical performance limits

proposed by Shannon until the invention of Turbo codes. In the 1990s, Berrou

et al astoundingly invented turbo codes and their iterative decoder, significantly

diminishing the gap to Shannon capacity [13, 14]. With the massive attention

drawn by turbo codes, coding theorists redirected their research interests to the

field of soft decision iterative decoders and to the search for lower complexity

codes. With these efforts, low-density parity-check (LDPC) codes were rediscov-

ered in the 1990s [15, 16, 17, 18, 19, 20]. These coding schemes were originally

proposed by Galleger in 1963 [21]. However, back at that time, due to the in-

sufficient computing power to implement these codes, their true power was not

revealed. Nowadays, the codes mostly approaching the Shannon bound are LDPC

codes, and much work has recently focused on their design and analysis.

While all the FEC codes mentioned above are designed for fixed rates, a

new class of FEC codes, named rateless (fountain) codes [22], has recently been

proposed. As suggested by the name, rateless codes are not designed for any rate,

and their design can automatically adapt to any channel condition. Ideally, this

3



1.1. History

coding ensemble should be able to recover all k source symbols upon the reception

of exactly k encoded symbols. During the transmissions, no acknowledgement or

at most one feedback per user is needed. More specifically, after successfully

decoding all k source symbols based on a certain number of encoded symbols

that have been received, each user will send a notification to the transmitter

[23]. If the transmitter only requires a statistical reliability guarantee, then no

acknowledgement is needed at all. Moreover, rateless codes should be able to

generate a potentially limitless stream of mT encoded symbols out of the k source

symbols.

However, the idealized digital fountain is difficult to obtain. In practice, we

can only develop such codes with approximate performance. The early designs

of FEC codes providing incremental redundancy [24, 25] are on the basis of max-

imum distance separable (MDS) codes [26]. MDS codes can recover a message

comprising of k symbols from any set of k out of mT encoded symbols. Yet, MDS

codes do not possess rateless properties and rateless codes are not MDS. Hence,

it is inevitable to relax the MDS condition to obtain practical fountain codes [28].

They should be able to recover all the k original symbols from any k(1 + δ) out

of the mT encoded symbols, regardless of which k(1 + δ) encoded symbols have

been received, where δ is a small non-negative number.

The first class of practical rateless codes is Luby transform (LT) codes [29, 30,

31], which were invented by Michael Luby. LT codes are a class of random linear

FEC codes based on irregular sparse graphs and random processes. They are

designed to be efficiently decoded with a suboptimal decoding algorithm–belief

propagation (BP) algorithm [32, 33]. There are other types of rateless codes,

such as online codes [35] and Raptor codes [36, 37, 38] whose constructions are a

combination of LT codes and one or more stages of high-rate pre-codes. In recent

years, Raptor codes have been utilized in several communication standards, e.g.,

the 3rd Generation Partnership Project (3GPP) multimedia broadcast multicast

4



1.2. Research Problems and Contributions in this Thesis

services (MBMS) standard [39], Internet Engineering Task Force (IETF) RaptorQ

FEC Schemes (RFCs) 5053 and 6330 [40, 41], the Digital Video Broadcasting

(DVB) Internet Protocol Datacast (IPDC) standard [44] and the DVB Internet

Protocol television (IPTV) standard [43].

1.2 Research Problems and Contributions in this

Thesis

With the facts we have introduced previously in mind, we want to design a

coding based broadcast scheme in an unreliable wireless network that a) reliably

delivers information to a large number of users, b) does not rely on the user

acknowledgment, and c) is able to provide a guaranteed performance on reliability,

the probability of successful delivery.

Network coding (NC) has been proved to be an efficient method to significantly

improve both the transmission efficiency and the reliability of transmission [45,

46, 47, 48, 49]. Several NC based broadcast schemes have been proposed in [45].

It was shown that NC based retransmission schemes perform better than their

counterpart using ARQ only. However, NC based retransmission strategies rely

on the use of feedback information from receivers. The drawbacks of feedback

have been presented on page 2. In this work, we extend the above NC based

broadcast schemes by considering other more suitable coding ensembles.

The fact that rateless codes can automatically adapt to instantaneous channel

states and avoid the need for feedback channels [46, 50, 51] makes them desirable

means for data transmission over lossy multicast/broadcast channels whose real-

time channel erasure probability estimation might be nearly impossible to obtain.

Hence, in this thesis, we mainly focus on rateless codes.
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1.2. Research Problems and Contributions in this Thesis

1.2.1 Fundamental Problems in Rateless Codes

Despite the successful application of rateless codes in MBMS, limited work exists

on theoretically analyzing the decoding performance of rateless codes. Without

analytical results, the optimization of the degree distribution as well as the pa-

rameters for rateless codes would be extremely difficult, if not impossible. Among

the known rateless codes, two codes stand out: LT codes and Raptor codes.

In this thesis, we discuss the effectiveness of rateless codes in terms of the

success probability of decoding. The decoding success probability is defined as

the probability that a receiver can successfully decode all k source symbols given

that the receiver has successfully received mR coded symbols. However, the

decoding success probability of LT codes is difficult to analyze. Since 2004 [52],

coding theorists have been analyzing the decoding success probability of LT code

under BP decoding. In [52], a 3-dimension state was utilized to describe the

procedure of the LT decoding with BP decoding. Each state is a combination of

three parameters: firstly, the number r of output symbols with degree 1 (i.e., the

ripple size); secondly, the number c of symbols with degree two and above (i.e.,

the number of symbols in the cloud); and finally, the number u of unrecovered

source symbols. Let P (r, c, u) represent the probability that the LT decoding

process is in state (r, c, u). The decoding is deemed to fail if it encounters a state

where u > 0 and r = 0. With the degree distribution of LT codes Ωd, 1 ≤ d ≤ k, k

source symbols and mR received coded symbols, the decoding success probability

can be expressed as

PDS
k,mR

= 1−
∑

0<u<k,r=0
P (r, c, u). (1.1)

In [52], the authors proposed a method as shown in (1.2) to compute the state
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probability of the LT decoding procedure under BP decoding.

P (r, c, u− 1) =
∑

s,t≥0,r≥t−s
P (r + 1 + s− t, c+ t, u)

×Pr[(r, c, u− 1) | (r + 1 + s− t, c+ t, u)]. (1.2)

This equation calculates the state probability (r, c, u−1) by using the total prob-

ability theory. Pr[(r, c, u−1) | (r+1+s−t, c+t, u)] is the conditional probability

which denotes the transition behavior from states (r+ 1 + s− t, c+ t, u) to state

(r, c, u − 1) where t − s ≤ r and s, t ≥ 0. This condition event can be seen as

given the state (r + 1 + s− t, c+ t, u), the LT decoder selects an output symbol

from the ripple. This causes degrees of t cloud symbols to reduce to one and

join the ripple. Meanwhile, among the r + 1 + s − t symbols in the ripple s

symbols are duplications of the selected symbol. This conditional probability can

be calculated by

Pr[(r, c, u− 1) | (r + 1 + s− t, c+ t, u)]

=
(
c+t
t

)
ptu (1− pu)c

(
r+s−t
s

) (1
u

)s (
1− 1

u

)r−t
, (1.3)

where pu denotes the probability that a random output symbol is of reduced

degree 1 after transition given that it was of reduced degree ≥ 2 before the

transition. pu can be expressed as

pu =
∑
d Ωd · d · (d− 1) · (u−1)u(k−u)···(k−u−d+3)

k(k−1)···(k−d+1)

1−∑d Ωd · (k−u)···(k−u−d+1)
k(k−1)···(k−d+1) −

∑
d Ωd · d · u(k−u)···(k−u−d+2)

k(k−1)···(k−d+1)

. (1.4)

Details of the derivation and proof can be found in [53]. The recursion involved

in the computation makes it very difficult to derive a closed-form analytical result

for the decoding success probability.

In general, the BP decoding algorithm is widely used for rateless codes due

to its low complexity. However, when the number of source symbols decreases,

7
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the decoding error performance of the BP decoding algorithm suffers serious

degradation. The maximum likelihood (ML) decoding algorithm, on the other

hand, is more computationally demanding than the BP decoding for codes with

a large length. Nevertheless, the ML decoding algorithm becomes affordable

complexity-wise and at the same time almost imperative performance-wise for

small to medium sizes. For rateless codes with limited lengths, i.e., in the or-

der of a few thousands, Shokrollahi proposed a decoding algorithm based on the

ML criterion in [54]. This will be the decoding method of choice in this thesis.

Furthermore, since ML decoding is optimal in terms of the decoding error perfor-

mance, the ML performance of a code can provide a benchmark on the optimum

system performance for gauging the other decoding schemes.

It is worth noting that in [55, 56], a theoretical analysis was conducted on

the decoding success probability of LT codes under ML decoding. However the

analysis in [55] was incomplete to the extent that no rigorous analysis was pre-

sented to support some results presented in it. Furthermore, the analytical result

presented on the decoding success probability was in fact an approximation only,

which will be discussed in further detail in Section 3.3. In Chapter 3, we advance

the work in [52, 53, 55] by providing rigorous mathematical analysis on the rank

profile of a random matrix. On the basis of this analysis, we obtain the upper

and lower bounds on the decoding success probability of LT codes under ML

decoding.

As for Raptor codes, in [37], Shokrollahi analyzed the decoding failure proba-

bility of Raptor codes with finite length assuming the BP decoding. The analysis

relies on the computation of the failure probability of the LT codes under the BP

decoding, which was derived in [52]. Furthermore, in [57] a pseudo upper bound

on the performance of Raptor codes under ML decoding was derived under the

assumption that the number of erasures correctable by the pre-code is small. This

approximation is accurate only when the rate of the pre-code is sufficiently high.

8
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So for a more general case, the decoding failure probability of Raptor codes still

needs further investigation.

1.2.2 Thesis Contributions

The main objectives of this thesis are the theoretical analysis of various types of

rateless code ensembles with finite message lengths under optimal erasure decod-

ing, i.e., maximum likelihood (ML) decoding. In Chapter 3, we conduct the finite

length analysis of LT code ensembles under ML decoding in terms of decoding

success probability. The decoding success probability of LT code is defined as

the probability that a receiver can successfully decode all k source symbols given

that the receiver has successfully received mR ≥ k coded symbols. Specifically,

if erasure channels are considered, the decoding of LT codes under ML decoding

corresponds to solving a consistent system of linear equations over a binary field

GF (2), where the coefficients are given by the collected LT code generator ma-

trix. Chapter 3 provides a rigorous mathematical analysis on the rank profile of

a random coefficient matrix, where each row vector is independently generated

by using the LT encoding process. A set of two bounds, consisting of upper

and lower bounds on the decoding success probability after optimal decoding,

is derived in detail. Furthermore, when binomial degree distribution introduced

in Subsection 2.3.1 is applied, the upper and lower bounds merge to the exact

expression. These analytical bounds are used to assess the performance of LT

code ensembles or to design them efficiently without requiring extensive Monte

Carlo simulations.

In Chapter 4, we provide the analytical results, i.e., an upper bound and a

lower bound, on the decoding failure probability of finite length Raptor codes

with a systematic low-density generator matrix (LDGM) code as the pre-code

under ML decoding. The decoding failure probability is defined as the probability

that not all k source symbols can be successfully recovered by a receiver with
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a given number mR ≥ k of successfully received coded symbols. The analytical

results are derived by analyzing the rank of the product of two random coefficient

matrices. Based on the analytical bounds on the decoding failure probability of

Raptor codes, we can readily obtain analytical bounds on the decoding success

probability of Raptor codes, which is unity minus decoding failure probability.

Moreover, simulations are conducted to validate the accuracy of the proposed

bounds. Finally, by applying binomial degree distribution into the upper and

lower bounds, we simplified the general bounds with any degree distributions

and any (n, k, η) LDGM codes as pre-code into a far less complex expressions.

By this way, the computation complexity of derived bounds can be significantly

decreased.

Furthermore, we investigate the problem of reliable and efficient broadcasting

in wireless networks. The goal is to deliver a large given number of data symbols to

a large number of users, without user acknowledgment, while being able to provide

a performance guarantee on the probability of successful delivery. Further, the

BS only has limited statistical information about the environment including the

spatial distribution of users (instead of their exact locations and number) and

the wireless propagation model. Our approach to tackle this problem is based

on utilizing rateless codes and stochastic geometry analysis. On the basis of

derived bounds on the decoding success probability of LT codes, an upper and a

lower bound on the probability that all receivers in a bounded area successfully

receive or decode all source symbols from the BS are derived. On the basis of the

above results, the minimum number of transmissions required for a guaranteed

performance on the probability of successful delivery is obtained.
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1.3 Thesis Outline

The rest of the thesis is organized as follows. In Chapter 2, we briefly present the

necessary background on which the thesis is based. Chapters 3, 4 and 5 comprise

the major contributions of this thesis in which we investigate the decoding perfor-

mance of rateless codes and its application into the wireless broadcast problems,

respectively. In Chapter 6, we conclude this thesis.

Parts of the present thesis have been prepublished in the following

papers which I have authored: [J1, J2, C1, C2].
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Chapter 2

Background

In this chapter, we briefly present the necessary background on which the thesis

is based. We begin by introducing the binary erasure channel model. Then, we

provide background on network coding and related previous works. Next, we

review rateless codes and important developments in these areas. Finally, we

review the problem of efficient data broadcasting in wireless networks.

2.1 Binary Erasure Channel

The binary erasure channel (BEC), a widely used communication channel model

in coding theory, was originally proposed by Elias in 1955 [10] as a simplified

theoretical model. After 4 decades, due to the emergence of the Internet, the

BEC model became a realistic one. Indeed, links of data networks can be modeled

as erasure channels, where data is transmitted in the formation of symbols. In

data networks, symbols are either received correctly or lost for certain reasons.

The BEC is characterized by a parameter ε, the channel erasure probability.

Specifically, a symbol is either successfully received or erased with probability

1 − ε or ε, respectively. Figure 2.1 depicts the BEC model. Practically, the

instantaneous state of a wireless channel is difficult to obtain but the stochastic

property can be obtained with less effort. In this thesis, we mostly consider
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Figure 2.1: Binary erasure channel.

wireless channels as erasure channels, where the transmission is successful with a

certain probability.

2.2 Network Coding

In [58], Ahlswede et al. proposed the concept of network coding (NC) to improve

the flow of data in a network by allowing intermediate nodes to combine incoming

data flows into an outgoing data flow. Recent work has shown that NC can signifi-

cantly improve both the transmission efficiency and the reliability of transmission

[45, 46, 47, 48, 49]. Initially, NC technique is proposed to be applied at network

layer. However, its extensive benefits pushed researchers to apply it at other pro-

tocol layers. The concept of physical-layer NC (PNC) was originally proposed

to exploit the network coding operation that occurs naturally in superimposed

electromagnetic (EM) waves. In this thesis, we only consider network layer NC,

where the data is transmitted in digital format. Several classes of network layer

NC schemes are explained as follows.
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Figure 2.2: The classic two-way relaying network applying XOR coding.

2.2.1 XOR Based Network Coding

The basic idea of XOR based NC schemes is that a node encodes all or a certain

set of symbols with bitwise XOR. For instance, nodes A and B exchange symbols

s1 and s2 via a relay C, as shown in Figure 2.2. Initially, node A has the source

symbol s1 while node B has the source symbol s2.

Both nodes deliver their source symbols to the relay node C respectively in the

first step. Then, the relay node C performs XOR coding between the received

symbols s1 and s2 to generate the coded symbols s1 ⊕ s2. Then, C transmits

the coded symbol s1 ⊕ s2 in one transmission rather than two source symbols

separately. Finally, for A, the intended symbol s2 can be recovered by conducting

(s1 ⊕ s2)⊕ s1. For node B, a similar decoding process can be done as well.

An application of XOR based NC schemes is COPE [7], which is the first

practical NC scheme for wireless mesh networks.

2.2.2 Linear Network Coding

It has been proved that linear NC (LNC) can achieve capacity limit from the

source node to each destination node in multicast networks [59]. The capacity

limit is given by the max-flow min-cut bound [60]. More specifically, the max-

imum amount of data flows from a source node to a destination node that can

pass through the network is equal to the min-cut between them [58, 61, 62, 63].

In NC, the butterfly network [58] is often used to illustrate how LNC can outper-

form routing. Each node generates new symbols which are linear combinations

of earlier received symbols, multiplying them by coefficients chosen from a finite
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Figure 2.3: Butterfly network.

field, say Galois field GF (q), where q is an arbitrary positive integer. As shown in

Figure 2.3, assume that the selected finite field is GF (2) and we want to broadcast

two symbols s1 and s2 from a source A to all the nodes in the wireless network.

The optimal solution for this model is provided in Figure 2.3 as well. In this

scenario, node A broadcasts s1 and s2. Node B broadcasts only s1, and node C

broadcasts only s2. Node D receives s1 and s2 and broadcasts s1 + s2. Clearly,

node E can recover s1 and s2 by receiving both s1 and s1 + s2. Similarly, node F

can recover s1 and s2 by receiving s2 and s1 + s2. Hence, s1 + s2 is beneficial to

both nodes E and F. In this case, the optimal broadcasting happens with only five

transmissions. In summary, local coding in the network can reduce the number

of transmissions and can offer the network a better energy efficiency.

2.2.3 Network Coding Based Broadcast Schemes

In [45], NC was applied to one hop wireless broadcast problem and several NC

based broadcast schemes were proposed. Here we use an example to demonstrate

the NC based broadcast schemes as shown in Figure 2.4. As can be seen in

Figure 2.4, the source node S broadcasts symbols P1, P2 and P3 to destination
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Figure 2.4: NC based broadcast schemes.

nodes U1, U2 and U3. After broadcasting three original symbols P1, P2 and P3,

each destination node has its unique error pattern. Instead of retransmitting the

original symbols that have been deemed as erroneous by destination nodes, node

S broadcasts the coded symbols P ∗ = P1 ⊕ P2 ⊕ P3. Clearly, nodes U1, U2 and

U3 can recover symbols that have been deemed as erroneous, respectively. Hence,

4 symbols are transmitted for all nodes to recover the intact original symbols.

It was shown in [45] that NC based retransmission schemes perform better than

their counterpart using Automatic Repeat reQuest (ARQ) only [3]. However, the

NC based retransmission strategies rely on the use of feedback information from

receivers. In this thesis, we want to design a coding based broadcast scheme

in an unreliable wireless network that does not rely on user acknowledgment.

One of the best coding schemes is rateless erasure coding [31, 37, 64, 65]. Unlike

traditional codes, rateless codes are adaptable to different channel conditions and

avoid the need for feedback channels [46, 50, 51].
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2.3 Rateless Codes

Rateless (Digital fountain) codes are a new class of forwarding error correction

(FEC) codes. They were first characterized in [22], where no actual coding con-

struction was proposed but some application scenarios were suggested. The rea-

son why this type of coding ensembles is named "digital fountain" is because of

the similarities between a water fountain filling a cup and the original message

being able to be recovered. More specifically, a water fountain which can be seen

as an unlimited waterdrops can fill a cup by gathering a sufficient number of wa-

terdrops. Similarly, the original message is able to be successfully decoded after

collecting a sufficient number of encoded symbols. Hence, this thesis will utilize

the terms "fountain code" and "rateless code" synonymously. Initially, rateless

codes were invented for the BEC as a replacement for retransmission schemes

such as ARQ [4] to combat the challenge of unreliable transmission.

