1,155 research outputs found

    Identification of geometrical and elastostatic parameters of heavy industrial robots

    Get PDF
    The paper focuses on the stiffness modeling of heavy industrial robots with gravity compensators. The main attention is paid to the identification of geometrical and elastostatic parameters and calibration accuracy. To reduce impact of the measurement errors, the set of manipulator configurations for calibration experiments is optimized with respect to the proposed performance measure related to the end-effector position accuracy. Experimental results are presented that illustrate the advantages of the developed technique.Comment: arXiv admin note: substantial text overlap with arXiv:1311.667

    Modelling of the gravity compensators in robotic manufacturing cells

    Get PDF
    The paper deals with the modeling and identification of the gravity compensators used in heavy industrial robots. The main attention is paid to the geometrical parameters identification and calibration accuracy. To reduce impact of the measurement errors, the design of calibration experiments is used. The advantages of the developed technique are illustrated by experimental result

    Stiffness modeling of robotic manipulator with gravity compensator

    Get PDF
    The paper focuses on the stiffness modeling of robotic manipulators with gravity compensators. The main attention is paid to the development of the stiffness model of a spring-based compensator located between sequential links of a serial structure. The derived model allows us to describe the compensator as an equivalent non-linear virtual spring integrated in the corresponding actuated joint. The obtained results have been efficiently applied to the stiffness modeling of a heavy industrial robot of the Kuka family

    Kinematic calibration of Delta robot using distance measurements

    Get PDF
    This paper deals with kinematic calibration of the Delta robot using distance measurements. The work is mainly placed upon: (1) the error modeling with a goal to classify the source errors affecting both the compensatable and uncompensatable pose accuracy; (2) the full/partial source error identification using a set of distance measurements acquired by a laser tracker; and (3) design of a linearized compensator for real-time error compensation. Experimental results on a prototype show that positioning accuracy of the robot can significantly be improved by the proposed approach

    Accuracy Improvement of Robot-Based Milling Using an Enhanced Manipulator Model

    Get PDF
    The paper is devoted to the accuracy improvement of robot-based milling by using an enhanced manipulator model that takes into account both geometric and elastostatic factors. Particular attention is paid to the model parameters identification accuracy. In contrast to other works, the proposed approach takes into account impact of the gravity compensator and link weights on the manipulator elastostatic properties. In order to improve the identification accuracy, the industry oriented performance measure is used to define optimal measurement configurations and an enhanced partial pose measurement method is applied for the identification of the model parameters. The advantages of the developed approach are confirmed by experimental results that deal with the elastostatic calibration of a heavy industrial robot used for milling. The achieved accuracy improvement factor is about 2.4

    Robust algorithm for calibration of robotic manipulator model

    Get PDF
    The paper focuses on the robust identification of geometrical and elastostatic parameters of robotic manipulator. The main attention is paid to the efficiency improvement of the identification algorithm. To increase the identification accuracy, it is proposed to apply the weighted least square technique that employs a new algorithm for assigning of the weighting coefficients. The latter allows taking into account variation of the measurement system precision in different directions and throughout the robot workspace. The advantages of the proposed approach are illustrated by an application example that deals with the elasto-static calibration of industrial robot.AN

    Tolerance design and kinematic calibration of a 4-DOF pick-and-place parallel robot

    Get PDF
    This paper presents a comprehensive methodology for ensuring the geometric pose accuracy of a 4-DOF high-speed pick-and-place parallel robot having an articulated travelling plate. The process is implemented by four steps: (1) formulation of the error model containing all possible geometric source errors; (2) tolerance design of the source errors affecting the uncompensatable pose accuracy via sensitivity analysis; (3) identification of the source errors affecting the compensatable pose accuracy via a simplified model and distance measurements; and (4) development of a linearized error compensator for real-time implementation. Experimental results show that a tilt angular accuracy of 0.1/100, and a volumetric/rotational accuracy of 0.5 mm/±0.8 deg of the end-effector can be achieved over the cylindrical task workspac

    Kinematic calibration of a 3-DOF spindle head using a double ball bar

    Get PDF
    This paper presents a simple and effective approach for kinematic calibration of a 3-DOF spindle head developed for high-speed machining. This approach is implemented in three steps, (i) error modeling that allows the geometric errors affecting the compensatable and uncompensatable pose accuracy to be classified; (ii) identification of the geometric errors using a set of distance measurements acquired by a double ball bar (DBB) with a single installation; (iii) design of a linearized error compensator for real-time error implementation. Experimental results on a prototype machine show that the compensatable pose accuracy can significantly be improved by the proposed approach

    Advanced robot calibration using partial pose measurements

    Get PDF
    International audienceThe paper focuses on the calibration of serial industrial robots using partial pose measurements. In contrast to other works, the developed advanced robot calibration technique is suitable for geometrical and elastostatic calibration. The main attention is paid to the model parameters identification accuracy. To reduce the impact of measurement errors, it is proposed to use directly position measurements of several points instead of computing orientation of the end-effector. The proposed approach allows us to avoid the problem of non-homogeneity of the least-square objective, which arises in the classical identification technique with the full-pose information. The developed technique does not require any normalization and can be efficiently applied both for geometric and elastostatic identification. The advantages of a new approach are confirmed by comparison analysis that deals with the efficiency evaluation of different identification strategies. The obtained results have been successfully applied to the elastostatic parameters identification of the industrial robot employed in a machining work-cell for aerospace industry

    Compliance error compensation technique for parallel robots composed of non-perfect serial chains

    Get PDF
    The paper presents the compliance errors compensation technique for over-constrained parallel manipulators under external and internal loadings. This technique is based on the non-linear stiffness modeling which is able to take into account the influence of non-perfect geometry of serial chains caused by manufacturing errors. Within the developed technique, the deviation compensation reduces to an adjustment of a target trajectory that is modified in the off-line mode. The advantages and practical significance of the proposed technique are illustrated by an example that deals with groove milling by the Orthoglide manipulator that considers different locations of the workpiece. It is also demonstrated that the impact of the compliance errors and the errors caused by inaccuracy in serial chains cannot be taken into account using the superposition principle.Comment: arXiv admin note: text overlap with arXiv:1204.175
    corecore