Rateless codes have been widely used in the broadcast/multicast application,

a scenario in which the information with common interest is broadcasted by a

transmitter to multiple users spontaneously and in which the users experience var-

ious channel states and distinct losses. Specifically, rateless codes can generate a

potentially limitless stream of coded symbols. A sufficient number of successfully

received coded symbols can lead to successfully decoding of all k source symbols

with high probability and this sufficient number can be slightly more than k.

In this thesis, applying rateless codes in the broadcast scenario is considered.

To clearly distinguish quantities related to transmitters and quantities related to

receivers in this thesis, the symbols "T " and "R" are used.

2.3.1 Luby Transform (LT) Codes

The first class of practical rateless codes is Luby transform (LT) codes [29, 30, 31],

which were invented by Luby. In LT codes, the source symbol length can be
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arbitrary. A symbol consists of l GF (2)-elements. However, this number l does

not affect the decoding error performance of a fixed but arbitrary code [31].

Therefore, l = 1 is assumed throughout this thesis. To transmit a traffic session

containing k source symbols, each coded symbol is independently generated by

the transmitter, and the entire session can be recovered from any mR = k +

O(k log(k/δ)) coded symbols with a probability of 1 − δ, where δ is a small

positive constant.

LT Codes Construction and the Degree Distribution

The encoding process of an LT code is a linear map GF (2)k → GF (2)mT and is

represented by an mT × k generator matrix GLT
mT×k over GF (2), i.e., GLT

mT×k ∈

GF (2)mT×k, where mT ≥ k. The k source symbols s = (s1, . . . , sk) ∈ GF (2)k are

mapped to mT coded symbols y = (y1, . . . , ymT ) ∈ GF (2)mT by

GLT
mT×ks

T
k×1 = yTmT×1. (2.1)

Contrary to traditional block codes, the matrix GLT
mT×k is generated online and

can differ for each data traffic session. After the transmissions, a certain receiver

can correctly receive mR coded symbols. The LT code generator matrix GLT
mR×k

describes the edges of a bipartite graph [27] that link the input nodes to the output

nodes. The input nodes represent source symbols and the output nodes represent

coded symbols. Figure 2.5 depicts an example of an LT code, where k = 5 and

mR = 6. Circular nodes represent the source symbols, and the rectangular nodes

correspond to the received coded symbols. The decoder is assumed to know all

the connections between each correctly received coded and source symbol, i.e.

the generator matrix GLT
mR×k is known by the receiver. This can be achieved by

gathering the coding information contained in the head of the coded symbols to

produce GLT
mR×k.
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Figure 2.5: An example of an LT code, where k = 5 and mR = 6.

The decoding error performance of LT codes mainly relies on the probability

mass function (pmf) on the degree of output nodes, which is also called degree

distribution. This degree distribution Ωd, d ∈ {1, ..., k} is defined as the proba-

bility that a coded symbol links to d distinct source symbols, chosen uniformly

at random. And ∑k
d=1 Ωd = 1. Generally, the degree distribution is expressed in

terms of a generator polynomial

Ω(x) =
k∑
d=1

Ωdx
d. (2.2)

In the transmitter’s generator matrix GLT
mT×k and the receiver’s generator

matrix GLT
mR×k, the d non-zero entries in a row correspond to the d connections

between a coded symbol and d source symbols. The value of the coded symbol

is determined by the summation of the connected d source symbols over GF (2).

Decoding Algorithms

For BECs, there are two distinct decoding algorithms: the belief propagation

(BP) decoding algorithm [32] which is efficient but suboptimal [55, 56] and the

maximum-likelihood (ML) decoding algorithm [67] which is optimal but com-

putationally more demanding. These two decoding algorithms will be briefly

introduced as follows.
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Belief Propagation Decoding Under BECs, the BP decoding algorithm is

also known as LT process or peeling decoding [31, 34]. The BP decoding algorithm

can be best explained by using the decoding graph, i.e. the bipartite graph that

represents the relationship between the input nodes and the output nodes. A

step-by-step example of BP decoding of an LT code over GF (2) can be found

in Figure 2.6, which demonstrates the decoding process of the BP algorithm in

detail. The BP algorithm can be expressed as follows [32, 33].

1. At least one output node of degree 1 needs to be found to start the decoding

process. If none can be found, the decoding process fails and additional

output nodes need to be collected to restart the decoding process.

2. Select one output node of degree 1 and disseminate the value of the selected

output node to the linked input node.

3. Remove the used output node and its edge from the decoding graph.

4. Disseminate the value of the recovered input node to all linked output nodes.

These output nodes add the value of the recovered input node to there value

over GF (2).

5. If all input nodes have been decoded, the decoding process ends successfully.

If there still exist unrecovered input nodes, continue with step 2.

For a large number of input nodes, the suboptimal BP algorithm has excellent

performance. Nevertheless, for a small to medium number of input nodes, the

decoding process frequently fails due to the lack of output nodes of degree 1. In

such cases, more additional output nodes are required for successful decoding.

Therefore, for small to medium input sizes, the ML decoding algorithm is a

desirable choice.
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(a) Encoding Graph

(b) Find an output node of degree 1 and dissem-
inate its value to the linked input node.

(c) Decoded input node disseminate its value to
all linked output nodes. Remove the used edges

(d) Find another output node of degree 1 and
repeat procedure in step (b)

(e) Repeat procedure in step (c). Since no degree
1 output node has been created in the decoding
process, the decoding process fails and additional
output nodes need to be collected

Figure 2.6: Exemplary belief propagation decoding of an LT code
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Maximum Likelihood Decoding The ML decoding algorithm is the optimal

decoding algorithm in terms of decoding success probability. Over BECs, ML

decoding of LT codes corresponds to solving a system of mR consistent linear

equations in k unknowns over a binary field GF (2). If the generator matrix

GLT
mR×k has full column rank, i.e. rank(GLT

mR×k) = k, all k source symbols can be

uniquely determined. If rank(GLT
mR×k) < k, the solution of GLT

mR×ks
T
k×1 = yTmR×1

spans a (k − rank(GLT
mR×k))-dimensional vector space.

We can solve such a problem with the Gaussian elimination (GE) algorithm.

Due to the relatively high computational complexity of GE, ML decoding is

practically only suitable for codes with small to medium input sizes. In this

thesis, we focus on the finite length analysis of LT codes and Raptor codes under

ML decoding.

Efficient Maximum Likelihood Decoding Algorithms Apart from GE,

there are a number of other algorithms (e.g. [67, 68, 69, 70, 71, 72, 73, 74, 75])

that achieve the ML erasure correction performance and meanwhile decrease the

computational complexity. For instance, a distinct decoding algorithm has been

proposed in [75], which is called inactivation decoding. Its basic idea is the con-

secutive use of BP decoding followed by ML decoding. More specifically, if degree

1 output nodes exist, the BP decoding algorithm will be firstly used. When the

BP decoding algorithm fails to find an output node of degree 1, an unrecovered

input node will be selected and declared as inactivated. Then, the inactivated in-

put node is seen as recovered, and the decoding process continues. The values of

the inactivated input nodes are recovered at the end using GE on a matrix where

the number of rows and columns are roughly equal to the number of inactivations.

Although this concatenation of BP and ML decoding may not be the fastest al-

gorithm, it is the method of choice in this thesis. So far, in telecommunication

standards such as the the 3rd Generation Partnership Project (3GPP) Multime-
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dia Broadcast/Multicast Service (MBMS) [39], Qualcomm’s Raptor10TM [40] and

RaptorQTM [41, 42, 76] codes are used. Meanwhile, the previously mentioned

inactivation decoding [75] is implemented. A detailed explanation of inactivation

decoding can be found in [75, 76].

Special Degree Distributions

Given a certain number mR of coded symbols, the number k of source symbols,

the binary field GF (2) and the above mentioned decoding algorithms, the degree

distribution Ω(x) is the only factor that affects the decoding error performance

of an LT code.

For BP decoding, several degree distributions have been proposed whose ob-

jectives are to optimize the size of the so-called ripple. The ripple is defined as

the set of output nodes with degree 1 during the BP decoding process. Since

decoding failure is caused by the ripple running empty, it is extremely important

to ensure that the ripple size stays non-empty throughout the whole decoding

process. On the other hand, over-sized ripples are undesirable and should be

avoided as well. These degree distributions are introduced as follows.

The Soliton Distributions In [31], Luby proposed two degree distributions.

One is ideal soliton distribution

Ωd =


1
k

if d = 1

1
d(d−1) if 2 ≤ d ≤ k,

(2.3)

which can theoretically achieve the expected ripple size of one. However, the

actual ripple size in practice fluctuates around the expected ripple size. It is

highly likely that, during the decoding process, ripple sizes become empty before

all source symbols have been recovered. In such cases, the decoding process fails.

The other is robust soliton distribution, which is a more advanced version of
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the ideal soliton distribution in terms of stability due to its higher expected ripple

size. The robust soliton distribution is defined as follows. Let L = c log(k/δ)
√
k

for some suitable constants c, δ > 0. Define that

τ(i) =



L
ik
, if 1 ≤ i ≤ k

L
− 1

L log
(
L
δ

)
, if i = k

L

0 if k
L

+ 1 ≤ i ≤ k,

(2.4)

and

ρ(i) =


1
k

if i = 1

1
i(i−1) if 2 ≤ i ≤ k.

(2.5)

Adding the ideal soliton distribution ρ(i) to τ(i), the degree distribution Ωd is

obtained by applying normalization, that is

Ωd = ρ(i) + τ(i)
β

, (2.6)

where β = ∑k
i=1 [ρ(i) + τ(i)].

A Degree Distribution Optimized for BP Decoding In [37], Shokrollahi

proposed a degree distribution for precoded LT codes, i.e. Raptor codes, for BP

decoding, which is expressed as

Ω(x) = 0.007969x+ 0.49357x2 + 0.16622x3 + 0.072646x4

+ 0.082558x5 + 0.056058x8 + 0.037229x9

+ 0.05559x19 + 0.025023x65 + 0.003135x66. (2.7)

This degree distribution is obtained by optimizing degree distribution for pre-

coded LT codes under BP decoding with a semi-heuristic method. Moreover,
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this degree distribution has been frequently used as a reference to illustrate the

accuracy of the derived bound in literature [66, 77].

A Degree Distribution of Standardized Raptor codes In 3GPP standard

[39], Raptor codes have been standardized for MBMS. The degree distribution of

the LT codes is set as

Ω(x) = 0.0099x+ 0.4663x2 + 0.2144x3 + 0.1152x4

+ 0.1131x10 + 0.0811x11. (2.8)

This degree distribution is frequently utilized as a reference in this thesis to verify

the accuracy of the analytical bounds developed in this thesis. Meanwhile, it is

used to compare with degree distributions that are more suitable for ML decoding.

The Standard and the Sparse Random Ensemble and the Expurgated

Random Ensembles In [57, 79, 80, 81, 82, 83], Schotsch summarized the ran-

dom matrices that are constructed by an entry-wise independent random process,

i.e. a Bernoulli process. The standard random ensemble [57] is generated such

that each entry in the matrix is chosen independently and uniformly at random

from GF (2). The degree distribution of the standard random ensemble can be

expressed as

Ω(x) =
k∑
d=0

(
k
d

)(1
2

)d (1
2

)k−d
xd

=
(1

2

)k k∑
d=0

(
k
d

)
xd. (2.9)

The sparse random ensemble [57] is created by adjusting the probability that

each entry samples to be zero. For an element [GLT
mT×k]i,j in GLT

mT×k, we define
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this probability as

P0
4= Pr

[
[GLT

mT×k]i,j = 0
]
. (2.10)

The degree distribution of the sparse random ensemble is thus

Ω(x) =
k∑
d=0

(
k
d

)
(P0)k−d (1− P0)d xd. (2.11)

In the above two random ensembles, Ω0 is apparently not zero. As coded symbols

do not encode any source symbol are redundant and should be avoided. By

setting Ω0 = 0 and normalizing all other probabilities, the degree distribution of

expurgated random ensembles can be obtained. The degree distribution of the

expurgated standard random ensemble, also named binomial degree distribution,

can be shown as

Ω(x) = 1
1−

(
1
2

)k k∑
d=1

(
k
d

) (1
2

)d (1
2

)k−d
xd

= 1
2k − 1

k∑
d=0

(
k
d

)
xd. (2.12)

For the expurgated sparse random ensemble, the degree distribution can be ex-

pressed as

Ω(x) = 1
1− (P0)k

k∑
d=1

(
k
d

)
(P0)k−d (1− P0)d xd, (2.13)

where P0 is the probability of sampling a non-zero element prior to setting Ω0 = 0.

In terms of decoding error performance, both just introduced expurgated ran-

dom ensembles have excellent performance under ML decoding [57]. Although

there is no rigorous theoretical proof, the binomial degree distribution is still gen-

erally considered to be the optimal degree distribution for LT codes under ML

decoding [57]. Its excellent performance has been verified in [57, 65, 64] by means
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Figure 2.7: An example of a Raptor code with a systematic pre-code, where
k = 4, n = 5 and mR = 6.

of Monte Carlo simulations and tight performance bounds. Further details will

be provided in Chapters 3 and 4.

2.3.2 Raptor Codes

Raptor codes are concatenated codes [37], which combine traditional FEC codes

with LT codes. They can relax the condition that all input (source) symbols need

to be recovered in an LT decoder. The name Raptor is a portmanteau word made

of rapid and Tornado. In [84], classical Tornado codes are proposed, which are a

class of erasure-resilient codes based on irregular bipartite graphs. An example

of a Raptor code encoding graph is depicted in Figure 2.7. Rhombus nodes

denote the source symbols, circular nodes represent the intermediate symbols,

and the rectangular nodes correspond to the coded symbols. The source symbols

s = (s1, . . . , s4) ∈ GF (2)4 are first encoded with a pre-code, such as a Hamming

code, an LDPC code or an LDGM code. In this way, the intermediate symbols

x = (x1, . . . , x5) ∈ GF (2)5 are generated. Then, we encode intermediate symbols

with an LT code to get the final coded symbols. In such case, even though the
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LT decoder cannot recover all intermediate symbols, all source symbols can still

be successfully decoded with high probability.

The reason to develop Raptor codes is that LT codes usually have a rather lim-

ited performance. The limitation appears in terms of a high error floor, since LT

code ensembles include some codewords with very few non-zero entries. However,

a pre-code can dramatically improve the decoding error performance by lowering

the error floor [37, 57]. Therefore, for BP decoding, LT codes are not intended to

be used stand-alone but only in combination with a pre-code. Note that Raptor

codes have already been standardized in 3GPP to efficiently disseminate data

over a broadcast/multicast network to provide MBMS [39].

2.4 Data Broadcast in Wireless Networks

Broadcasting has been widely used in wireless networks to disseminate informa-

tion of common interest, e.g. safety warning messages, emergency information

and weather information, to a large number of users [1, 2]. There are two major

challenges in wireless broadcast. The first one is the unreliable nature of wireless

communications. The second one is acknowledging the correct reception of every

broadcast symbol by every receiver, particularly when the number of receivers is

large.

Due to the unreliable nature of wireless communications, qualities of wire-

less links often vary temporally and spatially. ARQ is a common solution to

combat the challenge of unreliable wireless communications. The drawbacks of

transmission acknowledgment have been summarized on page 2. Moreover, the

instantaneous state of a wireless channel is difficult to obtain. This is particu-

larly true for highly dynamic networks where the user population and the users’

locations change dramatically with time. Take vehicular networks as an example,

due to the mobility of vehicles, it is difficult to obtain the exact location of each
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vehicle and the exact channel state of each vehicle-base station (BS) channel.

But the density of vehicles at a particular time period of a day can typically

be obtained with much less effort. Therefore, it is highly desirable to design a

wireless broadcast scheme that a) uses minimal information about network envi-

ronment, not relying on information such as the exact number of receivers, the

exact location of each receiver and the channel state of each receiver-BS channel,

b) reliably delivers information to a large number of users, c) does not rely on

user acknowledgment, and d) is able to provide a guaranteed performance on the

probability of successful delivery.

In this thesis we tackle the above challenges by resorting to the NC technique

[7, 45, 85] and stochastic geometry analysis. NC based broadcast schemes have

been introduced in Subsection 2.2.3. However, their NC based retransmission

strategy relies on the use of feedback information from receivers. Other coding

techniques can be implemented at BS to meet the requirements mentioned above.

One of the most suitable options is rateless (Fountain) erasure coding [31, 37,

64, 65]. The numerous advantages of rateless codes have been demonstrated

in Section 2.3. In this thesis we develop a random network coding (rateless

erasure coding) based broadcast scheme. This scheme allows a BS to broadcast

a given number of symbols to an unknown number of receivers without requiring

the receivers to acknowledge the correct receipt of broadcast symbols. In the

meantime it is able to provide a performance guarantee on the probability of

successful delivery.
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Chapter 3

Finite-Length Analysis of LT

Codes

In this chapter, we investigate the decoding success probability of finite-length

LT codes under maximum likelihood (ML) decoding. The decoding success prob-

ability is defined as the probability that a receiver can successfully decode all

k source symbols with ML decoding given that the receiver has successfully re-

ceived a certain number of coded symbols. Specifically, if erasure channels are

considered, the decoding of LT codes under ML decoding corresponds to solving

a consistent system of linear equations over a binary field GF (2), where the coef-

ficients are given by the collected LT code generator matrix. In this chapter, we

provide a rigorous mathematical analysis on the rank profile of a random coeffi-

cient matrix, where each row vector is independently generated by using the LT

encoding process, which is explained in detail in Section 3.2. On the basis of this

analysis, we derive upper and lower bounds on the decoding success probability

of finite-length LT codes under ML decoding over binary erasure channel (BEC).

The results of this chapter appear in [J1, C1, C2].
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3.1 Introduction

Rateless codes, such as Luby transform (LT) codes, were developed to improve

the transmission efficiency [90, 50, 31]. The advantages of rateless codes are

summarised in Section 2.3. Due to these salient advantages of rateless codes,

rateless codes have drawn a lot of attention from industry and academia. The

first class of practical digital rateless codes is LT codes [31], which were invented

by Luby. LT codes were reviewed in detail in Subsection 2.3.1.

It was shown in [37] that LT codes can deliver excellent performance when

the value of k is large. In reality, a traffic session may contain a small numbers

of symbols only. Under this scenario, a large symbol overhead, which is defined

as γR = mR
k

and is a key parameter related to the error-performance of LT codes,

is however reported [91]. Hyytia et al. [91] optimized the configuration of the

degree distribution for LT codes when the number of symbols is small. However,

as presented in [91], their proposed methods are not scalable and can only handle

the situation when the number of source symbols k is around 10. The authors

in [55] proposed a new algorithm for decoding. Using this algorithm, the symbol

overhead γR is reduced.

A major challenge in analyzing the performance of LT codes is that the de-

coding success probability of LT codes is difficult to analyze. In this chapter,

we investigate the performance of LT codes in terms of the success probability

of decoding. In [52], the authors proposed a method to recursively compute the

decoding success probability of LT codes under belief propagation (BP) decoding.

Details of the derivation can be found in [53]. If erasure channels are considered,

the decoding of LT codes under maximum likelihood (ML) decoding corresponds

to solving a consistent system of linear equations over a binary field GF (2), where

the coefficients are given by the collected LT code generator matrix. It is worth

noting that in [55, 56], a theoretical analysis was conducted on the decoding suc-

cess probability of LT codes under ML decoding. However the analysis in [55, 56]
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was incomplete to the extent that no rigorous analysis was presented to support

some results presented in the chapter 3. The analytical result presented on the

decoding success probability was in fact an approximation only, which will be

discussed in further details in the analysis of Section 3.3. In this chapter, we ad-

vance the work in [52, 53, 55, 56] by providing rigorous mathematica analysis on

the rank profile of a random coefficient matrix. On the basis of this analysis, we

derive upper and lower bounds on the decoding success probability of LT codes

under ML decoding over BEC.

Our major contributions can be summarized as follows:

• Firstly, in this chapter, we derive the analytical results, i.e., an upper bound

and a lower bound, on the decoding success probability of finite-length LT

codes under ML decoding, which is defined as the probability that all source

symbols can be successfully decoded by a receiver with a given number of

successfully received coded symbols. The analytical results are obtained by

conducting an analysis of the rank profile of a random coefficient matrix.

• Secondly, simulations are conducted to validate the accuracy of the pro-

posed bounds. More specifically, LT codes with different degree distribu-

tions are evaluated to measure the accuracy of the derived bounds.

The rest of the chapter is organized as follows. Section 3.2 reviews encoding and

decoding process of LT codes. In Section 3.3, we analyze the probability that

a receiver can successfully decode all source symbols conditioned on the event

that the receiver has successfully received a known number of coded symbols.

In Section 3.4, we validate our analytical results using simulations. Section 3.5

concludes the chapter.

3.2 Preliminaries

In this section, we review encoding and decoding process of LT code.
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When LT codes are used by the transmitter to deliver k source symbols, the

following encoding rule is utilized to generate each coded symbol: firstly a positive

integer d (often referred to as the "degree" [31] of coded symbols) is drawn from the

set of integers {1, ..., k} according to a probability distribution Ω = (Ω1, ...,Ωk)

where Ωd is the probability that d is picked and ∑k
d=1 Ωd = 1. Then, d distinct

source symbols are selected randomly and independently from the k source sym-

bols, where each source symbol is selected with equal probability. These d source

symbols are then network encoded using XOR operation to generate the coded

symbol [31, 37]. Finally, the coded symbol is transmitted to all receivers.

A typically used decoding process for LT codes is the so-called “LT process”

[31], but it is well known that the LT process is not able to decode all decodable

source symbols from the successfully received coded symbols. Therefore in this

chapter, we use a different decoding algorithm called the full-rank decoding [55] to

decode the source symbols. More specifically, let mR(mR ≥ k) be the number of

coded symbols that have already been successfully received by a receiver. We use

a 1×k row vector to represent the information contained in a coded symbol, where

the jth entry of the row vector is 1 if the corresponding coded symbol is a result of

XOR operation on the jth source symbol (and other source symbols); otherwise

the jth entry equals to 0. Thus, a random row vector in this chapter refers to

the row vector of a randomly chosen coded symbol where the coded symbol is

generated using the LT codes encoding process. In this way, the information

contained in the mR coded symbols can be represented by a mR × k matrix,

denoted by GLT
mR×k.

Recall that ML decoding of an LT code over BEC corresponds to solving a

consistent system of mR random linear equations in k unknowns over a binary

field GF (2). The probability that the system is solvable is equal to the probability

that the decoding matrix GLT
mR×k at the receiver has rank k. Hence, the decoding

success probability of LT codes after ML decoding equals the probability that
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GLT
mR×k has rank k.

There have been a large number of works (e.g. [92, 93, 94, 95, 96, 97, 98,

99, 100]) examining rank properties of random matrices. However, all the works

consider the random matrices that contain certain restrictions on either the ran-

domness or on the dimensions of the matrix. In terms of randomness, the re-

strictions are that only element-wise uniform randomness is considered, i.e. each

element of the random matrix is sampled uniformly from (0, 1) (standard random

ensemble). In terms of the matrix dimensions, the restrictions are only consider-

ing square matrices, i.e., k × k matrices or deriving only asymptotic expressions.

Nevertheless, for the analysis of LT codes, with a finite length and a row-wise

random matrix construction, the mature results from the previous literature are

far less sufficient. In this chapter, we derive analytical results on the probability

that GLT
mR×k is a full rank matrix.

3.3 Analysis on the Decoding Success Probabil-

ity of LT Codes

Denote by Rk
mR

the event that a receiver can successfully decode all k source sym-

bols conditioned on the event that the receiver has successfully receivedmR coded

symbols. In this section, we shall analyze the probability of Rk
mR

. Particularly

an upper and a lower bound on Pr
[
Rk
mR

]
will be derived.

We say that the receiver can recover all k source symbols from the mR coded

symbols if and only if GLT
mR×k is a full rank matrix, i.e. its rank equals to k.

Note that in this chapter, all algebraic operations and the associated analysis are

conducted in a binary field. Obviously the event that GLT
mR×k is a full rank matrix

is equivalent to the event Rk
mR

.

The main result of this section is summarized in the following theorem:

Theorem 3.1. When the transmitter generates coded symbols using the LT codes
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and the coded symbols received at a receiver are decoded using the full-rank de-

coding, the probability that a receiver can successfully decode all k source symbols

from mR received coded symbols with mR ≥ k, denoted by Rk
mR

, satisfies

Pr
[
Rk
mR

]
≤ ek (X)mR−1 eT1 , (3.1)

where ek is a 1× k row vector with the kth entry equal to 1 and all other entries

equal to 0,

X =



1−O1
1 0 · · · 0 0

O1
1 1−O2

2 · · · 0 0
... . . . . . . ... ...

0 0 · · · 1−Ok−1
k−1 0

0 0 · · · Ok−1
k−1 1−Ok

k



and

Om
m =

Pr
[
Rm+1
m+1

]
Pr [Rm

m] .

Further,

Pr [Rm
m] =

m∏
q=2

[
(1− Iq)(

m
q )
]
,

where Iq is given by:

Iq, q≥2 = (Q10, Q20, . . . , Qk0)Trq−2(Ω1,Ω2, . . . ,Ωk)T
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and Tr in the above equation is given by

Tr =



Q11 · · · Q(k−1)1 Qk1

Q12 · · · Q(k−1)2 Qk2

... . . . ... ...

Q1k · · · Q(k−1)k Qkk



and

Qij =



∑
0≤a≤min(k−j,i)

b=j−i+a

Ωa+b
(ia)

(
k−i
b

)
(
k
a+b

) , i < j

∑
1≤a≤min(k−j,i)

b=j−i+a

Ωa+b
(ia)

(
k−i
b

)
(
k
a+b

) , i = j

∑
i−j≤a≤min(k−j,i)

b=j−i+a

Ωa+b
(ia)

(
k−i
b

)
(
k
a+b

) , i > j.

In addition to the above upper bound, a lower bound of Pr
[
Rk
mR

]
can also be

obtained:

Pr
[
Rk
mR

]
≥ ek



1− u1 · · · 0 0

u1 · · · 0 0
... . . . ... ...

0 · · · 1− uk−1 0

0 · · · uk−1 1− uk



mR−1

R(1), (3.2)
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where

uz = max
0≤i≤k−z

{
z−1∑
d=0

[(
z − 1

d
)Pg (d+ i− z + 1)]

+
z−1∑
d=1

[(
z − 1

d
)Pg (d)]}

and Pg(d) = Ωd
(kd)

.

The rest of this section is devoted to the proof of Theorem 3.1. Because of the

close connection between the event Rk
mR

and the event that GLT
mR×k is a full rank

matrix, the analysis of Pr
[
Rk
mR

]
is conducted by analyzing the rank of GLT

mR×k.

3.3.1 Analysis of the Rank of a Random Matrix

In this subsection, we give procedure on computing the probability that GLT
mR×k

is a full rank matrix, where mR ≥ k.

Let Rr
mR

be the event that the rank of the encoding coefficient matrix GLT
mR×k

is r and let Pr
[
Rr
mR

]
be its probability. Define the rank profile of GLT

mR×k to

be a vector R(mR) =
(
Pr
[
R1
mR

]
,Pr

[
R2
mR

]
, . . . ,Pr

[
Rk
mR

])T
. Noting that the

decoding success probability is equal to the probability that the rank of the

encoding coefficient matrix GLT
mR×k equals k, i.e. Pr

[
Rk
mR

]
, our analysis on the

decoding success probability relies on a recursive computation of R(mR) as mR

increases.

When mR = 1, it can be readily shown that R(1) = (Pr [R1
1] ,Pr [R2

1] , . . . ,

Pr
[
Rk

1

]
)T = (1, 0, . . . , 0)T . For mR > 1, the rank profile of GLT

mR×k can be ob-

tained from the rank profile of GLT
(mR−1)×k recursively. Particularly, GLT

mR×k can

be considered as GLT
(mR−1)×k with an additional row x added into G(n−1)×k. The

degree of x, i.e. the number of non-zero elements of x, is chosen according to

the pre-defined degree distribution Ω = (Ω1, ...,Ωk) and each non-zero element is
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then placed randomly and uniformly into x. Let rk(G) be the rank of the matrix

G and let Im(G) be the row vector space generated by a matrix G. That is,

Im(G) is the vector space formed by all linear combinations of the rows of G.

Note that it may possibly occur that Im(Gn×k) = Im(Gm×k) where m 6= n. If a

row vector x can be expressed as a linear combination of the row vectors of G,

we say that x ∈ Im(G); otherwise x /∈ Im(G). For k ≥ r ≥ 2, it can be shown

that

Pr
[
rk(GLT

mR×k) = r
]

= Pr
[
rk(GLT

(mR−1)×k) = r
]
×

Pr
[
x ∈ Im(GLT

(mR−1)×k) | rk(GLT
(mR−1)×k) = r

]
+ Pr

[
rk(GLT

(mR−1)×k) = r − 1
]
×

Pr
[
x /∈ Im(GLT

(mR−1)×k) | rk(GLT
(mR−1)×k) = r − 1

]
. (3.3)

For convenience let Or−1
mR−1 = Pr

[
x /∈ Im(GLT

(mR−1)×k) | Rr−1
n−1

]
. It follows from

the equation (3.3) that:

Pr
[
Rr
mR

]
= Pr

[
Rr
mR−1

]
(1−Or

mR−1) + Pr
[
Rr−1
mR−1

]
Or−1
mR−1. (3.4)

Based on (3.4), the following equation can be obtained by recursion:

R(mR)

=



1−O1
mR−1 · · · 0 0

O1
mR−1 · · · 0 0
... . . . ... ...

0 · · · 1−Ok−1
mR−1 0

0 · · · Ok−1
mR−1 1−Ok

mR−1


R(mR − 1)

=(
mR−1∏
l=1

Xl)R(1), (3.5)
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where

Xl =



1−O1
l 0 · · · 0 0

O1
l 1−O2

l · · · 0 0
... . . . . . . ... ...

0 0 · · · 1−Ok−1
l 0

0 0 · · · Ok−1
l 1−Ok

l


.

The probability that GLT
mR×k is of full rank, hence all k source symbols can be

successfully decoded, can be calculated by:

Pr
[
Rk
mR

]
=

(
0 0 · · · 0 1

)
R(mR)

= ek(
mR−1∏
l=1

Xl)R(1), (3.6)

where ei, 1 ≤ i ≤ k, is a 1 × k row vector with the ith entry equal to 1 and all

other entries equal to 0.

The above recursive way of computing the rank profile of GLT
mR×k and the prob-

ability that GLT
mR×k is a full rank matrix relies on the knowledge of the parameters

Oz
mR−1 = Pr

[
x /∈ Im(GLT

(mR−1)×k) | Rz
mR−1

]
, 1 ≤ z ≤ k. In the following para-

graphs, we give analysis on the computation of Pr
[
x /∈ Im(GLT

(mR−1)×k) | Rz
mR−1

]
.

For convenience let AmR−1 be the event that x /∈ Im(GLT
(mR−1)×k) and AmR−1

be the complement of event AmR−1. Temporarily assuming that rk(GLT
(mR−1)×k) =

z, 1 ≤ z ≤ k and noting that GLT
(mR−1)×k is a random matrix, under the above

two conditions, let V z be a row vector space formed by all linear combinations

of the rows of an instance of GLT
(mR−1)×k. Of course the dimension of V z equals

to z, hence the superscript. Further, let Ez be the set of all possible and distinct

V zs: Ez 4= {V z}. When z = k, the row vector space whose dimension is k is

unique. However when 1 ≤ z < k, there are multiple distinct row vector spaces

with dimension z. For convenience, we number the elements of Ez sequentially
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and denote by Γzv be the set of indices of all V z satisfying V z ∈ Ez. Denote by

V z
i the ith element of Ez. As noted in the last paragraph, the coding coefficient

matrix G and the vector space formed by the row vectors of G have independent

significance in the sense that for two positive integers m,n ≥ z and m 6= n, it

may happen that V z
i = Im(Gn×k) = Im(Gm×k). That is, the vector space and

its existence does not depend on some details of the coding coefficient matrix,

e.g. number of rows in the coding coefficient matrix and a particular instance of

the coding coefficient matrix.

Let F z
i,n−1 be the event Im(GLT

(mR−1)×k) = V z
i . It can be readily shown that:

1) Rz
mR−1 = ∪i∈ΓzvF

z
i,mR−1, i.e. event that the rank of the encoding coefficient

matrix GLT
mR×k is z equals to the joint events that Im(GLT

(mR−1)×k) = V z
i for all

i, i ∈ Γzv; 2) F z
i,mR−1 ∩ F z

j,mR−1 = Ã˜ for i 6= j. Using the definitions of the two

events Rz
mR

and F z
i,mR−1, Bayes’ formula and the above two results, we have

Pr
[
x ∈ Im(GLT

(mR−1)×k) | rk(GLT
(mR−1)×k) = z

]
= Pr

[
AmR−1 | Rz

mR−1

]
=

Pr
[
AmR−1 ∩Rz

mR−1

]
Pr
[
Rr−1
mR−1

]
=

Pr
[
AmR−1 ∩ (∪i∈ΓzvF

z
i,mR−1)

]
Pr
[
∪i∈ΓzvF

z
i,mR−1

] =
∑
i∈Γzv Pr

[
AmR−1 ∩ F z

i,mR−1

]
∑
i∈Γzv Pr

[
F z
i,mR−1

]
=
∑
i∈Γzv Pr

[
AmR−1 | F z

i,mR−1

]
Pr
[
F z
i,mR−1

]
∑
i∈Γzv Pr

[
F z
i,mR−1

] . (3.7)

Let Bz
i be the event that x ∈ V z

i . Conditioned on the event F z
i,mR−1 and noting

that x is drawn randomly and independently of the row vectors of GLT
(mR−1)×k, we

have

AmR−1 | F z
i,mR−1 ⇔ Bz

i | F z
i,mR−1. (3.8)

Because each row vector is drawn independently of other row vectors, the two

events x ∈ V z
i and Im(GLT

(mR−1)×k) = V z
i are independent. It follows using the

definitions of Bz
i and F z

i,mR−1 that Pr
[
Bz
i | F z

i,mR−1

]
= Pr

[
Bz
i

]
= Pr [x ∈ V z

i ].
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For the other term Pr
[
F z
i,mR−1

]
in (3.7), we recall that F z

i,mR−1 is the event

Im(GLT
(mR−1)×k) = V z

i . Let Ez
i,mR−1 be the event V z

i ⊆ Im(GLT
(mR−1)×k) and ob-

viously F z
i,mR−1 ⊆ Ez

i,mR−1. Conditioned on the event Ez
i,mR−1, without loss of

generality, let {v1,v2, ...,vz} be the row vectors of GLT
(mR−1)×k that forms a basis

of V z
i . The set of row vectors of GLT

(mR−1)×k that forms a basis of V z
i may not be

unique. Let {w1,w1, ...,wmR−z−1} be the remaining row vectors of GLT
(mR−1)×k.

Further note that each row vector of GLT
(mR−1)×k is formed independently of other

row vectors. Noting that F z
i,mR−1 ⊆ Ez

i,mR−1, it can be shown that

Pr
[
F z
i,mR−1

]
= Pr

[
F z
i,mR−1|Ez

i,mR−1

]
Pr
[
Ez
i,mR−1

]
= Pr

[
w1 ∈ V z

i ∩ · · · ∩wmR−z−1 ∈ V z
i |Ez

i,mR−1

]
Pr
[
Ez
i,mR−1

]
=
(
Pr
[
w1 ∈ V z

i |Ez
i,mR−1

])mR−z−1
Pr
[
Ez
i,mR−1

]
=
(
Pr
[
Bz
i

])mR−z−1
Pr
[
Ez
i,mR−1

]
, (3.9)

where the last step result is because the two events w1 ∈ V z
i and Ez

i,mR−1 are

independent. Combining the three equations (3.7), (3.8), and (3.9), conclusion

follows that

Pr
[
AmR−1 | Rz

mR−1

]
=
∑
i∈Γzv Pr

[
AmR−1 | F z

i,mR−1

]
Pr
[
F z
i,mR−1

]
∑
i∈Γzv Pr

[
F z
i,mR−1

]
=
∑
i∈Γzv Pr

[
Bz
i

] (
Pr
[
Bz
i

])mR−z−1
Pr
[
Ez
i,mR−1

]
∑
i∈Γzv

(
Pr
[
Bz
i

])mR−z−1
Pr
[
Ez
i,mR−1

]
=
∑
i∈Γzv

(
Pr
[
Bz
i

])mR−z Pr
[
Ez
i,mR−1

]
∑
i∈Γzv

(
Pr
[
Bz
i

])mR−z−1
Pr
[
Ez
i,mR−1

] . (3.10)

As manifested in equation (3.10), the computation of Pr
[
AmR−1 | Rz

mR−1

]
,

which is required for computing the rank profile of GLT
mR×k and the probability that
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GLT
mR×k is a full rank matrix, relies on the knowledge of Pr

[
Bz
i

]
and Pr

[
Ez
i,mR−1

]
.

These parameters can be difficult to obtain when k is large. Therefore in the rest

of this section, we devote our efforts to finding an upper and a lower bound of

Pr
[
AmR−1 | Rz

mR−1

]
, which will be shown later using simulations to be reasonably

tight.

Derivation of An Upper Bound of Pr
[
Rk
mR

]
Let ai,mR−1 = Pr

[
Ez
i,mR−1

]
and bi,z = Pr

[
Bz
i

]
for notational convenience. Equa-

tion (3.10) can be rewritten as:

Pr
[
AmR−1 | Rz

mR−1

]
=

∑
i∈Γzv ai,mR−1b

mR−z
i,z∑

i∈Γzv ai,mR−1b
mR−z−1
i,z

. (3.11)

Next we shall evaluate the monotonicity of Pr
[
AmR−1 | Rr−1

mR−1

]
as a function

of mR. It can be shown that :

Pr
[
AmR | Rz

mR

]
− Pr

[
AmR−1 | Rz

mR−1

]
=
∑
i∈Γzv ai,nb

mR−z+1
i,z∑

i∈Γzv ai,mRb
mR−z
i,z

−
∑
i∈Γzv ai,mR−1b

mR−z
i,z∑

i∈Γzv ai,mR−1b
mR−z−1
i,z

=
∑
i∈Γzv ai,mRai,mR−1b

2mR−2z
i,z −∑i∈Γzv ai,mRai,mR−1b

2mR−2z
i,z∑

i∈Γzv ai,mRb
mR−z
i,z

∑
i∈Γzv ai,mR−1b

mR−z−1
i,z

+
∑
j∈Γzv

∑
i∈Γzv ai,mRaj,mR−1b

mR−z+1
i,z bmR−z−1

j,z∑
i∈Γzv ai,mRb

mR−z
i,z

∑
i∈Γzv ai,mR−1b

mR−z−1
i,z

−
∑
j∈Γzv

∑
i∈Γzv ai,mRaj,mR−1b

mR−z
i,z bmR−zj,z∑

i∈Γzv ai,mRb
mR−z
i,z

∑
i∈Γzv ai,mR−1b

mR−z−1
i,z

=
∑
j∈Γzv

∑
i∈Γzv ai,mRaj,mR−1b

mR−z−1
i,z bmR−z−1

j,z (b2
i,z − 2bi,zbj,z + b2

j,z)∑
i∈Γzv ai,mRb

mR−z
i,z

∑
i∈Γzv ai,mR−1b

mR−z−1
i,z

=
∑
j∈Γzv

∑
i∈Γzv ai,mRaj,mR−1b

mR−z−1
i,z bmR−z−1

j,z (bi,z − bj,z)2∑
i∈Γzv ai,mRb

mR−z
i

∑
i∈Γzv ai,mR−1b

mR−z−1
i

≥ 0. (3.12)

As a result of the above analysis, we can conclude that the conditional prob-

ability Pr
[
AmR−1 | Rz

mR

]
is a monotonically increasing function with mR and

Pr
[
AmR | Rz

mR

]
≥ Pr

[
AmR−1 | Rz

mR−1

]
≥ · · · ≥ Pr

[
Az | Rz

z

]
.
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Let

X=



1−O1
1 0 · · · 0 0

O1
1 1−O2

2 · · · 0 0
... . . . . . . ... ...

0 0 · · · 1−Ok−1
k−1 0

0 0 · · · Ok−1
k−1 1−Ok

k


. (3.13)

We can then obtain that

ek(
mR−1∏
l=1

Xl)R(1) ≤ ek(X)mR−1R(1)

Pr
[
Rk
mR

]
≤ ek(X)mR−1R(1). (3.14)

Now an upper bound of the decoding success probability is derived and this

relies on the knowledge of Oz
z , 1 ≤ z ≤ k. In the following paragraphs, we

present analysis leading to the computation of Oz
z , 1 ≤ z ≤ k. Noting that when

1 ≤ z ≤ k, x /∈ Im(GLT
z×k) ∩ rk(GLT

z×k) = z ⇔ rk(GLT
(z+1)×k) = z + 1, it can be

shown that

Oz
z = Pr

[
x /∈ Im(GLT

z×k) | rk(GLT
z×k) = z

]
=

Pr
[
x /∈ Im(GLT

z×k) ∩ rk(GLT
z×k) = z

]
Pr
[
rk(GLT

z×k) = z
]

=
Pr
[
rk(GLT

(z+1)×k) = z + 1
]

Pr
[
rk(GLT

z×k) = z
] =

Pr
[
Rz+1
z+1

]
Pr [Rz

z]
, (3.15)

where Pr [Rz
z] represents the probability that a random (encoding coefficient)

matrix GLT
z×k, z ≤ k, is of full rank. The method to calculate Pr [Rz

z] is provided

in the following lemma.

Lemma 3.2. Let vi be the ith row vector of GLT
z×k. Denote by Iq (whose value will

be determined later in Lemma 3.3) the probability of the event that ∑q
i=1 vi = 0,
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conditioned on that the summation of any w row vectors of GLT
z×k is not equal to

0, where 0 is a 1×k row vector with all elements equal to 0, w ∈ Z+, 1 < w < q.

Pr [Rz
z] can be determined by:

Pr [Rz
z] =

z∏
q=2

[
(1− Iq)(

z
q)
]
. (3.16)

Proof. We observe that GLT
z×k being full rank implies that there does not exist

a set of coefficients c1, . . . , cr such that ∑r
i=1 civi = 0. Further, since we are

working in a binary field, ci can be either 1 or 0. It follows that GLT
z×k being full

rank is a sufficient and necessary condition for that for every integer 2 ≤ q ≤ r,

the summation of any q row vectors of GLT
z×k is not equal to 0. This observation

forms the basis of the proof.

Let NZ(q) be the event that the summation of any q row vectors in GLT
z×k

are not equal to 0. The probability of NZ(2) can be expressed as Pr[NZ(2)] =

(1− I2)(r2). Further, for every integer q satisfying 3 ≤ q ≤ r,

Pr [∩qi=2NZ(i)]=Pr
[
NZ(q) | ∩q−1

i=2NZ(i)
]

Pr
[
∩q−1
i=2NZ(i)

]
. (3.17)

With the recursive application of equation (3.17), we can conclude that the prob-

ability that GLT
z×k, z ≤ k, is of full rank can be obtained as

Pr [Rz
z] = Pr(∩zi=2NZ(i)) =

z∏
q=2

[
(1− Iq)(

z
q)
]
. (3.18)

Now we shall derive Iq which is required in Lemma 3.2. To obtain Iq, we must

first evaluate the degree transition probability Qij, i.e. the probability that the

row vector Sq produced by summing q row vectors has degree j given that the

row vector Sq−1 generated by summing the first q − 1 row vectors of the above q
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row vectors has degree i. We can derive Qij[55] as:

Qij =



∑
0≤a≤min(k−j,i)

b=j−i+a

Ωa+b
(ia)

(
k−i
b

)
(
k
a+b

) , i < j

∑
1≤a≤min(k−j,i)

b=j−i+a

Ωa+b
(ia)

(
k−i
b

)
(
k
a+b

) , i = j

∑
i−j≤a≤min(k−j,i)

b=j−i+a

Ωa+b
(ia)

(
k−i
b

)
(
k
a+b

) , i > j

, (3.19)

where Ωd, 1 ≤ d ≤ k is the degree distribution of LT codes, which is defined in

Section 3.2.

Now we are ready to analyze Iq.

Lemma 3.3. Let Tr be a k × k transition matrix with dimension k × k whose

(j, i)th element equal to Qij. The matrix Tr can be expressed as:

Tr =



Q11 · · · Q(k−1)1 Qk1

Q12 · · · Q(k−1)2 Qk2

... . . . ... ...

Q1k · · · Q(k−1)k Qkk


,

the probability Iq is given by:

Iq, q≥2.=(Q10, Q20, . . . , Qk0)Trq−2 · (Ω1,Ω2, . . . ,Ωk)T . (3.20)

Proof. To obtain Iq, we analyze the degree distribution of row vector Sw which

is the sum of w row vectors. Note that the degree of Sw should not equal to 0.
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Let Dw = (Dw
1 , . . . , D

w
k )T be the degree distribution of the sum of w (random)

row vectors and w ≥ 1, where Dw
i is the probability that the degree of the row

vector Sw is i, 1 ≤ i ≤ k. When w = 1, the degree distribution D1 is obviously

(Ω1,Ω2, . . . ,Ωk)T . For w ≥ 2, the relationship can be analytically described as :

Dw
m = (Q1m, Q2m, . . . , Qkm)(Dw−1

1 , . . . , Dw−1
k )T . (3.21)

From the equation (3.21), it follows that:

Dw=(Dw
1 , . . . , D

w
k )T

=



Q11 · · · Q(k−1)1 Qk1

... . . . ... ...

Q1(k−1) · · · Q(k−1)(k−1) Qk(k−1)

Q1k · · · Q(k−1)k Qkk





Dw−1
1
...

Dw−1
k−1

Dw−1
k


=Trw−1 · (Ω1,Ω2, . . . ,Ωk)T . (3.22)

As an easy consequence of equation (3.22), Iq can be obtained:

Iq = Dq
0 =

k∑
i=1

Dq−1
i Qi0 = (Q10, Q20, . . . , Qk0)Dq−1

= (Q10, Q20, . . . , Qk0)Trq−2 · (Ω1,Ω2, . . . ,Ωk)T . (3.23)

Using (3.14), (3.15) and Lemmas 3.2 and 3.3, an upper bound on Pr
[
Rk
mR

]
can be computed, which completes the first part of the proof of Theorem 3.1 on

the upper bound.
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Derivation of A Lower Bound of Pr
[
Rk
mR

]
In addition to the upper bound derived earlier in the section, a lower bound on

the decoding success probability can also be obtained:

Pr
[
AmR | Rz

mR

]
=

∑
i∈Γzv ai,mRb

mR−z+1
i,z∑

i∈Γzv ai,mRb
mR−z
i,z

≤ max
i∈Γzv
{bi,z}

≤ max
i∈Γzv
{Pr

[
Bz
i

]
}. (3.24)

Thus we can obtain that

ek(Xmin)mR−1R(1) ≤ ek(
mR−1∏
l=1

Xl)R(1)

Pr
[
Rk
mR

]
≥ ek(Xmin)mR−1R(1), (3.25)

where Xmin is given in (3.26).

Xmin

=



1−maxi∈Γ1
v
{Pr

[
B1
i

]
}· · · 0 0

maxi∈Γ1
v
{Pr

[
B1
i

]
} · · · 0 0

... . . . ... ...

0 · · ·1−maxi∈Γk−1
v
{Pr

[
Bk−1
i

]
} 0

0 · · · maxi∈Γk−1
v
{Pr

[
Bk−1
i

]
} 1−maxi∈Γkv{Pr

[
Bk
i

]
}


.(3.26)

The above lower bound relies on the knowledge of maxi∈Γzv{Pr
[
Bz
i

]
}, 1 ≤ z ≤

k. In the following analysis, we give analysis that leads to the computation of

maxi∈Γzv{Pr
[
Bz
i

]
}.

Note that a particular row vector with degree d occurs with probability

Pg(d) = Ωd(
k
d

) , (3.27)
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where Ωd is the probability that a (any) row vector with degree d is chosen

and
(
k
d

)
is the total number of degree d vectors among all 1 × k binary vec-

tors. Recall that the degree of a vector is the number of non-zero elements

in it. Recall that ei is a 1 × k row vector with the ith entry equal to 1 and

all other entries equal to 0. Obviously {e1, . . . , ek} forms a set of orthogonal

basis vectors where any row vector, hence a row vector in any V z
i , i ∈ Γzv,

in the coding coefficient matrix can be represented as a linear combination of

these basis vectors. Let us focus now on a z dimensional subspace formed by

{e1, . . . , ez}, denoted by V{e1,...,ez}. Using some straightforward combinatorial ar-

gument and further noting that we are working in a binary field, it can be shown

that the number of degree d, d ≤ z, vectors in V{e1,...,ez} is given by

 z

d

.

Therefore Pr
[
x ∈ V{e1,...,ez}

]
= ∑z

d=1


 z

d

Pg (d)

. Denote by Ωz
i any other

z dimensional vector space whose basis vectors are the row vectors of a matrix

obtainable by reshuffling the columns of the matrix {e1, . . . , ez}T (or equivalently

any other z dimensional vector space whose basis vectors are obtained by ran-

domly choosing z vectors from {e1, . . . , ek}). Because the number of non-zero

elements are uniformly and independently distributed in a row vector, it follows

that Pr
[
x ∈ V{e1,...,ez}

]
= Pr [x ∈ Ωz

i ].

Now let us consider a z dimensional vector space formed by the basis vectors

{e1, . . . , ez−1, ez + ez+1}. Except for the last basis vector which has degree 2, all

other basis vectors have degree 1 only. Using some straightforward combinato-

rial argument, the number of vectors in V{e1,...,ez−1,ez+ez+1} containing ez + ez+1

and having a degree d + 2 is given by

 z − 1

d

; the number of vectors in

V{e1,...,ez−1,ez+ez+1} not containing ez + ez+1 and having a degree d is given by
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 z − 1

d

. Therefore

Pr
[
x ∈ V{e1,...,ez−1,ez+ez+1}

]

=
z−1∑
d=0

(
z − 1

d
)Pg (d+ 2)

+
z−1∑
d=1

(
z − 1

d
)Pg (d)

 . (3.28)

Similarly, denote by Ωz
i any other z dimensional vector space whose basis vectors

are the row vectors of a matrix obtainable by reshuffling the columns of the matrix

{e1, . . . , ez−1, ez + ez+1}T . It can be shown that Pr
[
x ∈ V{e1,...,ez−1,ez+ez+1}

]
=

Pr [x ∈ Ωz
i ]. Continuing with the above discussion for V{e1,...,ez−1,ez+ez+1+ez+2}, ......,

V{e1,...,ez−1,ez+···+ek}, it can be shown that

Pr
[
x ∈ V{e1,...,ez−1,ez+···+ei}

]

=
z−1∑
d=0

[(
z − 1

d
)Pg (d+ i− z + 1)] +

z−1∑
d=1

[(
z − 1

d
)Pg (d)], (3.29)

where 0 ≤ i ≤ k− z. Because we are working in the binary field, it can be shown

that the above discussion covers all occurrences of z dimensional spaces.

Summarizing the above discussion, it follows that

max
i
{Pr

[
Bz
i

]
} = max

0≤i≤k−z
Pr
[
x ∈ V{e1,...,ez−1,ez+···+ez+i}

]
, (3.30)

where the values of Pr
[
x ∈ V{e1,...,ez−1,ez+···+ez+i}

]
is given by (3.29).

Combining equations (3.25), (3.27), (3.29) and (3.30), the second part of the

proof of Theorem 3.1 on the lower bound is also completed.
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3.4 Simulation Results

In this section, we use simulations to validate the accuracy of the analytical results

and the tightness of the bounds by plotting the decoding failure probability which

is one minus the decoding success probability. The simulations are conducted in

a simulator written in MATLAB. Each point shown in the figures is the average

value obtained from 10000 simulations. The 95% confidence interval is shown in

the figures too. For clarity, the simulation parameters adopted in this section are

summarized in Table I.

Table 3.1: Simulation parameters
Rateless codes encoding parameters

Number of source symbols k 5, 10, 20, 40 and 80
The degree distributions for LT codes

Ideal soliton degree distribution Ωd = 1
d(d−1) , 2 ≤ d ≤ k

and Ω1 = 1
k

Robust soliton degree distribution c = 0.1 and δ = 0.05
Expurgated sparse random LT code ensemble ΩSparse

d , 1 ≤ d ≤ k

Binomial degree distribution Ωd = (kd)
(2k−1) , 1 ≤ d ≤ k

Analytical and simulation results are presented in Fig. 3.1 , 3.2 , 3.3 and 3.4 on

the probability that not all 5 source symbols can be successfully received/decoded

by a receiver as a function of reception overhead γR = mR/k. The degree distribu-

tions of LT codes are chosen as the widely used ideal soliton degree distribution

[31], robust soliton degree distribution [31] described on page 20 of this thesis

the binomial degree distribution [89] and the expurgated sparse random LT code

ensemble [57], which is expressed as:

ΩSparse
d =

(
k
d

)
(P0)k−d (1− P0)d

1− (P0)k
, 1 ≤ d ≤ k, (3.31)

where P0 is the probability of having a zero element in the generator matrix GLT

and is set as 0.45 in this chapter. The upper bound is calculated by using Eq.

3.2 and Eq. 4.2 with n = k. And the lower bound is calculated by using Eq. 3.1
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and Eq. 4.29 with n = k. As shown in Fig. 3.1 , 3.2 , 3.3 and 3.4 for different

degree distributions, our analytical results match the simulation results very well,

which validate the accuracy of the analysis in this chapter. When the overhead

is small, our proposed analytical bounds demonstrate better accuracy than the

bounds proposed by Schotsch et al. in [57]. When the reception overhead γR

is set to 1.4, for ideal soliton distribution, the decoding failure probability of LT

codes equals 0.214; for robust soliton distribution, the decoding failure probability

is 0.254; for expurgated sparse random LT code ensemble, the decoding failure

probability increases to 0.19; for binomial degree distribution, the decoding failure

probability becomes 0.184. The performance of LT codes with the binomial degree

distribution outperforms those obtained with the other three degree distributions

in terms of decoding failure probability. Furthermore, the analytical bounds of

the decoding success probability of LT codes with the binomial degree distribution

merge to the exact expression of decoding failure probability. Therefore, we will

use LT codes with the binomial degree distribution in the following simulations

of this chapter.

When the number of source symbols k varies from 5 to 80, our analytical

results still match the simulation results very well as shown in Fig. 3.5(a) and

3.5(b). When the number of source symbols increases, the conclusion that LT

codes can significantly reduce the overhead of reception required to meet the same

performance objective.

3.5 Summary

In this chapter, we investigated the the decoding success probability of finite-

Length LT codes under ML decoding. The decoding success probability is the

probability that a receiver can successfully decode all k source symbols with ML

decoding conditioned on the event that the receiver has successfully received a
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Figure 3.1: The decoding failure probabilities of LT codes with ideal soliton degree
distribution [31] versus overhead γR.
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Figure 3.2: The decoding failure probabilities of LT codes with robust soliton
degree distribution [31] versus overhead γR.
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Figure 3.3: The decoding failure probabilities of LT codes with expurgated sparse
random LT code ensemble [57] versus overhead γR.
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Figure 3.4: The decoding failure probabilities of LT codes with binomial degree
distribution [89] versus overhead γR.

53



3.5. Summary

certain number of coded symbols. Specifically, if erasure channel is considered,

the decoding of LT codes under ML decoding corresponds to solving a consistent

system of linear equations over a binary field GF (2), where the coefficients are

given by the collected LT code generator matrix. In this chapter, we provide

rigorous mathematical analysis on the rank profile of a random coefficient matrix,

where each row vector is independently generated by using the LT encoding

process. On the basis of this analysis, we derive upper and lower bounds on

the decoding success probability of LT codes under ML decoding over BEC.

LT codes can be applied to wireless broadcast scenario. By using the analytical

bounds on the decoding success probability of LT code under ML decoding, an

upper and a lower bound on the probability that all receivers successfully decode

all source symbols from the BS can be derived, which will be presented in Chapter

5. The technique and analysis developed in this chapter can be useful for designing

broadcast strategies to deliver information of common interest to a large number

of users efficiently and reliably.
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Figure 3.5: The decoding failure probabilities of LT codes with the binomial
degree distribution at different values of the overhead γ. The number of source
symbols k is set to be 5, 10, 20, 40 and 80 respectively.
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Chapter 4

Finite-Length Analysis of Raptor

Codes

In the preceding chapter, we have investigated the decoding success probability of

finite-length LT codes under maximum likelihood (ML) decoding. In this chapter,

we take a further step by studying the decoding success probability of finite-length

Raptor codes with a systematic low-density generator matrix (LDGM) code as

the pre-code under ML decoding. Different from previous studies which rely on

the use of approximation to obtain the pseudo upper bound on the performance

of Raptor codes under ML decoding, this chapter provides analytical bounds on

the decoding failure probability of Raptor codes under ML decoding. The decod-

ing failure probability is defined as the probability that not all source symbols

can be successfully decoded with a given number of successfully received coded

symbols. These analytical bounds are derived by conducting a detailed mathe-

matical analysis on the rank of the product of two random coefficient matrices.

Based on analytical bounds on the decoding failure probability of Raptor codes,

we can readily obtain analytical bounds on the decoding success probability of

Raptor codes, which is unity minus decoding failure probability. Simulations are

conducted to validate the accuracy of the analysis. More specifically, Raptor
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codes with different degree distributions and pre-codes, are evaluated using the

derived bounds with high accuracy. The results of this chapter appear in [J2].

4.1 Introduction

Rateless codes have been briefly introduced in Section 2.3. Because of the above

mentioned advantages, rateless codes have the potential to replace the conven-

tional automatic repeat request (ARQ) mechanism as a new mechanism of trans-

mission control protocol (TCP) [66].

Among the known rateless codes, two codes stand out. One is the Luby

transform (LT) codes, whose performance has been investigated in Chapter 3.

The other one is the Raptor codes, which are the first class of fountain codes with

linear time encoding and decoding complexities. Moreover, Raptor codes only

require O(1) time to generate a coded symbol [37]. Note that Raptor codes have

already been standardized in the 3rd Generation Partnership Project (3GPP)

to efficiently disseminate data over a broadcast/multicast network to provide

multimedia broadcast multicast services (MBMS) [39].

Despite the successful application of Raptor codes in 3GPP, our understanding

of Raptor codes is still incomplete due to the lack of complete theoretical analysis

on the decoding error performance of Raptor codes. Without analytical results,

the optimization of the degree distribution as well as the parameters for Raptor

codes would be extremely difficult, if not impossible.

In this chapter, we investigate the performance of Raptor codes in terms

of the decoding success probability. Without loss of generality, we investigate

the decoding failure probability of Raptor codes under ML decoding first. The

decoding failure probability is the probability that not all source symbols can

be decoded by ML decoding with a given number of successfully received coded

symbols. It is a commonly used performance metric in the performance analysis
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of rateless codes. In [37], Shokrollahi analyzed the decoding failure probability of

Raptor codes with finite length assuming the belief propagation (BP) decoding.

The analysis relies on the computation of the failure probability of the LT codes

under the BP decoding, which was derived in [52]. ML decoding, on the other

hand, is more computationally demanding than the BP decoding for codes with

a large length. The derivation of bounds on the decoding failure probability

assuming ML decoding is however a significant problem, because it provides a

benchmark on the optimum system performance for gauging the other decoding

schemes. Furthermore, it is worth noting that in [57] a pseudo upper bound

on the performance of Raptor codes under ML decoding is derived under the

assumption that the number of erasures correctable by the pre-code is small.

This approximation is accurate only when the rate of the pre-code is sufficiently

high. So for a more general case, the decoding failure probability of Raptor codes

still needs further investigation.

In this paper, we further treat Raptor codes by analyzing the decoding fail-

ure probability of Raptor codes, i.e., not all source symbols can be successfully

decoded with ML decoding by a receiver with a given number of successfully

received coded symbols, and verifying the derived results via simulations. The

contributions of this work are summarized in the following:

• Firstly, this chapter provides the analytical results, i.e., an upper bound

and a lower bound, on the decoding failure performance of Raptor codes

with a systematic LDGM code as the pre-code under ML decoding, which is

measured by the probability that not all source symbols can be successfully

decoded by a receiver with a given number of successfully received coded

symbols. The analytical results are derived by conducting an analysis on

the rank of the product of two random coefficient matrices.

• Based on the upper and lower bounds on the decoding failure probability

of Raptor codes, we can readily obtain the lower and upper bounds on the
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decoding success probability of Raptor codes, which is unity minus decoding

failure probability.

• Moreover, simulations are conducted to validate the accuracy of the pro-

posed bounds. More specifically, Raptor codes with different degree distri-

butions and pre-codes are evaluated, which establishes the accuracy of the

bounds.

The rest of the chapter is organized as follows. In Section 4.2, a brief review of

the encoding and decoding process of Raptor codes is given. In Section 4.3, a

performance analysis of Raptor code is conducted by deriving an upper bound

and a lower bound on the probability that not all source symbols can be success-

fully decoded by a receiver with a given number of successfully received coded

symbols. Section 4.4 validates the analytical results through simulations, followed

by concluding remarks in Section 4.5.

4.2 An Introduction to Raptor Codes

This section is provided to familiarize the readers with the basic idea of Raptor

codes, and their efficient encoding and decoding algorithms.

The encoding process of Raptor codes is carried out in two phases: a) Encode

k source symbols with a (n, k) error correction code, which is referred to as pre-

code C, to form n intermediate symbols; b) Encode the n intermediate symbols

with an LT code. Each coded symbol is generated by the following encoding

rules of LT codes. Firstly, a positive integer d (often referred to as the "degree"

[31] of coded symbols) is drawn from the set of integers {1, ..., n} according to

a probability distribution Ω = (Ω1, ...,Ωn), where Ωd is the probability that d

is picked and ∑k
d=1 Ωd = 1. Then, d distinct intermediate symbols are selected

randomly and independently from the n intermediate symbols to form the coded

symbol to be transmitted using the XOR operation [37, 31], where each interme-
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Figure 4.1: Two-stage structure of a Raptor code with a systematic pre-code.

diate symbol is selected with equal probability. A Raptor code with parameters

(k, C,Ω) is an LT code with distribution Ω = (Ω1, ...,Ωn) on n symbols that are

the coded symbols of the pre-code C. An illustration of a Raptor code is given in

Figure 4.1. In practice, the parity check matrix of the pre-code of Raptor codes

is a deterministic matrix. For example, in 3GPP standard [39], the parity check

matrix of the pre-code of the standardized Raptor codes is a systematic deter-

ministic matrix. Using a systematic deterministic matrix as the pre-code of the

standardized Raptor codes ensures that the parity check matrix of the pre-code

is a full-rank matrix. However, it is difficult to obtain tractable analytical results

of the decoding performance for such Raptor codes. Therefore, in this chapter

we adopt a Raptor code ensemble with a semi-random (n, k, η) LDGM code as

the pre-code for analytical tractability while ensuring that the parity check ma-

trix of the pre-code is a full-rank matrix. The generator matrix of the pre-code,

Gpre
n×k, can be written as Gpre

n×k = [Ik|Pk×(n−k)]T , where Ik is an identity matrix of

size k, and Pk×(n−k) is a k by (n− k) matrix whose entries are independent and

identically distributed (i.i.d) Bernoulli random variables with parameter η. Such
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a code is denoted as an (n, k, η) LDGM code. Furthermore, we can obtain the

parity check matrix of this LDGM code as H(n−k)×n = [P(n−k)×k|I(n−k)](n−k)×n.

Let mR, (mR ≥ k), be the number of coded symbols that have already been

successfully received by a receiver and γR = mR
k
, (γR ≥ 1) be the overhead of

reception. When a coded symbol is received by a receiver, we use a 1× k binary

row vector gLT
i Gpre to represent the coding information contained in the coded

symbol, where GLT is a kγR × n binary matrix and gLT
i is the ith row vector

of GLT and Gpre is a n × k binary matrix. Let [G]i,j be the entry of the ith

row and the jth column of a matrix G. Particularly,
[
gLTi

]
1,j

is 1 if the coded

symbol is a result of the XOR operation on the jth intermediate symbol (and other

intermediate symbols); otherwise
[
gLTi

]
1,j

equals 0. For [Gpre]i,j, it is 1 if the ith

intermediate symbol is a result of the XOR operation on the jth source symbol

(and other source symbols); otherwise [Gpre]i,j equals 0. Therefore, a random

row vector in this paper refers to the row vector of a randomly chosen coded

symbol where the coded symbol is generated using the Raptor encoding process

described above. Recall that s = (s1, s2, ..., sk) represents the k source symbols to

be transmitted. The coded symbol can be expressed as: yi = gLT
i GpresT , where

“sT ” is the transpose of s.

Raptor codes can be decoded by using a variety of decoding algorithms. A

typically used decoding algorithm for Raptor codes is the so-called "LT process"

[31], but it is well known that the LT process is unable to decode all the source

symbols which can be possibly recovered from information contained in the re-

ceived coded symbols. For example, the LT process relies on the existence of at

least one degree-one coded symbol to be received in order to start the decod-

ing process. For Raptor codes with limited lengths, i.e. in the order of a few

thousand, maximum likelihood (ML) decoding [54] has been used to replace the

LT process to decode the source symbols. The performance of the ML decoding

algorithm is the same as the Gaussian elimination. One way to apply Gaussian
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elimination on Raptor code is to solve a system of linear equations given in the

following [37, 86].

GLT
kγR×nG

pre
n×ksTk×1 = ykγR×1, (4.1)

where ykγR×1 = (y1, y2, ..., ykγR)T . Additionally, we can obtain the following

Lemma:

Lemma 4.1. A receiver can recover all k source symbols from the kγR coded

symbols using the ML decoding algorithm if and only if (GLT
kγR×nG

pre
n×k)kγR×k is a

full-rank matrix, i.e. its rank equals k [37].

Note that in this paper, all algebraic operations and the associated analysis

are conducted in a binary field. Denote by AkkγR the event that a receiver can

successfully decode all k source symbols conditioned on the event that the re-

ceiver has successfully received kγR coded symbols. Obviously the event that

(GLT
kγR×nG

pre
n×k)kγR×k is a full-rank matrix is equivalent to the event AkkγR happen-

ing. Let AkγRk be the complement of event AkkγR . The main result of this paper is

summarized in Theorems 4.2 and 4.3.

4.3 Performance Analysis of Raptor Codes

In this subsection, we shall analyze the probability Pr
[
AkγRk

]
. Because of the

equivalence between the event AkγRk and the event that (GLT
kγR×nG

pre
n×k)γRk×k is

a full-rank matrix, the analysis of the decoding failure probability PDF
k,n,γR

=

Pr
[
AkγRk

]
is conducted by analyzing the probability that the rank of (GLT

kγR×nG
pre
n×k)kγR×k

is not k.
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4.3.1 Upper Bound on the Decoding Failure Probability

of Raptor Codes

In this subsection, we will derive an upper bound on the decoding failure prob-

ability of Raptor codes with a systematic (n, k, η) LDGM code as the pre-code,

which is presented in the following theorem:

Theorem 4.2. When a receiver successfully received kγR coded symbols generated

by using the Raptor code (k, C,Ω(x)) where C is an (n, k, η) LDGM code and the

coded symbols received at a receiver are decoded using ML decoding, the probability

that a receiver cannot successfully decode all k source symbols with kγR, kγR ≥ k,

received coded symbols, denoted by PDF
k,n,γR

, is upper bounded by

PDF
k,n,γR

≤
k∑
i=1

(
k
i

) n−k+i∑
r=i

(J (r))kγR D (i, r) , (4.2)

where

J(r) =
n∑
d=1

Ωd

∑
s=0,2,...,2b d2c(

r
s)(n−rd−s )

(nd)

and

D(i, r) =
(
n−k
r−i

) [1 + (1− 2η)i
2

]n−k−r+i

×
[

1− (1− 2η)i
2

]r−i

and Ωd is the degree distribution of LT codes.

Proof. Our proof relies on the use of the union bound of the independent events

that vectors in the column vector space of Gpre
n×k are in the null space of GLT

kγR×n.

According to the property of the matrix product [87, Eq. (4.5.1)], we have

rank(GLT
kγR×nG

pre
n×k)
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= rank(Gpre
n×k)− dim{N(GLT

kγR×n) ∩R(Gpre
n×k)}, (4.3)

where N(•) is the right-hand null space of a matrix, R(•) is the column vector

space generated by a matrix and dim{V} represents the number of vectors in any

basis for a vector space V . It follows from the definition of Gpre
n×k given earlier

that the rank of Gpre
n×k surely is k. It can be readily obtained that:

PDF
k,n,γR

= Pr[rank(GLT
kγR×nG

pre
n×k) 6= k]

= Pr[dim{N(GLT
kγR×n) ∩R(Gpre

n×k)} 6= 0]. (4.4)

For convenience letWkγR,n,k represent the event that dim{N(GLT
kγR×n)∩R(Gpre

n×k)} 6=

0. Now we need to analyze PDF
k,n,γR

= Pr[WkγR,n,k]. Provided that Gpre
n×k is a sys-

tematic (n, k, η) LDGM code, the event dim{N(GLT
kγR×n) ∩ R(Gpre

n×k)} 6= 0, i.e.,

WkγR,n,k, is equivalent to the event that at least one column vector from R(Gpre
n×k)

is among N(GLT
kγR×n), i.e., ∪x∈R(Gpre

n×k)GLT
kγR×nx = 0, where x is a column vector

of R(Gpre
n×k). It can be readily shown that:

Pr[WkγR,n,k] = Pr
[
∪x∈R(Gpre

n×k)GLT
kγR×nx = 0

]
≤

∑
x∈R(Gpre

n×k)
Pr
[
GLT
kγR×nx = 0

]
. (4.5)

The column vector space R(Gpre
n×k) is partitioned into k subspace (V1,V2, . . . ,Vk)

and Vi is the subspace that contains all the column vectors which are a summation

of i column vectors of Gpre
n×k. We denote by Γi as the set of indices of the column

vectors in Vi and there are (ki ) indices in Γi. Let xia represent the ath, a ∈ Γi

column vector in Vi. It can be readily shown that:

∑
x∈R(Gpre

n×k)
Pr[GLT

kγR×nx = 0] =
k∑
i=1

∑
a∈Γi

Pr[GLT
kγR×nx

i
a = 0]. (4.6)

We can observe that xia = Ga
n×i1i where Ga

n×i is the matrix formed by i selected
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column vectors from k column vectors of Gpre
n×k and 1i represents the i× 1 all one

column vector. Let |xia| represent the weight of column vector xia, considering the

law of total probability, we have

Pr[GLT
kγR×nx

i
a = 0]

=
n∑
r=0

Pr
[
GLT
kγR×nx

i
a = 0

∣∣∣∣ ∣∣∣xia∣∣∣ = r
]

Pr
[∣∣∣xia∣∣∣ = r

]
. (4.7)

Firstly, we need to calculate Pr [|xia| = r]. Provided Gpre
n×k = [Ik|Pk×(n−k)]T , in

the first k entries of Ga
n×i1i there are i ones. If |xia| = r, then there are r− i ones

in the last n− k entries of Ga
n×i1i, .i.e, Pa

(n−k)×i1i. Hence we can obtain that

Pr
[∣∣∣xia∣∣∣ = r

]
= Pr

[∣∣∣Pa
(n−k)×i1i

∣∣∣ = (r − i)
]
, (4.8)

and i ≤ r ≤ n− k+ i. The rows of Pa
(n−k)×i, i.e., pj, 1 ≤ j ≤ (n− k), are random

binary row vectors, which are generated independently. Each entry of Pa
(n−k)×i is

an independent and identically distributed (i.i.d) Bernoulli random variable with

parameter η. Therefore, Pr[pj1i = 0] = Pr[pk,k 6=j1i = 0]. The event that the jth

entry in xia is zero is equivalent to the event that there are even number of ones

in row vector pj. We have

Pr[pj1i = 0] = Pr [|pj| is even ]

=
∑

s=0,2,...,2b i2c
(is)ηs(1− η)(i−s)

= [(η + (1− η))i + (−η + (1− η))i]
2

= 1 + (1− 2η)i
2 . (4.9)

There are (n−kr−i ) possible combinations for r − i ones in the last n− k entries. It
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can be readily shown that:

Pr
[∣∣∣Pa

(n−k)×i1i
∣∣∣ = (r − i)

]
= (n−kr−i ){Pr[pj1i = 0]}n−k−r+i

×{1− Pr[pj1i = 0]}r−i. (4.10)

Combining equations (4.8), (4.9) and (4.10), we can obtain that

D(i, r) = Pr
[∣∣∣xia∣∣∣ = r

]
=

(
n−k
r−i

) [1 + (1− 2η)i
2

]n−k−r+i

×
[

1− (1− 2η)i
2

]r−i
. (4.11)

For xia,xib,b 6=a ∈ Vi, Pa
(n−k)×i and Pb

(n−k)×i have the same probability to form

the same matrix formation. So we can obtain that Pr
[∣∣∣Pa

(n−k)×i1i
∣∣∣ = (r − i)

]
=

Pr
[∣∣∣Pb

(n−k)×i1i
∣∣∣ = (r − i)

]
, in turn Pr [|xia| = r] = Pr [|xib| = r]. Now, we calculate

Pr
[
GLT
kγR×nx

i
a = 0 | |xia| = r

]
. The rows of GLT

γRk×n, i.e., gLT
j , 1 ≤ j ≤ kγR, are

random binary row vectors, which are generated independently. We have

Pr
[
GLT
kγR×nx

i
a = 0

∣∣∣∣ ∣∣∣xia∣∣∣ = r
]

=
{

Pr
[
gLT
j xia = 0

∣∣∣∣ ∣∣∣xia∣∣∣ = r
]}kγR

. (4.12)

The degree of gLT
j , i.e. the number of non-zero elements of gLT

j , is chosen according

to the pre-defined degree distribution Ω = (Ω1, ...,Ωn) and each non-zero element

is then placed randomly and uniformly into gLT
j . It can be readily obtained that

Pr
[
gLT
j xia = 0

∣∣∣∣ ∣∣∣xia∣∣∣ = r
]

=
n∑
d=1

Ωd Pr
[
gLT
j xia = 0

∣∣∣∣ ∣∣∣xia∣∣∣ = r,
∣∣∣gLT
j

∣∣∣ = d
]
. (4.13)
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Let rij = (gLT
j1 xia1,gLT

j2 xia2, ...,gLT
jn xian), where gLT

jk is
[
gLT
j

]
1,k

and xiak is [xia]k,1.

Then, we can obtain that

Pr
[
gLT
j xia = 0

∣∣∣∣ ∣∣∣xia∣∣∣ = r,
∣∣∣gLT
j

∣∣∣ = d
]

= Pr
[∣∣∣rij∣∣∣ is even ∣∣∣∣ ∣∣∣xia∣∣∣ = r,

∣∣∣gLT
j

∣∣∣ = d
]

=
∑
s=0,2,...,2b d2c(

r
s)(n−rd−s )

(nd) . (4.14)

Combining equations (4.13) and (4.14), we can obtain that

J(r) = Pr
[
gLT
j xia = 0

∣∣∣∣ ∣∣∣xia∣∣∣ = r
]

=
n∑
d=1

Ωd

∑
s=0,2,...,2b d2c(

r
s)(n−rd−s )

(nd) . (4.15)

Inserting equation (4.12) into (4.15), it can be obtained that

Pr
[
GLT
kγR×nx

i
a = 0

∣∣∣∣ ∣∣∣xia∣∣∣ = r
]

= [J(r)]kγR . (4.16)

We can obtain that Pr[GLT
kγR×nx

i
a = 0 | |xia| = r] is only determined by the weight

of xia rather than which i column vectors are chosen from Gpre
n×k to obtain the

summation xia. So we can conclude that Pr[GLT
kγR×nx

i
a = 0] = Pr[GLT

kγR×nx
i
b = 0].

Recall that there are (ki ) indices in Î“i. Inserting equations (4.11) and (4.16) into

(4.7) and combining with equation (4.6), yields the following results

PDF
k,n,γR

= Pr[WkγR,n,k]

≤
k∑
i=1

∑
a∈Î“i

Pr
[
GLT
kγR×nx

i
a = 0

]

=
k∑
i=1

(ki )
n−k+i∑
r=i

 n∑
d=1

Ωd

∑
s=0,2,...,2b d2c(

r
s)(n−rd−s )

(nd)

kγR

×
(
n−k
r−i

) [1 + (1− 2η)i
2

]n−k−r+i [1− (1− 2η)i
2

]r−i
, (4.17)
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which proves the assertion.

4.3.2 Lower Bound on the Decoding Failure Probability

of Raptor Codes

In addition to the above upper bound, we can also derive lower bounds on the

decoding failure probability of Raptor codes with a systematic (n, k, η) LDGM

code as the pre-code, which are presented in the following theorems:

Theorem 4.3. When a receiver successfully received kγR coded symbols generated

by using the Raptor code (k, C,Ω(x)) where C is an (n, k, η) LDGM code and the

coded symbols received at a receiver are decoded using ML decoding, the probability

that a receiver cannot successfully decode all k source symbols with kγR, kγR ≥ k,

received coded symbols, denoted by PDF
k,n,γR

, is lower bounded by:

PDF
k,n,γR

≥
k∑
i=1

(ki )
n−k+i∑
r=i

(J(r))kγRD(i, r)

−1
2

k∑
i=1

(ki )
i∑

w0=0

∑
w1=i−w0

k−i∑
w2=0

1(w0 + w2)1(w1 + w2)

× (iw0)(k−iw2 ){
n−k+w0∑
r0=w0

n−k+w1∑
r1=w1

n−k+w2∑
r0=w2

D(w0, r0)D(w1, r1)

×D(w2, r2)[J(r0)J(r1)J(r2) + J(r0)J(r1)J(r2)]}kγR , (4.18)

where

1(x) :=


0 if x = 0

1 otherwise,

J(·) = 1 − J(·), D(w0, r0) is defined in equation (4.11) and J(r0) is defined in

equation (4.15).

Proof. Similar to [66, Lemma 10], by using the Bonferroni inequality [88], we can
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obtain a lower bound of Pr[WkγR,n,k] as:

PDF
k,n,γR

= Pr[WkγR,n,k]

= Pr[∪x∈R(Gpre
n×k)GLT

kγR×nx = 0]
(a)
≥

∑
x∈R(Gpre

n×k)
Pr[GLT

kγR×nx = 0]

−1
2

∑
x,y∈R(Gpre

n×k),x 6=y
Pr[GLT

kγR×nx = 0 & GLT
kγR×ny = 0]. (4.19)

where x = Gpre
n×ka, a ∈ GF (2)k and y = Gpre

n×kb,b ∈ GF (2)k\a. The first term

can be calculated by using Theorem 4.2. Recall that Vi is a subspace that contains

all the column vectors which are summation of i column vectors of Gpre
n×k, Î“i is

the set of indices of the column vectors in Vi and xia represents the ath, a ∈ Î“i

column vectors in Vi. It can be readily shown that:

∑
x,y∈R(Gpre

n×k),x 6=y
Pr[GLT

kγR×nx = 0 & GLT
kγR×ny = 0]

=
∑

x∈R(Gpre
n×k)

∑
y∈R(Gpre

n×k)\x
Pr[GLT

kγR×nx = 0 & GLT
kγR×ny = 0]

=
k∑
i=1

∑
a∈Î“i

∑
y∈R(Gpre

n×k)\xia

Pr[GLT
kγR×nx

i
a = 0 & GLT

kγR×ny = 0], (4.20)

where xia = Gpre
n×ka, |a| = i. Recall that y = Gpre

n×kb,b ∈ GF (2)k. We define

three binary vectors z0, z1, and z2 ∈ GF (2)k such that for t = 1, ..., k, z0(t) = 1 if

and only if a(t) = 1 and b(t) = 1, z1(t) = 1 if and only if a(t) = 1 and b(t) = 0,

and z2(t) = 1 if and only if a(t) = 0 and b(t) = 1. Let w0, w1 and w2 be the

weights of vectors z0, z1, and z2, respectively. For xia, we have z0 + z1 = a and

z0 + z2 = b. Hence we can obtain:

Pr
[
GLT
kγR×nx

i
a = 0 & GLT

kγR×ny = 0
]

= Pr
[
GLT
kγR×nG

pre
n×kz0 = GLT

kγR×nG
pre
n×kz1 = GLT

kγR×nG
pre
n×kz2
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∣∣∣∣ |z0| = w0& |z1| = w1& |z2| = w2

]
. (4.21)

Let Iz = {iz1, iz2, ..., izτ} be the set of indices such that t ∈ Iz for z(t) = 1,

we can obtain the sets of indices of vectors z0, z1, and z2 as Iz0 , Iz1 and Iz2 .

Corresponding to the three sets Iz0 , Iz1 and Iz2 , each column of the matrix Gpre
n×k,

gprei , 1 ≤ i ≤ k, can be divided into four mutually exclusive parts, gz0 , gz1 , gz2

and ∪1≤i≤kgprei \(gz0 ∪ gz1 ∪ gz2), i.e., gz0 ∩ gz1 = {0}. Let gz0 be the subset of

∪1≤i≤kgprei such that all the elements of this subset are selected from ∪1≤i≤kgprei

according to the indices in set Iz0 and Gpre
z0 be the matrix whose columns are

elements of gz0 . The length of gz0 is w0. The same operation is applied to

the formation of gz1 and gz2 , in which the elements are selected according to

the indices in the set Iz1 and Iz2 , and have length w1 and w2, respectively. Let

xw0 = Gpre
z0 1w0 , xw1 = Gpre

z1 1w1 and xw2 = Gpre
z2 1w2 . Equivalently, equation (4.27)

can be rewritten as,

Pr
[
GLT
kγR×nG

pre
n×kz0 = GLT

kγR×nG
pre
n×kz1 = GLT

kγR×nG
pre
n×kz2∣∣∣∣ |z0| = w0, |z1| = w1, |z2| = w2

]
= Pr[GLT

kγR×nx
w0 = GLT

kγR×nx
w1 = GLT

kγR×nx
w2 ]. (4.22)

Recall that the rows of GLT
kγR×n, i.e., gLT

j , 1 ≤ j ≤ kγR, are random binary row

vectors, which are generated independently. We have

Pr
[
GLT
kγR×nx

w0 = GLT
kγR×nx

w1 = GLT
kγR×nx

w2
]

=
{

Pr
[
gLT
j xw0 = gLT

j xw1 = gLT
j xw2

]}kγR
. (4.23)

According to the law of total probability, we have

Pr
[
gLT
j xw0 = gLT

j xw1 = gLT
j xw2

]
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=
n−k+w0∑
r0=w0

n−k+w1∑
r1=w1

n−k+w2∑
r0=w2

Pr[|xw0 | = r0]

×Pr[|xw1 | = r1] Pr[|xw2| = r2]

×Pr
[
gLT
j xw0 = gLT

j xw1 = gLT
j xw2∣∣∣∣ |xw0 | = r0, |xw1| = r1, |xw2| = r2

]
. (4.24)

For Pr[|xw0| = r0], this can be calculated by using equation (4.11). Because all

algebraic operations are conducted in a binary field, gLT
j xw0 can only be 1 or 0.

Equation (4.23) can be further written as :

Pr
[
gLT
j xw0 = gLT

j xw1 = gLT
j xw2∣∣∣∣ |xw0| = r0, |xw1| = r1, |xw2 | = r2

]
= Pr

[
gLT
j xw0 = 0,gLT

j xw1 = 0,gLT
j xw2 = 0∣∣∣∣ |xw0| = r0, |xw1| = r1, |xw2 | = r2

]
+ Pr

[
gLT
j xw0 = 1,gLT

j xw1 = 1,gLT
j xw2 = 1∣∣∣∣ |xw0| = r0, |xw1| = r1, |xw2 | = r2

]
. (4.25)

Recall that xw0 = Gpre
z0 1w0 , xw1 = Gpre

z1 1w1 , xw2 = Gpre
z2 1w2 and the columns

of Gpre
z0 , Gpre

z1 , Gpre
z2 are mutually exclusive to each other. So the event that

|xw0| = r0 is independent of the event that |xw1| = r1 or |xw2| = r2 and the event

that gLT
j xw0 = 1 is independent of the event that gLT

j xw1 = 1 or gLT
j xw2 = 1.

Conditioned on |xw0 | = r0, |xw1| = r1, |xw2| = r2, the first part in equation (4.25)

can be expressed as:

Pr
[
gLT
j xw0 = 0,gLT

j xw1 = 0,gLT
j xw2 = 0∣∣∣∣ |xw0| = r0, |xw1| = r1, |xw2 | = r2

]
= Pr

[
gLT
j xw0 = 0

∣∣∣∣ |xw0| = r0

]
Pr
[
gLT
j xw1 = 0

∣∣∣∣ |xw1| = r1

]
Pr
[
gLT
j xw2 = 0

∣∣∣∣ |xw2| = r2

]
. (4.26)
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Based on the previous analysis, we know that Pr[gLT
j xw0 = 0

∣∣∣∣ |xw0| = r0] only

relates to parameter r0. Let D(w0, r0) = Pr[|xw0| = r0] and J(r0) = Pr[gLT
j xw0 =

0| |xw0 | = r0]. For J(r0), it can be calculated by using equations (4.13) and (4.14).

Based on the previous analysis, we know that J(r0) only relates to parameter r0

and D(w0, r0) is affected by parameter r0 and w0. Hence for the same parameters

w0, w1 and w2, equation (4.22) has the same result. Because xia 6= y, we can

obtain that w1 + w2 6= 0 and w0 + w2 6= 0. For xia, when |z0| = w0, we have

w1 = i−w0 and there are (iw0) possible combinations of z0. For z2, there are (k−iw2 )

possible combinations of z2 when |z2| = w2. Inserting equations (4.22), (4.24),

(4.23), (4.25) and (4.26) into (4.21), we can obtain:

∑
y∈R(Gpre

n×k)\xia

Pr[GLT
kγR×nx

i
a = 0 & GLT

kγR×ny = 0]

=
i∑

w0=0

∑
w1=i−w0

k−i∑
w2=0

1(w0 + w2)1(w1 + w2)(iw0)(k−iw2 )

×{
n−k+w0∑
r0=w0

n−k+w1∑
r1=w1

n−k+w2∑
r0=w2

D(w0, r0)D(w1, r1)D(w2, r2)

[J(r0)J(r1)J(r2) + J(r0)J(r1)J(r2)]}γRk, (4.27)

where 1(x) :=


0 if x = 0

1 otherwise

. For xia,xib,b 6=a ∈ Vi, the probability ∑
xia 6=y

Pr
[
GLT
kγR×nx

i
a = 0 & GLT

kγR×ny = 0
]
is affected by parameter i. So we can ob-

tain that ∑xia 6=y Pr[GLT
kγR×nx

i
a = 0 & GLT

kγR×ny = 0] = ∑
xi
b
6=y Pr[GLT

kγR×nx
i
a =

0 & GLT
kγR×ny = 0]. Recall that there are (ki ) indices in Î“i. We can obtain that

∑
x,y∈R(Gpre

n×k),x 6=y
Pr[GLT

kγR×nx = 0 & GLT
kγR×ny = 0 ]

=
k∑
i=1

∑
a∈Î“i

∑
y∈R(Gpre

n×k)\xia

Pr[GLT
kγR×nx

i
a = 0 & GLT

kγR×ny = 0]

=
k∑
i=1

(ki )
i∑

w0=0

∑
w1=i−w0

k−i∑
w2=0

1(w0 + w2)1(w1 + w2)
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× (iw0)(k−iw2 ){
n−k+w0∑
r0=w0

n−k+w1∑
r1=w1

n−k+w2∑
r0=w2

D(w0, r0)D(w1, r1)

×D(w2, r2)[J(r0)J(r1)J(r2) + J(r0)J(r1)J(r2)]}γRk. (4.28)

The proof of Theorem 4.3 is completed.

The computation complexity of the above equation is high, i.e., O(1
8n

6k3(n−

k)3). We derive another lower bound whose computation complexity is decreased

significantly.

Theorem 4.4. When a receiver successfully received kγR coded symbols generated

by using the Raptor code (k, C,Ω(x)) where C is an (n, k, η) LDGM code and the

coded symbols received at a receiver are decoded using ML decoding, the probability

that a receiver cannot successfully decode all k source symbols with kγR, kγR ≥ k,

received coded symbols, denoted by PDF
k,n,γR

, is lower bounded by:

PDF
k,n,γR

≥
k∑
i=1

(
k
i

) n−k+i∑
r=i

[
n∑
d=1

Ωd
(n−rd )
(nd)

]kγ
×
(
n−k
r−i

) [
(1− η)i

]n−k−r+i [
1− (1− η)i

]r−i
., (4.29)

Proof. Similar as that in [57, Theorem 3.18], by using the idea that the k source

symbols cannot be recovered if at least one source node (SN) cannot be recovered.

A lower bound on the of Pr[Wkγ,n,k] is therefore given by the probability that there

exist SNs are not connected to any of the kγ independent output nodes (ONs)

through the n intermediate nodes (INs)

PDF
k,n,γ = Pr[Wkγ,n,k]

≥ Pr[∪i∈{1,...,k}i SNs are not connected to the kγ ONs]. (4.30)

The probability that the i particular (fixed but arbitrary) SNs are connected to
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some r of the n INs, i.e., the probability that the r− i particular rows of P(n−k)×k

have i all-zero columns, is given by

Pr[i SNs are connected to the r INs]

=
(
n−k
r−i

) [
(1− η)i

]n−k−r+i [
1− (1− η)i

]r−i
. (4.31)

The probability that r particular (i fixed and r − iarbitrary) INs who have links

to the i particular SNs are not connected to the kγ ONs, i.e. the probability that

the r particular columns of GLT
kγ×n are all-zero columns, is given by

Pr [ith SN cannot be recovered by the kγ ONs]

=
[
n∑
d=1

Ωd
(n−rd )
(nd)

]kγ
. (4.32)

Recall that there are
(
k
i

)
possible combinations of i particular SNs. Combining

Eq. (4.31) and (4.32) with Eq. (4.30), yields the following results

PDF
k,n,γ = Pr[Wkγ,n,k]

≥ Pr[∪i∈{1,...,k}i SNs are not connected to the kγ ONs]

=
k∑
i=1

(
k
i

) n−k+i∑
r=i

[
n∑
d=1

Ωd
(n−rd )
(nd)

]kγ
×
(
n−k
r−i

) [
(1− η)i

]n−k−r+i [
1− (1− η)i

]r−i
. (4.33)

The proof of Theorem 4.4 is completed.

4.3.3 A Special Case of the Derived Bounds

In this subsection, we consider a special degree distribution – binomial degree

distribution (the expurgated standard random ensemble), which is studied in [78,

89]. When we apply the binomial degree distribution (the expurgated standard

random ensemble) into Theorem 4.2, we can simplify equation (4.2) into a far
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less complex expression. The simplification procedure is shown in the following

Corollary.

Corollary 4.5. When a receiver successfully received kγR coded symbols generated

by using the Raptor code (k, C,Ω(x)) where C is an (n, k, η) LDGM code, Ω(x) =∑n
d=1

(nd)xd
(2n−1) and the coded symbols received at a receiver are decoded using ML

decoding, the probability that a receiver cannot successfully decode all k source

symbols with kγR, kγR ≥ k, received coded symbols, denoted by PDF
k,n,γR

, satisfies

PDF
k,n,γR

≤ (2k − 1)((2n−1 − 1)
(2n − 1) )kγR . (4.34)

Proof. When the binomial degree distribution (the expurgated standard random

ensemble) [78, 89], i.e., Ωd = (nd)
(2n−1) , 1 ≤ d ≤ n, is inserted into equation (4.13),

we can obtain that

Pr[gLT
j xia = 0 |

∣∣∣xia∣∣∣ = r]

= (2n − 1)−1
n∑
d=1

∑
s=0,2,...,2b d2c

(rs)(n−rd−s ). (4.35)

Similar to [89, Lemma 2], when the upper limit of the inner summation is changed

from 2
⌊
d
2

⌋
to 2

⌊
n
2

⌋
, it will not affect the result of equation (4.35). This is because

(n−rd−s ) with s > 2
⌊
d
2

⌋
equals 0.

Pr
[
gLT
j xia = 0 |

∣∣∣xia∣∣∣ = r
]

= (2n − 1)−1
n∑
d=1

∑
s=0,2,...,2bn2 c

(rs)(n−rd−s )

= (2n − 1)−1 ∑
s=0,2,...,2bn2 c

(rs)
n∑
d=1

(n−rd−s ). (4.36)

The reason why the order of the two summations can be exchanged is because the

inner summation variable s is now independent of the outer summation variable
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d. Note that 1 ≤ d ≤ n. Now we want to change the lower limit of the inner

summation of equation (4.36) from 1 to 0 without affecting its result.

Pr
[
gLT
j xia = 0 |

∣∣∣xia∣∣∣ = r
]

= (2n − 1)−1{
∑

s=0,2,...,2bn2 c
(rs)[

n∑
d=0

(n−rd−s )− (n−rd−s )d=0]}

= (2n − 1)−1{[
∑

s=0,2,...,2bn2 c
(rs)

n∑
d=0

(n−rd−s )]− (rs)(n−rd−s )s=d=0}. (4.37)

This is because the term (n−rd−s )d=0 equals 0 for s 6= 0. Hence, only the case s = 0

needs to be considered. The term (n−rd−s ) restricts d to s ≤ d ≤ n− r+ s, such that

n∑
d=0

(n−rd−s ) =
n−r+s∑
d=s

(n−rd−s ) =
n−r∑
d=0

(n−rd ) = 2n−r. (4.38)

Combining this term with the last expression for Pr[gLTj xia = 0 | |xia| = r] yields

[
gLT
j xia = 0 |

∣∣∣xia∣∣∣ = r
]

= (2n − 1)−1

2n−r
∑

s=0,2,...,2bn2 c
(rs)− 1


= (2n − 1)−1(2n−r2r−1 − 1)

= (2n−1 − 1)
(2n − 1) , (4.39)

where we have used identity ∑s even(rs) = 2r−1. We can observe that Pr[gLT
j xia =

0 | |xia| = r] is independent from the weight of xia, hence Pr[GLT
kγR×nx

i
a = 0| |xia| =

r] = Pr[GLT
kγR×nx

i
a = 0]. Combining equations (4.12), (4.39), (4.6) and (4.4), we

can obtain that

PDF
k,n,γR

= Pr[WkγR,n,k]

= Pr
[
∪x∈R(Gpre

n×k)GLT
kγR×nx = 0

]

76



4.3. Performance Analysis of Raptor Codes

≤
∑

x∈R(Gpre
n×k)

Pr
[
GLT
kγR×nx = 0

]
= (2k − 1) Pr

[
GLT
kγR×nx = 0| |x| = r

]
= (2k − 1)((2n−1 − 1)

(2n − 1) )kγR . (4.40)

As for Theorem 4.3, we can simplify the lower bound into a far less complex

expression as well. This is summarized in the following Corollary.

Corollary 4.6. When a receiver successfully received kγR coded symbols generated

by using the Raptor code (k, C,Ω(x)) where C is an (n, k, η) LDGM code and the

coded symbols received at a receiver are decoded using ML decoding, the probability

that a receiver cannot successfully decode all k source symbols with kγR, kγR ≥ k,

received coded symbols, denoted by PDF
k,n,γR

, satisfies

PDF
k,n,γR

≥ (2k − 1)
[

(2n−1 − 1)
(2n − 1)

]kγR
− (2k − 1)(2k−1 − 1)

×


[

(2n−1 − 1)
(2n − 1)

]3

+
[
1− (2n−1 − 1)

(2n − 1)

]3

kγR

. (4.41)

Proof. The binomial degree distribution [89], i.e., Ωd = (nd)
(2n−1) , 1 ≤ d ≤ n, is

inserted into equation (4.9), by using the result of equation (4.39), we can obtain

that

J(r0) = Pr[gLT
j xw0 = 0| |xw0| = r0]

= (2n−1 − 1)
(2n − 1) . (4.42)

Insert equation (4.42) into equation (4.22), we can obtain that

Pr
[
GLT
kγR×nG

pre
n×kz0 = GLT

kγR×nG
pre
n×kz1 = GLT

kγR×nG
pre
n×kz2
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| |z0| = w0& |z1| = w1& |z2| = w2]

=
n−k+w0∑
r0=w0

n−k+w1∑
r1=w1

n−k+w2∑
r0=w2

D(w0, r0)D(w1, r1)D(w2, r2)

×{[ (2
n−1 − 1)

(2n − 1) ]3 + [1− (2n−1 − 1)
(2n − 1) ]3}kγR

= {[ (2
n−1 − 1)

(2n − 1) ]3 + [1− (2n−1 − 1)
(2n − 1) ]3}kγR . (4.43)

Insert equation (4.43) into equation (4.27), we can obtain that

∑
xia 6=y

Pr[GLT
kγR×nx

i
a = 0&GLT

kγR×ny = 0]

=
i∑

w0=0

∑
w1=i−w0

k−i∑
w2=0

1(w0 + w2)1(w1 + w2)(iw0)(k−iw2 )

×{[ (2
n−1 − 1)

(2n − 1) ]3 + [1− (2n−1 − 1)
(2n − 1) ]3}kγR

= (2k − 2){[ (2
n−1 − 1)

(2n − 1) ]3 + [1− (2n−1 − 1)
(2n − 1) ]3}kγR . (4.44)

Combining equation (4.44), (4.20) and (4.19), we can obtain that

PDF
k,n,γR

= Pr[WkγR,n,k]

≥
∑

x∈R(Gpre
n×k)

Pr[GLT
kγR×nx = 0]

−1
2

∑
x,y∈R(Gpre

n×k),x 6=y
Pr[GLT

kγR×nx = 0&GLT
kγR×ny = 0]

= (2k − 1)((2n−1 − 1)
(2n − 1) )kγR − 1

2

k∑
i=1

(ki )(2k − 2)

×{[ (2
n−1 − 1)

(2n − 1) ]3 + [1− (2n−1 − 1)
(2n − 1) ]3}kγR

= (2k − 1)
[

(2n−1 − 1)
(2n − 1)

]kγR
− (2k − 1)(2k−1 − 1)

×


[

(2n−1 − 1)
(2n − 1)

]3

+
[
1− (2n−1 − 1)

(2n − 1)

]3

kγR

. (4.45)
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Compared with the general expressions in Theorems 4.2 and 4.3, in the simpli-

fied expressions of Corollaries 4.5 and 4.6, we can easily observe the relationship

between the decoding failure probability and the parameters of the encoding rules,

i.e., k, n and γR. Additionally, the computation complexity of the derived upper

bound can be reduced from O(1
2n

2k(n − k)) to O(1). As for the derived lower

bound, the computation complexity can be reduced from O(1
8n

6k3(n − k)3) to

O(1).

4.4 Simulation Results

In this section, we use MATLAB based simulations to validate the accuracy of the

analytical results and the tightness of the proposed performance bounds. Each

point shown in the figures is the average result obtained from 106 simulations.

For clarity, the simulation parameters adopted in this section are summarized in

Table 4.1.

Table 4.1: Simulation parameters
Rateless codes encoding parameters

Number of source symbols k 20, 40, 70 and 100
Number of intermediate symbols n 21, 41, 71 and 102

Parameter for Bernoulli random variables η 0.3, 0.7
Pre-code C (n, k, η) LDGM code

The degree distributions for LT codes
Standard degree distribution Ω3GPP (x)
Binomial degree distribution Ωd = (nd)

(2n−1) , 1 ≤ d ≤ n

Ideal soliton degree distribution Ωd = 1
d(d−1) , 2 ≤ d ≤ n

and Ω1 = 1
n

4.4.1 Verification of the Derived Bounds

In this subsection, the number of source symbols is set to be k = 20 and the degree

distribution of Raptor codes follows the widely used ideal soliton degree distribu-

tion [31]. Besides, the pre-code C is assumed to be (21, 20, 0.3) and (21, 20, 0.7)
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Figure 4.2: The decoding failure probabilities of Raptor codes with ideal soliton
degree distribution and (21, 20, η) LDGM codes as the pre-code versus overhead
γR. Parameter for Bernoulli random variables η is set as 0.3 and 0.7.

LDGM codes.

In Fig. 4.2, both analytical and simulation results are presented on PDF
k,n,γR

, the

probability that a receiver cannot successfully decode all k = 20 source symbols,

for different values of the reception overhead γR = mR/k. As shown in Fig. 4.2,

our analytical results, i.e., the upper bound and the lower bound, are consistent

with the simulation results very well. This validates the accuracy of the analysis

in this paper. However, when the overhead γR is small, there is still a gap between

the upper (lower) bound and simulation results in Fig. 4.2. The gap between the

exact value and the upper (lower) bound is caused by the approximation used

in equation (4.2), and the gap between the exact value and the lower bound is

caused by equation (4.29).
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4.4.2 Investigation of the Impact of Degree Distribution

on the Decoding Failure Probability of Raptor Codes

In this subsection, we investigate the performance for different degree distribu-

tions of LT codes when we fix the Pre-code C as (21, 20, 0.7). The investigated

degree distributions of LT codes are represented by 3 cases. Case 1 uses the bi-

nomial degree distribution [89]. Case 2 investigates the widely used ideal soliton

degree distribution [31]. Case 3 is the standardized degree distribution in 3GPP

[39, Annex B]:

Ω3GPP (x) = 0.0099x+ 0.4663x2

+0.2144x3 + 0.1152x4

+0.1131x10 + 0.0811x11. (4.46)

As shown in Fig. 4.3, for different degree distributions, our analytical bounds

agree very well with the simulation results. The performance of Raptor codes

with the binomial degree distribution outperforms those obtained with the other

three degree distributions. Furthermore, the expressions of the decoding failure

probability of Raptor codes with the binomial degree distribution in Corollaries

4.5 and 4.6 are less computationally demanding compared with the expressions in

Theorems 4.2 and 4.3. Therefore, we use Raptor codes with the binomial degree

distribution in the following simulations.

4.4.3 Investigation of the Impact of k on the Decoding

Failure Probability of Raptor Codes

When the number of source symbols k varies from 20 to 100, our analytical results

still match the simulation results very well. From the figures we can see that the

derived upper and lower bounds are asymptotically tight as the overhead grows.
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Figure 4.3: The decoding failure probabilities of Raptor codes with (21, 20, 0.7)
LDGM code as the pre-code and different degree distributions versus overhead
γR. The degree distributions of Raptor codes are chosen as ideal soliton degree
distribution [31], the standardized degree distribution in 3GPP [39, Annex B]
and binomial degree distribution [89].

However, when the overhead is small, the gaps between the bounds and the

simulated values are still visible. This is caused by the union bound in equation

(4.5). Additionally, as shown in Figs. 4.4(a) and 4.4(b), at a larger number of

the source symbols, less reception overhead γR = mR/k is required to achieve the

same performance on the decoding failure probability.

4.4.4 Investigation of the Impact of m on the Decoding

Failure Probability of Raptor Codes

When the number of intermediate symbols m is set to be k, the special case that

no precode is used, we can get another set of upper and lower bounds on the

decoding failure probability of LT Codes. In this subsection, we compare the

performance of LT and Raptor codes. As shown in Fig. 4.5, as we expected,

Raptor codes can achieve lower decoding failure probabilities than LT codes.
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4.5 Summary

In this paper we focused on finite-length Raptor codes with a systematic LDGM

code as pre-code and derived upper and lower bounds on the decoding failure

probabilities of Raptor codes under ML decoding, which is measured by the

probability that not all source symbols can be successfully decoded by a receiver

with a given number of successfully received coded symbols. ML decoding en-

sures successful decoding when a full-rank matrix is received. Due to the con-

catenated coding structure of Raptor codes, we have analyzed the rank behavior

of the product of two random matrices. Finally, by applying a special degree

distribution–binomial degree distribution [89] into the upper and lower bound,

we simplified the general bound with any degree distributions and any (n, k, η)

LDGM codes as pre-code into a far less complex expression. The computation

complexity of the derived bounds can be significantly decreased.

On the basis of the results presented in the paper, in the future, we plan to

explore the optimum degree distribution and optimal parameter of Raptor codes

in different channels.
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Figure 4.4: The decoding failure probabilities of Raptor codes with the binomial
degree distribution and (n, k, 0.7) LDGM codes as the pre-code at different values
of the overhead γR. The number of source symbols k is set to be 20, 40, 70 and
100 respectively.
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Figure 4.5: The decoding failure probabilities of Raptor codes with ideal soliton
degree distribution and (21, 20, 0.7) LDGM codes as the pre-code and LT codes
with ideal soliton degree distribution versus overhead γR.
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Chapter 5

LT Codes based Wireless

Broadcast Scheme

In the preceding two chapters, we have investigated the decoding success proba-

bility of finite-length LT codes and finite-length Raptor codes with a systematic

low-density generator matrix (LDGM) code as the pre-code under maximum-

likelihood (ML) decoding. Different from traditional FEC codes, rateless codes

are adaptable to different channel conditions and avoid the need for feedback

channels [46, 50, 40]. In this chapter we develop a LT codes based broadcast

scheme that allows a base station (BS) to broadcast a given number of symbols to

an unknown number of receivers, without requiring the receivers to acknowledge

the correct receipt of broadcast symbols and in the meantime being able to pro-

vide a performance guarantee on the probability of successful delivery. Further,

the BS only has limited statistical information about the environment including

the spatial distribution of users (instead of their exact locations and number) and

the wireless propagation model. Performance analysis is conducted. On that ba-

sis, an upper and a lower bound on the number of symbol transmissions required

to meet the performance guarantee are obtained. Simulations are conducted to

validate the accuracy of the theoretical analysis. The technique and analysis
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developed in this chapter are useful for designing efficient and reliable wireless

broadcast strategies. The results of this chapter appear in [J1].

5.1 Introduction

An important issue in wireless networks is efficient and reliable broadcasting. In

this chapter, we want to design a wireless broadcast scheme that a) uses minimal

information about network environment, b) can deliver information to a large

number of users, c) does not rely on user acknowledgment, and d) is able to

provide a guaranteed performance on the probability of successful delivery.

The advantages of rateless codes have been demonstrated in detail in Chapter

1 and 2. Due to these salient advantages of rateless codes, in this chapter we

choose LT codes for use in our broadcast strategy design.

In [101], Tukmanov et al. studied the effect of cooperation on broadcast and

derived analytical results characterizing the performance of a non-cooperative

broadcast scheme and a cooperative broadcast scheme respectively. In their

schemes, the network coding technique was not employed. In [45], Dong et al.

compared the efficiency of the network coding based broadcast scheme and tra-

ditional ARQ based schemes. Their network coding based broadcast scheme

relied on the feedback information provided by the receivers. In [46], Nguyen et

al. investigated the benefits of applying rateless (fountain) codes on improving

the transmission efficiency of broadcast without considering the decoding success

probability.

In this chapter, we develop a LT codes based broadcast scheme that allows a

BS to broadcast a given number of symbols to an unknown number of receivers,

without requiring the receivers to acknowledge the correct receipt of broadcast

symbols and in the meantime being able to provide a performance guarantee

on the probability of successful delivery. Further, we assume that the BS only
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has limited prior knowledge about the network environment, which includes the

spatial distribution of the receivers, i.e. the receiver density λ, and the wireless

propagation model. However the BS may not know the exact number of receivers

and their locations. The above assumption is due to the consideration that in

some highly dynamic networks, particularly vehicular networks, the receiver den-

sity in the coverage area of a BS is relatively stable and easy to estimate however

the receivers in the coverage area may be changing quickly. Compared with the

broadcast scheme without coding, the LT codes technique can facilitate infor-

mation dissemination by reducing the minimum number of transmissions while

providing a guaranteed performance on the probability of successful delivery. In

this chapter, we apply the theoretical analysis on the decoding success proba-

bility for a single transmitter and receiver pair using LT codes from Chapter 3

in an one to all broadcast scenario. The performance of the proposed LT codes

based broadcast scheme is validated both analytically and via simulations. The

following is a detailed summary of our contributions:

• A LT codes based broadcast scheme is proposed, which broadcasts a given

number of symbols from a BS to a large number of users with a priori

knowledge about the spatial distribution of the receivers and the wireless

propagation model only. The scheme does not need users’ acknowledgment

and is able to provide a performance guarantee on the probability of suc-

cessful delivery.

• The performance of the proposed scheme is analyzed. On the basis of the

analytical bounds of decoding success probability of finite-length LT codes

under maximum likelihood (ML) decoding derived in Chapter 3, the upper

and lower bounds on the probability that all receivers in a bounded area

successfully receive or decode all source symbols from the BS are derived.

• On the basis of the above results, the minimum number of transmissions
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required for a guaranteed performance on the probability of successful de-

livery is obtained.

• Simulations are conducted which validate both the accuracy of the analysis

and the performance improvement of the proposed scheme.

The technique and analysis presented in this chapter can be useful for designing

broadcast strategies to deliver information of common interest to a large number

of users efficiently and reliably.

The rest of the chapter is organized as follows. Section 5.2 describes the system

model and problem formulation. In Section 5.3, we carry out performance analysis

of the proposed LT codes based broadcast scheme and present a technique to

estimate the number of transmissions required to meet the performance objective

on the probability of successful delivery. In Section 5.4, we validate our analytical

results using simulations. Section 5.5 concludes the chapter.

5.2 System model and Problem Formulation

5.2.1 System Model

In this chapter, a cellular network with one BS and an unknown number of

receivers is considered. Receivers are distributed across a two dimensional disk,

denoted by D (o,R), according to a homogeneous Poisson point process (PPP)

Φ with intensity λ where D (o,R) represents a disk centered at the origin o and

with a radius R. The BS is located at the origin. Let {xi} denote the set of

receivers on D (o,R) and we refer to a receiver by its location xi.

We assume that the channels from the BS to different receivers are indepen-

dent 1. For the data transmission from the BS located at o to a receiver located
1The assumption of channel independence has been widely used and is also supported by

some measurement studies although we acknowledge that in some environment channel corre-
lations can be a major concern. For example, in [102] it was shown that the coherence distance
in an omnidirectional Rayleigh channel is: 9λ

16π [102, Eq. (5.116)] where λ is the wavelength
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at xi, the SNR of the received signal is written as:

SNRi = Pthi ‖xi‖−α

No

, (5.1)

where Pt is the transmitting power of the BS, No is the background noise power, α

is the path loss exponent and ‖xi‖ represents the Euclidean norm of xi. Parame-

ter hi is a random positive number modeling the small scale fading and shadowing

between the BS and xi and is assumed to be exponentially distributed with a

mean value of 1 [101].

The BS broadcasts coded symbols to all receivers where the source symbols are

coded using LT codes. A (coded) symbol is considered to be successfully delivered

from the BS to the receiver xi when the instantaneous SNR is greater than or

equal to a designated threshold δ. Denote by Pi the probability of successful

symbol delivery for the receiver xi. It follows that

Pi = Pr[SNRi ≥ δ]. (5.2)

Further, for each receiver, we assume that the event that a (coded) symbol is

successfully received and the event that another (coded) symbol is received are

independent.

5.2.2 Problem Formulation

The metric of interest is the number of transmissions by the BS, denoted by L,

required to deliver k source symbols of equal length to all receivers in D (o,R)

such that the probability of successful delivery of all k symbols to all receivers is

and the value for a non-omnidirectional channel is only slightly different [102, Eq. (5.117)]. In
a more recent work it was shown [103] that if a pair of receivers are separated by more than λ,
their received signals from a common transmitter can be considered independent [102, p. 243]
(with a correlation coefficient less than 0.15). At 800 MHz λ = 0.375 m, thus the requirement
on the separation of receivers (in order for the channels to be considered independent) can be
easily met.
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above a predesignated threshold 1− ε, where ε is a small positive constant.

Denote by ηi the event that all k source symbols have been received, i.e.

successfully decoded from the coded symbols received from the BS, by receiver

xi. Let

η
4=
⋂

i∈Γηi, (5.3)

where Γ denotes the set of indices of all the receivers and η represents the event

that all k source symbols have been received, i.e. successfully decoded from

the coded symbols received from the BS, by all the receivers. Obviously Pr(η)

depends on the number of (coded) symbols broadcast by the BS. Denote by m

the number of symbols broadcast from the BS and we also write η as η (m) to

emphasize the dependence of η onm when necessary. Parameter L can be defined

more rigorously as:

L
4= arg min

m
Pr (η (m))≥1− ε. (5.4)

In this chapter, we shall quantitatively characterize the value of L. This is done

by first deriving the upper and lower bounds on the decoding success probability

Pr (ηi) for a single BS and receiver pair using finite-length LT codes. On that

basis, the upper and lower bounds on the probability Pr (η) that all receivers

successfully decode all source symbols from the BS are derived. Consequently,

the upper and lower bounds on L are obtained which allows us to draw conclusion

on the number of (coded) symbols that the BS needs to transmit with LT codes

to guarantee that Pr(η) ≥ 1− ε.

Fig. 5.1 illustrates the system model.
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Figure 5.1: An illustration of the system model

5.3 Analysis on the Overall Success Probability

for Multiple Receivers

On the basis of the analysis in the last section, which investigated the decoding

success probability of a single receiver who have successfully received mR coded

symbols from the BS, in this section, we continue to analyze the overall success

probability that all receivers have successfully received all k symbols, i.e. Pr(η)

where the event η is defined in equation (5.3).

For convenience, let φ(mR), φl(mR) and φu(mR) be the exact value, the

upper and the lower bound of Pr
[
Rk
mR

]
as suggested in Theorem 3.1 respec-

tively. According to Theorem 3.1, φ(mR) ≥ φl(mR) = ek(Xmin)(mR−1)R(1) and

φ(mR) ≤ φu(mR) = ek(X)(mR−1)R(1). Denote by L the total number of trans-

missions required on the BS in order to meet the objective Pr (η) ≥ 1 − ε. Let
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Pr (η (mT )) denote the probability that all the k source symbols can be success-

fully decoded by all the receivers after mT transmissions by the BS. It can be

expressed as:

Pr (η (mT )) =
∞∑
j=0

Pr [η (mT , j) | N = j] Pr [N = j] , (5.5)

where η (mT , j) is the event that all k source symbols have been successfully

received/decoded from the mT coded symbols broadcast by the BS, by all j

receivers in the coverage area of the BS D (o,R). Additionally, N is the total

number of receivers in D (o,R). Parameter N is a Poissonly distributed non-

negative integer with mean λπR2:

Pr(N = j) = (λπR2)j exp(−λπR2)
j! . (5.6)

As an easy consequence of the Poisson distribution of receivers [104] and the

independence of channels between the BS and the receivers, it can be obtained

that

Pr [η (mT , j) | N = j]=∏j
i=1 Pr [ηi (mT )] = (Pr [ηi (mT )]) j, (5.7)

where ηi (mT ) represents the event that the ith receiver (which is randomly drawn

from the set of all receivers) can successfully decode all k source symbols when

the BS broadcasts mT coded symbols.

For the same receiver, the received coded symbols broadcast by the BS are

independent of each other. Let ri be the (random) distance between the ith

receiver and the BS and ri = ‖xi‖. It readily follows that

Pr [ηi (mT ) | ri = y]

=
mT∑

mR=k
(mTmR) {Pi(y)}mR {1− Pi(y)}mT−mR φ(mR), (5.8)
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where the term (mTmR) {Pi(y)}mR {1− Pi(y)}mT−mR represents the probability that

out of mT coded symbols broadcast by the BS, mR coded symbols are received

by the ith receiver. Here Pi(y) represents the probability that a coded symbol is

successfully received by the ith receiver conditioned on that ri = y. According to

the definition in Section 5.2, Pi(y) can be expressed as:

Pi(y) = Pr[SNRi(y) ≥ δ], (5.9)

where SNRi(y) is instantaneous SNR of the channel between the BS and the ith

receiver. Using equation (5.1) and note that hi is exponentially distributed with

mean value 1, equation (5.9) can be rewritten as:

Pi(y) = Pr[hi ≥
Noδy

α

Pt
] = exp(−Noδy

α

Pt
). (5.10)

Inserting equation (5.10) into equation (5.8) we obtain:

Pr [ηi (mT ) | ri = y]

=
mT∑

mR=k
(mTmR) {Pi(y)}mR {1− Pi(y)}mT−mR φ(mR)

=
mT∑

mR=k
(mTmR)φ(mR)

[
exp(−Noδy

α

Pt
)
]mR

×
[
1− exp(−Noδy

α

Pt
)
]mT−mR

=
mT∑

mR=k
(mTmR)φ(mR)

mT−mR∑
i=0

(mT−mRi )(−1)(mT−mR−i)

×
[
exp(−Noδy

α

Pt
)
](mT−mR−i) [

exp(−Noδy
α

Pt
)
](mR)

=
mT∑

mR=k
(mTmR)φ(mR)

mT−mR∑
i=0

(mT−mRi )(−1)(mT−mR−i)
[
exp(−Noδy

α

Pt
)
](mT−i)

.(5.11)

Owing to the property of Poisson process, conditional on the number of re-

ceivers N = j, all j receivers are independent and identically distributed (i.i.d.)
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on D (o,R) following a uniform distribution. Therefore the cumulative distribu-

tion function of ri can be easily obtained:

Pr[ri ≤ y] = y2

R2 , y ∈ [0, R] (5.12)

and the probability density function of ri is given by 2y
R2 .

Using the total probability theorem, we can now derive Pr [ηi (mT )] as:

Pr [ηi (mT )]=
∫ y=R

y=0
Pr [ηi (mT ) | ri = y] 2y

R2dy

=
mT∑

mR=k
[
2(mTmR)φ(mR)

R2 ]
mT−mR∑
i=0

(mT−mRi )(−1)(mT−mR−i)

×
∫ y=R

y=0
y

[
exp(−(mT − i)Noδy

α

Pt
)
]
dy. (5.13)

Further, the integral inside equation (5.13) can be computed:

∫ y=R

y=0
y

[
exp(−(mT − i)Noδy

α

Pt
)
]
dy

=

Γ[ 2
α
, (mT−i)Noδyα

Pt
]

α
(

(mT−i)Noδ
Pt

) 2
α


R

0

=
Γ[ 2

α
, (mT−i)NoδRα

Pt
]− Γ[ 2

α
, 0]

α
(

(mT−i)Noδ
Pt

) 2
α

, (5.14)

where Γ(n, x) is the incomplete Gamma function.

Inserting equations (5.6), (5.7), (5.13) and (5.14), into the equation (5.5), we

can obtain an upper bound and a lower bound on Pr(η (mT )), which are given by

(5.15) and (5.16), respectively. Particularly, using the lower bound on Pr(η (mT )

in (5.16), the minimum number of transmissions required by the BS in order to

meet the performance guarantee that Pr (η)≥1− ε can be determined.

Pr(η (mT )) ≤ exp

λ2π
mT∑

mR=k
(mTmR)φu(mR)

mT−mR∑
i=0

(mT−mRi )(−1)(mT−mR−i)
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×

Γ[ 2
α
, (mT−i)NoδRα

Pt
]− Γ[ 2

α
, 0]

α
(

(mT−i)Noδ
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5.4 Simulation Results

In this section, we use simulations to validate the accuracy of the analytical results

and the tightness of the bounds. The simulations are conducted in a simulator

written in Matlab. Each point shown in the figures is the average value obtained

from 105 simulations. The 95% confidence interval is shown in these figures as

well. The radius R is chosen to be 2.5 km. The receiver density is varied from

λ = 10 nodes/km2 to λ = 100 nodes/km2. The number of source symbols is

chosen to be 5. The degree distribution of LT codes follows the widely used

Luby’s Ideal Soliton distribution [31]. Path-loss exponent is set to be α = 2.

The transmitting power of the transmitter (BS) Pt is set to be 10 dBm and the

thermal noise power density No is −80 dBm. The SINR threshold δ is set to be 0

dB. For comparison, the scenario that the BS broadcasts without using network

coding is also shown in some figures. When the BS broadcasts without using

network coding, the BS broadcasts the k source symbols sequentially and repeat

the process when the last source symbol is broadcast. Theoretical analysis for the

scenario that the BS broadcasts without using network coding is trivial compared

with that using LT codes and hence is not presented in the thesis.

Analytical and simulation results are presented in Fig. 5.2 on the probability

that all receivers successfully receive all 5 source symbols as a function of the

number of transmissions by the BS. As shown in Fig. 5.2, our analytical results,

i.e., upper and lower bounds, match the simulation results very well, which val-
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Figure 5.2: The probability of successfully decoding all 5 source symbols by all
receivers versus the number of coded symbols broadcast by the BS.

idate the accuracy of the analysis in this paper. However there is still a gap

between the upper (lower) bounds and simulation results in the figures. The gap

between the exact value and the upper bound is caused by the approximation

used in equation (3.1) and the gap between the exact value and the lower bound

is caused by equation (3.2).

In Fig. 5.3, we further compare the success probabilities of broadcast using

LT codes and without using network coding. As shown in Fig. 5.3, it can be seen

that the use of LT codes yields much better performance in terms of the number

of transmitted symbols required to meet the same performance objective on the

probability of successful delivery (i.e. all receivers receive all source symbols).

In comparison, without using network coding, the BS needs to transmit more

symbols to meet the performance objective. For example, when the probability

of successful delivery is set to be 0.947, at most 33 transmissions is needed when

LT codes are used, while 50 broadcasts are required when coding is not used,

which represents a saving of 50% transmissions when using LT codes.

Fig. 5.4 shows the overall success probabilities of the proposed LT coding

based broadcast scheme as a function of the node density when the number of
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Figure 5.3: The probabilities of successfully decoding all 5 source symbols by all
receivers for broadcast scheme using LT codes and that without NC as a function
of the number of transmissions by the BS

broadcast from the BS is fixed at 35. We can see that the simulation results

match well with the theoretical results. Further, for all values of the node density,

broadcasting using LT codes offers better performance than broadcasting without

using coding. We also can observe that as the node density increases the gaps

between the upper and the lower bounds become bigger. This is because the

differentiation of the gap of the bounds is a positive value when 0 ≤ λ ≤ λc,

where λc is a positive number and can be easily calculated.

The variation of the system overall success probabilities of the proposed LT

codes based broadcast scheme with the path loss exponent is demonstrated in

Fig. 5.5(a) and Fig. 5.5(b). The number of source symbols and the number

of broadcast from the BS are set to be 15 and 75, respectively. The radius R

is chosen to be 400 m. The receiver density is set to be λ = 10 nodes/km2.

The transmitting power of the BS Pt is set to be −18 dBm and the thermal

noise power density No is −80 dBm. We can observe that the simulation results

lie between the upper and lower bound, i.e., are consistent with the theoretical

results. Further, for all values of the path loss exponent, broadcasting using LT
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Figure 5.4: The probabilities of successfully decoding all 5 source symbols by
all receivers for broadcast scheme using LT codes and that without coding as a
function of the node density.

codes outweighs the performance of broadcasting without using coding.

When the number of source symbols increases, the conclusion that the use of

LT codes can significantly reduce the number of transmissions required to meet

the same performance objective, compared with that without using coding still

hold. As demonstrated in Figs. 5.6, 5.7, 5.8 and 5.9, compared with broadcasting

without using coding, the BS can reduce the number of transmissions required to

meet the same performance objective, which leads to reduced transmission latency

and energy consumption. When the performance objective, i.e., the probability

of successful delivery, is set to 0.954, for k=10, the ratio of the number of symbols

transmitted without using coding to that using LT codes equals 2.037; for k=20,

the ratio is 2.5; for k=50, the ratio increases to 3.095; for k=100, the ratio

becomes 3.5. It seems that the ratio increases as the number of source symbols

increases.
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Figure 5.5: The probabilities of successfully decoding all 15 source symbols by
all receivers for broadcast scheme using LT codes and that without coding vs the
path loss exponent.
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Figure 5.6: The probabilities of successfully decoding all k = 10 source symbols
by all receivers for broadcast scheme using LT codes and that without coding as
a function of the number of transmissions by the BS
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Figure 5.7: The probabilities of successfully decoding all k = 20 source symbols
by all receivers for broadcast scheme using LT codes and that without coding as
a function of the number of transmissions by the BS
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Figure 5.8: The probabilities of successfully decoding all k = 50 source symbols
by all receivers for broadcast scheme using LT codes and that without coding as
a function of the number of transmissions by the BS
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Figure 5.9: The probabilities of successfully decoding all k = 100 source symbols
by all receivers for broadcast scheme using LT codes and that without coding as
a function of the number of transmissions by the BS
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5.5 Summary

In this chapter we studied reliable broadcast in a wireless network with a BS and

a number of receivers. More specifically, we assume that the BS only has limited

statistical information about the environment including the spatial distribution of

users (instead of their exact locations and number) and the wireless propagation

model. By resorting to stochastic geometry analysis, a LT codes based broadcast

scheme was designed that allows the BS to broadcast a given number of source

symbols to a large number of users, without user acknowledgment, while being

able to provide a performance guarantee on the probability of successful deliv-

ery. The scheme is based on a rigorous analysis on the probability of successful

delivery using LT codes, conducted in Chapter 3. The upper and lower bounds

on the probability that all receivers successfully decode all source symbols from

the BS were derived in Section 5.3. On that basis, the upper and lower bounds

of the number of transmissions required for a guaranteed performance on the

probability of successful delivery were obtained. Simulations were conducted to

validate the accuracy of the theoretical analysis. It was shown that the use of LT

codes can significantly reduce the number of transmissions required to meet the

same performance objective, compared with that without using network coding.

The technique and analysis developed in this paper can be useful for designing

broadcast strategies to deliver information of common interest to a large number

of users efficiently and reliably.
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Chapter 6

Conclusion and Future Work

In this thesis, we considered random network coding (rateless erasure coding) as

the desirable means for wireless broadcast problems because of the advantages of

rateless codes: avoiding the need for feedback channels and being able to adapt

to different channel conditions. Two types of rateless code, i.e., Luby transform

(LT) codes and Raptor codes, were focused on in this thesis. The decoding

success probabilities of finite-length LT Codes and Raptor codes under maximum

likelihood (ML) decoding were investigated.

In this chapter, we conclude the thesis by summarizing our contributions.

6.1 Finite-Length Analysis of LT Codes

In Chapter 3 we studied the decoding success probability of LT codes under ML

decoding over BEC, i.e., the probability that all source symbols can be success-

fully decoded by a receiver with a given number of successfully received coded

symbols under ML decoding. Since ML decoding of an LT code is equivalent to

solving a consistent system of linear equations, where the coefficients are given

by an LT code generator matrix created according to some specifically designed

random processes. In Chapter 3, we provided rigorous mathematical analysis on

the rank profile of a random coefficient matrix. On the basis of this analysis, we
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derived upper and lower bounds on the decoding success probability of LT codes

under ML decoding. Moreover, simulations were conducted to validate the accu-

racy of the proposed bounds. More specifically, LT codes with different degree

distributions were evaluated which establishes the accuracy of the bounds. We

showed that when binomial degree distribution introduced in Subsection 2.3.1 is

applied, the upper and lower bounds merge to the exact expression. Moreover, its

performance outperforms the other degree distributions [31] in terms of decoding

success probability.

6.2 Finite-Length Analysis of Raptor Codes

In Chapter 4 we investigated the decoding success probability of Raptor codes

with low-density generator matrix (LDGM) codes as the pre-code under ML de-

coding over BEC. The decoding success probability of these compound codes is

equivalent to the probability that the product of two random matrices has full

rank. In Chapter 4, we firstly provided the analytical results, i.e., an upper bound

and a lower bound, on the decoding failure probability of Raptor codes with a

systematic LDGM code as the pre-code under ML decoding. The decoding fail-

ure probability is the probability that not all source symbols can be successfully

recovered by a receiver with a given number of successfully received coded sym-

bols under ML decoding. The analytical results are derived by analyzing the

rank of the product of two random coefficient matrices. Based on the analytical

bounds on the decoding failure probability of Raptor codes, we can readily ob-

tain the analytical bounds on the decoding success probability of Raptor codes,

which is unity minus decoding failure probability. Moreover, simulations were

conducted to validate the accuracy of the proposed bounds. More specifically,

Raptor codes with different degree distributions and pre-codes, were evaluated

which establishes the accuracy of the bounds. Finally, by applying binomial de-
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gree distribution [89] into the upper and lower bounds, we simplified the general

bounds with any degree distributions and any (n, k, η) LDGM codes as pre-code

into a far less complex expressions. By this way, the computation complexity of

derived bounds can be significantly decreased.

The developed bounds enable a quick assessment of the decoding error prop-

erties of a coding ensemble without the need for time-consuming Monte Carlo

simulations. They can be used to find the optimum degree distribution and pa-

rameters of Raptor codes.

6.3 LT Codes based Wireless Broadcast Scheme

In Chapter 5, we developed a LT codes based broadcast scheme that allows a

base station (BS) to broadcast a given number of symbols to an unknown num-

ber of receivers, without requiring the receivers to acknowledge the correct receipt

of broadcast symbols and in the meantime being able to provide a performance

guarantee on the probability of successful delivery. Further, the BS only has

limited statistical information about the environment including the spatial dis-

tribution of users (instead of their exact locations and number) and the wireless

propagation model. Based on the decoding success probability of LT codes un-

der ML decoding derived in Chapter 3, the performance of the proposed scheme

was analyzed. On that basis, an upper and a lower bound on the number of

symbol transmissions required to meet the performance guarantee were obtained.

Simulations were conducted to validate the accuracy of the theoretical analysis.

The analytical bounds developed in Chapter 5 are useful for designing efficient

and reliable wireless broadcast strategies. The scheme proposed in Chapter 5

is expected to be also helpful to set the corresponding parameters of wireless

broadcast in a more realistic setting.
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6.4 Future Work

In this section, some of the interesting open directions for future research are

listed below:

• This thesis analyzed the performance for rateless code under erasure chan-

nels. It would be interesting to consider other channel models such as

AWGN channels and fading channels.

• Implementing rateless codes into modern communication systems is an im-

portant research topic.

• It is worthwhile to explore the optimum degree distribution and parameters

design of the finite-length rateless codes with the ML decoding bounds

derived in this thesis.

• An interesting research direction could be to develop new practical trans-

mission control protocol (TCP) based on rateless codes.

• A straightforward extension of the proposed network coding based broad-

cast schemes is the Multimedia broadcasting/multicasting in wireless cellu-

lar networks.

• It would be interesting to extend the application of rateless codes based

broadcasting to Device to Device (D2D) networks.
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